Preprint
Article

Stochasticity in the Parasite-Driven Trait Evolution of Competing Species Masks the Distinctive Consequences of Distance Metrics

Altmetrics

Downloads

751

Views

481

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

14 October 2017

Posted:

16 October 2017

You are already at the latest version

Alerts
Abstract
Various distance metrics and their induced norms are employed in the quantitative modeling of evolutionary dynamics. Minimization of these distance metrics when applied to evolutionary optimization are hypothesized to result in different outcomes. Here, we apply the different distance metrics to the evolutionary trait dynamics brought about by the interaction between two competing species infected by parasites (exploiters). We present deterministic cases showing the distinctive selection outcomes under the Manhattan, Euclidean and Chebyshev norms. Specifically, we show how they differ in the time of convergence to the desired optima (e.g., no disease), and in the egalitarian sharing of carrying capacity between the competing species. However, when randomness is introduced to the population dynamics of parasites and to the trait dynamics of the competing species, the distinctive characteristics of the outcomes under the three norms become indistinguishable. Our results provide theoretical cases when evolutionary dynamics using different distance metrics exhibit similar outcomes.
Keywords: 
Subject: Computer Science and Mathematics  -   Applied Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated