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16 Abstract: A simple approach to enable water-management agencies employing free data to achieve
17 the goal of using a single set of predictive equations for water-quality retrievals with satisfactory
18 accuracy is proposed. Multiple regression-derived equations based on surface reflectance, band
19 ratios, and environmental factors as predictor variables for concentrations of Total Suspended
20 Solids (TSS), Total Nitrogen (TN), and Total Phosphorus (TP) were derived using a hybrid
21 forward-selection method that considers Variance Inflation Factor (VIF) in the forward-selection
22 process. Landsat TM, ETM+, and OLI/TIRS images were jointly utilized with environmental
23 factors, such as wind speed and water surface temperature, to derive the single set of equations.
24 The coefficients of determination of the best-fitting resultant equations varied from 0.62 to 0.79.
25 Among all chosen predictor variables, ratio of reflectance of visible red (Band 3 for Landsat TM and

26 ETM+, or Band 4 for Landsat OLI/TIRS) to visible blue (Band 1 for Landsat TM and ETM+, or Band
27 2 for Landsat OLI/TIRS) has a strong influence on the predictive power for TSS retrieval.

28 Environmental factors including wind speed, remote sensing-derived water surface temperature,
29 solar altitude, and time difference (in days) between the image acquisition and water sampling
30 were found important in water-quality parameter estimation.

31 Keywords: Variance Inflation Factor; VIF; multiple regression; Landsat; Austin; Lady Bird Lake;
32 water quality; environmental factor; energy flux; urban runoff
33

34 1. Introduction

35 Continuous monitoring of water quality is essential for the health and welfare of the people and
36  ecosystems reliant upon them. Urbanization, agriculture, and other anthropogenic factors can alter
37  water quality [1], and waiting to remediate until a change is clearly visible can be much more costly
38 than early prevention. Despite this, the cost of adequate temporal and spatial physical
39  measurements can potentially be prohibitive [2]. For example, the United States Geological Survey
40  (USGS) regularly monitors water quality in Lady Bird Lake in Austin, Texas, USA; however, the
41  frequency is only approximately twice per year at a single point near the outlet over the past decade
42  [3]. Additionally, in situ measurements from year to year do not occur in the same months. As a
43 result, it is difficult to distinguish whether a change in the water quality measured at a point is truly
44  along-term change or the result of a seasonal difference or recent event (e.g., a large precipitation
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45  event) [4]. Additionally, it is impossible to evaluate the spatial variation in water quality from
46  single-point measurements.

47 In recent decades, remote sensing has provided an alternative method for monitoring water
48  quality in a spatially synoptic manner at a lower cost compared with extensive in situ measurement.
49  Each water-column constituent exhibits a specific spectral response that can be observed by satellite-
50  and aircraft-mounted remote sensors [5]. Suspended sediment usually exhibits strong backscattering
51 of incident light [5], where the actual color depends on the terrestrial origin [6]. Colored dissolved
52 organic matter (CDOM) is composed of algae, yellow substances, and organic plumes [5], and entails
53  a broad-band solar-induced fluorescence over 490-530 nm [6]. Phytoplankton exhibits a volume
54  reflectance (and water-leaving radiance) peak due to chlorophyll-a, with a well-defined Gaussian
55 distribution around 685 nm [6].

56 For a particular wavelength, A, the spectral radiance from the water observed vertically, known
57  asthe upwelling radiance, Ly, is given by

58 Ly(A) = Ly, (D) + QL (D) M

59 where L, is the radiance reflected/backscattered by the water column, in-water constituents,

60  and the bottom if the water column is optically shallow; Lg is the skylight radiance; and Q is the
61  ratio of radiance directly reflected by the water surface to Lg [7]. Note that the radiance observed by
62  a satellite is composed of L,, plus atmospheric interference; therefore, it requires atmospheric
63 correction (discussed below). L, L;, and Q are influenced by a variety of factors. If the water
64  column is sufficiently deep, bottom reflectance may be ignored, and L,, can be assumed to be a
65  measure of the effects of water-column constituents alone. Atmospheric conditions (e.g., clear,
66  cloudy, overcast) affect both (Q and L;, whereas Q can be further affected by wind speed in the form
67  of surface ripples [7]. Wind speed has also been found to have some influence on water clarity [8].
68 Because of their higher capability to penetrate the water column, visible bands have
69  conventionally been used to estimate water quality [5]. In addition, infrared bands have also shown
70  significance in determining water-quality parameters in some studies [9, 10]. However, only near
71  infrared wavelengths were used in these studies. Thermal infrared bands have not extensively been
72 used in water-quality estimation.

73 Site-specific predictive models can be created to relate a number of band radiance
74  measurements or derived reflectance values [5] to the water-quality parameter of interest by fitting
75  the model to in situ water-quality measurements. Multiple regression analysis and artificial neural
76  networks (ANNSs) constitute two methods that are frequently used to generate such predictive
77 models [5, 10, 11, 12].

78 In academia, satellite remote-sensing images have been increasingly available for water-quality
79  determination. However, the popularity of this approach has not been extended to decision making
80 by management agencies in general [13]. According to Schaeffer et al. [13], the reasons for this
81  phenomenon include cost, product accuracy, data continuity, and programmatic support.

82 Cost is always a major constraint, as many water-management agencies have limited budgets
83  [13]. Even though there are many free remote-sensing data sets available, such as the multispectral
84  satellite images available from the Landsat program (e.g., Landsat Thematic Mapper (TM),
85  Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI)/ Thermal Infrared
86  Sensor (TIRS)) [14], MODIS [15], SeaWiFS [16], etc., the selection of images is predominately limited
87  to moderate spatial-resolution images from the Landsat program, for example, for terrestrial
88  pond/lake applications due to the finer spatial resolution of those data relative to other free
89  remote-sensor image sources and the relatively small sizes/spatial extents of such features. Another
90  aspect of the cost constraint is the cost to collect field water-sampling data, as the creation of
91  empirical predictive models necessitates in situ water-quality data. Sometimes, due to cost, logistical,
92  and other constraints, that means that a water-management agency can only resort to free
93  water-quality data, such as those made available by the USGS. The downside, as noted above, is that
94  spatio-temporal sampling density/data availability may be low. This drawback seriously limits the
95  ability of a water-management agency to utilize free Landsat program data, for example, as the basis
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96  of a water-quality monitoring program since the satellite images and corresponding in situ
97  measurements must be acquired in a temporally proximal manner [17].

98 As a result, water-management agencies that resort to only using free remote-sensing resources
99  often only have access to a limited number of useable satellite images for water-quality monitoring.
100  Such a scenario often leads to the use of a single predictive model to determine water-quality
101  information from satellite images. Nevertheless, many studies divide their analyses by season [18, 19]
102  due to systemic seasonal differences in factors such as concentrations of color-producing substances
103  (including phytoplankton), atmospheric disturbances [19], and solar zenith angle [20]. Some studies
104  have shown that the predictive power of equations created without distinguishing by season is

105  lower than it otherwise would be [21, 22].

106 Since the derived predictive equation is seasonally affected by the environment, a few studies
107  have incorporated the influencing factors into predictive equation generation. One example is with
108  the estimation of chlorophyll-a concentration. It has been known that phytoplankton growth is
109  statistically significantly dependent on water temperature [23, 24]. Incorporating water temperature
110  (derived from the satellite remote-sensor thermal band) in development of predictive equations has
111  proven to be helpful in determining chlorophyll-a concentration [25]. However, this approach has not
112 been investigated extensively. In this study, we consider additional environmental factors based on
113 energy fluxes between a waterbody and the atmosphere. We posit that including these
114  environmental factors in predictive equations not only increases prediction accuracy, but also
115  facilitates the usage of a single set of predictive equations throughout different seasons. The direct
116  benefit is that one can pool all observation data in creating equations, thus resulting in higher
117  predictive power.

118 Programmatic support is also important to water-management agencies, according to Schaeffer
119 et al. [13]. In most cases, local universities should be sufficient in providing support to
120  water-management agencies. However, we posit that the methodology adopted for generating
121  predictive models should entail model construction in a stepwise manner, such that most people
122 with basic training could implement such methods can follow without much difficulty. For this
123 reason, in choosing methodology implemented by water-management agencies, simple and
124 well-understood methods such as multiple regressions should be weighed over more complex
125 methods, such as ANNS.

126 Product accuracy is another major concern expressed by the water-management agencies [13].
127  Even though water-management agencies could utilize predictive models from peer-reviewed
128  journals, such models may not yield high-accuracy estimates in a given application. Multiple
129  regression analysis has been employed in many studies for its ease of application. However, for
130  applications using this method, overfitting from multicollinearity can be a serious concern.
131  Multicollinearity means that some of the explanatory variables in the multiple regression model are
132 dependent on one another. The direct result from multicollinearity is that the standard error of
133 coefficients of explanatory variables is inflated, which means that coefficients of the derived model
134 are not reliable. Unfortunately, many past studies neither discussed the issue of multicollinearity,
135 nor provided results of validation of the derived regression models [4, 5, 9, 17, 26, 27, 28, 29]. A
136  common way to identify multicollinearity of a model is through the usage of indicators such as
137  Akaike’s Information Criteria [30], Mallow’s Cp [31], PRESS [32], etc. However, such indicators
138  apply to the whole model so all possible subsets of explanatory variables must be examined, and this
139  approach becomes unattainable when the number of variables increases [33].

140 Other popular methods to identify multicollinearity include the deployment of a principal
141 component analysis (PCA) or structural equation modeling (SEM) [33]. PCA creates orthogonal
142 principal components, which are linear combination of variables, and a regression model can be
143 created based on the orthogonal components in order to eliminate multicollinearity completely.
144 Some studies show, however, that this methodology can result in a loss in explanatory power.
145  Additionally, the main limitation of the PCA approach is rooted in the physical interpretation of the
146  principal components. On the other hand, SEM accepts the existence of collinearity among
147  explanatory variables and hypothesizes that a model exists among variables. Then all possible
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148  combinations of causal links among variables are tested against the hypothesized model. Since SEM
149  is not an exploratory technique, SEM is prone to inferential errors made during development and
150  selection of the hypothetical models [33].

151 We propose utilizing the variation inflation factor (VIF) to minimize multicollinearity. Unlike
152 other indicators described above, VIF is calculated for each predictor variable. VIF has been used in
153  the field of remote sensing on a limited basis to check multicollinearity of results [34; 35]. Dubovyk et
154 al. [36] used VIF to choose variables to enter into a logistic regression model. However, to our
155  knowledge, VIF has not previously been employed in deriving predictive equations for
156  water-quality parameters. Details regarding VIF computation and the methodology to include VIF
157  inequation derivation is discussed below in the Methodology section.

158 The Landsat program constitutes a truly ideal free data-source candidate for
159  water-management agencies, given the characteristics of the various Landsat sensors, as well its
160  long-term data continuity. The Landsat program has maintained the longest uninterrupted satellite
161  observation record of Earth from its beginning in 1970s. The Landsat program has employed several
162  sensors over time including MSS, TM, ETM+, and OLI/TIRS (Landsat 8). Only a few water-quality
163 studies have taken advantage of combining TM, ETM+, and OLI/TIRS datasets [37, 38, 39] even
164 though these sensors have been shown to be compatible, as shown in Table 1 [39, 40, 41]. Note Table
165 1 shows only comparable bands among Landsat TM, ETM+, and OLI/TIRS sensors.

166 Due to the different band numbering in OLI/TIRS, in this study, numbering of bands will be
167 based on TM/ETM+. For example, if Band 3 is noted, it means Band 3 for TM and ETM+, but Band 4
168 for OLI/TIRS.

169
170 Table 1. Band attributes of Landsat TM and ETM+ and OLI/TIRS sensors [39, 40, 41].
Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8
wa‘('els)‘gth 045-0.52 | 0.52-0.60 | 0.63-0.69 | 0.76-:0.90 | 155175 | 10.40-12.50 | 2.08-2.35 | n/a
™ Sen ': tial
ensor spata 30 30 30 30 30 60 30 n/a
resolution (m)
Wavelength |, 15052 | 052060 | 0.63-0.69 | 0.77-090 | 155-175 | 1040-12.50 | 2.09-2.35 | 0.52-0.90
(pum)
ETMx Sensor spatial
ensor 5P 30 30 30 30 30 60 30 15
resolution (m)
Wavelength Band 2 Band 3 Band 4 Band 5 Band 6 Band 10 Band 7 Band 8
OLI/TIRS s (um) = 0.45-0.51 | 0.53-0.59 | 0.64-0.67 | 0.85-0.88 | 1.57-1.65 | 10.60-11.19 | 2.11-2.29 | 0.50-0.68
ensor spata 30 30 30 30 30 100 30 15
resolution (m)
171
172 Based on the gaps in the research literature illustrated above, the objectives of this study were:
173 1. Incorporate environmental factors (such as temperature, wind speed, etc.) into a single set of
174  predictive equations for remote-sensing water-quality parameter estimation; and
175 2. Increase model predictive power for a limnological water-quality parameter-estimation
176  application by considering the effect of multicollinearity in model creation.
177 The goal of this study is to address all four concerns of utilizing satellite data in decision

178 making by water-management agencies—i.e., cost, product accuracy, data continuity, and
179  programmatic support. This study provides water-management agencies with a simple,
180  easy-to-follow methodology for utilizing free observation data (from Landsat program, USGS, etc.)
181  in order to address cost and programmatic-support issues for water-quality monitoring. The
182  Landsat program guarantees long-term data continuity. The proposed methodology provides a
183  single set of predictive equations; accuracy is maintained because all available data are consolidated
184  for the creation of a single model. Also, consideration of multicollinearity increases the likelihood for
185  acceptable estimation accuracy of the derived model in future water-quality parameter retrieval
186  applications.

187


http://dx.doi.org/10.20944/preprints201710.0108.v1
https://doi.org/10.1371/journal.pone.0201255

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 October 2017 d0i:10.20944/preprints201710.0108.v1

188 2. Methodology

189  2.1. Study Area

190 The population of City of Austin, Texas, USA has increased dramatically in recent decades,
191  from 252,000 in 1970 to 926,000 in 2016 [42]. With significant population growth comes an increase in
192  impervious area, higher runoff and lower water quality in local water bodies. Lady Bird Lake
193  (formerly Town Lake), situated near the city center, provides an opportunity to remotely monitor
194  water quality in an urban watershed (Figure 1). The lake, formed by damming the Colorado River, is
195  maintained at an approximately constant level by the pass-through Longhorn Dam [43]. The surface
196  areais ~173.6 hectares with a capacity of 905.1 ha-m. The mean depth is 6 meters, with a maximum
197 depth over 11.7 meters [44].
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200 Figure 1. Locations of water-quality sampling stations (i.e., Sites AC, CC, DC, and EC) on Lady
201 Bird Lake.
202
203 The USGS maintains a number of water-quality sampling stations on Lady Bird Lake, but only

204  four of them, EC, DC, CC and AC (Figure 1), monitor the water-quality constituents of interest in
205  this study within the time frame of available satellite images (i.e., 1983-2015) [3]. Table 2 provides
206  basic information for these four sampling stations, including summary statistics for these
207  water-quality quantities of interest—total suspended solids (TSS), total nitrogen (TN), and total
208  phosphorus (TP)—derived from water-quality samples collected at a depth of 1 m. Secchi disc
209  transparency, a pseudo-measure of turbidity, was measured in four locations when the samples of
210  Table 2 were taken (Table 3). Secchi disc depths were much shallower than the average bottom depth
211  of the lake (6 m); thus, bottom reflection is not observable from above the air-water interface for
212 these cases. Therefore, contribution of bottom reflectance to the water-leaving radiance (Equation 1)
213 canbeignored.

214
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Table 2. Summary statistics from in situ USGS water-quality stations in Lady Bird Lake, Texas,
USA, over the time period 1983-2015.

Water-Quality Measures and USGS Parameter Code
USGS Water TSS (mg/L) TN (mg/L) TP (mg/L)
Quality Stations 00530* 00600* 00665*
and Site Codes # of Std. # of Std. # of Std.
Mean Mean Mean
Samples Dev. | Samples Dev. | Samples Dev.
EC
301712097470701** 7 457 4.24 11 0.58 | 0.22 4 0.015 | 0.0058
bC 8 5.75 5.39 8 0.71 | 0.36 8 0.023 | 0.017
301558097452201** ' ' ) ' ) )
CcC
301546097445101** 4 9.50 5.26 6 0.53 | 0.14 3 0.023 | 0.012
AC
301500097424801** 9 8.44 | 10.35 13 071 | 0.25 10 0.035 | 0.035
All 28 8.19 7.96 38 0.65 | 0.24 25 0.026 | 0.024

* Water-quality parameter code as assigned by USGS
** USGS station number

Table 3. Secchi disc transparency measurements for in situ USGS water-quality stations in Lady
Bird Lake, Texas, USA, over the time period 1983-2015

Site Code | # of measurements | Mean (m) | Std. Dev. (m)
EC 11 2.22 0.86
DC 10 1.68 0.77
CC 8 1.23 0.62
AC 15 1.27 0.60

2.2. Selection of Satellite Images

Selection of Landsat TM, ETM+, and OLI + TIRS images [45] was based on several criteria.
Images selected were cloud-free and were acquired within seven days of in situ water-quality
measurements in Lady Bird Lake [10, 17]. In order to minimize the effects of spatio-temporally-close
rainfall events, only images that entailed daily precipitation depths less than 1.25 cm (0.5 inch)
observed between the dates of the selected images and their associated water-sampling dates (Table
4) were selected. This threshold rainfall depth is chosen based on the initial abstraction rainfall depth
for a watershed with a runoff curve number of 80, since most of the urbanized area around Lady
Bird Lake is residential [46]. Residential districts with small lot sizes (1/4 to 1/8 acre) have a curve
number ranging from 61 to 92, depending on the soil hydrologic group [47]. Rainfall depth below
this threshold is considered to generate insignificant runoff, and thus should have no marked effect
on water quality in the lake.

Table 4. Dates of Landsat TM and ETM+ satellite images utilized and respective corresponding
water-quality samples.

Sensor Name Image Date Water-Quality Sampling Date
Landsat 4 TM January 9, 1983 January 6, 1983
Landsat 5 TM August 18, 1985 August 20, 1985
Landsat 5 TM January 15, 1988 January 19, 1988
Landsat 5 TM April 20, 1988 April 19, 1988
Landsat 5 TM July 25, 1988 July 27, 1988
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Landsat 5 TM March 6, 1989 February 27, 1989
Landsat 5 TM April 7, 1989 April 12, 1989
Landsat 5 TM August 5, 1992 August 10, 1992
Landsat 5 TM July 24, 1999 July 22,1999
Landsat 5 TM December 20, 2001* December 16, 2001
Landsat 7 ETM+ April 22, 2009 April 18, 2009
Landsat 5 T™M June 4, 2010 June 3, 2010
Landsat 7 ETM+ May 14, 2011 May 13, 2011
Landsat 8 (OLI + TIRS) May 14, 2014 May 14, 2014
Landsat 8 (OLI + TIRS) March 14, 2015 March 10, 2015
241 * Excluded from analysis due to issues with atmospheric correction.

242 2.3. Atmospheric Correction

243 2.3.1. FLAASH Theory

244 Surface reflectance values, p, corrected for path radiance, were derived using Fast Line-of-sight
245  Atmospheric Analysis of Spectral Hypercube (FLAASH®) radiative transfer model [48, 49]. Pixel
246  values were converted from a digital number (DN) to spectral radiance (L) following the Landsat
247  Data User Handbook [41], and then corrected to surface reflectance using FLAASH. Note that

_ Ap Bpe
248 L=(75) + (325) + La 2)
249 where L is the spectral radiance observed by the sensor; p is the “correct” surface reflectance for

250  the pixel of interest; p. is the average surface reflectance from the pixel of interest and the
251  surrounding region; S is the spherical albedo of the atmosphere; L. is the path radiance
252 backscattered by the atmosphere; and A and B are coefficients dependent upon atmospheric and
253  geometric conditions. The distinction between p and p. accounts for adjacency/spatial-mixing effects
254 [48,49].

255  2.3.2.Image Pre-processing

256 Because water bodies such as Lady Bird Lake are often generally spectrally dark targets [50],
257  remote-sensing reflectance from such areas is usually lower than the surrounding urban areas. With
258  FLAASH, significant errors can occur when strong albedo contrasts exist among the materials in the
259  scene [49]. To minimize this potential problem, a land mask was created and applied in order to
260  exclude all surrounding land regions [51], leaving just the aquatic areas (i.e., Lady Bird Lake) for
261  subsequent atmospheric-correction processing.

262 2.3.3. Determination of FLAASH Parameter Values

263 Two of the parameters required by FLAASH are: visibility and choice of atmospheric model.
264  Visibility obtained from historical airport records [52] caused FLAASH to over-compensate in its
265  correction of atmospheric effects and yield negative reflectance values. Therefore, the 2-band (K-T)
266  aerosol retrieval method [49] with “urban” setting was used to estimate visibility. Ideally, selection
267  of an atmospheric model is based on one of the following options, presented in order from most
268  preferred to least preferred: known standard column water vapor amount, expected surface air
269  temperature, or tabulated seasonal-latitude combinations [49]. Although there are atmospheric
270  water-content products available [53], they do not cover all dates of interest in this research. Surface
271  temperatures have been continuously recorded and archived by Camp Mabry Austin City Airport
272 and Austin Bergstrom International Airport every hour over the past 30 years [52]. Therefore,
273  atmospheric models were selected based on the surface air temperature at the time when each
274  satellite image was acquired (Table 5). The initially-selected December 20, 2001 image was excluded
275  from subsequent processing because it yielded negative reflectance values after FLAASH
276  atmospheric correction.
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277 Table 5. Selection of FLAASH atmospheric model based on measured surface air temperature.
Surface Air Chosen Atmospheric Suggested Temperature for
Image Date o °
Temperature (°C) Model Model (°C) [49]
January 9, 1983 11 Sub-Arctic Summer 14
August 18, 1985 33 Tropical 27
January 15, 1988 10 Sub-Arctic Summer 14
April 20, 1988 23 Mid-Latitude Summer 21
July 25, 1988 31 Tropical 27
March 6, 1989 2 Mid-Latitude Winter -1
April 7, 1989 25 Tropical 27
August 5, 1992 30 Tropical 27
July 24, 1999 32 Tropical 27
December 20, 2001 11 Sub-Arctic Summer 14
April 22, 2009 31 Tropical 27
June 4, 2010 31 Tropical 27
May 14, 2011 23 Mid-Latitude Summer 21
May 14, 2014 21 Mid-Latitude Summer 21
March 14, 2015 22 Mid-Latitude Summer 21
278

279 2.3.4. Determination of FLAASH Parameter Values

280 FLAASH should not be applied to thermal bands [49]; therefore, another
281  atmospheric-correction method was applied to thermal bands. In particular, the single-band
282  atmospheric-correction method described by Barsi et al. [54] was used. The methodology calculates
283  atmospheric transmission and path radiance using MODTRAN [49], based on the atmospheric
284  profiles generated by National Centers for Environmental Prediction (NCEP). Equation 3 provides
285  the relationship between top-of-atmosphere radiance (Ltoa), the target radiance of kinetic
286  temperature T (L1), the path (upwelling) radiance (Lu), and the sky (downwelling) radiance (La):

287 Lroa=rtelr + L, +7(1 =€)y 3)
288 In Equation 3, atmospheric transmission T, path radiance Ly, and sky radiance L4 were obtained
289  from the on-line calculator based on the atmospheric correction method of Barsi et al. [54]. Since
290  water is a near-perfect blackbody, emissivity (¢) was set as 1 in this study. Emissivity and
291 transmission are unitless, whereas radiance values are in units of W/m2-sr-um.

292 The atmospheric profiles are only available after January 2000. For satellite images acquired
293 prior to that, atmospheric profiles from “surrogate dates” in 2000 were used in this study. The
294  surrogate date has nearly identical daily precipitation, temperature, and wind speed as the satellite
295  image date. By choosing a surrogate date in such a manner, the atmospheric condition of the actual
296  satellite image date and the surrogate date are expected to be similar. If more than two surrogate
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297  dates were found based on the above criteria for one satellite image, the one that is temporally
298  closest to the date in the year in which a given the satellite image was acquired was chosen. Table 6
299  provides the list of the satellite image dates, the corresponding surrogate dates, and daily
300  meteorological parameters for both of them.

301
302 Table 6. Comparison between image and surrogate dates in atmospheric profile
303 determinations.
Image date weather parameters Surrogate date weather parameters
Satellite D-aily Daily Dfiily mean Surrogate D.aily Daily Dfxily mean
Date rainfall Mean wind speed Date rainfall Mean wind speed
(mm) | Temp (°C) (m/s) (mm) Temp (°C) (m/s)
Jan 9, 1983 0 11 3.1 Dec 20, 2000 0 11 3.1
Aug 18, 1985 0 31 3.6 Aug 28, 2000 0 32 3.6
Jan 15, 1988 0 9 2.8 Nov 13, 2000 0 9 3.6
Apr 20, 1988 0 21 3.6 Apr 22, 2000 0 20 3.4
Jul 25, 1988 0 30 3.1 Jul 26, 2000 0 31 3.2
Mar 6, 1989 0 3 5.8 Dec 27, 2000 0 3 4.1
Apr 7,1989 0 22 2.8 May 14, 2000 0 23 2.8
Aug5,1992 0 29 3.1 Aug 20, 2000 0 30 3
Jul 24,1999 0 29 1.7 Jul 24, 2000 0 29 1.6

304  2.3.5. Determining Surface Temperature from Landsat Thermal Bands

305 Target temperature (i.e., water surface temperature) was then derived after atmospheric
306  correction according to equations provided in the Landsat Data User Manual [41]. For Landsat
307  ETMH+, the low-gain channel was used because the signal reflected from water-column constituents
308  entail low signal strength. For Landsat TIRS, only band 10 was used because data from band 11 have
309  been contaminated by a stray-light effect, and a remedy has not yet been found [55]. Bands 10 and
310 11 here are band numbering from Landsat TIRS.

311 2.3.6. Post-processing for Atmospherically-Corrected Surface Reflectance

312 Surface reflectance values at the water-quality stations were extracted from the
313  FLAASH-corrected satellite images. Pixels located at the exact coordinates of the respective
314  water-quality sampling stations are not necessarily the ideal pixels for which reflectance values
315  should be extracted. Reasons for this include the geometric-offset error between the map coordinates
316  of a pixel and actual corresponding in situ sampling planimetric locations; random surface debris;
317  light unpredictably scattered or reflected into the instantaneous field-of-view (IFOV) of the sensor or
318 onto the aquatic area of interest [56]; and optically shallow water near the sampling stations,
319  yielding potentially confounding issues associated with bottom reflectance. To compensate for this,
320  the search range was expanded to 90 m (i.e., a search neighborhood comprised of 3 x 3 image pixels,
321  centered around the pixel located at the station coordinates). The pixel within this zone with the
322 lowest value in band 5 was considered to contain the most information regarding water-column
323  constituents [57]. If two pixels had the same band 5 values, the pixel closest to the coordinates of
324  water-quality sampling location was selected.

325 2. Multiple Regression Analysis

326 Multiple regression equations were derived to predict constituent concentrations (TSS, TN, and
327 TP, ie. the dependent variables) from the predictor variables, such as band reflectance. The
328  procedure for selection of predictor variables is delineated below.

329 The spectral bands and associated band ratios were all chosen as candidates for independent
330  variables. Band ratios were included as independent variables in the regression analysis [10]
331  because they are less apt to be influenced by lighting conditions [56].
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Radiance data from the thermal bands (band 6 of Landsat TM and ETM+, and band 10 of
Landsat TIRS) were converted to water surface temperature. As discussed, water temperature has
been found to be related to phytoplankton concentration [23, 24], and thus, related to water quality
[58]. However, in this study, most of the satellite image dates differ by several days compared with
the closest corresponding actual water-quality sampling date; thus, the water surface temperature
derived from the satellite images does not represent the actual water temperature at the time of
water sampling.

Equation 4 considers the net energy fluxes between a waterbody and the atmosphere [59]:

NET = SWRy,r — (LWRy, + LHF + SHF) @)

where NET is the net energy flux, SWRnet indicates the net short-wave radiation energy flux
(Equation 5), LWRnet indicates the net long-wave radiation flux (Equations 6 and 7), LHF is the
latent heat flux (Equation 8), and SHF is the sensible heat flux (Equation 9). These terms are
calculated by the following equations [59]:

SWRper = (1 — a)SWRyoun ) ®)

LW Ryer ~ £0T,* (0.39 — 0.05e,7 ) (1 — 0.51C?) + 4e0T,* (T — T,) (6)

and C ~ 1.61(1 — XRdown 4 .0019n) )
SWRcs

LHF = pL,C.U(Qs — Qg) (8)

SHF = pC,C,U(T, — T,) )

where a is the surface albedo (usually very low for water so SWRnet ® SWRdown), € is the surface
emissivity (= 0.97), o is the Stefan-Bolzman constant, Ts is the water surface temperature, Ta is the air
temperature, ea is the surface vapor pressure, C is the cloud cover index (Equation 7), SWR is the
clear-sky short wave radiation, n is the noon solar altitude, p is the density of air, L. is the latent
heat of evaporation, Ce is the turbulent exchange coefficient for latent heat, U is the wind speed, Qs
and Q. are saturation specific humidity at the surface and at near-surface atmosphere, respectively,
and Crn is the turbulent exchange coefficient for sensible heat.

Some of the variables in Equations 5 to 9 are known or can be reasonably assumed as constants
(suchas a, €, 0, p, Le, Ce, and Cn [60]). The surface vapor pressure, e, is dependent on water surface
temperature [61]. Qs and Q. are both dependent on temperature as well [62]. The air temperature
and noon solar altitude (T, and n respectively) can be obtained from the historical observation
record. The water surface temperature Ts is obtained from thermal band data. That leaves only one
variable unknown, which is the clear-sky short wave radiation SWRe. Calculating SWRe involves a
complex procedure [63] so it is difficult to associate it with distinct environmental factor(s); thus, we
did not consider it in evaluating heat flux in this study.

Assuming that the temperature change between the image date and the water-sampling date
directly corresponds with the cumulative heat flux between the dates, the following variables are
needed in order to account for the temperature change between the image-acquisition date and the
water-sampling date [52]:

1. Time offset (in days) between the image date and the water-quality sampling date (positive
offset means that the image date is later than the sampling date);

2. Water surface temperature (in K) derived from the thermal band;

3. Air temperature (in K): both instantaneous temperature at the time of satellite image
acquisition, and daily mean air temperature between the image date and the water-quality sampling
date are considered;

4. Wind speed (in m/s): both instantaneous wind speed at the time of satellite image acquisition
and the daily mean wind speed between the image date and the water-quality sampling date are
considered; and

5. Noon solar altitude (in degrees): the mean noon solar altitude between the image date and
the water-quality sampling date.

Instantaneous temperature and wind speed were interpolated from the hourly historical data
[52]. And further considering Equations 5 to 9, the full list of variables considered in the multiple
regression process is provided in Table 7. A look-up table between variable abbreviations and
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383  variable descriptions is provided as Table 8. As described above, in this study, the band number is
384  based on band-numbering scheme for TM and ETM+.

385
386 Table 7. Reflectance bands (i.e., band (B1), band 2 (B2), etc.) and ratios used in the
387 variable-selection process.
Wafter ¢ of Val,ld Initial predictor variables before p-threshold test
constituent observations
TSS 28
N 38 B1, B2, B3, B4, B2/B1, B3/B1, B4/B1, B3/B2, B4/B2, B4/B3, Do,
Ts, Ta, Tmean, Ts-Ta, Ts-Tmean, W, Wmean, Alt, Alt2
TP 25
388
389 Table 8. Look-up table for variable abbreviation and description of variables.
Varl.abl.e Variable description
abbreviations
B1, B2, B3, B4 Reflectance value for Band 1, Band 2, Band 3, and Band 4, respectively.
Dot Date offset between the image date and the water-quality sampling date
Ts Water surface temperature derived from the remote-sensor thermal band
Ta Instantaneous temperature at time of satellite image acquisition
Toen Daily mean air temperature between the image date and the water quality
sampling date
4 Instantaneous wind speed at the time of satellite image acquisition
Wonen Daily mean wind speed between the image date and the water quality
sampling date
Alt Mean noon solar altitude between the image date and the water-quality
sampling date
390
391 Selection of predictor variables is based on a hybrid forward selection that considers the

392  variation inflation factor (VIF). In conventional forward selection, variables are added to the
393  regression one at a time, starting with no predictor variables being selected. The p-value threshold
394  includes a predictor in the regression equation if its p-value is below a “probability to enter,” and
395  includes a predictor that will most improve the fit first (i.e., “forward”). A default value of 0.25 in
396  JMP [64] was used for “probability to enter.”

397 In addition to p-value, the variation inflation factor (VIF) was used to minimize
398  multicollinearity of the model. Multicollinearity occurs when a predictor variable is a linear
399  combination of other predictor variables in the model. The direct consequence of multicollinearity is
400  that the error variance is inflated, which may result in low prediction power if the overfitted model
401  isused with a new set of data. VIF is calculated as:

402 VIF; = 1/(1 R (10)
J

403 where R}is the multiple coefficient of determination between the j-th predictor variable of
404  interest and the rest of the predictor variables. The rule of thumb to avoid serious multicollinearity is
405 that all chosen predictor variables should have VIF less than 10 [65]. Unlike other criteria such as
406  Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and Mallow’s Cp, VIF is
407  generated for each predictor variable. Also, VIF has a suggested absolute criterion, whereas other
408 criteria (AIC, BIC, Cp, etc.) provide only relative comparison between models.

409 We propose a novel approach that considers VIF while adding variables in forward selection.
410  When a variable is added according to the rules of forward selection, VIFs of all included variables
411 (including the one that is just added) are also checked. If VIFs are all below the threshold of 10, the
412  newly-added variable is allowed, and the next variable is chosen according to the rule of forward
413  selection. However, if any VIF is found to be larger than the threshold for any of the variables, the
414  most recently-added variable is deleted and the selection procedure stops. Coefficients of variables,
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415  p-values, and VIF are dynamically recalculated when any variable is deleted from the model. The

416  procedure is illustrated in Figure 2.

Any unchosen predictor variable |
with p-value <0.25? NO

YES |

Choose the variable
with the lowest p-value

|

Calculate VIF
for all chosen predictor variables

|

NO | Is VIF of any chosen predictor
variable > 10?

YES l
Drop the last added predictor variable ‘

[End
417
418 Figure 2. Flow chart of the hybrid forward-selection process for selecting predictor variables in
419 multiple regression analysis.
420 The derived multiple linear equations were then validated by bootstrapping and

421  Leave-One-Out Cross Validation (LOOCV). Bootstrapping and LOOCV are both resampling
422  methodologies [66]. Bootstrapping assumes that samples (i.e., observations — sets of response and
423  associated prediction variables in this case) represent the whole population, so a random resampling
424  from the samples provides a prediction of what one expects to encounter (statistically) from
425  unknown, future data. LOOCYV leaves one sample out at a time and calibrates for the coefficients of
426  predictor variables based on the rest of the observations. The left-out sample is used for validation.
427  The package CARET in the software R [67] was used to perform validation by bootstrapping and
428  LOOCV. For bootstrapping, 1000 trials were specified.

429 3. Results

430 The best-fitting regression equations chosen by the hybrid forward selection for each
431  water-quality constituent (TSS, TN and TP) are provided in Table 9. The results in Table 9 include
432  the predictor variables, importance of the predictor variable, associated regression coefficients and
433 standard error, 95% confidence intervals for the regression coefficients, p-values, and VIF values for
434 each of the response variables (TSS, TN, and TP). The importance values are calculated by dividing
435  the change in R? when the variable of interest is dropped from the model by the overall R2 when the
436  variable of interest is included [68]. The sum of importance values of all variables does not equal to 1
437  since the importance is relative only. Note that the response variables are transformed to obtain a
438  Dbetter regression fit, and the band-numbering convention is based on TM and ETM+ band numbers,
439  asdiscussed previously.

440 Table 9. Best fitting multiple regression models for TSS, TN and TP using the hybrid forward
441 selection considering VIF.
Coefficient of Confidence
dicto Interval for
predictor coefficient
Num.
Resp. Pred. Imp. Std. Lower | Upper
Variable R2 O(:afs Variable of Var. Value Error 95% 95% P VIE
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442
443
444

445

446
447
448

449
450

451

(intercept) - -0.67 0.50 -1.69 0.36 0.19 -
2 B3/B1 0.93 1.67 0.24 1.16 2.17 <0.0001 | 1.21
VTSS 068 28 \ 0.21 0.21 0.065 0.077 0.34 0.0034 | 1.08
Ts-Tmean 0.04 0.038 0.027 -0.018 0.093 0.18 1.16
(intercept) - 4.36 0.91 2.50 6.21 <0.0001 -
Winean 0.39 -0.053 0.012 -0.078 -0.029 | <0.0001 | 1.26
Ts 0.32 -0.012 0.0031 | -0.019 | -0.0062 | 0.0003 | 1.31
VTN 0.62 38 B1 0.18 4.50 1.50 1.44 7.55 0.0053 | 2.35
B4/B1 0.11 -0.049 0.020 -0.090 | -0.0089 | 0.018 | 2.73
Dot 0.11 -0.013 0.0051 | -0.023 | -0.0021 | 0.020 | 1.18
B2/B1 0.05 0.11 0.067 -0.030 0.24 0.12 4.50
(intercept) - 26.40 9.57 6.30 46.50 0.013 -
Alt? 0.27 0.00049 | 0.00012 | 0.00024 | 0.00073 | 0.0005 | 7.13
Ts 0.16 -0.11 0.034 -0.18 -0.039 | 0.0044 | 8.68
log(TP) | 0.79 25 Dot 0.06 0.050 0.024 | 0.00028 0.10 0.049 | 1.77
B3/B2 0.06 1.16 0.57 -0.044 2.36 0.058 | 1.72
W 0.04 -0.10 0.062 -0.23 0.026 0.11 3.06
Winean 0.04 -0.11 0.065 -0.24 0.032 0.12 1.84

The resulting multiple regression-based models are provided in Equations 11 to 13:

TSS = (=0.67 + 1.67 - 2>+ 0.21 - W + 0.038 - (Ty — Tynean))’ (11)
TN = (436 = 0.053 - Wpyeqn — 0012 Ty + 4.5 - B1 = 0.049 - 22— 0.013 - Doy + 0.11- )2 (12)
TP = e(26.4+0.00049-A1t2—0.11-Ts+o.05-Doff+1.16-%—0.1-W—0.11-Wmean) 13)

Plots of the observed versus predicted concentrations of TSS, TN, and TP are plotted in Figures
3, 4, and 5, respectively. The 1:1 line is added to all three figures.

35

30 |
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)
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Predicted TSS concentration (mg/L)

Figure 3. Observed versus predicted values for total suspended solids (TSS) (R2 = 0.68).
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452
453 Figure 4. Observed versus predicted values for total nitrogen (TN) (R2 = 0.62).
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456 Figure 5. Observed versus predicted values for total phosphorus (TP) (R2 = 0.79).
457
458 The derived multiple linear predictive equations were validated by bootstrapping and LOOCV.

459  The results are shown in Table 10. Table 10 shows that the equations have satisfactory predictive
460  power for future, unknown data since validation R? values are above 0.5, except for weaker results
461  regarding TN [69].

462

463

464
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465 Table 10. Validation results of the predictive equations.
Equation | Calibration R? | Validation R? from Bootstrapping | Validation R? from LOOCV
TSS 0.68 0.62 0.55
TN 0.62 0.46 0.47
TP 0.79 0.53 0.54

466 4. Discussion

467 The multiple linear equations derived from the regression analysis indicate that
468  weather-related variables play an important role in predicting water-quality parameters. In fact,
469  many weather variables bear more importance than the multispectral variables do. The relative
470  importance of each variable is provided in Table 9. If all the weather variables are stripped from
471  Table 9, the predictive variables related to Landsat bands alone provide only coefficients of
472 determination, R?, of 0.53, 0.26, and 0.36 for TSS, TN, and TP, respectively.

473 Kloiber et al. [10] found that both B1 and the ratio B3/B1 can be used to predict the Secchi disk
474  transparency, which is closely related to TSS. From Kloiber et al. [10], the regression model
475  containing B3/B1 and B1 predicted Secchi disk transparency with R? of 0.75. We also found B3/B1 as
476  the dominant important variable in determining TSS concentrations, but did not find B1 as one of the
477  significant prediction variables. Kloiber et al. [10] accrued a higher R? than our study since Kloiber et
478  al. limited their in situ data collection to +1 day from the corresponding satellite image acquisitions.
479  In the current study, the predictive equation that includes B3/B1 alone has a R? of 0.53 for TSS
480  because our available data only allows in situ samples to be +7 days from satellite image acquisitions.
481  Considering weather variables successfully boosted R? to 0.68, such that it was comparable with that
482 of Kloiber et al. [10] (i.e., 0.75).

483 For TSS, we found the instantaneous wind speed, W, to be an important prediction variable.
484  Since the instantaneous wind speed is chosen, instead of the daily mean wind speed between the
485  image date and the water-quality sampling date (Wmean), it indicates that the instantaneous effect of
486  wind (such as the surface ripple effect) is more important to TSS determination than the long-term
487  heat-exchange effect. Even though the difference between the water surface temperature and the
488  daily mean air temperature between the image date and the water-quality sampling date is selected
489  as one of the prediction variables, it is of little importance in the model. It was chosen because the
490  default forward-selection method has a lenient inclusion criterion (p = 0.25).

491 Dewidar and Khedr [9] determined that the band ratio B2/B1 is important in determining the
492 TN concentration in brackish lagoons. However, the correlation between B2/B1 and TN was low in
493  Dewindar and Khedr [9], with a correlation coefficient of 0.298. B2/B1 was also chosen by this study
494  as one of the predictor variables, but B2/B1 still bears little predictive power as shown in Table 9. In
495  contrast, the daily mean wind speed between the image date and the water-quality sampling date
496  (Wmean) and water surface temperature (Ts) were determined to be the two most important predictor
497  variables for TN prediction.

498 The high importance of water surface temperature Ts fortified the hypothesis that water
499  temperature is related to the growth of microorganisms. The high importance of the daily mean
500  wind speed between the image date and the water-quality sampling date (Wmean) and date difference
501  (Dotf) indicate that temperature change due to accumulated heat flux between the image date and
502  sampling date is important. Referring to Equations 8 and 9, the mechanism involved should be the
503  latent heat flux because latent heat flux (Equation 8) and sensible heat flux (Equation 9) are the only
504  two components in the heat flux budget that involve wind speed. Latent heat flux is a main
505  component of heat exchange between water and the atmosphere, and sensible heat plays a much
506 lesser role [70].

507 As for TP, similar to TN prediction, the water surface temperature Ts still bears considerable
508  importance. However, wind speed and Dot are not as important for estimating TP as it is for TN
509  prediction, as the relative importance of variables in Table 9 indicates. It is intriguing that the square
510  of noon solar altitude, Alt?, has high importance in TP prediction. Referring to Equations 6 and 7,
511  this implies that long wave radiation cooling correlates well with TP prediction. The weak
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importance of wind speed and a strong importance of solar altitude for TP prediction jointly suggest
that long wave radiative cooling constitutes the main process important for predicting TP
concentration.

It is worth noting that, for TP prediction, optical multispectral data variables yield insignificant
prediction power, and most of the prediction power is contributed by Alt? and Ts.

From the analyses above, it seems that determinations of TN and TP are influenced by quite
different components of the net heat flux between air and water. For TN, latent heat flux seems to be
the dominant factor, but long wave radiative cooling seems to be the dominant factor for TP. In other
words, the difference in how the budget of cumulative heat flux between the image and sampling
dates is constructed has different effects on water-quality constituents related to TN or TP. This can
be reasoned by two effects:

1. TP concentration is highly correlated with chlorophyll-a [71], which is the photosynthetic
pigment in algae or phytoplankton. However, optimal algae growth is at a depth within the water
column [72], which means the transient change in heat flux due to wind speed at the surface will
correlate poorly with algae growth.

2. Solar altitude affects not only long wave radiation, but also the penetration depth of light into
the water column [73], which affects growth of phytoplankton, or algae, in water. Since the offset in
correlation between chlorophyll-a concentration and TP concentration has seasonal variations [74],
including solar altitude Alt (or the closely correlated square of solar altitude Alt?) in the predictive
model can account for the seasonal offset.

The inclusion of Alt? in the model probably signifies the combined effect of both effects.

5. Field Application

To demonstrate the utility of water-quality monitoring by satellites via our proposed method,
water-quality quantities for Lady Bird Lake on May 14, 2014 were estimated using Equations 11 to
13, respectively. This date was chosen because storms occurred the previous day and also the
morning of the satellite flyover day before flyover time with cumulative rainfall depth of 27 mm,
likely making it easier to discern the effect of urban stormwater runoff to the lake. Figures 6 to 8 give
the respective predicted spatial distribution of TSS, TN, and TP concentrations.

The water quality in the northwestern part of the lake is generally better than that in the
southeastern extent, which is expected as a result of urban runoff. Lady Bird Lake has three major
tributaries in the metropolitan Austin area: Barton Creek, Shoal Creek, and Waller Creek. The
confluence points of the three streams are indicated in Figures 6-8. Barton Creek entails an extensive
green belt around its riparian zone, and strict development regulations are in force because it is
located within the Edwards Aquifer recharge zone [75]. As a result, there is no marked change in
TSS, TN, and TP at the confluence point of Barton Creek, relative to proximal areas of the lake. To the
contrary, the confluence points of Shoal Creek and Waller Creek show significant increase in TSS,
TN, and TP. This illustrates the effects of amount of conservation efforts spent on each watershed.
The influence of Shoal Creek is more visible in Figures 6-8 than that of Waller Creek because Shoal
Creek has a larger drainage area [76]. Such details in spatial distribution can only be achieved via
satellite-derived water-quality predictions and can serve as the precursor examination for more
detailed water-quality examinations.
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562 6. Conclusions
563 Multiple regression-derived equations using reflectance bands, band ratios, and environmental

564 factors as predictor variables for concentrations of TSS, TN, and TP, respectively, were derived using
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565  ahybrid forward-selection method that considers VIF in the forward-selection process. Landsat TM,
566  ETM+, and OLI/TIRS (Landsat 8) images were all used to derive the single set of equations. The
567  coefficients of determination of the best-fitting resultant equations varied from 0.62 to 0.79. The
568  predictive equations were also validated by bootstrapping and LOOCV with coefficients of
569  determination in the range of 0.46 to 0.62.

570 Among all chosen predictor variables, B3/B1 has the strongest influence on the predictive
571  power for TSS retrieval. The band ratio of B3/B1 was also selected by Kloiber et al. [10] in predicting
572 Secchi disc transparency, indicating a correlation between Secchi disc transparency and TSS. Other
573 reflectance bands and band ratios, such as B1, B2/B1, B4/B1, and B3/B2 are also influential in
574  estimating TN and TP concentrations, but they are not dominant factors.

575 Environmental factors, such as wind speed and water surface temperature, were crucial in
576  determination of water-quality parameters in this study. Inclusion of environmental factors allows
577  usage of a single set of predictive equations across the seasons, as such predictive equations are
578  innately adapted to the environmental changes for different seasons. The predictive equation will
579  also likely to be more accurate because the pooling of all observation data.

580 The instantaneous wind speed, W, bears considerable importance in TSS determination, which
581  is explained by wind-generated surface ripple effects. Water surface temperature Ts (derived from
582  satellite remote-sensor thermal band image data) is important in determination of both TN and TP
583  concentrations, as the growth of microorganisms in water is correlated with water nutrient
584  concentrations.

585 However, the time offset between the satellite image-acquisition date and water-sampling date
586  must be accounted for in water nutrient parameter (i.e,, TN and TP) retrieval. The heat flux budget
587  between air and the water surface was considered, and components in the budget equations were
588 included in the forward-selection procedure. In additional to the predictor variables identified
589  above, the daily mean wind speed between the image-acquisition date and water-sampling date
590  (Wmean) and square of noon solar altitude (Alt?) were identified as the most important predictor
591  variables for TN and TP determinations, respectively. The time difference (in days) between the
592  image-acquisition date and water-sampling date (Do) was also chosen for TN and TP
593  determination.

594 According to the heat flux budget equations, the inclusion of Wmean, Ts, and Dot indicates the
595 dominance of latent heat flux in the determination of TN. On the other hand, the inclusion of Alt?,
596 Do, and Ts in the TP model is an expression of the higher weight of long wave radiation cooling in
597 TP estimation. Since chlorophyll-a concentration is highly correlated with TP concentration, we
598  hypothesized that latent heat cooling is less important in TP determination because phytoplankton
599  has the highest growth rate at a certain depth in water, which is less correlated with transient heat
600  flux from evaporation at the surface.

601 The results showed that:

602 1. Environmental factors can constitute important ancillary variables in water-quality
603  parameter estimation based on satellite remote-sensor images;

604 2. By including environmental factors, it is feasible to pool all observation data to create a single
605  set of predictive equations, and use it to estimate water quality for all seasons;

606 3. A single set of predictive equations can be determined to retrieve year-round water-quality

607  parameters (i.e., TSS, TN, and TP) with satisfactory accuracy from Landsat TM, ETM+, and OLI/TIRS
608  imagery on the same lacustrine water body;

609 4. The derived predictive equations are robust enough to withstand the drastic change in the
610  environment over 30+ years (1983 to 2015) while population in the metropolitan area almost tripled
611 (from 373,000 in 1983 to 900,000 in 2015) over the same period of time [42]; and

612 5. Including VIF as part of the forward-selection process comprises a reliable methodology for
613  choosing predictor variables.
614 In the future, the hybrid forward-selection method can be further refined to entail a stricter

615  criterion for the inclusion of predictor variables. The default p=0.25 incurred inclusion of a few
616  predictor variables that were not significant in the final selection of variables.
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617 In addjition, inclusion of ancillary environmental factors involving long-term averaging, such as
618  average wind speed (Wmem), into the regression models demonstrated that it is possible to
619  satisfactorily estimate water-quality parameters, even when a large temporal offset between satellite
620  image-acquisition and in situ water sampling exists. Currently, the recommended longest temporal
621  window between remote-sensor image-acquisition and water-sampling date is approximately seven
622  days [17]. Since these environmental factors are part of the heat flux equations, including
623  environmental factors in predictive equations means an active compensation in estimation error due
624  to the temporal offset in collecting image and water-sample data. This hypothesis needs further
625  testing as part of future research efforts.
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