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Abstract: Environmental policy involving citizen science (CS) is of growing interest. In support of 16 
this open data stream of information, validation or quality assessment of the CS geo-located data 17 
and their appropriate usage for evidence-based policy making, needs a flexible and easily adaptable 18 
data curation process ensuring transparency. Addressing these needs, this paper describes an 19 
approach for automatic quality assurance as proposed by the Citizen OBservatory WEB (COBWEB) 20 
FP7 project. This approach is based upon a workflow composition that combines different quality 21 
controls, each belonging to seven categories or ‘pillars’. Each pillar focuses on a specific dimension 22 
in the types of reasoning algorithms for CS data qualification. These pillars attribute values to a 23 
range of quality elements belonging to three complementary quality models. Additional data from 24 
various sources, such as Earth Observation (EO) data, are often included as part of the inputs of 25 
quality controls within the pillars. However, qualified CS data can also contribute to the validation 26 
of EO data. Therefore, the question of validation can be considered as ‘two sides of the same coin’. 27 
Based on an invasive species CS study, concerning Fallopia japonica (Japanese knotweed), the paper 28 
discusses the flexibility and usefulness of qualifying CS data, either when using an EO data for the 29 
validation within the quality assurance process, or validating an EO data product that describes the 30 
risk of occurrence of the plant. Both validation paths are found to be improved by quality assurance 31 
of the CS data. Addressing the reliability of CS open data, issues and limitations of the role of quality 32 
assurance for validation, due to the quality of secondary data used within the automatic workflow, 33 
are described, e.g. error propagation, paving the route to improvements in the approach. 34 

Keywords: citizen science; volunteered geographical information; metadata; data quality; quality 35 
assurance; scientific workflow; provenance; metaquality; open data; 36 

 37 

1. Introduction 38 
Robust and fit-for-purpose evidence is at the heart of environmental policy and decision making 39 

in the UK government, as shown by the Department for Environment, Food and Rural Affairs 40 
(DEFRA) in their evidence strategy [1]. Exploring the combined use of innovative technologies, such 41 
as Earth observation (EO) and Citizen science (CS), for supporting various environmental policy 42 
areas [1], is a consequence of this momentum. One example of this is detecting, mapping and 43 
monitoring the spread of Invasive Non-Native Species (INNS), such as Fallopia japonica (Japanese 44 
knotweed). The total annual cost of the Japanese knotweed (JKW hereafter) to the British economy is 45 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 October 2017                   doi:10.20944/preprints201710.0016.v1

©  2017 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Data 2017, 2, 35; doi:10.3390/data2040035

http://dx.doi.org/10.20944/preprints201710.0016.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/data2040035


 2 of 22 

estimated at £166 million [2], therefore optimizing the use and potential of any data capture 1 
methodology is widely encouraged. 2 

CS is not a new phenomenon [3-5], and is not limited to geographical information. Nonetheless, 3 
the combined effect of the ubiquity and increasing capabilities of mobile phone technologies with the 4 
rise of geospatial applications in everyday life, has propelled CS into an era of geo-savvy people 5 
accustomed to map mashups and a myriad of location based services. Sometimes referred to as 6 
‘geographic’ CS [6], and used interchangeably with the term ‘volunteered geographic information’ 7 
(VGI) [7, 8], this kind of CS is relatively new and is ever increasing in the range of applications, 8 
especially in the environmental monitoring space. There are many CS projects already in action as 9 
well as software platforms to create templates and forms that can be used to collect field data with 10 
mobile applications or ‘apps’ [10]. It is a growing area of research, with a need for a common 11 
standards-based framework for uploading and distributing CS data [11]. 12 

The EU funded Framework Programme Seven (FP7) Citizen OBservatory WEB (COBWEB) 13 
project used a co-design approach, engaging with stakeholders at multiple levels (‘grass roots’ CS 14 
practitioners, through to policy makers), to develop a research e-infrastructure that could be used to 15 
create, manage, validate and disseminate geospatial information rapidly and in a standardized way 16 
[12]. To better understand the benefits of such an e-infrastructure and the data it curates for the end 17 
users (citizens and policy makers alike), further research into the potential of qualified CS data in 18 
combination with EO land cover and habitat monitoring data products is required [13]. 19 

Examples where CS or crowdsourced data have contributed to applications in EO have largely 20 
relied on data that have been sourced from platforms such as Mechanical Turk, GeoGraph or even 21 
OpenStreetMap [8], or where gamification has attracted large numbers of remote volunteers [14,15]. 22 
However, there are fewer examples in the literature of in situ data gathered by volunteers on the 23 
ground being utilized for the validation of EO derived land cover or habitat products [13, 16]. Recent 24 
research [17] demonstrates that data collected by volunteers for this purpose can be useful, despite 25 
general concerns about data quality, and therefore contribute to ecological monitoring and inventory 26 
[18,19]. Nonetheless, information of quality is needed for CS data, to give confidence in their re-use, 27 
and provide a rich evidence base for policy making. For both in situ CS data collection and web-based 28 
crowdsourcing, e.g. GEO-Wiki [20], data quality has long been identified as the crucial challenge for 29 
re-use of CS or VGI data [21-26], and is still reportedly a key concern [27,28]. 30 

The mapping of ecological habitat types using satellite imagery is a rich and active research area 31 
but arguably this still remains difficult to scale up into fully operational campaigns [29, 30], due to 32 
the need for in situ data. EO has provided data suitable for the mapping of INNS several years [31], 33 
though not without some difficulties [32]. For example, other vegetation of similar spectral reflectance 34 
characteristic can be found surrounding, above or beneath the canopy of the intended target INNS. 35 
Furthermore, the cost of high resolution imagery required to map certain scales of the stands, and 36 
with the need of multiple images over the year to detect the phenological differences in the INNS, to 37 
that of other vegetation, leads to an accumulation of cost to the end user and becomes nonsensical 38 
too. However, with the recent availability the Copernicus space programme providing free and open 39 
satellite data, with spatial resolutions of 10 m in the optical region, it is likely that an increased 40 
number of applications of EO for habitat monitoring, and related policy development, are likely to 41 
follow. 42 

The use of EO to explore the extent of INNS in Europe (also referred to as Invasive Alien Species 43 
(IAS) in combination with CS based data collection, allow projects to provide validation data to input 44 
into distribution models or habitat maps, which is recognized as an exciting new research area [33,11]. 45 
The COBWEB project contributed significantly in this field, from demonstrating how the use of a 46 
flexible, standards-compliant infrastructure that offers quality assurance data curation processes, was 47 
enabling data conflation of multiple data sources, including EO [12]. 48 

Quality Assurance (QA) can be defined as a set of data policies, controls, and tests put in place 49 
in order to meet specific requirements, measured from a series of quality metrics. Few directions or 50 
methods on how to qualify CS and VGI data have been expressed [22, 34-36]. In the context of CS, the 51 
quality controls (QCs) can be related to both the design of data capture tools a priori to a QA 52 
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procedure, and to (geo)computational operations that output quality values according to particular 1 
measures, either during data capture or a posteriori to the data capture (a posteriori QA). Selection of 2 
the QCs, which feed into the QA procedure, are often decided with future data usage in mind (fitness 3 
for purpose) [26]. 4 

The process of ‘verification’, such as that used by the NBN: National Biological Network, UK, is 5 
a common practice, and is primarily used as a definitive way of assessing the data quality. This 6 
involves manual verification by an expert of each observation, e.g. verifying the content of a photo 7 
which has been given as evidence of an invasive species occurrence. This is an inefficient and not 8 
scalable (ineffective for large numbers of observations) qualifying method for CS.  9 

Within the above context, this paper addresses the challenge of validating CS data against EO 10 
data, or vice versa, and in each case, demonstrates the choices made and the important role that the 11 
qualifying system can perform in increasing the potential of CS data re-use. This paper goes on to 12 
comprehensively describe the purpose of the COBWEB e-infrastructure, in specific relation to QA, 13 
expanding upon previous work [26, 36] (Section 2). Then, applicability of QA is analyzed using an 14 
INNS JKW case study based in the Snowdonia National Park, in Wales, UK (Section 3). 15 

1.1 QA case study background 16 

The CS data for this case study were collected during the summer of 2015 in Snowdonia National 17 
Park (SNP), as part of a co-design project within the COBWEB project. The specific COBWEB survey 18 
form used by 34 citizens to report JKW occurrences was generated by the SNP CS coordinator, using 19 
a web portal, and distributed to the citizens and SNP representatives, using a mobile application [12]. 20 
The survey sample, limited to the SNP representatives, consisted of 177 points of declared JKW 21 
occurrences, with an average positional accuracy of up to 13 m (the positional accuracy measure 22 
being the 68% circular error also corresponding to 1 standard deviation). For ground truth 23 
comparisons, verifications of the photos identified 16 incorrect declarations (<10%) of JKW. The EO 24 
data product considered here is a vector layer product derived from a clustering algorithm including 25 
rules using Colored Infra-Red (CIR) and Light Detection and Ranging (LiDAR) images, predicting 26 
the likelihood or risk of occurrence of JKW. Each polygon in the EO derived product contains the risk 27 
of occurrence of JKW, categorized as ‘no-risk’, ‘low risk’, ‘medium risk’ and ‘high-risk’. The EO data 28 
product consisted of a total of 61,288 features, with 46,356 polygons attributed as ‘high’ and ‘medium’ 29 
risk, and 14,932 polygons attributed as ‘low’ or ‘no’ risk zones. Henceforth, when referring to ‘EO 30 
data’ within this text, it will refer to the EO data product estimating the risk of occurrence of JKW. 31 
The EO data product was acquired under a commercial contract between Environment Systems Ltd 32 
and the Welsh government, with a non-disclosure agreement allowing access for the purposes of this 33 
study. Requests to Environment Systems for additional information may be considered on a case by 34 
case basis.  35 

In terms of estimating the spread of JKW within the SNP, both CS and EO data only give partial 36 
insight into JKW distribution, due to their known limitations on quality. These limitations are either 37 
due to coverage and potential misjudged records from the citizens, or algorithm performance metrics 38 
for the EO data generation. Nonetheless, coherence of these two data sources should enable the 39 
validation of one data source with the other, depending on the level of confidence that is accepted. If 40 
the CS data were of very high quality, this ground truth dataset would allow estimations of the 41 
accuracy of the EO data (Section 4), and if the EO data were highly representative of JKW within the 42 
SNP, it would alone enable the qualification of the CS data with a high confidence (Section 5). If both 43 
were of high quality, the discrepancy in accuracies would be attributable only to the lag in data 44 
acquisition periods, and differential growth of the JKW (Section 4.1). As within this case study, both 45 
datasets cannot be considered of high quality, therefore, the question posed here is, can their 46 
combined use be more informative and or offer an increase in quality? The greater the quality of the 47 
CS data, the better the EO data accuracy can be evaluated (Section 4.2 and 4.3). Conversely, the greater 48 
the EO data accuracy, the greater confidence (metaquality) can be given to the EO product within the 49 
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QA to qualify CS data (Section 5). From ISO19157, metaquality information (at dataset level) is 1 
describing how the quality was obtained and eventually its variation across the dataset. 2 

2. Quality assurance and quality control framework 3 
The COBWEB project aimed at designing and building a generic interoperable e-infrastructure 4 

facilitating the collection and curation of CS data for future usage in environmental monitoring [12]. 5 
As part of this e-infrastructure, QA plays an important role, either during or after data capture. A QA 6 
procedure is designed using the QA workflow Authoring Tool (QAwAT), a web interface of the QA 7 
framework. It is based upon a workflow editor which uses the Business Process Modelling Notation 8 
(BPMN) standard, a standard for graphical notation for specifying business processes (similar to a flow 9 
chart) www.bpmn.org. QAwAT enables the selection of QC tests by the stakeholder, which are then 10 
combined and chained to form a QA procedure for their CS survey [37, 38]. To ensure 11 
interoperability, the QCs are implemented as Web Processing Service (WPS) processes. The OGC 12 
Web Processing Service standard provides rules for standardizing how inputs and outputs for 13 
invoking geospatial processing services are defined. Each QC takes the CS data and their metadata 14 
(including any existing quality valuations) as input, and performs processing and geoprocessing on 15 
these data, producing or updating the quality metadata of each single observation of the CS data 16 
(Figure 1). This process may involve other data sources, e.g. authoritative data, EO data, social media.  17 

As part of the COBWEB platform, the QAwAT offers flexibility in designing, recording and 18 
executing a quality assurance workflow; it enables communication and dialog between stakeholders 19 
and provides metadata on metaquality in a machine-readable format (a BPMN file).  20 

Figure 1 shows a QC conceptualized in a BPMN diagram, as a QA workflow with a single task. 21 
This representation of a single QC and a full workflow, are based upon the same principle, which 22 
might use additional BPMN artefacts, such as conditional flow, parallel gateways or inclusive 23 
gateways. Using the BPMN standard, the full workflow for QA can be displayed with or without 24 
inputs (as in Figure 2, and Appendix A.1). This displays all the involved artefacts, and the quality 25 
elements created and updated during the execution of the workflow, which are shown as 26 
annotations: Vol as volunteer referring to the stakeholder quality model, Obs referring to the Producer 27 
quality model, and Auth to the consumer model. These annotations, only used when communicating 28 
graphically between stakeholders, are conformant to the BPMN standard. 29 

The metadata on data quality belongs to three different quality models (see Appendix A.4 for a 30 
full description): the producer model, generating the spatial data quality from the ISO19157, the 31 
consumer model following the principle of the user feedback model (Geospatial User Feedback 32 
Standard Working Group www.opengeospatial.org/projects/groups/gufswg) and the stakeholder 33 
quality model [26, 36]. The ISO 19157 establishes the principles for describing the quality of 34 
geographic data Qualifying each citizen volunteer, the stakeholder quality model produces quality 35 
elements that are updated at each new participation in a survey (from running the associated QA) 36 
but current values are kept associated with the observation when it is made by this citizen volunteer. 37 
Not only can the current values of the stakeholder quality model influence, as weighting factors, the 38 
quality assessment for the other quality models, for a new data captured by this citizen (seen as an 39 
observation made by the sensor ‘this citizen’), but they will also evolve from the processing and rules 40 
within each QC. All three quality models use an encoding that follows the ISO19157 schema, with a 41 
scope to link ‘citizen’ to the current observation. 42 
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 1 
Figure 1. Generic pattern of a Quality Control (QC), seen as processing task producing metadata on 2 
data quality conceptualized in an atomic-workflow (BPMN diagram). A workflow starts at the greyed 3 
disk with a green circle and finishes at the black disk with the red circled. Processing steps are the 4 
rounded rectangles, these tasks may involve inputs and outputs indicated by the data objects 5 
associated to the task (dotted arrows), and normal flow operates according to the non-dotted black 6 
arrows. The output data objects are the metadata for the input including the metadata on spatial data 7 
quality and potentially the input themselves which have been modified (corrected). 8 

The QA framework proposes 7 categories of QCs as 7 Pillars for quality assessments of CS data 9 
(Table 1). This categorization into 7 pillars helps in the development of geoprocesses and in the 10 
composition of the workflow. They represent the top of an ontology for the QCs for CS quality 11 
assessments. The 7 Pillars further extend the classification of quality assessments proposed in 12 
previous work by Goodchild & Li [22]: ‘the crowdsourcing approach’ (validation in reference to the 13 
rest of the crowd); ‘the social approach’ (validation using expert peers or trusted peers); and ‘the 14 
geographical approach’ (validation involving the geographical context). Several QCs accessible have 15 
been developed, and are available within the WPS repository (implemented either in Java or as R 16 
scripts). A screenshot and video of the interface can be viewed in the GitHub repository 17 
(https://github.com/cobweb-eu/workflow-at) and shows composition of a QA workflow, including 18 
choosing a QC from a list of QCs (classified as one of the 7 pillars), populating the necessary input 19 
parameters and input data, then continuing to instantiate the workflow.  20 
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Table 1. The 7 Pillars of Quality Controls in CS [26, 36]. 1 
Pillar name Pillar description 
Pillar 1: Positioning Location, position and accuracy: focusing on the position of the user and of 

the targeted feature (if any), local condition or constraints (e.g. authoritative 
polygon, navigation, routing, etc.) 

Pillar 2: Cleaning Erroneous entries, mistakes, malicious entries: Erroneous, true mistakes, 
intentional mistakes, removals, corrections are checked for the position and for 
the attributes. Feedback mechanism can be an important part of this pillar if the 
mistakes can be corrected. 

Pillar 3: Automatic 
Validation 

Simple checks, topology relations and attribute ranges: Carries further 
the cleaning aspects by validating potential good contributions. Its aim is 
towards positive rewarding with more inclusive rules than with pillar 2 
focusing more on excluding rules. 

Pillar 4: Authoritative 
Data Comparison 

Comparison of submitted observations with authoritative data: Either 
on attributes or position performs statistical test, (fuzzy) logic rule based test 
qualifying the data captured or reversely qualifies the authoritative data. 
Knowledge of the metadata of the authoritative data is paramount. 

Pillar 5: Model-Based 
Validation 

Utilizing statistical and behavioral models: Extends pillar 4 testing 
against modelled data (e.g. physical models, behavioral models) and other user 
contributed data within the same context. This may use intensively fuzzy logics 
and interactions with the user within a feedback mechanism of interactive 
surveying. (if some tests will be similar to pillar 4 the outcome in quality 
elements can be different) 

Pillar 6: Linked Data 
Analysis 

Data mining techniques and utilizing social media outputs: Extends 
pillar 5 testing to using various social media data or related data sources within 
a linked data framework. Tests are driven by a more correlative paradigm than 
in previous pillars. 

Pillar 7: Semantic 
Harmonisation 

Conformance enrichment and harmonization in relation to existing 
ontologies: Level of discrepancy of the data captured to existing ontology or 
crowd agreement is transformed into data quality information. In the 
meantime, data transformation to meet harmonization can take place. 

The following section illustrates the usage of this QA framework for CS data from the JKW 2 
survey in the SNP.  3 

3. Designing the Japanese knotweed Quality Assurance 4 
The COBWEB app [12] was used to record the CS data, with a single observation containing 5 

positional information, photos of the reported JKW, along with bearing and tilt angle parameters 6 
given by their smartphone, and the citizen’s estimates of the heights of the plants. The citizens were 7 
also asked to report their distance to the declared JKW occurrence (see Appendix A.3), and an 8 
approximation of the area covered by the JKW. 9 

The diagrammatic QA workflow for the JKW study (Figure 2) was designed following initial 10 
discussions with the stakeholders. Further engagement led to some modifications to the rules within 11 
a QC, for instance ‘JKW does not grow in the forest or in managed land ‘, leading to QCs in Pillar 4 12 
(Authoritative data comparison) using forest and managed land data (termed LPIS in the diagram). 13 
The Pillar 4 Point in polygon QC (pillar4.PointInPolygon) tests the inclusion of a point, taking into 14 
account positional accuracy of both the point and the authoritative data, and concludes first on the 15 
usability, topological consistency and domain consistency. Then, depending on the type of attribute 16 
attached (if mentioned), i.e. classification or quantitative or non-quantitative, and of the agreement 17 
looked for (“must be in” or “must be not in”), updates the corresponding ISO19157 elements, e.g. 18 
thematic classification correctness.  19 

Although the ordering of the pillars in Table 1 is not compulsory when composing any QA 20 
workflow, there is often a natural succession of QCs. This subjective order follows from ‘topological 21 
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and location concerns for the observation’, with typical QCs in Pillar 1 (positioning) and Pillar 2 1 
(Cleaning), to ‘content concerns’, with Pillar 3 (Automatic Validation) for photo quality evaluation. 2 
Next follows Pillar 5, with the modelled data from EO (Model-based validation), attribute range 3 
(from Pillar 3), and the authoritative data of known verified occurrences (Pillar 4, Authoritative data 4 
Comparison) with the authoritative data sourced from the National Biological Network (NBN), and 5 
then excluding rules in Pillar 4 for forest and managed land. Following this, ‘content concerns’ comes 6 
from the consistency of the answer by comparing this citizen to the other citizen scientists (Pillar 5 7 
for reliability distribution and co-occurrence validity). Then enlarging the comparison to other data 8 
sources from the crowd with a QC in Pillar 6 (Linked Data Analysis), and finally a normative 9 
assessment for the photo annotation from a QC in Pillar 7 (Semantic Harmonization). 10 

The EO data used in Pillar 5 Proximity Suitability Score QC (ProximitySuitabilityScore) are 11 
considered as semantically equivalent to the CS data. Observing JKW a citizen also identifies a high-12 
risk zone (without delineation). The risk is taken as the classification correctness reached by the 13 
citizen, 1 if CS is considered as ground truth, but could be lower depending on the quality and trust 14 
of this CS data. The fact that, if more citizens make the same observation it would increase the local 15 
quality of the EO data itself, is not the purpose here. Nonetheless, these co-occurrences made from 16 
the CS view-point are used in the QA (qualifying the CS data), as increasing the quality of the 17 
observation and credibility of the citizen. Where the EO product estimates an area with a high-risk 18 
value, one could expect (with a high probability) that a nearby citizen scientist would report a JKW 19 
occurrence. Nonetheless, the survey was not set up to allow regular reporting of occurrences or 20 
absences of JKW, i.e. the citizen would be prompted to report at regular time intervals or set distances 21 
as well as allowing spontaneous reporting. Therefore, the equivalence of CS and EO information is 22 
directly valid only for areas of declared occurrences from citizens (true and false positive statistics). 23 
False negatives were obtained indirectly, using the verification process; however, the sample was 24 
considered unbalanced, with only 10% incorrect observations. This paper does not include a 25 
comment on the method of EO data product generation that predicted the risk of occurrence of the 26 
JKW, as this is not its focus; only what the EO product represents is required, either when using it in 27 
the QA workflow as in Figure 2 (see Section 5) or when using CS to validate it (see Section 4).  28 

Taking the values of the EO data as suitability scores, which are measures of likelihood of 29 
occurrence, the pillar 5 Proximity Suitability Score QC (ProximitySuitabilityScore), highlighted in 30 
Figure 2, computes a weighted summary (mean or max) of the values found within the nearby 31 
polygons of the EO data product, to the current CS observation. It then assigns these to the 32 
classification correctness quality element of that current CS record. Usability and positional accuracy 33 
(from accuracies of the polygons) are updated during the process, depending on the score obtained 34 
during the comparison to a chosen quality element with simple threshold rules. 35 

For the remainder of the paper, there is a distinction made between the entire QA (as shown in 36 
Appendix A.1), and the QA without the Pillar 5 (Model-based Validation) QC, which uses the EO 37 
data (for the risk of JKW). The latter is highlighted in Figure 2. Note, for both situations, the QCs in 38 
Pillar 6 (Linked Data Analysis) and Pillar 7 (Semantic Harmonization) were not used due to 39 
insufficient, relevant additional data but were left in Figure 2 as part of the established QA workflow 40 
for JKW. Running the QA workflow produced quality values for each recorded observation in the CS 41 
data. Summaries at dataset level can be made but in the remainder of this paper, CS data quality are 42 
considered at individual record level (each citizen’s observations). For example, the Data Quality 43 
element Classification Correctness (DQ_ClassificationCorrectness), for the CS data from this study, 44 
is a vector of 177 values, each ranging between 0 and 1. 45 

4. Using Citizen Science for Earth Observation validation 46 
Within the approach for validating an EO data product from other data sources, CS data can 47 

play an important role for the validation itself. This can be within a partial opportunistic scheme or 48 
providing a training sample as a ground truth, e.g. for a supervised classification algorithm. Although 49 
all the data quality elements are potentially important for the future usage of the CS data, the main 50 
quality of interest here is the classification correctness (from ISO19157). Each of the 177 CS data 51 
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records were verified by an expert, who from photo examination, declared 16 as incorrectly 1 
identifying a JKW presence. Further information on the JKW co-design study can be found on the 2 
COBWEB website (https://cobwebproject.eu). 3 

4.1 Without Quality Assurance of the Citizen Science data 4 
Without a means of QA, there is total uncertainty concerning the quality of the CS data, so either 5 

the end user would have to blindly trust the data by artificially assigning a classification correctness 6 
of 1 (as degree of agreement) for each observation, or they would have to assign 0.5 as degree of 7 
agreement (neither correct nor incorrect). A value equal to or below 0.5 is not usable for validation, 8 
so to use the CS data without QA implies a full degree of trust. 9 

 10 
Figure 2. Highlight of one QC within the entire QA workflow (greyed) designed for the Fallopia 11 
japonica (Japanese knotweed) study. See Appendix A.1 for the whole annotated BPMN where each 12 
QC is labelled with its pillar number, pillar name and a short textual illustrating the semantics of the 13 
process, e.g. Pillar 3 Automatic Validation / photo quality. The annotations in brown list the quality 14 
metadata output at each step. 15 

As each CS observation should be associated in the EO data as a high-risk point of observing 16 
JKW, the ‘score’ obtained in the Pillar 5 QC (Proximity Suitability Score (ProximitySuitabilityScore)) 17 
alone is a validation measure for the EO, of high risk zones. When this score is high, the single CS 18 
observation is not too far from a polygon of the EO data attributed as high risk of JKW presence. 19 
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Therefore, this CS observation implicitly declares the EO data as accurate in this zone. However, if 1 
this CS observation has been verified as incorrectly declaring the presence of JKW the EO polygon 2 
contributing to a high-risk score can also be considered as incorrect: a commission error (i.e., excess 3 
data present in a dataset, measured here as number of excess items in the dataset or sample in relation 4 
to the number of items that should have been present (ISO19157); this is also the false positive rate). 5 
When the score obtained for a verified as correct single CS data is low, this infers that the EO data 6 
has an omission of high-risk polygons in this zone (i.e., data absent from the dataset, measured here 7 
by the number of missing items in the dataset or sample in relation to the number of items that should 8 
have been present (ISO19157); this is also the false negative rate). Applying these rules for the whole 9 
CS data sample, the findings are: 10 

• CS data with no score (25/177) and score <0.2 (20/177) represent an omission for high-risk 11 
zones of 45/177 (25%) and correcting for ground truth gives 39/161 (24%). 12 

• CS data with score >0.5 represent accurate areas, 120/177 (68%), but 10/120 (8%) points 13 
wrongly identified JKW so a corrected accuracy of 110/177 (62%) with a commission of 8%. 14 

The accuracy measures above (68% and 62%) represent the validation of high or medium risk 15 
zones only but these accuracy measures are relative to this very opportunistic sample that the CS 16 
data represents. Note, the maximum accuracy one can obtain using this sample of 177 is 91%, due to 17 
16/177 being incorrectly identified JKW observations. 18 

The commission accuracy for the ‘low’ or ‘no’ risk zones identified by the EO data can be 19 
calculated with the same algorithm by inverting the risk values, giving 3/177 (2%) or 3/161 (2%) 20 
corrected. Obviously, here the sample size of 177 control data points can be considered too small in 21 
comparison to the number of segmented zones within the EO data. (Note the 16 incorrect 22 
observations would also contribute to defining the accuracy of the ‘no risk’ zones but with a very 23 
small sample). However, the nature of CS data is such that optimal sample numbers and spatial 24 
distribution are rarely obtained, e.g. areas inaccessible by the citizens. 25 

If this CS sample cannot be used to assess the validation of the EO data, one can nonetheless 26 
expect that if the EO data were accurate, with 10% omission for the high-risk zones, this omission 27 
value should be observed for any sample coming to challenge this validation. The CS sample (taken 28 
as fully accurate) gave an omission of 25% (24% corrected). 29 

4.2 With Quality Assurance of the Citizen Science data 30 
As expressed above, CS data identifying invasive species without quality is taken either as truth 31 

in full trust (classification correctness implicitly set to 1) or full uncertainty (classification correctness 32 
set to 0.5). Therefore, when starting any QA, the quality elements measured from a level of agreement, 33 
start with a value of 0.5. Due to the small number of incorrect JKW in the verification (16/177), a QA 34 
matching the verification performance should not change the above accuracy statistics for the EO 35 
data. However, it is established that expert validation itself is not always fully accurate. As the QA is 36 
based upon external assessments, and a set of rules, it will also be discriminating the correct 37 
observations, and changes will occur in these statistics when based upon selecting only high quality 38 
CS data. Note that here the QA may discard (give a low-quality value) for an accurate JKW 39 
observation, e.g. the observation is located too close to forest, therefore being ‘unreliable’ as defined 40 
in the QA rules.  41 

The QA from Figure 2, was then executed without the inclusion of the Pillar 5 QC test, which 42 
used the EO data product. Selecting only CS data with usability or classification correctness above 43 
the chosen threshold of 0.7, the findings in 4.1 become: 44 
• CS data with no score (10/66) or score <0.2 (9/66) represent omission areas of 19/66 (29%). 45 
• CS data with score >0.5 represent accurate areas, 41/66 (62%). 46 

Comparing these results with those based upon ground truth, reveals a similar global accuracy 47 
(for the high and medium risk zones), 62%, but a more pessimistic omission rate 29% vs 24%. The 48 
sample size after selection, of at least 0.7 in usability or classification correctness, can be put into 49 
question. Nonetheless, it shows that qualified CS data could be a substitute to verified CS data. 50 
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4.3 With Line of Sight correction in the QA for the Citizen Science data 1 
One important consideration when deriving the data quality is that the geoprocessing 2 

algorithms are based upon the location of the citizen (of their smartphone), and not the actual position 3 
of the observation, which is the aimed point on the ground when taking the photo (line of sight (LoS)). 4 
In the QA described in Figure 2, the first QC, Pillar 1 Relative Position Line Of Sight QC 5 
(RelativePositionLineOfSight), uses the LoS but aims to investigate the quality of the topological 6 
consistency. The process uses a Digital Elevation Model (DEM), and the device’s bearing, tilt and 7 
position information to compute the LoS [39]. For this case study, the Natural Resources Wales 8 
LiDAR 2 m resolution Digital Surface Model was used for the DEM input. The QC assesses whether 9 
the distance of the citizen to the declared observation is too far or not (see the pseudo code given in 10 
Figure 3), and has the option of correcting the position of the observation by replacing it with the line 11 
of sight base point, under certain conditions. With this option chosen, the quality values may differ 12 
considerably (see Section 5) during the rest of the QA.  13 

The pseudo-code in Figure 3, as does the other QCs given in Appendix A.2, gives some insight 14 
into how The 7 Pillars of QC have been designed and coded. According to the pillar concept, QC test 15 
undertakes some computation based on its input data (for Figure 3 this is the LoS point and its 16 
distance to the volunteer), which is then passed onto bespoke rules estimating relevant quality 17 
element values.  18 

Using a threshold distance of 5 m to define the topological consistency (e.g. a swap from 8.3 m 19 
using p-below set to 0.6, if the accuracy is similar to the initial average position accuracy of 13 m), the 20 
findings above, still selecting only CS data with usability above 0.7, become: 21 

• CS data with no score represents omission areas, 0/72 (0%).  22 
• CS data with score >0.5 represent accurate areas, 72/72 (100%), correcting for ground truth 23 

gives 67/72 (93%). 24 
• CS data with score <0.2 (which was the low risk value in the EO data) represents an omission 25 

rate of 0/72 (0%). 26 

 27 
Figure 3. Pseudo-code (using an R script style) of the QC using LoS: Pillar 1 Relative Position Line Of 28 
Sight QC (RelativePositionLineOfSight). 29 

The LoS correction affected 38 out of 177 CS data records, i.e. where the LoS gave a result. No 30 
estimation is returned when either the line of sight does not reach the DEM within a 1000 m distance, 31 
or the tilt angle is inadequate, or when the DEM has an issue (no data value encountered, due to holes 32 
etc.) [43]. Out of the 38 points, 26 obtained a topological consistency below 0.6, i.e. the citizen was 33 
identified as being too far from the observation. Forcing a replacement, for example by setting p-34 
below to 0.99, could introduce some error propagation effects, as the uncertainties of the tilt and 35 
bearing can be potentially important (see Table 3 in the Discussion section). Overall, comparing 36 
results in 4.2 and 4.3, the LoS base point correction improved the EO accuracies. 37 

5. Using Earth Observation to improve Citizen Science data quality 38 
In Section 4.2, the QA from Figure 2 was used without the inclusion of the Pillar 1 Proximity 39 

Suitability Score QC (ProximitySuitabilityScore) as highlighted in Figure 2, which uses the EO data 40 
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product. Comparing the quality element obtained with and without running this particular QC gives 1 
some indications of the usefulness of such an EO data product, and whether or not this can be used 2 
directly in environmental policy making, even if the EO product itself is not considered as ‘perfect’. 3 
The plots in Figure 4 are density plots of the quality element values derived after running the QA 4 
(entirely or without that QC), and were obtained from the R function density(): the y-axis is the density 5 
value as defined by this function. Raw observations have also been overlaid for each group, 6 
displaying the observed distributions of values (no y-axis for these). 7 

5.1 CS data validation 8 
The first row of plots in Figure 4 corresponds to the values used in 4.2, i.e. without the QC in 9 

Pillar 5 involving the EO data. Being able to test the performance of the QA with verified CS data, 10 
also completes the EO to CS data validation.  11 

Figure 4 shows that, without the Pillar 5 QC involving the EO data product, the data resulted in 12 
too many correct JKW observations with low quality values. The densities are also very similar 13 
between the two groups, even though the densities of very low quality values are higher for 14 
incorrectly identified JKW observations. However, one must be cautious, as the sample size 15 
difference between the two groups introduces a bias when looking at the densities. Running the entire 16 
QA corrected these two aspects to some degree, as the densities of correctly identified JKW 17 
observations have a mode towards high qualities (plots labelled ‘Entire QA’). 18 

The distributions also appear more in agreement with correct and incorrect JKW observations, 19 
as uncertainties (0.5) remain higher for incorrect JKW observations, and the density of high qualities 20 
is higher for correct JKW observations. Nonetheless, low quality values are still given to a 21 
considerable number of correct JKW observations. This could be an indication for adding more tests 22 
into the QA workflow, or adjusting some parameters used in these QCs. Beside a calibration issue, 23 
there may also be a sensitivity issue due, for example, to position uncertainty or the quality of the 24 
authoritative data used in the different QCs. Note that a simple t-test for classification correctness 25 
resulted in a mean comparison of 0.65 for correctly identified JKW, and of 0.57 for incorrectly 26 
identified JKW (p value = 0.09). For the QA without LoS correction, the same t-test gives: correct JKW, 27 
0.65 incorrect JKW 0.58 (p-value = 0.10) This solely demonstrates the usefulness of the QA in 28 
discriminating data quality. Moreover, the same t-test for the quality results obtained without the QC 29 
in Pillar 5 (Model-based Validation), involving the EO data, is not significant (p value = 0.3), therefore 30 
highlighting the importance of this Pillar 5 QC and supporting EO data product, in the QA process. 31 

5.2 Iterative Paradigm 32 
As seen in Section 5.1, despite the indication that the EO data quality is not high (Section 4), the 33 

CS data quality will only improve when used in the QA. Provided the EO data does not have high 34 
commission (false positive rate) and omission (false negative rate) errors, this would generally work, 35 
otherwise to some extent, the errors will propagate into the CS qualification. Here, this could be the 36 
cause of high quality values for some incorrect JKW observations (false positives), as well as low 37 
quality for some correct JKW observations. Note that the differences in commission for high and low 38 
risk categories could be challenging, therefore, only using the extreme risk categories within EO data 39 
for a JKW risk product, would be a better choice for QA.  40 
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 1 
Figure 4. Quality values and densities for classification correctness and usability for two different QA 2 
processes, and for the two groups of observations correctly identifying JKW or not (raw observations 3 
are also overlaid). 4 

The EO algorithm could also utilize the qualified CS data as additional evidence to support the 5 
algorithm (as a training sample). From the iterative process that could result, the EO data zones where 6 
the CS data have been validated would then conflate appropriately to the CS data, ensuring better 7 
agreement of CS with EO data. Providing the QA makes use of the additional ‘qualifying rules’ 8 
related to EO data product, this iterative process would be alternating (i) the EO supervised algorithm 9 
using the CS of high quality, and (ii) the QA for the CS data including the EO data product for JKW 10 
risk obtained in (iii), where a threshold of high quality is fixed after the first iteration. Once validated, 11 
the new CS data collection, used as supplementary training samples, could also generate some 12 
benchmarking requirements when new EO imagery data would be needed, i.e. using the goodness 13 
of fit of the EO algorithm. Within an environmental monitoring scheme, EO and CS would then be 14 
complementary. 15 

5. Discussion 16 
With the aim of providing relevant metadata for CS data along with the provenance of the 17 

metadata on data quality, i.e. the metaquality encapsulated in the QA workflow, the results shown 18 
in the preceding sections are promising. They show also the benefit of using qualified CS data to 19 
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validate the EO data. However, there are some important and notable limitations. The EO data 1 
validation must be seen more as a confirmation rather than an assessment of the validation because 2 
the CS data is an opportunistic sample not controlled for EO validation. Nonetheless, for the user’s 3 
accuracy, and whether the sampling is controlled or not, as long as no evidence of introducing a bias 4 
in omission or commission can be established, the values obtained reflect a level of quality present in 5 
the EO data product. If the sample size of the verified data (ground truth) were large enough and 6 
balanced in potential presence or absence of the INNS, assessing the omissions and commissions of 7 
the EO data (as in Section 4), using qualified CS data instead of only the verified data has nonetheless, 8 
proven to be useful. Moreover, correcting the position of the occurrences using the LoS improved the 9 
results in EO confirmatory validation (section 4.3, even though the DEM accuracy as well as tilt and 10 
bearing accuracy may induce a propagation of errors. The distance to the observation as declared by 11 
the volunteers can have variable quality and its comparison to the LoS distance showed large 12 
differences (see Appendix A.3).  13 

If, overall, the QA results discriminated the correct and incorrect JKW occurrences well (true 14 
positive versus false positive), the current QA performance did not seem able to adequately identify 15 
a single observation as correct, or not, from its resulting qualities. The number of QCs used, their 16 
characteristics, their order in the QA workflow, the positional accuracy sensitivity for both the 17 
observed data and the external data used, along with the parameters chosen in the QC (such as 18 
threshold distances) are contributing to the QA outcome, with potential issues due to calibration and 19 
error propagated through the defined QA workflow. One could expect that increasing the number of 20 
QCs would diminish its sensitivity. Cancelling out the assessment for a given QC, if the quality 21 
metadata linked to the external data do note reach a certain level, would diminish error propagation 22 
whilst highlighting inadequacy. Down weighting the impact of new quality values when updating 23 
can also be a less drastic solution to low quality external data used in the QA. Note, the concern was 24 
only on qualifying the declaration of occurrence of the JKW plant; however, combining evidence 25 
across other available information can lead to better qualifying. For instance, the extent of the JKW at 26 
a declared occurrence and its potential agreement with the EO data product may be useful, i.e. it can 27 
be reasonably thought that the confidence in the risk given by the EO data product is increased as the 28 
extent detected by the EO algorithm becomes larger. This also raises concerns about the use of EO to 29 
bring evidence of the JKW or another INNS without appropriate spatial and temporal resolution for 30 
the detection of early spread [40]. A citizen scientist may detect a very early spread of JKW, observing 31 
a very small extent that EO would be unable to achieve. These considerations have impacts on both, 32 
EO for CS or CS for EO validation paths.  33 

A further limitation is the number of volunteers used (34) and the number of observations (177), 34 
and reflected the relatively small scale co-design type project. One way of increasing the number of 35 
observations would have been to regularly ask the citizen scientist to identify, at their current 36 
location, the occurrence or absence data for JKW. This would also have resulted in a better estimation 37 
of commission in the EO data, along with a better calibration of the citizen’s qualities as a sensor, i.e. 38 
trust, reliability. 39 

6. Conclusion 40 
As an alternative to a costly and not necessarily reliable ‘verification process’ often used in 41 

biodiversity Citizen Science (CS) surveys, this paper investigated the role and usefulness of an 42 
automated Quality Assurance workflow process based on 7 Pillars of Quality Controls, and the three 43 
quality models introduced by the COBWEB project [12]. Besides the flexibility this approach offers 44 
for curation of CS data, a case study and results investigating citizen reporting of an invasive species 45 
(Japanese knotweed) are reported. Specifically, using informative earth observation data within the 46 
quality assurance workflow, in relation to the occurrences of Japanese knotweed, even when of low 47 
quality, improves the CS quality assessment, i.e. it enables better discrimination between correct and 48 
incorrect JKW occurrences. Conversely, using qualified CS instead of raw CS data resulted in 49 
increased user’s accuracy for the earth observation data. In Groom et. al. [41], the authors advocate 50 
an open data approach concerning the invasive non-native species (INNS), in order to facilitate policy 51 
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and management. As the CS data are unlikely to be of high quality, and verification from experts is 1 
not always viable (or not possible for all CS data), the automatic quality assurance presented in this 2 
paper could be beneficial. Several limitations have been highlighted, however, and indication for 3 
potential remedies to the sensitivity of the quality assurance process were given. Multiple criteria 4 
selection on the quality elements, to validate CS data, could compensate for the weaknesses of the 5 
QA workflow used. Trustworthiness is used in many CS data collection systems, such as iSpot [42] 6 
and CoralWatch [27] as proxies for verification or in combination with other QA approaches to 7 
highlight potential re-use. Addressing several dimensions related to trustworthiness, the stakeholder 8 
quality model plays a role in qualifying the volunteer’s observations. A QC can use those quality 9 
values as weights for updating the other quality elements. It is expected that the flexibility provided 10 
by this QA framework, along with its principles, would guide the development of new QCs within 11 
the given pillars system as in the composition of workflows from stakeholders. In order to achieve 12 
robustness of the qualifying process, performing a pilot study in order to test the composed workflow 13 
QA on a verified sample is recommended as a necessary step before being used for a complete CS 14 
study. 15 

The QA framework presented is applicable in other environmental monitoring contexts for 16 
which EO data and CS data can be complementary. A typical example can be land use mapping with 17 
an emphasis on crop identification for agricultural land. Being able to appropriately combine 18 
multiple source of information with EO data, including CS data is becoming a high priority in 19 
initiatives such as the Copernicus programme directed by European Commission [43]. Citizen 20 
observatories, where citizen science data are empowering directly the citizens, for example in reaction 21 
to the EO available, play an important role in this ‘Copernicus chain’ (from EO data to usable 22 
information) [43]. It is acknowledged that a successful implementation of this ‘Copernicus chain’ 23 
would require attention to data quality. The QA framework presented in this paper could contribute 24 
to this success. 25 
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The following abbreviations are used in this manuscript: 34 
CIR: Coloured Infra-Red 35 
COBWEB: Citizen OBservatory WEB 36 
CS: Citizen Science 37 
DEM: Digital Elevation Model 38 
EO: Earth Observation 39 
FP7: Framework Program 7 40 
IAS: Invasive Alien Species 41 
JKW: Japanese KnotWeed 42 
INNS: Invasive Non-Native Species 43 
LiDAR: Light Detection And Ranging 44 
LoS: Line of Sight 45 
QA: Quality Assurance 46 
QAwAT: Quality Assurance workflow Authoring Tool 47 
QC: Quality Controls 48 
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SNP: Snowdonia National Park 1 
VGI: Volunteered Geographic Information 2 

Appendix A 3 
A.1 Entire QA workflow of Figure 2: annotated BPMN where each QC is labelled with its pillar 4 
number, pillar name, and a short textual illustrating the semantic of the process. The annotations in 5 
brown list the quality metadata output at each step. (see www.bpmn.org for BPMN artefact 6 
descriptions) 7 

 8 
 9 
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A.2 Detailing further Figure 2 and Section 2 this appendix gives the ‘Short description’, ‘pseudo-1 
code’ and ‘metadata output’ of some of the QCs used in Figure 2. 2 
 3 
Pseudo 
Code 

Short Description Quality elements metadata created or 
updated:  
DQ ISO19157 producer model  
GVQ GeoViQUA’s feedback model (simplified) 
CSQ COBWEB’s stakeholder model  

pillar1.LocationBasedServicePosition.RelativePositionLineOfSight 

#start 
input("citizen position, DEM, tilt and bearing of the phone ") 
   LoSpt=computeTheLoSpoint(position, DEM, tilt, bearing) 
input("input DEM uncertainty and position uncertainty") 
      d=distance(position,LoSpoint) 
       sd= uncertaintyofDistance(d,DEM_Accuracy, 
DQ_AbsoluteExternalPositionalAccuracy)  
input("choosing Threshold distance", "OptionSwap=TRUE or FALSE", p-below=0.6) 
   DQ_topologicalConsistency=probability(GaussianDistribution(d,sd^2)<=Threshold) 
     if(OptionSwap & DQ_topologicalConsistency < p-below) 
swapToLoS(position,LoSpoint) 
   update(DQ_TopologicalConsistency, DQ_Usablility) 
  update(DQ_AbsoluteExternalPositionalAccuracy)   
#end 
Compute the line of sight, aiming 
point and distance to it. Swap to LoS 
point under certain conditions 
 
DEM 
ThresholdDistance 
p-below 
OptionSwap  

DQ_UsabilityElement 
DQ_TopologicalConsistency 
 
-LoS.point / 
DQ_AbsoluteExternalPositionalAccuracy 
with scope defined as “LoS” .  
 

pillar2.Cleaning.LocationQuality 

#start 
input("input citizen position, DQlevelThreshold, PosUnThreshold, methods") 
   for each observation { 
     for each method in methods { 
      DQ_usability=evaluateRule(DQ_AbsoluteExternalPositionalAccuracy,             
DQ_usability, DQ_topologicalconsistency, DQ_conceptualconsistency) 
      } } 
   update(CSQs)   
#end 
According to the study requirement 
check if position is correct and/or 
can be corrected 
methods:  
“pillar1.WithinPoly”, 
”pillar1.LineOFSight”, 
“pillar1,ContainsPoly”, 
“pillar1.GetSpatialAccuracy”, 
”pillar4.or pillar1.DistanceTo” 
DQlevelThreshold 
PosUncertaintyThreshold 
 

DQ_UsabilityElement 
CSQ_Vagueness 
CSQ_Judgement 
CSQ_Reliability 
CSQ_Validity  

pillar3.AutomaticValidation.PhotoQuality 

#start 
input("input citizen captured photo, blurThreshold," ) 
         edgeImage=LaplaceTrasnform(photo) 
            usable=evaluateRule(edgeImage, blurThreshold)      
   update(DQ_usability, DQ_DomainConsistency, CSQ_judgement, CSQ_trust)  
 message(usable)  
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#end 

Test on sharpness of the image using 
the method of edge detection from 
Laplace transform.  
 
BlurThreshold  

DQ_UsabilityElement 
DQ_DomainConsistency 
CSQ_Reliability 
CSQ_Trust 
-dynamic:  
<message> “Can you take another picture?” 

pillar5.Model-basedValidation. ProximitySuitabilityScore 

#start 
input("input citizen position, buffersize, attribute") 
    ProximPol=findNearby(buffersize) 
      score=summaryMeasure(calculweightDistance(ProximPol),values(ProximPol, 
attribute)) 
updateRules(DQs,CSQs,GVQs, score)   
#end 
Deriving the likelihood of the 
observed occurrence (citizen 
captured data) from polygon 
proximity to a model-estimate one 
(e.g. suitability likelihood) 
 
modelled data 
attribute 
buffersize 
 

DQ_UsabilityElement 
DQ_ThematicClassificationCorrectness 
DQ_AbsoluteExternalPositionalAccuracy 
DQ_RelativeInternalPositionalAccuracy 
GVQ_PositiveFeedback 
GVQ_NegativeFeedback 
CSQ_Judgement 
CSQ_Reliability 
CSQ_Validity 
CSQ_Trust

pillar4.AuthoritativeDataComparison.ProximitySuitabilityScore 

#start 
input("input citizen position, buffersize, attribute") 
    ProximPol=findNearby(buffersize) 
      score=summaryMeasure(calculweightDistance(ProximPol) 
updateRules(DQs,CSQs,GVQs, score)   
#end 
Deriving the likelihood of the 
observed occurrence (citizen 
captured data) from polygon 
proximity to a given authoritative 
data (e.g. existing observed 
occurrences) 
 
Authoritative data 
Buffersize 
Note: comparing to pillar5 attribute 
value is 1 as authoritative data. 
 

DQ_UsabilityElement 
DQ_DomainConsistency 
DQ_ThematicClassificationCorrectness 
DQ_NonQuantitativeAttributeCorrectness 
DQ_AbsoluteExternalPositionalAccuracy 
DQ_RelativeInternalPositionalAccuracy 
GVQ_PositiveFeedback 
GVQ_NegativeFeedback 
CSQ_Judgement 
CSQ_Reliability 
CSQ_Validity 
CSQ_Trust 

pillar4.AuthoritativeDataComparison.PointInPolygon 

#start 
input("citizen observation, thematicAgreement, AuthData, Buffersize") 
    InPol=evaluateIn(observation.DQ_AbsolutePositionInternalPositionalAccuracy, 
AuthData.DQ_AbsolutePositionInternalPositionalAccuracy, AuthData, Buffersize) 
      IniScore=EvaluateOverlapAreas(InPol, observation, uncertainties)   
    updateRules(DQs,CSQs,GVQs, IniScore)   
        if(not InPol) { 
       ProxPol=evaluateNear(Obs.DQ_AbsolutePositionInternalPositionalAccuracy,   
Auth.DQ_AbsolutePositionInternalPositionalAccuracy) 
       ProxScore=Evaluate(ProxPol, Obs, uncertainties)   
           updateRules(DQs,CSQs,GVQs, ProxScore)   
          }  
#end 
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given the position and its 
uncertainty checking if a point 
belongs to a polygon then concluding 
on relative position accuracy and 
'relative' semantic therefore 
usability and attribute accuracies 
 
Authoritative data 
ThematicAgreement 

DQ_UsabilityElement 
DQ_ThematicClassificationCorrectness 
DQ_NonQuantitativeAttributeCorrectness 
DQ_QuantitativeAttributeAccuracy 
DQ_AbsoluteExternalPositionalAccuracy 
DQ_GriddedDataPositionalAccuracy 
DQ_RelativeInternalPositionalAccuracy 
GVQ_PositiveFeedback 
GVQ_NegativeFeedback 
CSQ_Judgement 
CSQ_Reliability 
CSQ_Validity 
CSQ_Trust

 1 
A.3 Comparison of the citizen’s declared versus estimated from LoS distances (for 38 pts) of the 2 
citizen to declared invasive species. 3 

Declared distance N (total 177) LoS distance (38/177) 

Close (<1 m)  73 N=10 out of* 73, 

Min. 1st Qu.  Median    Mean 3rd Qu.  Max. 

 1.5     3.1     6.5    12.7    15.0    59.3 

Nearby (1 m – 3 m) 

 

 

30 

 

 

N=9 out of* 30, 

Min. 1st Qu.  Median    Mean 3rd Qu.  Max.  

    3.5     5.8    14.8   213.5   516.9   687.8 

Far (3 m-10 m) 39 N=13 out of* 39, 

Min. 1st Qu.  Median    Mean 3rd Qu.  Max.  

    1.5     2.0    16.5   125.0   175.7   642.3 

Very far (>10 m) 34 N=6 out of* 34, 

Min. 1st Qu.  Median    Mean 3rd Qu.  Max.  

    1.5     2.4     5.0    11.3     6.9    47.1 

missing 1 - 

* not all estimations gave a result (see section 4.3) 4 
 5 
A.4 The three quality models used in QAwAT 6 

• Producer Quality Model (ISO19157); all the elements of the standard can 7 
potentially be used, even though they were initially designed for authoritative 8 
data. 9 

DQ Quality element DQ_ Definition extracted from the ISO19157 

01 UsabilityElement Degree of adherence to as specific set of data 
quality requirements. 

02 CompletenessCommission Excess data present in a dataset. 
03 CompletenessOmission Absence of data in a dataset. 
04 ThematicClassificationCorrectness Comparison of the classes assigned to features 

or their attributes to a universe of discourse (e.g. 
ground truth or reference data). 

05 NonQuantitativeAttributeCorrectness Whether a non-quantitative attribute is correct 
or incorrect. 
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06 QuantitativeAttributeAccuracy Closeness of the value of a quantitative attribute 
to a value accepted as or known to be true. 

07 ConceptualConsistency Adherence to rules of the conceptual schema. 
08 DomainConsistency Adherence of values to the value domains. 
09 FormatConsistency Degree to which data is stored in accordance 

with the physical structure of the dataset. 
10 TopologicalConsistency Correctness of the explicitly encoded 

topological characteristics of a database. 
11 AccuracyOfATimeMeasurement Closeness of reported time measurements to 

values accepted as or known to be true. 
12 TemporalConsistency Correctness of the order of events. 
13 TemporalValidity Validity of data with respect to time. 
14 AbsoluteExternalPositionalAccuracy Closeness of reported coordinate values to 

values accepted as or being true. 
15 GriddedDataPositionalAccuracy Closeness of gridded data spatial position 

values to values accepted as or being true. 
16 RelativeInternalPositionalAccuracy Closeness of the relative positions of features in 

a dataset to their respective relative positions 
accepted as or being true. 

 1 
• Simplified Consumer Quality Model (GeoViQUA1): for COBWEB the simple 2 

concept of positive and negative feedback is kept but as automatically generated 3 
by the QCs. 4 

GVQ
_ 

Quality element 
GVQ_ 

Definition 

01 PositiveFeedback  Number of positive feedbacks to the used data  

02 NegativeFeedback Number of negative feedbacks to the used data  

 5 
• Stakeholder Quality Model (COBWEB): qualifies the citizen volunteer in 6 

order to influence further confidence in a particular citizen’s observations when 7 
deriving the producer quality model values. 8 

CSQ_ Quality element CSQ_ Definition 
01 Vagueness  Inability to make a clear-cut choice (i.e., lack of classifying 

capability). 
02 Ambiguity Incompatibility of the choices or descriptions made (i.e., 

lack of understanding, of clarity). 
03 Judgement Accuracy of choice or decision in a relation to something 

known to be true (i.e., perception capability and 
interpretation). 

                                                 
1 www.geoviqua.org  
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04 Reliability  Consistency in choices / decisions (i.e., testing against 
itself). 

05 Validity Coherence with other people’s choices (i.e., against other 
knowledge). 

06 Trust  Confidence accumulated over other criterion concerning 
data captured previously (linked to reliability, validity and 
reputability). 

07 NbControls Total number of controls over all contributions of this 
volunteer. 

 1 
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