Preprint
Article

Nanoindentation-Induced Pile-Up in the Residual Impression of Crystalline Cu with Different Grain Size

Altmetrics

Downloads

1095

Views

514

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

03 October 2017

Posted:

03 October 2017

You are already at the latest version

Alerts
Abstract
At room temperature, the indentation morphologies of crystalline copper with different grain size including nanocrystalline (NC), ultrafine-grained (UFG) and coarse-grained (CG) copper were studied by nanoindentation at the strain rate of 0.04/s without holding time at indentation depth of 2000 nm. As the grain size increasing, the height of the pile-up around the residual indentation increases and then has a slightly decrease in the CG Cu, While the area of the pile-up increases constantly. Our analysis has revealed that the dislocation motion and GB activities in the NC Cu, some cross- and multiple-slips dislocation insides the larger grain in the UFG Cu, and forest dislocations from the intragranular Frank-Read sources in the CG Cu, would directly induce these distinct pile-up effect.
Keywords: 
Subject: Chemistry and Materials Science  -   Nanotechnology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated