

1 *Review*

2 **Recent Advances on Surface Modification of** 3 **Halloysite Nanotubes for Multifunctional** 4 **Applications**

5 **Yongtao Yang, Yun Chen, Fan Leng, Li Huang, Zijian Wang, Weiqun Tian***

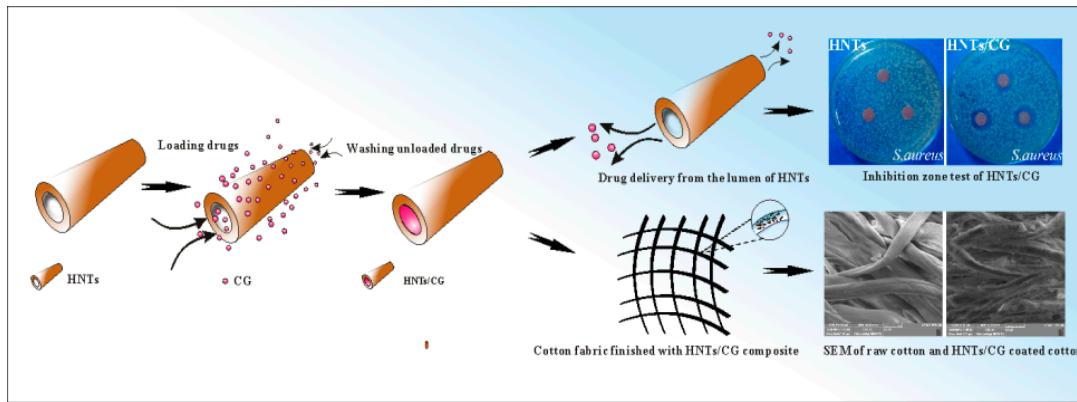
6 Department of Biomedical Engineering, School of Basic Medical Sciences,

7 Wuhan University, Wuhan 430071, China.

8 * Corresponding author's E-mail: tian_weiqun@whu.edu.cn

9 **Abstract:** Halloysite nanotubes (HNTs) are natural occurring mineral clay nanotubes that have
10 excellent application potential in different fields. However, HNTs are heterogeneous in size,
11 surface charge and formation of surfacial hydrogen bond, which lead to weak affinity and
12 aggregation at a certain extent. It is very important to modify the HNTs' surface to expand its
13 applications. In this review, the structural characteristics, performance and the related applications
14 of surface-modified HNTs are reviewed. We focus on the surface-modified variation of HNTs, the
15 effects of surface modification on the materials and related applications in various regions. In
16 addition, future prospects and the meaning of surface modification were also discussed in HNTs
17 studies. This review provides a reference for the application of HNTs modifications in the field of
18 new nanomaterials.

19 **Keywords:** halloysite nanotubes; surface modification; structural characteristics; controlled
20 release; biocompatibility


21

22 **1. Introduction**

23 HNTs are naturally occurring mineral clay nanotubes with particular hollow shapes. There are
24 various morphologies of HNTs such as tubes, platy particles and spheres [1] with 500-1500 nm in
25 length and 15 nm and 50 nm in lumen and external diameter, respectively [2]. HNTs possess a high
26 surface area of 184.9 m²/g and a large pore volume of 0.353cm³/g and they are easy to carry and
27 delivery drugs [3,4]. For example, a schematic diagram of antibacterial drug loaded HNTs is shown
28 in Fig.1. Chemical composition of HNTs is similar to kaolin. However, the unit layers are isolated by
29 monolayers of water molecules in HNTs. The HNTs hold the molecular formula of
30 Al₂Si₂O₅(OH)₄·nH₂O [5] and the HNTs are composed of Al, O and Si with the atomic proportion
31 1:4.6:1 [6]. The aluminosilicate clay nanotubes have a Al:Si ratio of 1:1.

32

33

34 Fig. 1. Illustration of the preparation of HNTs/CG composite, drug release from the lumen of HNTs,
 35 and the application on cotton fabric.

36 There are two main polymorphs for HNT anhydrous form and hydrated form with spacing
 37 interlayers of 7 or 10 Å [7]. HNTs present a negative charge of ca -50 mV as shown by zeta-potential
 38 at pH of 6-7 [8]. HNTs exhibit a positively-charged surface at a pH of 8.5 [9] which possess a
 39 negative charge with ca -32±2 mV in water [10]. The external surface of HNTs is composed of silicon
 40 oxygen tetrahedron. The internal lumen is composed of alumina oxygen octahedrons. The outer
 41 surface is distributed mainly with Si-O-Si group. The inner surface is composed of Al-OH [11].
 42 Because of the multilayer structure, most of the hydroxyl groups exist within the lumen and only a
 43 few in the outer surface [12].

44 As a widely used environmentally friendly clay material, HNTs have a good biocompatibility
 45 [13]. HNTs were confirmed to be non-toxic *in vivo* [10] and *in vitro* [14]. HNTs have a high specific
 46 surface area and strong surface adsorption. However, HNTs showed a weak affinity when were
 47 used to synthesize composites, drug delivery and molecular adsorbents because of the weak
 48 intermolecular forces such as van der Waals force and hydrogen bonding. To improve the
 49 performance of HNTs, surface modification is very desirable. For example, modified HNTs can be
 50 used as nanofillers in composite polymers to enhance mechanical strength [15] and as nanocarries to
 51 realize sustained drug delivery. In addition, it is also used as an adsorbent material to absorb or
 52 remove the dyes from aqueous solution [16] or as catalysts [17] to catalyze the reaction.

53 2. Surface modification of HNTs and the relevant properties

54 Surface modification of HNTs means that the HNTs maintains the original properties and
 55 meanwhile still bring about new properties such as hydrophilicity, biocompatibility, antistatic
 56 properties, dyeing performance. At present, many methods of surface modification of HNTs are
 57 reported including surfactant modification, coupling agent modification, intercalation modification,
 58 surface coating modification, free radical modification, and etc. The HNTs can be selectively
 59 modified according to the different demands.

60 2.1 Surfactant modification

61 Surfactant modification refers to the presence of non-polar lipophilic groups and polar
 62 hydrophilic groups in the surfactant molecules. HNTs can be successfully modified via electrostatic
 63 interactions [18]. The surfactants are able to be adsorbed selectively at the internal or external
 64 surface to maintain different hydrophilic/hydrophobic balances due to the charge characteristics of
 65 HNTs [19] and prepared into the amphipathic nanoparticles to obtain nanomaterials such as the oil
 66 recovery/solubilization of hydrophobic molecules. The negatively charged surfactants were
 67 adsorbed mostly into the internal lumen on account of the positively charged internal surface
 68 [20,21,22]. Yong Lin et al [23] prepared high-impact polystyrene nanospheres by emulsion
 69 polymerization. In this system, sodium dodecyl sulfate (SDS) was added to aqueous solution
 70 containing HNTs. SDS was regarded as an emulsifier to form a molecular layer on the surface of

71 HNTs, so that the surface of HNTs has a strong hydrophilicity to enhance the dispersion in aqueous
72 solution. In addition, Wang et al [24] used the surfactant of hexadecyltrimethylammonium bromide
73 (HDTMA) to modify the HNTs and prepared a new adsorbent for the removal of Cr (VI) from the
74 aqueous solution. The composite had the maximum adsorption rate for Cr (VI) which reached to
75 90% in 5 minutes.

76 *2.2 Coupling agent modification*

77 Grafted silane coupling agent onto the surface is the most common chemical modification
78 method for HNTs. The silane coupling agent can react with the HNTs through physical or chemical
79 bonding. Modifications of HNTs have a superior hydrophobic property, so that they can be better
80 dispersed in the polymer to enhance the interface interaction. Guo et al [25] synthesized a high
81 strength nanocomposite (polyamide 6/halloysite) by combining HNTs with 3-(trimethoxy silyl)
82 propyl methacrylate. The results showed that the nanocomposites significantly improved its
83 mechanical and thermal properties. Meanwhile, Wan et al prepared high-performance
84 nanocomposite combined with 3-aminophenoxy-phthalonitrile and poly (arylene ether nitrile)
85 (PEN) based on HNTs [26]. It has been found that functionalized HNTs exhibit superior tensile
86 strength and modulus because of better dispersion and strong capacitance.

87 *2.3 Intercalation modification*

88 Intercalation modification refers to that small molecules reacting with HNTs via the hydroxyl
89 groups in order to improve the performance of HNTs. Tang et al [27] used the phenylphosphonic
90 acid (PPA) to unfold and intercalate the HNTs, and mixed the product with epoxy to form the
91 halloysite-epoxy nanocomposites. The modified HNTs achieved better dispersion, large contact area
92 among nanocomposites and significantly promoted micro-cracks and plastic deformation took
93 shape at the interface. Deng et al [28] treated the HNTs with potassium acetate (PA) and ball mill
94 homogenisation to improve particle dispersion. It was demonstrated that the modified HNTs could
95 enhance the properties of mechanical, interfacial debonding and provide opportunities for other
96 substances to intercalate.

97 *2.4 Surface coating modification*

98 Surface coating modification refers to that the surface of HNTs is coated with a layer of polymer
99 or inorganic material by means of the electrostatic adsorption to achieve the purpose of changing
100 HNTs performance. Li et al [29] prepared drug-loaded porous microspheres (Hal-CTS/Asp) by
101 thorough emulsification in the water/oil microemulsion. The HNTs were coated with chitosan (CTS)
102 and aspirin (Asp) molecules adsorbed to the inside of the microspheres as a model drug. The results
103 indicated that the microspheres had the characteristics of a high surface area and
104 large-interconnected pores, which was conducive to the adsorption of aspirin. The modified HNTs
105 had an excellent loading capacity (42.4 wt %) which was twenty times higher than unmodified ones
106 (2.1 wt %). Meanwhile, the special microspheres showed low drug release rate and pH sensitivity
107 compared with the pristine HNTs. Liu et al [30] successfully prepared alginate/HNTs composite
108 tissue engineering scaffolds by electrostatic adsorption. The scaffolds showed significant
109 enhancement in thermal stability and cell-attachment properties.

110 *2.5 Free radical modification*

111 The surface of HNTs contains hydroxyl groups that could react with monomer on the inner or
112 outer surface. The functionalized HNTs have improved hydrophobicity and dispersibility in organic
113 solvents. Liu et al [31] prepared modified HNTs by grafting the polymethyl methacrylate (PMMA)
114 via radical polymerization and then compounding with poly(vinyl chloride) (PVC) to form
115 composites with higher toughness, strength and modulus. The results showed that the modified
116 HNTs have uniform dispersed in PVC aqueous solution. The modified HNTs could effectively
117 improve the mechanical properties. Li et al [32] reported a kind of functionalized HNTs modified by

118 polymers via atom transfer radial polymerization (ATRP) and cross-linked with polystyrene (PS)
119 and polyacrylonitrile (PAN), respectively. The results indicated that the composites showed
120 excellent wettability for entrap water droplets.

121 **3. Application of Surface Modification of HNTs.**

122 *3.1 As the filler nanocomposites.*

123 Composite materials are vital for the development of modern science and technology.
124 They are widely used in magnetic materials, magnetic facility, flame retardant, optics,
125 scaffolds for tissue engineering and electronics. Meanwhile, the nanocomposites exhibit
126 complex template and tedious preparation process. It is imperative to find effective modules
127 and efficient production processes. Due to high specific surface area and unique surface chemical
128 properties, HNTs are widely used to improve polymer's property. In the meanwhile, the low surface
129 charge and weak interfacial interaction could be problematic [33]. Surface modified HNTs not only
130 demand well disperse and strong interfacial interactions [34], but also to provide abundant bond
131 formation [35]. HNTs showed better interactions among clay-polymer nanocomposites by
132 chemically or physically pretreatment [36]. Functionalization of nanotubes composite polymer will
133 achieve a win-win situation.

134 HNTs have been used extensively for enhancing properties of polymers. Parthajit et al [5] had
135 successfully modified the HNTs by graft N-(*b*-aminoethyl)-*c*-aminopropyltri-methoxysilane, the
136 modified and unmodified HNTs mingle with nonpolar polypropylene (PP) and polar
137 polyoxymethylene (POM) by utilizing immiscible blend system, respectively. The results indicated
138 that pure polymer blend and B-HNT nanocomposites always form obvious agglomeration due to
139 the weak interface interaction between the polymer and HNTs. However, they present different
140 phenomena to the B-MHNT nanocomposites that disperse well in the polymer blend. This suggests
141 that modified B-MHNTs obtained a better dispersion compared to the unmodified (B-HNTs) in
142 blend matrix. Meanwhile, the functionalized HNTs are used to enhance the chemical interactions as
143 natural rubber (NR) filler [37]. The bis (triethoxysilylpropyl)-tetrasulphide was used to modify the
144 HNTs by way of silane coupling agent. In general, the natural rubber composites with modified
145 HNTs (NR-HNTs-Si) showed excellent physical properties and thermal stability compared with the
146 unmodified HNTs nanocomposite (NR-HNTs) and natural rubber-silica (NR-Si). The HNTs were
147 modified with polyrhodanine (PRD) by the way of oxidative polymerization to prepared styrene
148 butadiene rubber (SBR)[38]. The results indicated that the tensile strength of SBR/PRD-HNTs
149 composites have significant reinforce compared with unmodified HNTs increased by 117% and 87%,
150 respectively. HNTs also can be treated with γ -irradiation [39] to enhance the strength of epoxy
151 nanoconposites. Compared with untreatments, the treatments have significant effect on tensile
152 strength and Young's modulus which rose by 46% and 38%, respectively, because of uniform
153 dispersion and abundant hydroxy.

154 *3. 2 As the nanocarriers for drug delivery*

155 HNTs are environmentally friendly natural nanomaterials with low cost, high porosity,
156 adjustable surface chemistry structure [40], good biocompatibility [41] and large surface area. HNTs
157 have huge development prospects in the field of drug capacity as a sustained manner. Hence, HNTs
158 attracted a lot of attention in biological medicine, biological science and technology. HNTs were
159 used as multi-purpose excipient to improve stability of drugs and achieve controlled release [42].
160 They possess special periodic multilayer with the structure of gibbsite octahedral (Al-OH) in
161 internal surface and siloxane (Si-O-Si) on external surface [43]. HNTs have great application value in
162 alternative modification with organic and inorganic functional molecules at different surfaces.

163 Some meaningful research advances were successively reviewed in the drug delivery of HNTs.
164 For example, the chemical or physical modified HNTs as nanocontainers for encapsulation the

165 bioactive molecules, such as dexamethasone, tetracycline, furosemide, gentamicin and nifedipineas.
166 The loaded capacities and sustained drug delivery were demonstrated by Yuri M. Lvov et al [44].
167 Except for drugs, the protein or nucleic acids also be loaded into the lumen surface of HNTs [45]. In
168 addition, the outer surface covalent modified HNTs have improved the loading capacities of
169 bioactive molecules such as DNA, proteins and other macromolecules [46]

170 The modified HNTs showed better effect of drug loading than unmodified ones. Weng et al. [47]
171 used octadecylphosphonic acid (ODP) to modify halloysite nanotubes (halloysite-ODP) to load
172 ferrocene by cross linking method. The results showed that halloysite-ODP exert more as colloidal
173 stability in the aqueous suspension than the unmodified HNTs. Comparing with HNTs, the
174 halloysite-ODP possesses higher adsorption capacity and faster assimilate for hydrophobic
175 molecules of ferrocene. There have small initial burst release for unmodified HNTs because of the
176 dissolved ferrocene to the HNTs surface. Halloysite-ODP showed a two-step release with a
177 non-Fickian model.

178 Besides, HNTs were modified with γ -aminopropyltriethoxysilane (γ -APTES) to enhance the
179 ability of loading analgesic [48]. The results demonstrated that the modified HNTs showed much
180 high capacity. Furthermore, the modified HNTs have a long time sustaining release reached to 115 h
181 at different pH values. In addition, the functionalized HNTs cross linked with the APTES to load
182 ibuprofen [49], because of the low loading capacity and burst release of HNTs. The results showed
183 that the modified HNTs possess higher capacity to load ibuprofen increasing by 25.4% [50]. The
184 release behavior of ibuprofen indicated that the modified and unmodified HNTs put up two-step
185 release *in vitro*. However, the modified HNTs showed slower releasing than unmodified ones due to
186 strong electrostatic interactions.

187 3.3 As the adsorbent

188 As research pointed out that HNTs are natural occurring hollow tubes, within 10-150nm
189 diameter, 500-1500nm length, HNT shave large specific surface area and high aspect ratio [51]. The
190 main hydroxyl groups exist the inexternal surface of the HNTs convenient for graft some organics.
191 HNTs have extensive applications for separated and absorbed various metal ions in industrial due
192 to these special properties [52]. Ruijun et al. [53] used two-step methods to modify HNTs with
193 APTES and murexide. The results indicated that HNTs-Mu were ten-fold absorbed higher than
194 original HNTs for Pb (II) at a pH of 1. The phenomena were shown that the HNTs-Mu provided
195 available sites for anionic metal complexes. The functionalized HNTs also used to adsorb Cr (VI) to
196 remove it from aqueous solution [54]. In this work, the functionalized HNTs were successfully
197 prepared by crossed with HDTMA. The results showed that the modified HNTs adsorbed nearly 90%
198 of Cr (VI) within 5 minutes from aqueous solution with the models of Langmuir. Meanwhile, the
199 HNTs were modified with 2-methacryloyloxyethyl phosphorylcholine (MPC) to adsorbed BSA with
200 the method of phase inversion [55]. The modified HNTs of absorption capacity increased 87%
201 compared with the pure membrane.

202 As we all known, Zearalenone has a strong toxicity damage to the reproductive system. It is
203 necessary to remove the toxicant for the development of animals. The feeder adopts the modified
204 HNTs to adsorb Zearalenone at the sow reproduction and piglet growth stage [56]. The HNTs were
205 modified with stearyltrimethylbenzylammonium chloride (SKC).The results demonstrated that
206 functionalized HNTs conspicuously reduced the damage compared with Zearalenone-treated one in
207 the aspects of colostrum and milk ($p < 0.05$). The modified HNTs possessed superior adsorb property
208 than the unmodified ones for Zearalenone *in vivo* [57]. The results summarized that the modified
209 HNTs have obviously improve composite ability with Zearalenone than the HNTs in the
210 gastrointestinal tract.

211

212

213 *3.4 As the catalysts*

214 There is no doubt that the rapid and efficient production having particularly important for the
215 production. With the development of the industry, catalysts have been widely used to change the
216 reaction rate [58]. The modified HNTs were used as catalyst due to their large special surface area,
217 high-activity and luxuriant surface hydroxyl groups [59]. In addition, the HNTs could be modified
218 by catalysts and synthesized composites [60].

219 It is reported that the HNTs were modified with APTES and HCl to prepared mod
220 functionalized HNTs (HNTs-NH₂·HCl) as metal nanoparticles to product H₂ [61]. The results
221 pointed out that the HNTs-NH₂·HCl catalysts obtain higher reaction values of HRG than the HNTs
222 catalysts with the value 813.08mL min⁻¹g⁻¹_{catalyst} and 630.80mL·min⁻¹·g⁻¹_{catalyst}, respectively. The
223 modified HNTs have the activation energy of 30.41 kJ·mol⁻¹, the enthalpy of 27.93 kJ·mol⁻¹, the
224 entropy of -163.27 J·mol⁻¹·K⁻¹ and catalytic activity of 91%. In addition, the modified HNTs catalysts
225 have higher efficiency than the common H₂ generation rate which only keep 220.5mL·min⁻¹ g⁻¹_{catalyst}.

226 The catalytic system (HNTs-APTMS-Mo-SL) has been synthesized by grafted APTMS and
227 self-assembly [62]. The results revealed that the functionalized catalysts could be filtered and
228 maintained high-activity to catalyze the alkene epoxidation. It is hardly to loss catalytic activity
229 even though repeated at least eight times. The catalysts were easy to convert the active material such
230 as the linear aromatic alkenes and cyclic, in spite of recycled several times in the catalyze reaction
231 system. The functionalized catalysts with the Mo salen have effect on epoxidation. The catalytic
232 mechanism is the interact bonding between Mo and the salen ligands.

233 *3.5 As the potential consolidants*

234 Material cultural heritages are the legacy of human history. There have historical value and
235 cultural heritage for mankind. Cultural relics are involve various fields such as history, art and
236 scientific. However, it is difficult to protect them such as ancient books and waterlogged
237 archaeological woods due to the highly sensitivity and responsively to the environment. Most of
238 them exist in special environment such as anoxic, low temperatures and humid. The materials
239 become fragile and loss mechanical resistance because of the extreme deteriorating environment. It
240 is necessary to consolidate the thermal and mechanical properties to protect them. The HNTs are
241 expected to the meaningful and promising protective agents for material cultural heritages by the
242 way of improved the mechanical properties.

243 Giuseppe Cavallaro et al. [63] modified the HNTs with Rosin by chemical treatment. The
244 results proved that the HNTs endowed better mechanical properties and thermal stability. The
245 thermal and mechanical properties of Rosin were sufficiently improved by the mount of HNTs.
246 This conferred to the HNTs/Rosin nanocomposites were innovative protocol for consolidating
247 waterlogged archaeological woods. In addition, Giuseppe Cavallaro et al. [64] used the
248 nanocomposites to enhance the thermal and mechanical properties between HNTs and beeswax by
249 direct blending. The experiments indicated that the HNTs were homogeneously dispersed and
250 significantly reduced thermal degradation of Rosin. Except for the consolidation of waterlogged
251 archaeological, HNTs were used to compounded the Ca(OH)₂ and then placed end-stoppers to
252 preserve paper [65]. They have proved that the HNTs/Ca(OH)₂ nanocomposites could improve the
253 mechanical performance and balance the pH alteration with the addition of nanotubes. In view of
254 the above mentioned research results, there have great application prospects for HNTs to
255 consolidate waterlogged archaeological woods.

256 **4. Conclusion and future applications.**

257 In this review, we summarized the current advance about modified HNTs which mainly
258 focused on catalysts, adsorbent and drug delivery system. Although the modified HNTs have
259 obtained a lot of extraordinary achievements in various fields such as biomedical applications,
260 industrial catalysts, nanofillers and scaffolds for tissue engineering. The core challenges are need to

261 further research such as surface utilized percentage, transport pathway and uptake mechanism *in*
262 *vivo*.

263 **Conflicts of Interest:** The authors declare that they have no conflicts of interest to this work.

264 **References**

1. Pasbakhsh P, Churchman G J, Keeling J L. Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. [J]. Applied Clay Science, 2013, 74: 47-57.
2. Viviana Vergaro, Yuri M. Lvov, Stefano Loporatti. Halloysite clay nanotubes for resveratrol delivery to cancer cells. [J]. Macromolecular Bioscience, 2012, 12 (9): 1265-1271
3. Xiumei Sun, Yao Zhang, Hebai Shen, Nengqin Jia. Direct electrochemistry and electrocatalysis of horseradish peroxidase based on halloysite nanotubes/chitosan nanocomposite film. [J]. Electrochimica Acta , 2010 , 56 (2) : 700-705
4. Yu Wu, Yongtao Yang, Haoyang Liu, Xihui Yao, Fan Leng, Yun Chen and Weiqun Tian. Long-term antibacterial protected cotton fabric coating by controlled release of chlorhexidine gluconate from halloysite nanotubes.[J]. Rsc Advances, 2017, 7, 18917-18925
5. Parthajit Pal, Mrinal Kanti Kundu, Asish Malas, Chapal Kumar Das. Compatibilizing Effect of Halloysite Nanotubes in Polar-NonpolarHybrid System. [J]. applied polymer science, 2013, 395, 87, 1-7
6. Zhi Li, Daniel Fernández Expósito, Alejandro Jiménez González, De-Yi Wang. Natural halloysite nanotube based functionalized nanohybridassembled via phosphorus-containing slow release method: Ahighly efficient way to impart flame retardancy to polylactide. [J]. European Polymer Journal. 2017. 93, 458-470
7. Nalinkanth G.Veerabadran, Ronald R. Price,Yuri M. Lvov. Clay nanotubes for encapsulation and sustained release of drugs. [J]. Nano, 2007, 2(02): 115-120
8. Viviana Vergaro, Elshad Abdullayev, Yuri M. Lvov, Andre Zeitoun, Roberto Cingolani, Ross Rinaldi and Stefano Loporatti. Halloysite Clay Nanotubes: Characterization, Biocompatibility and Use as Drug Carriers. [J]. Nanotech, 2014, 11(9): 395-396
9. Dmitry G. Shchukin, S. V. Lamaka,K. A. Yasakau M. L. Zheludkevich, Ferreira M. G.S. and Molhwald H. Active Anticorrosion Coatings with Halloysite Nanocontainers. [J]. Journal of Physical Chemistry C, 2008, 112 (4): 958-964
10. Gölnur I. Fakhrullina, Farida S. Akhatova, Yuri M. Lvov and Rawil F. Fakhrullin. Toxicity of halloysite clay nanotubes *in vivo*: a *Caenorhabditis elegans* study. [J]. Environmental Science Nano, 2014, 2 (1) : 54-59
11. M. Massaro, R. Amorati, G. Cavallaro, S. Guernelli, G. Lazzara, S. Milioto, R. Noto, P. Pomad, S. Riela. Direct chemical grafted curcumin on halloysite nanotubes asdual-responsive prodrug for pharmacological applications. [J]. Colloids and Surfaces B Biointerfaces. 2016, 140 : 505-513
12. Frost RL and Shurvell HF, Raman Microprobe Spectroscopy of Halloysite. [J]. Clays and Clay Miner, 1997, 45, 68-72.
13. Marina Kryuchkova, Anna Danilushkina, Yuri Lvov and Rawil Fakhrullin. Evaluation of toxicity of nanoclays and graphene oxide *in vivo*: a *Paramecium caudatum* study. [J]. Environmental Science Nano, 2016, 3 (2) : 442-452
14. Yuri Lvov, Elshad Abdullayev. Functional polymer-clay nanotube composites with sustained release of chemical agents. [J]. Progress in Polymer Science, 2013 , 38 (10-11) : 1690-1719
15. Vahdat Vahedi, Pooria Pasbakhsh. Instrumented impact properties and fracture behaviour of epoxy/modified halloysite nanocomposites. [J]. Polymer Testing. 2014, 39: 101-114.
16. Guangyong Zeng, Zhongbin Ye, Yi He, Xi Yang, Jing Ma, Heng Shi, Ziliang Feng. Application of dopamine-modified halloysite nanotubes/PVDF blend membranes for direct dyes removal from wastewater. [J]. Chemical Engineering Journal, 2017, 323: 572-583
17. A.M. Carrillo, J.G. Carriazo. Cu and Co oxides supported on halloysite for the totaloxidation of toluene. [J]. Applied Catalysis B Environmental. 2015, 164 (4): 443-452
18. Giuseppe Cavallaro, Giuseppe Lazzara, Stefana Milioto, and Filippo Parisi. Hydrophobically Modified Halloysite Nanotubes as Reverse Micelles for Water-in-Oil Emulsion. [J]. Langmuir the Acs Journal of Surfaces and Colloids, 2015, 31 (27), 7472-7478.

311 19. Giuseppe Cavallaro, Giuseppe Lazzara, Stefana Milioto, Filippo Parisi, and Vincenzo Sanzillo. Modified
312 Halloysite Nanotubes: Nanoarchitectures for Enhancing the Capture of Oils from Vapor and Liquid
313 Phases. [J]. *Acs Applied Materials and Interfaces*, 2014, 6 (1) :606-12

314 20. Joshua Tully, Raghuvara Yendluri, and Yuri Lvov. Halloysite Clay Nanotubes for Enzyme Immobilization.
315 [J]. *Biomacromolecules*, 2016, 17 (2), 615–621

316 21. Vanessa Bertolino, Giuseppe Cavallaro, Giuseppe Lazzara, Stefana Milioto, and Filippo Parisi.
317 Biopolymer-Targeted Adsorption onto Halloysite Nanotubes in Aqueous Media. [J]. *Langmuir the Acs
318 Journal of Surfaces and Colloids*, 2017, 33 (13),3317-3323

319 22. Divya Narayan Elumalai, Joshua Tully, Yuri Lvov, and Pedro A. Derosa. Simulation of stimuli-triggered
320 release of molecular species from halloysite nanotubes. [J]. *Journal of Applied Physics*, 2016, 120 (13):
321 11479-11483

322 23. Yong Lin, Kai Mo Ngb, Chi-Ming Chan, Guoxing Sun, Jingshen Wu. High-impact polystyrene/halloysite
323 nanocomposites prepared by emulsion polymerization using sodium dodecyl sulfate as surfactant. [J].
324 *Journal of Colloid and Interface Science*, 2011, 358 (2): 423-9

325 24. Wang Jinhua, Zhang Xiang, Zhang Bing, Zhao Yafei, Zhai Rui, Liu Jindun, Chen Rongfeng. Rapid
326 adsorption of Cr (VI) on modified halloysite nanotubes. [J]. *Journal of Colloid and Interface Science*, 2011,
327 358 (2): 423-9

328 25. Baochun Guo,Quanliang Zou, Yanda Lei and Demin Jia. Structure and Performance of Polyamide
329 6/Halloysite Nanotubes Nanocomposites. [J]. *Polymer Journal*, 2009, 41 (10): 835-842

330 26. Xinyi Wan, Yingqing Zhan, Guangyong Zeng, Yi He. Nitrile functionalized halloysite nanotubes/poly
331 (arylene ether nitrile) nanocomposites : Interface control, characterization and improved properties. [J].
332 *Applied Surface Science*, 2017, 393:1-10

333 27. Youhong Tang, Shiqiang Deng, Lin Ye, Cheng Yang, Qiang Yuan, Jianing Zhang, Chengbi Zhao. Effects of
334 unfolded and intercalated halloysites on mechanical properties of halloysite-epoxy nanocomposites. [J].
335 *Composites: Part A* 2011, 42 (4) :345-354

336 28. Shiqiang Deng, Jianing Zhang, Lin Ye. Halloysite-epoxy nanocomposites with improved particle
337 dispersion through ball mill homogenisation and chemical treatments. [J]. *Composites Science and
338 Technology*, 2009, 69 (14): 2497-2505

339 29. Xiaoyu Li, Qian Yang, Jing Ouyang, Huaming Yang, Shi Chang. Chitosan modified halloysite nanotubes
340 as emerging porous microspheres for drug carrier. [J]. *Applied Clay Science*, 2016, 126: 306-312

341 30. Mingxian Liu, Libing Dai, Huijie Shi, Sheng Xiong, Changren Zhou. In vitro evaluation of
342 alginate/halloysite nanotube composite scaffolds for tissue engineering. [J]. *Materials Science and
343 Engineering C*, 2015, 49: 700-172

344 31. C. Liu, Y. F. Luo, Z. X. Jia et al. Enhancement of mechanical properties ofpoly(vinyl chloride) with
345 polymethyl methacrylate-graftedhalloysite nanotube. [J]. *Express Polymer Letters*, 2011, 5 (7): 591-603

346 32. Cuiping Li,Jiguang Liu,Xiaozhong Qu. Polymer-Modified Halloysite Composite Nanotubes. [J]. *Journal of
347 Applied Polymer Science*, 2010, 110 (6): 3638-3646

348 33. E. Bischoff, D.A. Simon, H.S. Schrekker, M. Lavorgna, L. Ambrosio, S.A. Liberman, R.S. Mauler. Ionic
349 liquid tailored interfaces in halloysite nanotube/heterophasic ethylene-propylene copolymer
350 nanocompositeswith enhanced mechanical properties. [J]. *European Polymer Journal*, 2016, 82: 82-92

351 34. Yanda Lei, Zhenghai Tang, Lixin Zhu, Baochun Guo, Demin Jia. Functional thiol ionic liquids as novel
352 interfacial modifiers in SBR/HNTs composites. [J]. *Polymer*. 2011, 52 (5) : 1337-1344

353 35. H. Ismail, P. Pasbakhsh, M. N. A. Fauzi, A. Abu Bakar. Morphological, thermal and tensile properties of
354 halloysite nanotubes filled ethylene propylene diene monomer(EPDM) nanocomposites. [J]. *Polymer*.
355 *Testing*. 2008, 27 (7): 841-850.

356 36. Kenan Song, Roberta Polak, Dayong Chen, Michael F. Rubner, Robert E. Cohen, and Khalid A. Askar.
357 Spray-Coated Halloysite-Epoxy Composites: A Means To Create Mechanically Robust, Vertically Aligned
358 Nanotube Composites. [J]. *Acs Applied Materials and Interfaces*, 2016, 8 (31): 20396

359 37. Reyhaneh Berahman, MaryamRaiati, Majid Mehrabi Mazidi, Seyed Mohamad Reza Paran. Preparation
360 and characterization of vulcanized silicone rubber/ halloysite nanotube nanocomposites: Effect of matrix
361 hardness and HNT content. [J]. *Materials and Design*, 2016, 104: 333-345

362 38. Wenyi Kuang, Zhijun Yang,Zhenghai Tang, Baochun Guo. Wrapping of polyrhodanine onto tubular clay
363 and its prominent effects on the reinforcement of the clay for rubber. [J]. *Composites Part A Applied
364 Science and Manufacturing*. 2016, 84: 344-353

365 39. Muhammad Jawwad Saif, Muhammad Naveed, Khalid Mahmood Zia, Muhammad Asif. Pristine and
366 γ -irradiated halloysite reinforced epoxy nanocomposites-Insight study. [J]. Radiation Physics and
367 Chemistry, 2016, 127: 115-121

368 40. S.Barrantos-Ramírez, E. V. Ramos-Fernández, J. Silvestre-Albero, A. Sepúlveda-Escribano, M. M.
369 Pastor-Blas, A. González-Montiel. Use of nanotubes of natural halloysite as catalyst support in the atom
370 transfer radical polymerization of methyl methacrylate. [J]. Microporous and Mesoporous Materials, 2009,
371 120 (1-2): 132-140

372 41. Viviana Vergaro, Elshad Abdullayev, Yuri M. Lvov, Andre Zeitoun, Roberto Cingolani, Ross Rinaldi, and
373 Stefano Leporatti. Cytocompatibility and Uptake of Halloysite Clay Nanotubes. [J]. Biomacromolecules.
374 2010, 11 (3): 820-826

375 42. Raghuvara Yendluri,Daniel P. Otto,Melgardt M. De Villiersb, Vladimir Vinokurov, Yuri M.Lvov.
376 Application of halloysite clay nanotubes as a pharmaceutical excipient. [J]. Int J Pharm, 2017, 521 (1-2):
377 267-273

378 43. Elshad Abdullayev, Anupam Joshi, Wenbo Wei, Yafei Zhao, and Yuri Lvov. Enlargement of halloysite
379 clay nanotube lumen by selective etching of aluminum oxide. [J]. Acs Nano. 2012, 6 (8): 7216-7226

380 44. Yuri M. Lvov, Melgardt M. DeVilliers and Rawil F. Fakhrullin. The application of halloysite tubule
381 nanoclay in drug delivery. [J]. Expert Opinion on Drug Delivery, 2016, 13 (7) :977-986

382 45. Rawil F Fakhrullin, Yuri M Lvov. Halloysite clay nanotubes for tissue engineering. [J].Nanomedicine,
383 2016, 11 (17) :2243-2246

384 46. M.Massaro,G.Lazzara,S.Milioto,R.Notoa and S.Riela. Covalently modified halloysite clay nanotubes:
385 synthesis, properties, biological and medical applications. [J]. Journal of Materials Chemistry B, 2017, 5
386 (16), 2867-2882.

387 47. Weng On Yah, Atsushi Takaharaand Yuri M. Lvov. Selective Modification of Halloysite Lumen with
388 Octadecylphosphonic Acid: New Inorganic Tubular Micelle. [J]. Journal of the American Chemical
389 Society. 2012, 134 (3):1853-9

390 48. Hui Li, Xiaohong Zhu, Jiangfeng Xu, Wei Peng, Shian Zhong and Yan Wang. The combination of
391 adsorption by functionalized halloysite nanotubes and encapsulation by polyelectrolyte coatings for
392 sustained drug delivery. [J]. RSC Advances. 2016, 6(59): 54463-54470.

393 49. Daoyong Tan, Peng Yuan, Faïza Annabi-Bergaya, Dong Liu, Linjiang Wang, Hongmei Liu, Hongping He.
394 Loading and in vitro release of ibuprofen in tubular halloysite. [J]. Applied clay science, 2014, 96: 50-55.

395 50. Daoyong Tan, Peng Yuan, Faïza Annabi-Bergaya, Huaguang Yu, Dong Liu, Hongmei Liu, Hongping He.
396 Natural halloysite nanotubes as mesoporous carriers for the loading of ibuprofen. [J]. Microporous and
397 Mesoporous Materials, 2013, 179: 89-98

398 51. Sandip Rooj , Amit Das , Varun Thakur, R.N. Mahaling, Anil K. Bhownick, Gert Heinrich. Preparation
399 and properties of natural nanocomposites based on natural rubberand naturally occurring halloysite
400 nanotubes. [J]. Materials and Design. 2010, 31, 2151-2156

401 52. Peng Luo, Yafei Zhao, Bing Zhang, Jindun Liu, Yong Yang,Junfang Liu. Study on the adsorption of
402 Neutral Red from aqueous solution onto halloysite nanotubes. [J]. Water Research. 2010, 44 (5): 1489-1497

403 53. Ruijun Li, Qun He, Zheng Hu, Shengrui Zhang, Lijun Zhang, Xijun Chang. Highly selective solid-phase
404 extraction of trace Pd(II) by murexide functionalized halloysite nanotubes. [J]. Analytica Chimica Acta,
405 2012, 713 (3) :136-144

406 54. Wang Jinhua, Zhang Xiang, Zhang Bing, Zhao Yafei, Zhai Rui, Liu Jindun , Chen Rongfeng. Rapid
407 adsorption of Cr (VI) on modified halloysite nanotubes. [J]. Desalination. 2010, 259 (1-3): 22-28

408 55. Zhitao Wang, Huixian Wang , Jindun Liu , Yatao Zhang. Preparation and antifouling property of
409 polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes grafted with MPC via
410 RATRP method. [J]. Desalination, 2014, 344 (344): 313-320

411 56. Yuanyuan Zhang, Rui Gao, Min Liu, Baoming Shi,Anshan Shan, Baojing Cheng. Use of modified
412 halloysite nanotubes in the feed reduces the toxic effects of zearalenone on sow reproduction and piglet
413 development. [J]. Theriogenology, 2015, 83 (5) : 932

414 57. Yuanyuan Zhang, Rui Gao, Min Liu, Changjiang Yan and Anshan Shan. Adsorption of modified
415 halloysite nanotubes in vitro and the protective effect in rats exposed to zearalenone. [J] .Archives of
416 Animal Nutrition, 2014, 68 (4): 320-335

417 58. S. Barrientos-Ramirez, G. Montes de Oca-Ramirez, E. V. Ramos-Fernandez, A. Sepulveda-Escribano, M.
418 M. Pastor-Blas, A. Gonzalez-Montielb. Surface modification of natural halloysite clay nanotubes with

419 aminosilanes. Application as catalyst supports in the atom transfer radical polymerization of methyl
420 methacrylate. [J]. Applied Catalysis A General, 2011, 406 (1): 22-33

421 59. Zhongkui Zhao, Jinfeng Ran, Yanhua Jiao, Weizuo Li, Boyuan Miao. Modified natural halloysite nanotube
422 solely employed as an efficient and low-cost solid acid catalyst for alpha-arylstyrenes production via
423 direct alkenylation. [J]. Applied Catalysis A General, 2016, 513: 1-8

424 60. Jing Ouyang, Zai Zhao, Yi Zhang, Huaming Yang. Textual properties and catalytic performances of
425 halloysite hybrid CeO₂-ZrO₂ nanoparticles. [J]. Journal of Colloid and Interface Science, 2017, 505 : 430

426 61. Nurettin Sahiner, Sultan Butun Sengel. Environmentally benign halloysite clay nanotubes as alternative
427 catalyst to metal nanoparticles in H₂ production from methanolysis of sodium borohydride. [J]. Fuel
428 Processing Technology, 2017, 158: 1-8

429 62. Yu Long, Bing Yuan, Jiantai Ma. Epoxidation of alkenes efficiently catalyzed by Mo salen supported on
430 surface-modified halloysite nanotubes. [J]. Chinese Journal of Catalysis, 2015, 36 (3): 348-354

431 63. Giuseppe Cavallaro, Giuseppe Lazzara, Stefana Milioto, Filippo Parisi and Fabio Ruisi. Nanocomposites
432 based on esterified colophony and halloysite clay nanotubes as consolidants for waterlogged
433 archaeological woods. [J]. Cellulose, 2017, 24 (8) : 3367-3376

434 64. Giuseppe Cavallaro, Giuseppe Lazzara, Stefana Milioto, Filippo Parisi, Veronica Sparacino. Thermal and
435 dynamic mechanical properties of beeswax-halloysite nanocomposites for consolidating waterlogged
436 archaeological woods. [J]. Polymer Degradation and Stability, 2015, 120 : 220-225

437 65. Giuseppe Cavallaro, Anna A. Danilushkina, Vladimir G. Evtugyn, Giuseppe Lazzara, ID, Stefana Milioto,
438 Filippo Parisi, Elvira V. Rozhina and Rawil F. Fakhrullin. Halloysite Nanotubes: Controlled Access and
439 Release by Smart Gates. [J]. Nanomaterials, 2017, 7 (8) :199-211