Preprint
Article

Shale Gas Content Calculation of the Triassic Yanchang Formation in the Southeastern Ordos Basin, China

Altmetrics

Downloads

687

Views

551

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

09 October 2017

Posted:

09 October 2017

You are already at the latest version

Alerts
Abstract
Shale gas content is the key parameter for shale gas potential evaluation and favorable area prediction. Therefore, it is very important to determine shale gas content accurately. Generally, we use the USBM method for coal reservoirs to calculate gas content of shale reservoirs. However, shale reservoirs are different from coal reservoirs in depth, pressure, core collection, etc. This method would inevitably cause problems. In order to make the USBM method more suitable for shale reservoir, an improved USBM method is put forward on the basis of systematic analysis of core pressure history and temperature history during shale gas desorption. The improved USBM method modifies the calculation method of the lost time, and determines the temperature balance time of water heating. In addition, we give the calculation method of adsorption gas content and free gas content, especially the new method of calculating the oil dissolved gas content and water dissolved gas content which are easily neglected. We used the direct method (USBM and the improved USBM) and the indirect method (adsorption gas, free gas and dissolved gas) to calculate the shale gas content of 16 shale samples of the Triassic Yanchang Formation in the Southeastern Ordos Basin, China. The results of the improved USBM method show that the total shale gas content is high, with an average of 3.97 m3/t, and the lost shale gas content is the largest proportion with an average of 62%. The total shale gas content calculated by the improved USBM method is greater than that of the USBM method. The results of the indirect method show that the total shale gas content is large, with an average of 4.11 m3/t, and the adsorption shale gas content is the largest proportion with an average of 71%. The oil dissolved shale gas content which should be taken attention accounts for about 7.8%. The relative error between the improved USBM method and indirect method is much smaller than that between USBM method and indirect method, which verifies the accuracy of the improved USBM method.
Keywords: 
Subject: Environmental and Earth Sciences  -   Geophysics and Geology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated