Preprint
Article

Selective Laser Sintering of Porous Silica Enabled by Carbon Additive

Altmetrics

Downloads

1011

Views

567

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

30 September 2017

Posted:

01 October 2017

You are already at the latest version

Alerts
Abstract
The aim of this study was to investigate the possibility of a freeform fabrication of porous ceramic parts through selective laser sintering (SLS). SLS was proposed to manufacture ceramic green parts because this additive manufacturing technique can be used to fabricate three-dimensional objects directly without a mold, and the technique has the capability of generating porous ceramics with controlled porosity. However, ceramic printing has yet fully achieved its 3D fabrication capabilities without using polymer binder. Except for the limitation of high melting point, brittleness and low thermal shock resistance from instinct ceramic material properties, the key hurdle lies on very poor absorptivity of oxide ceramics to fiber laser which is widely installed in the commercial SLS equipment. An alternative solution to overcome the poor laser absorptivity via improving material compositions was presented in this study. The positive effect of carbon additive on the absorptivity of silica powder to fiber laser will be discussed. To investigate the capabilities of the SLS process, 3D porous silica structures were successfully prepared and characterized.
Keywords: 
Subject: Chemistry and Materials Science  -   Ceramics and Composites
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated