

1 Article

2 Energy Efficient Clustering Protocol to Enhance 3 Performance of Heterogeneous Wireless Sensor 4 Network: EECPEP-HWSN

5 Santosh Purkar ^{1,*}, Dr. R. S. Deshpande ²

6 ¹ Department of Electronics and Telecommunication Engineering, Matoshri College of Engineering and
7 Research Center, Nashik Eklahare odha (M.S), India ; E-mail: svpurkar@kkwagh.edu.in

8 ² Principal, S.C.S.M.CO.E, Ahmednagar Nepti (M.S), India, E-mail: raj.deshpande@yahoo.co.in

9 * Correspondence: svpurkar@kkwagh.edu.in; Tel.: +91-985-012-0485

10 **Abstract:** As Heterogeneous Wireless Sensor Network (HWSN) fulfill the requirements of
11 researchers in the design of real life application to resolve the issues of unattended problem. But,
12 the main constraint face by researchers is energy source available with sensor nodes. To prolong
13 the life of sensor nodes and hence HWSN, it is necessary to design energy efficient operational
14 schemes. One of the most suitable routing scheme is clustering approach, which improves stability
15 and hence enhances performance parameters of HWSN. A novel solution proposed in this article is
16 to design energy efficient clustering protocol for HWSN, to enhance performance parameters by
17 EECPEP-HWSN. Propose protocol is designed with three level nodes namely normal, advance and
18 super node respectively. In clustering process, for selection of cluster head we consider three
19 parameters available with sensor node at run time, i.e., initial energy, hop count and residual
20 energy. This protocol enhance the energy efficiency of HWSN, it improves performance parameters
21 in the form of enhance energy remain in the network, force to enhance stability period, prolong
22 lifetime and hence higher throughput. It is been found that proposed protocol outperforms than
23 LEACH, DEEC and SEP with about 188, 150 and 141 percent respectively.

24 **Keywords:** cluster head; dead node; random; vicinity; modulation; index; survival; overhead
25

26 1. Introduction

27 As remote event sensing is possible by wireless sensor network, which is composed with
28 certain number of small size sensor nodes with capabilities such as advanced processing, support for
29 communication protocol, transceivers and sensor with better sensitivity. As wireless sensor nodes or
30 network is easy to deploy and manage, deployment may be uniform, linear or random based on
31 objectives. To record a real time picture large number of sensor nodes needs to be arrange
32 systematically, such that information collection is possible for low intense and large threshold event
33 for longer span of time. This indicates that wireless sensor network (WSN) is cost effective in
34 information sensing for completing different tasks such as collection, aggregation and
35 communication over the air in the coverage radius or in sensing region, but the main problem faced
36 by WSN or wireless sensor node is in limitations of resources facilitated in development of tiny or
37 small size node. Normally resource facilities available are low storage, less processing power
38 compared to complex instruction set computer, antenna system with limited gain, low energy
39 backup or battery and low bandwidth for communication. Depend on the application area, WSN for
40 particular application has their own respective constraints than the low battery energy. Some of the
41 popular applications design and developed by researchers are in surveillance, forestry, weather
42 forecasting, in habitat monitoring, volcano, military, in machine health updating and for inventory
43 system update, in biomedical applications such as for human health record and to convey doctor in
44 certain premises areas [1-3]. Very differently classified applications of WSN are in geoinformatics
45 and Intelligent Transport System (ITS) [3]. Finally in research for hypothesis model verification for

46 different scenario. With this list of applications, applications can be categorized as social, industrial,
47 medical, GIS and in research field. As WSN not only composed of wireless sensor nodes, but one
48 most important element used by WSN is base station (BS) or sink node. After collecting information
49 or sense data, data need send it to the BS through wireless channel. But, the main difficulty faced by
50 researchers in using WSN is energy supply available, which shrinks the life and all performance
51 parameters. Systematic energy utilization and enhancing performance parameters is the main goal
52 of the researchers. Design and implementation of energy efficient scheme is commonly suggested
53 solution by researchers in the form of local energy saving and global energy saving like sleep and
54 wake-up strategy, data aggregation, overload reduction, single hop communication, multi-hop
55 communication and transmission power control inside network operation. Different working
56 approaches proposed by authors for data updating at BS like query, threshold and time based
57 approach [1-4]. Clustering based routing is most suitable scheme to support for load balancing, fault
58 tolerance and reliable communication and hence to prolong performance parameters of WSN.
59 Clustering scheme have three elements as cluster head (CH) node or head of clustered node
60 department works as an intermediate node to transfer concise report of activity inside the network
61 in the form of aggregated data to head of system or controller i.e. BS, sensor nodes or cluster member
62 (CM) the followers to collect and report the event information to head regularly or based on certain
63 rule. Indirectly CH manages all CM locally and utilizes the available resources systematically. CH
64 also contribute for different responsibility towards cluster as allocation of channel, intimation of
65 power control, as well as reformed the cluster, control the activity of routing based on distance from
66 BS or CM. Finally clustering scheme is the well-organized routing framework in sensory system for
67 the sake of energy conservation by distributing responsibility to each and every member of WSN.
68 There are the different approaches suggested by researchers to work with clustering scheme as
69 mentioned in [1-2]. All those approaches have their respective merits and demerits. However
70 clustering scheme provides better energy conservation with Wireless Sensor Network (WSN). But, at
71 run time there is variation in energy level at sensor nodes of WSN, hence network with different
72 energy level node is formed. This type of network behavior is referred as Heterogeneous WSN and
73 longer support to traditional designed clustering protocol, which is based on assumption of sensor
74 nodes available in the network have equal energy capability node (Homogeneous WSN). Hence
75 researchers turn their focus on the design and development of clustering HWSN. Main components
76 of HWSN are same as WSN like sensor nodes and BS, but in this sensor node have different
77 capability as varied battery level, varied antenna system, high processing and link capability. On the
78 outset high energy capability nodes is the best choice of all the varied features, as battery energy
79 level controls all the varied features of sensor node. Ideal consideration is to have high energy node
80 in WSN is good practice to prolong the lifetime. Adding heterogeneity in WSN (HWSN) termed as
81 HWSN, which have better performance parameters than homogeneous WSN. HWSN with
82 clustering approach additionally improve performance parameter of the network [1-2]. WSN may be
83 homogeneous or heterogeneous, node whose energy level reach zero during operation termed as
84 dead node. In real time application node whose battery energy level lower than energy require for
85 sensing accurately or processing is termed as dead. Thus energy optimization scheme is demanded
86 that minimize the death of nodes from WSN. Meta-heuristic approach is the preferable optimization
87 scheme to enhance performance parameter. As heuristics approach support full benefit to specific
88 issue, and are in greedy in nature in the solution that trapped in local saving and fails for global
89 optimum [5]. However, meta-heuristics approach is full proof solution for energy efficiency and
90 finding the best for global. Author follow the approach of Meta-heuristics for selecting cluster head
91 for HWSN with three different energy level nodes as normal, advance and super node with
92 reference to [6-7]. In this work, we present a distributed clustering approach that considers a hybrid
93 of energy and communication cost. A novel protocol named EECPEP-HWSN (Energy Efficient
94 Clustering Protocol to Enhance Performance of HWSN) is proposed here with different objectives
95 such as: (i) Select best possible node to be CH by considering the real time information, (ii) Enhance
96 stability period and lifetime by reducing energy consumption in the form of reducing internal
97 overhead and cost of processing energy. In the proposed clustering protocol there is an assumption

98 of random deployment or distribution of nodes, with the considerations that nodes in remote
99 applications are randomly deployed. All nodes have their location awareness in advance or at the
100 time of deployment. The issue we highlighted here is for the sake of load balancing and minimizing
101 energy consumption of the network by dividing the network initially in four subsections called as
102 zones based on population [8]. All the nodes have to work for the role inside the network may be as
103 CH or CM, but only one at particular cluster round. A certain amount of clusters and hence CH
104 generated inside the network at a time and there location is also known to the other member of
105 network. In the proposed network model everybody gets an opportunity to work as CH or
106 intermediate CH other than role of cluster member. Sensor node or member node can transfer their
107 collected information to CH, which is in coverage range. It is well assured that selected temporary
108 CH and final CH is less likely in the or on the vicinity of network. Proposed work is presented here
109 in the following subsections as, second section presents literature survey, third section offers
110 network details acquired for the proposed work, proposed work in the form of explanation of
111 mathematical base is presented in the form of proposed protocol in fourth section, proposed
112 protocol implementation and its validations with existing protocol is presented in fifth section of this
113 article and efforts in the form of outcome is presented in final section of this article.

114 2. Literature Survey

115 Though the design and implementation of energy efficient clustering protocol is demanded,
116 there are number of issues raised during real time working. Design energy efficient routing that
117 support heterogeneity, scalability and hierarchical topology is the main goal of researchers in the
118 area of wireless sensor network for longer span of time [1-2]. There is high need to design energy
119 efficient clustering protocol such that it balance the load among the available nodes and must keep
120 routing table minimum. Any node death must be recorded and overhead need to be reduced. To
121 prolong lifetime of WSN or Heterogeneous WSN researchers efforts a lot to design clustering
122 scheme based on hierarchical clustering protocol as proposed in [2]. Single hop scheme of cluster
123 routing for homogeneous WSN with the goal of load balancing such that every node get chance to
124 become CH once during lifetime of network as proposed by author in [8]. Node which is elected as
125 CH for particular round never be CH again in next 1/p round with probability of cluster head is p.
126 The base of CH election is random number generated by node within range 0 to 1. The node whose
127 values is less than the threshold T (n) is been elected as cluster head for particular round. Once node
128 is elected as CH, then it publishes its identity and parameter associated in the form of advertise ADV
129 message towards other member in the coverage zone. CM replied on the receipt of ADV with
130 associated parameters like time slot acquired, energy level available, hop count etc. CH prepares
131 TDMA from the reply of all the nodes in its coverage and publishes it by air. With this everybody
132 comes to know the time slot on which to participate for communication. Other than this slot period
133 particular node can be in sleep state, to save energy available. Merits suggested by LEACH protocols
134 are CH role is rotated such that load balancing is achieved. With single hop approach considerable
135 energy is saved. But, there are higher number of demerits to compensate for merits as no basis of
136 residual energy is considered, as role of CH is rotation impose possibility that node elected as CH is
137 on the vicinity of network or in the vicinity. This mechanism increases control overhead and its
138 processing energy, which is not suitable for scalable network. Like this other protocols suggested as
139 [7, 10] etc. are also focused on energy efficient clustering. But all those are somehow are less faithful
140 to really enhance energy efficiency of WSN without their considering criteria of CH selection and
141 network model support. Stable Elections Protocol (SEP) is introduce, to enhance stability and
142 lifetime of heterogeneous WSN by author of [11]. Two level energy nodes are introduced in this
143 protocol namely normal and advance nodes. Basically in HWSN, nodes those are heterogenite in
144 resources are less in percentage fraction. In this advanced node have higher battery energy level
145 than its follower normal node. Probability of node to be CH is different for both type of node, but
146 mostly advanced node have more chance to get select as CH than normal node. In this by increasing
147 percentage factor of advance nodes and hence probability of CH selection improves performance in
148 the form of stability and lifetime, which also improves throughput of the network. Demerits

149 identified in this is advanced node get punished badly as they have more chance to get selected as
 150 CH. Reduce the survival time of network with added parameter of probability function for CH
 151 selection. DEEC (Distributed Energy Efficient Clustering) is another HWSN clustering protocol
 152 having different approach of selecting CH as proposed in [12]. In DEEC, CH selection is based on
 153 ratio of residual energy to average energy of the network. By varying epoch period we can have CH
 154 selection for different types of node. The node whose energy level, initial or residual energy is higher
 155 gets more chance to become CH than the node with low energy level. But, DEEC have the
 156 constraints as network lifetime is recorded while protocol in action for cluster round activity. DEEC
 157 have the same problem as SEP protocol as to punish advanced node badly and global knowledge of
 158 network. Hence to design and implement energy efficient clustering with heterogeneous WSN a
 159 novel approach to select CH such that energy utilization of the network get enhanced.

160 *2.1. Motivation*

161 All aforementioned protocol HWSN clustering such as [9, 11, 12]. There is the CH selection
 162 criteria indirectly linked with probabilistic approach or connected to threshold $T(n)$ with
 163 probabilistic approach. By varying the CH selection criteria to select most promising node, increases
 164 internal overhead. Some of the time node selected as CH is at the vicinity or off the vicinity. If node is
 165 at or on the vicinity, it increases the energy consumption in the network and hence reduces the
 166 stability and lifetime of the network. So node with this position is not suitable for the role of CH.
 167 Hence node must have better internal parameter and better connectivity with nodes and mainly
 168 situated in the premises of network. Hence best suitable node is selected for the role of CH, improves
 169 energy remain in the network, stability, lifetime and throughput of the network for respective
 170 cluster round.

171 *2.2. Energy Consumption Model*

172 In communicating data between sensor nodes wirelessly some energy is dissipated due to
 173 internal electronics circuits operation. Other source of energy dissipation is sometimes node may
 174 have GPS system installed to update the location information. But, energy dissipation is mainly
 175 depending on the distance between sender and target receiver. It means some of the energy
 176 consumed at the time of process in sender and at transmission, at the same time energy is consumed
 177 in reception successfully and again to process for record. This energy consumption scene is
 178 presented mathematically as given below with reference to [13]. Where the parameter involved have
 179 their respective significance as E_{elec} presents energy consumed by transmitting and receiving
 180 electronics circuitry to process single bit information. E_{tx} and E_{rx} is the energy required by
 181 transmitting and receiving section to process complete data packet of length L , This is directly
 182 depend digital coding or spreading of the bit and indirectly to digital modulation scheme used. E_{fs}
 183 and E_{mp} are the amount of transmitter amplifier expenses in the form of energy for free space loss
 184 and multipath fading loss, d_0 is the safe distance or threshold distance or crossover distance between
 185 sender and receiver. Main classified information about amplifier (power amplifier) is to control the
 186 setting of power such that if communication distance d between sender and receiver is less than d_0
 187 then free space power loss model is to consider in the form of:
 188

$$189 \quad E_{tx}(L, d) = L E_{elec} + L E_{fs} d^2 \quad d \ll d_0 \quad (1)$$

190
 191 If the distance is greater than threshold d_0 then multipath fading power loss model as:
 192

$$193 \quad E_{tx}(L, d) = L E_{elec} + L E_{mp} d^4 \quad d \gg d_0 \quad (2)$$

194
 195 Where L is length of data packet in number of bit for communication. Calculation of d_0 is:

196
$$d_0 = \frac{\sqrt{E_{fs}}}{\sqrt{E_{mp}}} \quad (3)$$

197 **2.3. Network Model**

198 In the proposed network model, there are n numbers of randomly deployed sensor nodes with
 199 the network layout of $M \times M$. After deployment all nodes are assumed to be fix or immobile.
 200 Network layout is divided in four zone based on population and BS is at the center of network field.
 201 Every node has the capability to aggregate the data. Each and every node has the location
 202 information in advanced. All nodes have symmetric communication channel. It is prime
 203 considerations that node always have data to send. Networks have combination of different energy
 204 level nodes in certain percentage. Nodes are namely normal, advance and super nodes in increasing
 205 order of energy level as presented in [6-7]. For our simulation we are using increasing energy factor
 206 as 2. In the proposed work we are using three level energy heterogeneity as E_0 , E_{Adv} and E_{Super} . Nodes
 207 with percentage population factor a with n nodes for advanced node, which is equipped with energy
 208 factor greater than m times than normal node. Super nodes are equipped with increase energy factor
 209 as m_0 , with percentage population factor a_0 with respect to n nodes. Now we are presenting
 210 individual details in the form of equation as: Initial energy E_0 is the energy available for normal
 211 nodes whose density found as $n(1-a-a_0)$, Hence advance and super node populations are, na and na_0
 212 respectively. Energy presented by each individual node type is as follows:
 213

214 Energy due to normal node is;

215
$$E_{Normal} = nE_0 (1-a-a_0) \quad (4)$$

216

217
$$E_{Adv} = nE_0 (1+m) a \quad (5)$$

218

219
$$E_{Super} = nE_0 (1+m_0) a_0 \quad (6)$$

220

221 Equation 4, 5 and 6 presents available energy with all three types of nodes. Total initial energy
 222 proposed in the network model is calculated as E_{Tot} ;

223

224
$$E_{Tot} = E_{Normal} + E_{Adv} + E_{Super} \quad (7)$$

225

226
$$E_{Tot} = nE_0 - naE_0 - na_0E_0 + naE_0 + nE_0 ma + na_0E_0 + na_0m_0E_0 \quad (8)$$

227

228 In equation (8) it is found that the second and fourth term is of equal magnitude and is out of
 229 phase, and terms third and sixth is of the same magnitude and is out of phase. Hence equation (8)
 230 is rewritten as;

231
$$E_{Tot} = nE_0 + nE_0 ma + na_0m_0E_0 = n E_0 (1+ma+m_0a_0) \quad (9)$$

232

233 Hence from equation (9) we are hereby conclude that if we add heterogeneity level up to level 2
 234 available energy increased by factor $(1+ma)$ and if it increased by level 3, then energy present at
 235 beginning is increased by factor $(1+ma+m_0a_0)$. If we would like to improve heterogeneity level
 236 greater than 2 then equation is modified as given below:

237
$$E_{Tot} = nE_0 (1+ma + \sum_{i=0}^N (m_i a_i)); \quad i=0, \dots, N \quad (10)$$

238 Where, N can be any integer number.

239

240 **3. Proposed Protocol**

241 We are presenting here a novel energy efficient clustering protocol to enhance performance
 242 metrics of HWSN in all the way better than the formerly available protocol. Initially all the nodes are

243 deployed randomly in the network, network is divided in four equal zone based on location
 244 information such as zone A, Zone B, zone C and zone D as per [7].
 245

246 Total network area is= Area (A+B+C+D) (11)
 247

248 Which reduce the internal overhead inside the network during network management, this
 249 improves the energy remain in the network at run time. In most of the existing clustering protocol,
 250 cluster size is arbitrary some of the time cluster head or CH is located on the border or towards the
 251 border of the network, due this energy depletes at faster rate and degrades the network
 252 performance. In the proposed work, we are having a very different approach of selecting cluster
 253 head based on real time parameter available with the sensor node in the form of Node Quality Index
 254 (Q_{ni}). Node Quality Index is the devised parameter based on initial energy, residual energy and the
 255 hop count required by the particular node with respect to base station. As initial energy required
 256 being higher in normal selection of cluster head, residual energy need to be higher at run time for the
 257 assurance of longer life of node and finally node must be moderately or nearly situated from the
 258 base station. Hence finally arranging all these in the form of linear equation gives us a better value of
 259 Q_{ni} for the role of cluster head. There is the index modeling used from data modeling approach for
 260 Q_{ni} calculation.

261 *3.1. Protocol Explanation*

262 In this propose work, we are presenting a new approach of CH selection by introducing a very
 263 new factor named as Node Quality Index (Q_{ni}). Node Quality Index is the fusion of initial energy of
 264 the node, current available energy at run time and hop count with respect to base station. Once
 265 selection of CH is started with available parameter from each zone. Node who have better value of
 266 index and satisfying the boundary condition criteria, as given below in CH solution. Node with
 267 better value of node index from each zone is selected as temporary CH for that zone. Every zone has
 268 the information of selected temporary CH and it is conveyed to all nodes available from the zone.
 269 Each and every zone submit the information of temporary CH, finally averaging of all the temporary
 270 CH Node Index is performed and the CH whose value greater than average value of CH is selected
 271 as final CH from the network for data transaction. All temporary CH have the updation of final CH
 272 and transfer aggregated data depends on requirement. But, at the time of data transmission
 273 temporary CH have to check relative distance between final CH and with BS. If distance between BS
 274 and the CH is lower than the final CH, transfer collected data to BS directly. Initially it is found that
 275 most of the nodes have equal value of node index, so it is very necessary to have appropriate
 276 approach of data collection such that load balancing is achieved. For this short span of time we are
 277 using LEACH scheme for CH selection. The proposed protocol is most suitable in surveillances,
 278 weather forecasting, home automation, traffic management, habitat monitoring, in machine health
 279 analysis and inventory management.

280 The fundamental CH solution for apply in proposed work is:
 281

$$282 \text{CH}_i = \begin{cases} Q_{ni} > Avg_i; & \text{for } i > 50 \\ Q_{ni} \frac{p_i}{1 - p_i(r \bmod \frac{1}{p_i})} & \text{for } i = 0 \text{ to } 50 \end{cases} \quad (12)$$

$$284 \text{Where, } Avg_i = \frac{\sum_{i=0}^n Q_{ni}}{|Q_{ni}|}$$

285
 286 Boundary = Boundary of network layout $\pm 10\%$
 287

$$288 \text{CH}_i = [\text{Boundary} \cap (Q_{ni} > Avg_i)] \quad (13)$$

289 4. Simulation and Results

290 This section highlights the achievements of proposed work in the form of enhanced
 291 performance parameters than the existing well known clustering protocols such as HWSN, like
 292 LEACH, SEP and DEEC. Some of the performance parameters are explained in short as follows:
 293

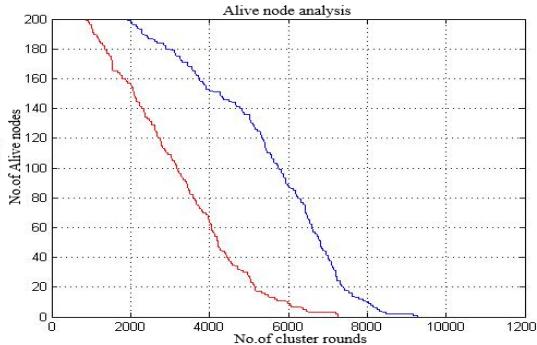
- 294 • **Stability Period:** The time period before the death of very first node from available sensor
 295 nodes from deployed HWSN.
- 296 • **Number of alive node per cluster round:** Number of node alive available inside the
 297 network for every cluster round, which indirectly presents the available energy remain in
 298 the network.
- 299 • **Number of dead nodes per cluster round:** Number of nodes dead per cluster round during
 300 the survival against changing energy level inside the network. This factor indirectly presents
 301 death rate of nodes over cluster cycle. Which indicate network survival time before complete
 302 death.
- 303 • **Throughput:** Number of data packets sent from the sensor nodes towards base station over
 304 the cluster round present's amount of throughput. Amounts of throughput signify efficiency
 305 of network. Throughput presents quality of the network.

306 5. Result discussion

307 With reference to table 1 given below in the form of parameter set, we randomly deploy the
 308 network in 200 m X 200 m form. Divide the network in four equal zones based on population, place
 309 the BS at the center of the network with position (100 X 100). Total node population is 200, with
 310 percentage fraction factor as $a=0.2$ and $a_0=0.1$. With advance node energy value about to double the
 311 normal node energy. Super node energy value is about twice the advanced node.

312 Table 1. Simulation Parameter.

Sr. No.	Parameter symbol	Name	Value
1	$M \times M$	Network area	200m X 200m
2	N	Number of nodes	200
3	E_0	Initial energy of nodes	0.5-1.5J
4	L	Data packet size	4000bits
5	E_{elec}	Radio electronics energy	50 nJ/bit
6	E_{efs}	Free space energy	10 pJ/bit/m ²
7	E_{mp}	Amplification energy	0.0013 pJ/bit/m ⁴
8	E_{DA}	Data aggregation energy	5 nJ/bit/signal
9	d_0	Threshold distance	87-87.7 m
10	BS	Sink node	(100, 100)


313 5.1. Validation with LEACH protocol

314 As we know LEACH strategy is best suitable for improving lifetime of WSN by offering an
 315 equal opportunity everybody to become a CH and balance the energy consumption as proposed in
 316 [8]. But it's a random selection of CH, no reference of residual energy available and about hop count.
 317 Hence our protocol outperforms than the LEACH with this aspect in the form of stability period and
 318 lifetime presented in figure 1(a) and 1(b). Colour used for presentation is blue for proposed protocol
 319 and red colour is used for former protocol. As per LEACH, there is less guarantee that selected node
 320 is inside the network premises and not on the verge of vicinity or in the vicinity. This improves
 321 energy consumption inside the network. Propose protocol solve this issue with reduction in internal

322 overhead packets, hence energy remain in the network is better than LEACH protocol as shown in
 323 figure 1(c). Finally available energy is utilized efficiently and systematically for longer span of time
 324 improves throughput from the network shown in figure 1(d).

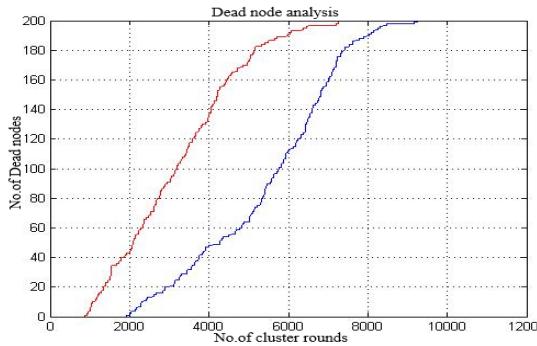

325
 326

Figure 1. (a) No. of Alive nodes versus no. of cluster rounds

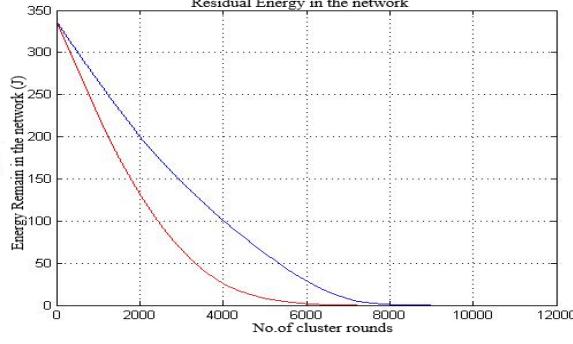

327
 328

Figure 1 (b) No. of Dead nodes versus no. of cluster rounds

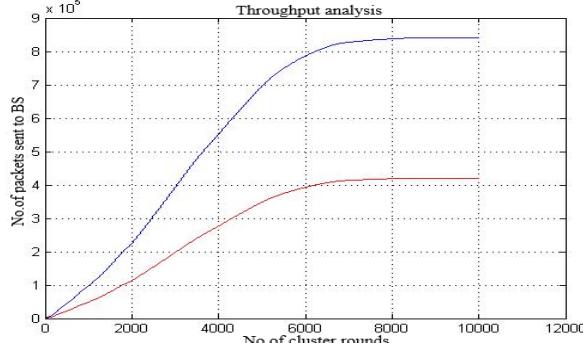

329
 330

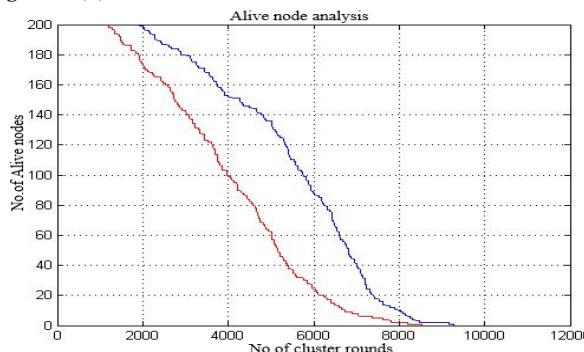
Figure 1 (c) Energy remain in the network versus no. of cluster rounds

331
 332

Figure 1 (d) No. of Data packets sent to BS versus no. of cluster rounds

333
 334

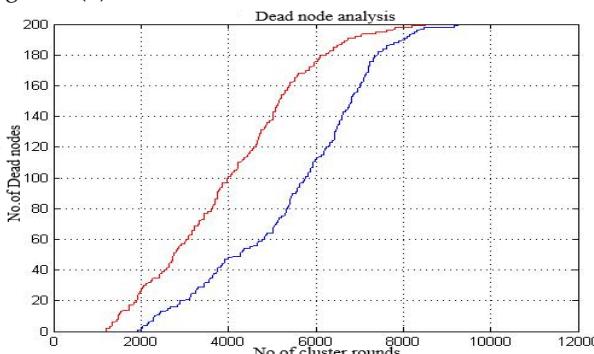
335 5.2. Validation with SEP protocol


336 Basically SEP is proposed to introduce energy heterogeneity in WSN i.e. in the form of
 337 advanced nodes other than normal node as per [11]. But, in SEP protocol there is two level of
 338 probability function to differentiate between advanced and normal node for the role of CH. Which

339 vary the energy level excursion and deplete the energy. It normally punishes the high energy node
 340 and results in early death, which reduce the stability period and lifetime. As shown in figure 2(a),
 341 lifetime 2(b) and energy remain in the network 2(c) compared with proposed protocol. Graph
 342 presented with two colour as red for former protocol and blue colour is used for proposed protocol.
 343 As proposed protocol is free from the varying probability function and changing energy level
 344 utilization. Finally with improved energy remain or residual energy in the network enhance the
 345 lifetime and hence number of data packets sent towards base station in the form of figure 2(d) as
 346 throughput over lifetime.

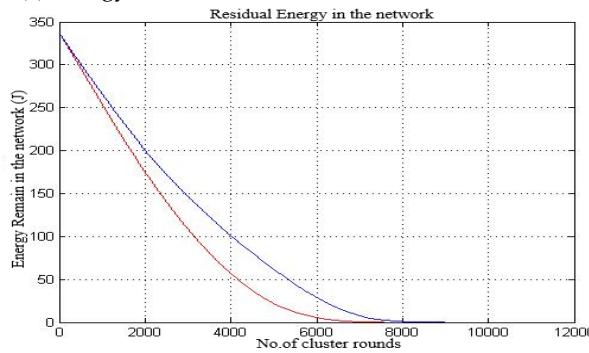
347

348


Figure 2 (a) No. of Alive nodes versus no. of cluster rounds

349

350


Figure 2 (b) No. of Dead nodes versus no. of cluster rounds

351

352

Figure 2 (c) Energy remain in the network versus no. of cluster rounds

353

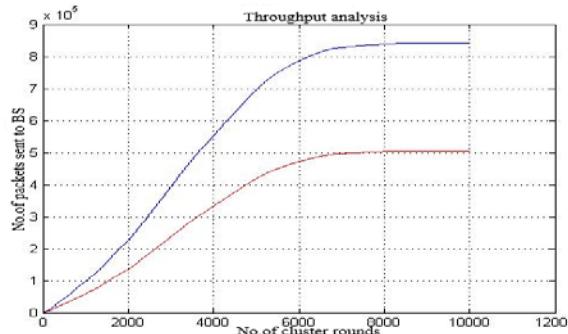
354

355

356

357

358


359

360

361

362

Figure 2 (d) No. of Data packets sent to BS versus no. of cluster rounds

363
364

5.3. Validation with DEEC protocol

365 DEEC protocol proposed by author with the approach of average energy in the network and
 366 initial lifetime calculations in the form of number of round as given in [12]. In this protocol global
 367 knowledge of network needs to be updated regularly at end of each round and probability threshold
 368 function also playing an important role for CH selection based on varying probability function.
 369 Which affect the energy balancing inside the cluster and hence in network. Which reduce the lifetime
 370 of sensor network as depicted in figure 3(a) and 3(b) in the form of blue and red colour. Energy
 371 unbalancing of DEEC depicted in the form of energy remain in the network as in figure 3(c).
 372 Throughput of the former protocol is also getting reduced, presented in figure 3(d). Because
 373 proposed protocol does not have any varying probability function and criteria for CH selection is
 374 deterministic. Hence proposed protocol outperforms than the former.
 375

376

Figure 3 (a) No. of Alive nodes versus no. of cluster rounds

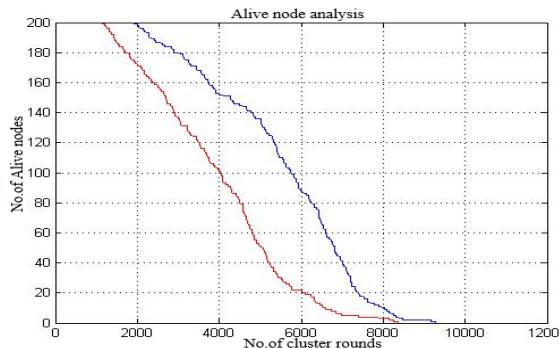
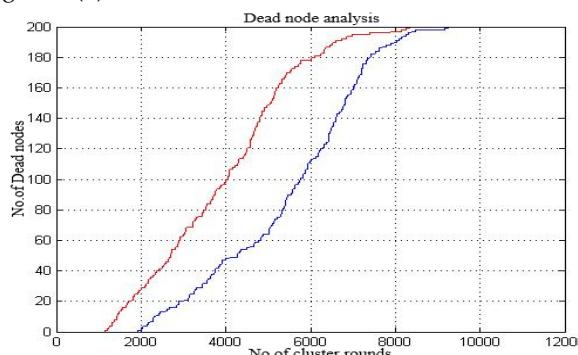
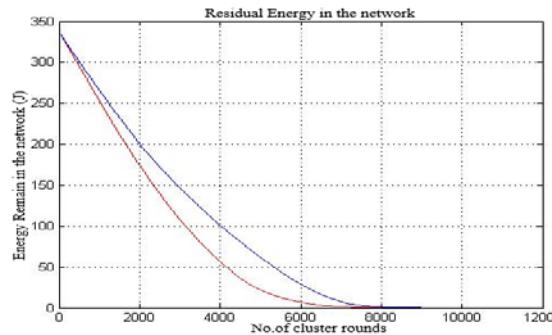
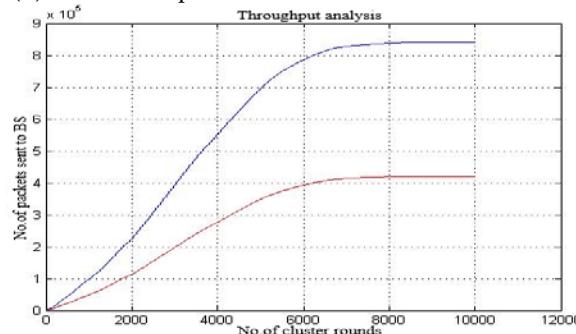




377
378

Figure 3 (b) No. of Dead nodes versus no. of cluster rounds

379
380
381
382
383
384
385
386
387
388

Figure 3 (c) No. of Alive nodes versus no. of cluster rounds

389
390 Figure 3 (d) No. of Data packets sent to BS versus no. of cluster rounds

391
392 Finally proposed simulation works shows better performance parameters than the existing
393 protocols. Hence our proposed clustering protocol is well balanced energy efficient clustering
394 protocol than the former. Performance validation is given below in table 2.

395 Table 2. Performance validation table

Sr. No.	Name of the protocol to be simulated				% Enhancement on			
	Performance parameter	LEACH	SEP	DEEC	Proposed	LEACH	SEP	DEEC
1	First node death (Stability)	874	1206	1136	1931	221	160	170
2	Tenth node death	1345	1903	1710	2896	215	152	170
3	All node death (Lifetime)	7254	8199	8375	9284	128	113	110
Overall performance parameter improvement with proposed protocol is:						188	141	150

396 **6. Conclusion**

397 In the proposed clustering protocol of HWSN, selection of CH is depend on current available
398 energy, initial energy, hop count from the base station. Node selected for the role of temporary CH
399 of each region is situated off the vicinity. Node which has better value of Node Index than
400 temporary selected CH and off the vicinity can be final CH, which enhances energy efficiency of the
401 network. Other achievement with proposed approach is internal overheads getting reduced to
402 greater extent with the initial division of network than the arbitrary clustering network. This
403 improves energy efficiency, force to enhance stability period, lifetime, improves residual energy of
404 the network and hence throughput is also enhanced than existing protocol.

405 **References**

1. A. A. Abbasi; M. Younis. A survey on clustering algorithms for wireless sensor networks. *Science Direct Computer Communications* **2007**, Volume 30, pp. 2826–2841, Doi:10.1016/j.comcom.2007.05.024.
2. S.V.Purkar; Dr. R.S.Deshpande. A review on energy efficient clustering protocols of heterogeneous wireless sensor network. *International Journal of Engineering and Technology* **2017**, Volume 9, pp. 2514–2527, Doi: 10.21817/ijet/2017/v9i3/170903342.
3. S.A. Nikolidakis; D. Kandris; D.D.Vergados; C.Douligeris. Energy efficient routing in Wireless Sensor Networks through balanced clustering. *Algorithms* **2013**, Volume 6, pp. 29-42, Doi: 10.3390/a6010029.

413 4. G. Abdul-Salaam.; A. H. Abdullah; M. H. Anisi; A. Gani; A. Alelaiwi. A comparative analysis of
414 energy conservation approaches in hybrid wireless sensor networks data collection protocols.
415 *Telecommunication Syst.* **2016**, Volume 16, pp. 159-179, Doi: 10.1007/S 11235-015-0092-8.

416 5. S. Singh; A. Malik; R. Kumar. Energy efficient heterogeneous DEEC protocol for enhancing lifetime in
417 WSNs. *Engineering Science and Technology an International Journal* **2017**, Volume 20, pp. 345-353,
418 Doi:10.1016/j.jestch.2016.08.009.

419 6. A. Kashaf; N. Javaid; Z. A. Khan; I. A. Khan. TSEP: Threshold-sensitive Stable Election Protocol for
420 WSNs. *10th International Conference on Frontiers of Information Technology at Islamabad* **2012**, pp. 164-168,
421 Doi: 10.1109/FIT.2012.37.

422 7. D. Kumar; T. C. Aseri; R.B. Patel. EEHC: Energy efficient heterogeneous cluster scheme for wireless
423 sensor networks. *Elsevier computer communication* **2009**, Volume 32, pp. 662-667,
424 Doi:10.1016/j.comcom.2008.11.025.

425 8. B. Manzoor; N. Javaid; O. Rehman; M. Akbar; Q. Nadeem; A. Iqbal; M. Ishfaq. Q-LEACH: A New
426 Routing Protocol for WSNs. *International Workshop on Body Area Sensor Networks (BASNet-2013)*,
427 *SciVerse ScieceDirect* **2013**, Volume 19, pp. 926-931, Doi: 10.1016/j.procs.2013.06.127.

428 9. W. R. Heinzelman; A. Chandrakasan; H. Balakrishnan. Energy-Efficient communication protocol for
429 wireless microsensor networks. *In Proceedings of the Hawaii International Conference on System Sciences,*
430 *Maui, Hawaii 2000*, pp. 1-10, Doi: 10.1109/HICSS.2000.926982.

431 10. O. Younis; S. Fahmy. HEED: A hybrid, energy-efficient, distributed clustering approach for ad-hoc
432 sensor networks. *IEEE Trans. Mobile Comput.* **2004**, Volume 3, pp. 366-379, DOI: 10.1109/TMC.2004.41.

433 11. G. Smaragdakis; I. Matta; A. Bestavros. SEP: A Stable Election Protocol for clustered heterogeneous
434 wireless sensor network. *Second International Workshop on Sensor and Actuator Network Protocols and*
435 *Applications 2004*, pp. 1-6.

436 12. L. Qing; Q. Zhu; M. Wang. Design of a distributed energy-efficient clustering algorithm for
437 heterogeneous wireless sensor network. *ELSEVIER, Computer Communications* **2006**, Volume 29,
438 pp.2230-2237, Doi:10.1016/j.comcom.2006.02.017.

439 13. N. Javaid; M. B. Rasheed; M. Imran; M. Guizani, Z. A. Khan; T.A. Alghamadi; M. Llahi. An
440 energy-efficient distributed clustering algorithm for heterogeneous WSNs. *EURASIP Journal on*
441 *Wireless Communications and Networking*, *Springer* **2015**, pp. 3-11, Doi: 10.1186/s13638-015-0376-4.