

1 Article

2 Variance Inflation Factor-Based Forward-Selection 3 Method for Water-Quality Estimation via Combining 4 Landsat TM, ETM+, and OLI/TIRS Images and 5 Ancillary Environmental Data

6 Min-Cheng Tu ^{1,2,*}, Patricia Smith ³ and Anthony Filippi ^{4,5}

7 ¹ Department of Civil and Environmental Engineering, Villanova University, Villanova, PA 19085, USA

8 ² Villanova Urban Stormwater Partnership (VUSP), Villanova University, Villanova, PA 19085, USA

9 ³ Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843,
10 USA; patti-smith@tamu.edu

11 ⁴ Department of Geography, Texas A&M University, College Station, TX 77843, USA; filippi@geos.tamu.edu

12 ⁵ Center for Geospatial Science, Applications and Technology (GEOSAT), Texas A&M University, College
13 Station, TX 77843, USA

14 * Correspondence: min-cheng.tu@villanova.edu; Tel.: +1-610-519-6518

16 **Abstract:** A simple approach to enable water-management agencies employing free data to achieve
17 the goal of using a single set of predictive equations for water-quality retrievals with satisfactory
18 accuracy is proposed. Multiple regression-derived equations based on surface reflectance, band
19 ratios, and environmental factors as predictor variables for concentrations of Total Suspended
20 Solids (TSS), Total Nitrogen (TN), and Total Phosphorus (TP) were derived using a hybrid
21 forward-selection method that considers Variance Inflation Factor (VIF) in the forward-selection
22 process. Landsat TM, ETM+, and OLI/TIRS images were jointly utilized with environmental
23 factors, such as wind speed and water surface temperature, to derive the single set of equations.
24 The coefficients of determination of the best-fitting resultant equations varied from 0.62 to 0.79.
25 Among all chosen predictor variables, ratio of reflectance of visible red (Band 3 for Landsat TM and
26 ETM+, or Band 4 for Landsat OLI/TIRS) to visible blue (Band 1 for Landsat TM and ETM+, or Band
27 2 for Landsat OLI/TIRS) has a strong influence on the predictive power for TSS retrieval.
28 Environmental factors including wind speed, remote sensing-derived water surface temperature,
29 solar altitude, and time difference (in days) between the image acquisition and water sampling
30 were found important in water-quality parameter estimation.

31 **Keywords:** Variance Inflation Factor; VIF; multiple regression; Landsat; Austin; Lady Bird Lake;
32 water quality; environmental factor; energy flux; urban runoff

34 1. Introduction

35 Continuous monitoring of water quality is essential for the health and welfare of the people and
36 ecosystems reliant upon them. Urbanization, agriculture, and other anthropogenic factors can alter
37 water quality [1], and waiting to remediate until a change is clearly visible can be much more costly
38 than early prevention. Despite this, the cost of adequate temporal and spatial physical
39 measurements can potentially be prohibitive [2]. For example, the United States Geological Survey
40 (USGS) regularly monitors water quality in Lady Bird Lake in Austin, Texas, USA; however, the
41 frequency is only approximately twice per year at a single point near the outlet over the past decade
42 [3]. Additionally, *in situ* measurements from year to year do not occur in the same months. As a
43 result, it is difficult to distinguish whether a change in the water quality measured at a point is truly
44 a long-term change or the result of a seasonal difference or recent event (e.g., a large precipitation

45 event) [4]. Additionally, it is impossible to evaluate the spatial variation in water quality from
46 single-point measurements.

47 In recent decades, remote sensing has provided an alternative method for monitoring water
48 quality in a spatially synoptic manner at a lower cost compared with extensive *in situ* measurement.
49 Each water-column constituent exhibits a specific spectral response that can be observed by satellite-
50 and aircraft-mounted remote sensors [5]. Suspended sediment usually exhibits strong backscattering
51 of incident light [5], where the actual color depends on the terrestrial origin [6]. Colored dissolved
52 organic matter (CDOM) is composed of algae, yellow substances, and organic plumes [5], and entails
53 a broad-band solar-induced fluorescence over 490–530 nm [6]. Phytoplankton exhibits a volume
54 reflectance (and water-leaving radiance) peak due to *chlorophyll-a*, with a well-defined Gaussian
55 distribution around 685 nm [6].

56 For a particular wavelength, λ , the spectral radiance from the water observed vertically, known
57 as the upwelling radiance, L_u , is given by

$$58 L_u(\lambda) = L_w(\lambda) + \Omega L_s(\lambda) \quad (1)$$

59 where L_w is the radiance reflected/backscattered by the water column, in-water constituents,
60 and the bottom if the water column is optically shallow; L_s is the skylight radiance; and Ω is the
61 ratio of radiance directly reflected by the water surface to L_s [7]. Note that the radiance observed by
62 a satellite is composed of L_u , plus atmospheric interference; therefore, it requires atmospheric
63 correction (discussed below). L_w , L_s , and Ω are influenced by a variety of factors. If the water
64 column is sufficiently deep, bottom reflectance may be ignored, and L_w can be assumed to be a
65 measure of the effects of water-column constituents alone. Atmospheric conditions (e.g., clear,
66 cloudy, overcast) affect both Ω and L_s , whereas Ω can be further affected by wind speed in the form
67 of surface ripples [7]. Wind speed has also been found to have some influence on water clarity [8].

68 Because of their higher capability to penetrate the water column, visible bands have
69 conventionally been used to estimate water quality [5]. In addition, infrared bands have also shown
70 significance in determining water-quality parameters in some studies [9, 10]. However, only near
71 infrared wavelengths were used in these studies. Thermal infrared bands have not extensively been
72 used in water-quality estimation.

73 Site-specific predictive models can be created to relate a number of band radiance
74 measurements or derived reflectance values [5] to the water-quality parameter of interest by fitting
75 the model to *in situ* water-quality measurements. Multiple regression analysis and artificial neural
76 networks (ANNs) constitute two methods that are frequently used to generate such predictive
77 models [5, 10, 11, 12].

78 In academia, satellite remote-sensing images have been increasingly available for water-quality
79 determination. However, the popularity of this approach has not been extended to decision making
80 by management agencies in general [13]. According to Schaeffer et al. [13], the reasons for this
81 phenomenon include cost, product accuracy, data continuity, and programmatic support.

82 Cost is always a major constraint, as many water-management agencies have limited budgets
83 [13]. Even though there are many free remote-sensing data sets available, such as the multispectral
84 satellite images available from the Landsat program (e.g., Landsat Thematic Mapper (TM),
85 Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI)/ Thermal Infrared
86 Sensor (TIRS)) [14], MODIS [15], SeaWiFS [16], etc., the selection of images is predominately limited
87 to moderate spatial-resolution images from the Landsat program, for example, for terrestrial
88 pond/lake applications due to the finer spatial resolution of those data relative to other free
89 remote-sensor image sources and the relatively small sizes/spatial extents of such features. Another
90 aspect of the cost constraint is the cost to collect field water-sampling data, as the creation of
91 empirical predictive models necessitates *in situ* water-quality data. Sometimes, due to cost, logistical,
92 and other constraints, that means that a water-management agency can only resort to free
93 water-quality data, such as those made available by the USGS. The downside, as noted above, is that
94 spatio-temporal sampling density/data availability may be low. This drawback seriously limits the
95 ability of a water-management agency to utilize free Landsat program data, for example, as the basis

96 of a water-quality monitoring program since the satellite images and corresponding *in situ*
97 measurements must be acquired in a temporally proximal manner [17].

98 As a result, water-management agencies that resort to only using free remote-sensing resources
99 often only have access to a limited number of useable satellite images for water-quality monitoring.
100 Such a scenario often leads to the use of a single predictive model to determine water-quality
101 information from satellite images. Nevertheless, many studies divide their analyses by season [18, 19]
102 due to systemic seasonal differences in factors such as concentrations of color-producing substances
103 (including phytoplankton), atmospheric disturbances [19], and solar zenith angle [20]. Some studies
104 have shown that the predictive power of equations created without distinguishing by season is
105 lower than it otherwise would be [21, 22].

106 Since the derived predictive equation is seasonally affected by the environment, a few studies
107 have incorporated the influencing factors into predictive equation generation. One example is with
108 the estimation of *chlorophyll-a* concentration. It has been known that phytoplankton growth is
109 statistically significantly dependent on water temperature [23, 24]. Incorporating water temperature
110 (derived from the satellite remote-sensor thermal band) in development of predictive equations has
111 proven to be helpful in determining *chlorophyll-a* concentration [25]. However, this approach has not
112 been investigated extensively. In this study, we consider additional environmental factors based on
113 energy fluxes between a waterbody and the atmosphere. We posit that including these
114 environmental factors in predictive equations not only increases prediction accuracy, but also
115 facilitates the usage of a single set of predictive equations throughout different seasons. The direct
116 benefit is that one can pool all observation data in creating equations, thus resulting in higher
117 predictive power.

118 Programmatic support is also important to water-management agencies, according to Schaeffer
119 et al. [13]. In most cases, local universities should be sufficient in providing support to
120 water-management agencies. However, we posit that the methodology adopted for generating
121 predictive models should entail model construction in a stepwise manner, such that most people
122 with basic training could implement such methods can follow without much difficulty. For this
123 reason, in choosing methodology implemented by water-management agencies, simple and
124 well-understood methods such as multiple regressions should be weighed over more complex
125 methods, such as ANNs.

126 Product accuracy is another major concern expressed by the water-management agencies [13].
127 Even though water-management agencies could utilize predictive models from peer-reviewed
128 journals, such models may not yield high-accuracy estimates in a given application. Multiple
129 regression analysis has been employed in many studies for its ease of application. However, for
130 applications using this method, overfitting from multicollinearity can be a serious concern.
131 Multicollinearity means that some of the explanatory variables in the multiple regression model are
132 dependent on one another. The direct result from multicollinearity is that the standard error of
133 coefficients of explanatory variables is inflated, which means that coefficients of the derived model
134 are not reliable. Unfortunately, many past studies neither discussed the issue of multicollinearity,
135 nor provided results of validation of the derived regression models [4, 5, 9, 17, 26, 27, 28, 29]. A
136 common way to identify multicollinearity of a model is through the usage of indicators such as
137 Akaike's Information Criteria [30], Mallow's Cp [31], PRESS [32], etc. However, such indicators
138 apply to the whole model so all possible subsets of explanatory variables must be examined, and this
139 approach becomes unattainable when the number of variables increases [33].

140 Other popular methods to identify multicollinearity include the deployment of a principal
141 component analysis (PCA) or structural equation modeling (SEM) [33]. PCA creates orthogonal
142 principal components, which are linear combination of variables, and a regression model can be
143 created based on the orthogonal components in order to eliminate multicollinearity completely.
144 Some studies show, however, that this methodology can result in a loss in explanatory power.
145 Additionally, the main limitation of the PCA approach is rooted in the physical interpretation of the
146 principal components. On the other hand, SEM accepts the existence of collinearity among
147 explanatory variables and hypothesizes that a model exists among variables. Then all possible

148 combinations of causal links among variables are tested against the hypothesized model. Since SEM
 149 is not an exploratory technique, SEM is prone to inferential errors made during development and
 150 selection of the hypothetical models [33].

151 We propose utilizing the variation inflation factor (VIF) to minimize multicollinearity. Unlike
 152 other indicators described above, VIF is calculated for each predictor variable. VIF has been used in
 153 the field of remote sensing on a limited basis to check multicollinearity of results [34; 35]. Dubovik et
 154 al. [36] used VIF to choose variables to enter into a logistic regression model. However, to our
 155 knowledge, VIF has not previously been employed in deriving predictive equations for
 156 water-quality parameters. Details regarding VIF computation and the methodology to include VIF
 157 in equation derivation is discussed below in the Methodology section.

158 The Landsat program constitutes a truly ideal free data-source candidate for
 159 water-management agencies, given the characteristics of the various Landsat sensors, as well its
 160 long-term data continuity. The Landsat program has maintained the longest uninterrupted satellite
 161 observation record of Earth from its beginning in 1970s. The Landsat program has employed several
 162 sensors over time including MSS, TM, ETM+, and OLI/TIRS (Landsat 8). Only a few water-quality
 163 studies have taken advantage of combining TM, ETM+, and OLI/TIRS datasets [37, 38, 39] even
 164 though these sensors have been shown to be compatible, as shown in Table 1 [39, 40, 41]. Note Table
 165 1 shows only comparable bands among Landsat TM, ETM+, and OLI/TIRS sensors.

166 Due to the different band numbering in OLI/TIRS, in this study, numbering of bands will be
 167 based on TM/ETM+. For example, if Band 3 is noted, it means Band 3 for TM and ETM+, but Band 4
 168 for OLI/TIRS.

169
 170

Table 1. Band attributes of Landsat TM and ETM+ and OLI/TIRS sensors [39, 40, 41].

		Band 1	Band 2	Band 3	Band 4	Band 5	Band 6	Band 7	Band 8
TM	Wavelength (μm)	0.45-0.52	0.52-0.60	0.63-0.69	0.76-0.90	1.55-1.75	10.40-12.50	2.08-2.35	n/a
	Sensor spatial resolution (m)	30	30	30	30	30	60	30	n/a
ETM+	Wavelength (μm)	0.45-0.52	0.52-0.60	0.63-0.69	0.77-0.90	1.55-1.75	10.40-12.50	2.09-2.35	0.52-0.90
	Sensor spatial resolution (m)	30	30	30	30	30	60	30	15
OLI/TIRS	Wavelength (μm)	Band 2	Band 3	Band 4	Band 5	Band 6	Band 10	Band 7	Band 8
		0.45-0.51	0.53-0.59	0.64-0.67	0.85-0.88	1.57-1.65	10.60-11.19	2.11-2.29	0.50-0.68
	Sensor spatial resolution (m)	30	30	30	30	30	100	30	15

171

172 Based on the gaps in the research literature illustrated above, the objectives of this study were:

173 1. Incorporate environmental factors (such as temperature, wind speed, etc.) into a single set of
 174 predictive equations for remote-sensing water-quality parameter estimation; and
 175 2. Increase model predictive power for a limnological water-quality parameter-estimation
 176 application by considering the effect of multicollinearity in model creation.

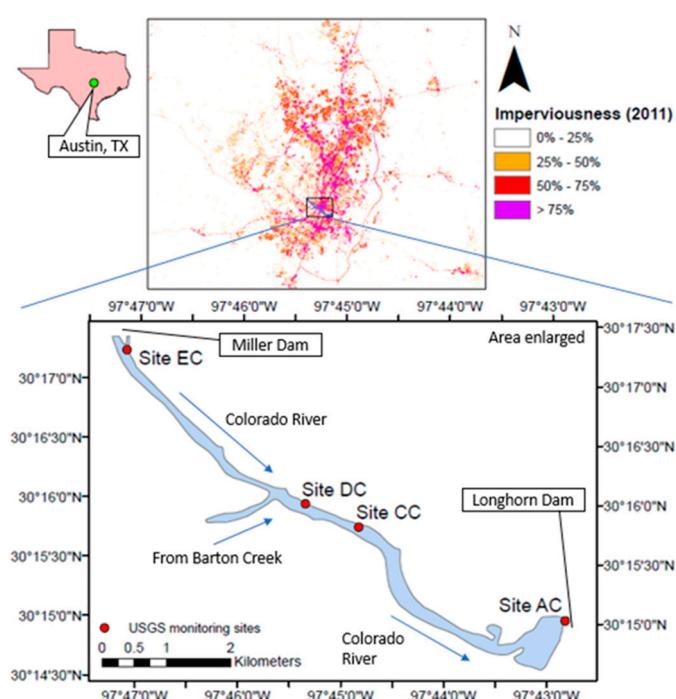
177 The goal of this study is to address all four concerns of utilizing satellite data in decision
 178 making by water-management agencies—i.e., cost, product accuracy, data continuity, and
 179 programmatic support. This study provides water-management agencies with a simple,
 180 easy-to-follow methodology for utilizing free observation data (from Landsat program, USGS, etc.)
 181 in order to address cost and programmatic-support issues for water-quality monitoring. The
 182 Landsat program guarantees long-term data continuity. The proposed methodology provides a
 183 single set of predictive equations; accuracy is maintained because all available data are consolidated
 184 for the creation of a single model. Also, consideration of multicollinearity increases the likelihood for
 185 acceptable estimation accuracy of the derived model in future water-quality parameter retrieval
 186 applications.

187

188 2. Methodology

189 2.1. Study Area

190 The population of City of Austin, Texas, USA has increased dramatically in recent decades,
 191 from 252,000 in 1970 to 926,000 in 2016 [42]. With significant population growth comes an increase in
 192 impervious area, higher runoff and lower water quality in local water bodies. Lady Bird Lake
 193 (formerly Town Lake), situated near the city center, provides an opportunity to remotely monitor
 194 water quality in an urban watershed (Figure 1). The lake, formed by damming the Colorado River, is
 195 maintained at an approximately constant level by the pass-through Longhorn Dam [43]. The surface
 196 area is ~173.6 hectares with a capacity of 905.1 ha-m. The mean depth is 6 meters, with a maximum
 197 depth over 11.7 meters [44].
 198



199
 200 **Figure 1.** Locations of water-quality sampling stations (i.e., Sites AC, CC, DC, and EC) on Lady
 201 Bird Lake.
 202

203 The USGS maintains a number of water-quality sampling stations on Lady Bird Lake, but only
 204 four of them, EC, DC, CC and AC (Figure 1), monitor the water-quality constituents of interest in
 205 this study within the time frame of available satellite images (i.e., 1983-2015) [3]. Table 2 provides
 206 basic information for these four sampling stations, including summary statistics for these
 207 water-quality quantities of interest—total suspended solids (TSS), total nitrogen (TN), and total
 208 phosphorus (TP)—derived from water-quality samples collected at a depth of 1 m. Secchi disc
 209 transparency, a pseudo-measure of turbidity, was measured in four locations when the samples of
 210 Table 2 were taken (Table 3). Secchi disc depths were much shallower than the average bottom depth
 211 of the lake (6 m); thus, bottom reflection is not observable from above the air-water interface for
 212 these cases. Therefore, contribution of bottom reflectance to the water-leaving radiance (Equation 1)
 213 can be ignored.
 214
 215
 216
 217
 218

219
220**Table 2.** Summary statistics from *in situ* USGS water-quality stations in Lady Bird Lake, Texas, USA, over the time period 1983-2015.

USGS Water Quality Stations and Site Codes	Water-Quality Measures and USGS Parameter Code								
	TSS (mg/L) 00530*			TN (mg/L) 00600*			TP (mg/L) 00665*		
	# of Samples	Mean	Std. Dev.	# of Samples	Mean	Std. Dev.	# of Samples	Mean	Std. Dev.
EC 301712097470701**	7	4.57	4.24	11	0.58	0.22	4	0.015	0.0058
DC 301558097452201**	8	5.75	5.39	8	0.71	0.36	8	0.023	0.017
CC 301546097445101**	4	9.50	5.26	6	0.53	0.14	3	0.023	0.012
AC 301500097424801**	9	8.44	10.35	13	0.71	0.25	10	0.035	0.035
All	28	8.19	7.96	38	0.65	0.24	25	0.026	0.024

221 * Water-quality parameter code as assigned by USGS

222 ** USGS station number

223
224
225**Table 3.** Secchi disc transparency measurements for *in situ* USGS water-quality stations in Lady Bird Lake, Texas, USA, over the time period 1983-2015

Site Code	# of measurements	Mean (m)	Std. Dev. (m)
EC	11	2.22	0.86
DC	10	1.68	0.77
CC	8	1.23	0.62
AC	15	1.27	0.60

226 2.2. Selection of Satellite Images

227 Selection of Landsat TM, ETM+, and OLI + TIRS images [45] was based on several criteria.
 228 Images selected were cloud-free and were acquired within seven days of *in situ* water-quality
 229 measurements in Lady Bird Lake [10, 17]. In order to minimize the effects of spatio-temporally-close
 230 rainfall events, only images that entailed daily precipitation depths less than 1.25 cm (0.5 inch)
 231 observed between the dates of the selected images and their associated water-sampling dates (Table
 232 4) were selected. This threshold rainfall depth is chosen based on the initial abstraction rainfall depth
 233 for a watershed with a runoff curve number of 80, since most of the urbanized area around Lady
 234 Bird Lake is residential [46]. Residential districts with small lot sizes (1/4 to 1/8 acre) have a curve
 235 number ranging from 61 to 92, depending on the soil hydrologic group [47]. Rainfall depth below
 236 this threshold is considered to generate insignificant runoff, and thus should have no marked effect
 237 on water quality in the lake.

238
239
240**Table 4.** Dates of Landsat TM and ETM+ satellite images utilized and respective corresponding water-quality samples.

Sensor Name	Image Date	Water-Quality Sampling Date
Landsat 4 TM	January 9, 1983	January 6, 1983
Landsat 5 TM	August 18, 1985	August 20, 1985
Landsat 5 TM	January 15, 1988	January 19, 1988
Landsat 5 TM	April 20, 1988	April 19, 1988
Landsat 5 TM	July 25, 1988	July 27, 1988

Landsat 5 TM	March 6, 1989	February 27, 1989
Landsat 5 TM	April 7, 1989	April 12, 1989
Landsat 5 TM	August 5, 1992	August 10, 1992
Landsat 5 TM	July 24, 1999	July 22, 1999
Landsat 5 TM	December 20, 2001*	December 16, 2001
Landsat 7 ETM+	April 22, 2009	April 18, 2009
Landsat 5 TM	June 4, 2010	June 3, 2010
Landsat 7 ETM+	May 14, 2011	May 13, 2011
Landsat 8 (OLI + TIRS)	May 14, 2014	May 14, 2014
Landsat 8 (OLI + TIRS)	March 14, 2015	March 10, 2015

241 * Excluded from analysis due to issues with atmospheric correction.

242 2.3. *Atmospheric Correction*

243 2.3.1. FLAASH Theory

244 Surface reflectance values, ρ , corrected for path radiance, were derived using Fast Line-of-sight
 245 Atmospheric Analysis of Spectral Hypercube (FLAASH®) radiative transfer model [48, 49]. Pixel
 246 values were converted from a digital number (DN) to spectral radiance (L) following the Landsat
 247 Data User Handbook [41], and then corrected to surface reflectance using FLAASH. Note that

$$248 L = \left(\frac{A\rho}{1-\rho_e S} \right) + \left(\frac{B\rho_e}{1-\rho_e S} \right) + L_a \quad (2)$$

249 where L is the spectral radiance observed by the sensor; ρ is the “correct” surface reflectance for
 250 the pixel of interest; ρ_e is the average surface reflectance from the pixel of interest and the
 251 surrounding region; S is the spherical albedo of the atmosphere; L_a is the path radiance
 252 backscattered by the atmosphere; and A and B are coefficients dependent upon atmospheric and
 253 geometric conditions. The distinction between ρ and ρ_e accounts for adjacency/spatial-mixing effects
 254 [48, 49].

255 2.3.2. Image Pre-processing

256 Because water bodies such as Lady Bird Lake are often generally spectrally dark targets [50],
 257 remote-sensing reflectance from such areas is usually lower than the surrounding urban areas. With
 258 FLAASH, significant errors can occur when strong albedo contrasts exist among the materials in the
 259 scene [49]. To minimize this potential problem, a land mask was created and applied in order to
 260 exclude all surrounding land regions [51], leaving just the aquatic areas (i.e., Lady Bird Lake) for
 261 subsequent atmospheric-correction processing.

262 2.3.3. Determination of FLAASH Parameter Values

263 Two of the parameters required by FLAASH are: visibility and choice of atmospheric model.
 264 Visibility obtained from historical airport records [52] caused FLAASH to over-compensate in its
 265 correction of atmospheric effects and yield negative reflectance values. Therefore, the 2-band (K-T)
 266 aerosol retrieval method [49] with “urban” setting was used to estimate visibility. Ideally, selection
 267 of an atmospheric model is based on one of the following options, presented in order from most
 268 preferred to least preferred: known standard column water vapor amount, expected surface air
 269 temperature, or tabulated seasonal-latitude combinations [49]. Although there are atmospheric
 270 water-content products available [53], they do not cover all dates of interest in this research. Surface
 271 temperatures have been continuously recorded and archived by Camp Mabry Austin City Airport
 272 and Austin Bergstrom International Airport every hour over the past 30 years [52]. Therefore,
 273 atmospheric models were selected based on the surface air temperature at the time when each
 274 satellite image was acquired (Table 5). The initially-selected December 20, 2001 image was excluded
 275 from subsequent processing because it yielded negative reflectance values after FLAASH
 276 atmospheric correction.

277

Table 5. Selection of FLAASH atmospheric model based on measured surface air temperature.

Image Date	Surface Air Temperature (°C)	Chosen Atmospheric Model	Suggested Temperature for Model (°C) [49]
January 9, 1983	11	Sub-Arctic Summer	14
August 18, 1985	33	Tropical	27
January 15, 1988	10	Sub-Arctic Summer	14
April 20, 1988	23	Mid-Latitude Summer	21
July 25, 1988	31	Tropical	27
March 6, 1989	2	Mid-Latitude Winter	-1
April 7, 1989	25	Tropical	27
August 5, 1992	30	Tropical	27
July 24, 1999	32	Tropical	27
December 20, 2001	11	Sub-Arctic Summer	14
April 22, 2009	31	Tropical	27
June 4, 2010	31	Tropical	27
May 14, 2011	23	Mid-Latitude Summer	21
May 14, 2014	21	Mid-Latitude Summer	21
March 14, 2015	22	Mid-Latitude Summer	21

278

279 2.3.4. Determination of FLAASH Parameter Values

280 FLAASH should not be applied to thermal bands [49]; therefore, another
 281 atmospheric-correction method was applied to thermal bands. In particular, the single-band
 282 atmospheric-correction method described by Barsi et al. [54] was used. The methodology calculates
 283 atmospheric transmission and path radiance using MODTRAN [49], based on the atmospheric
 284 profiles generated by National Centers for Environmental Prediction (NCEP). Equation 3 provides
 285 the relationship between top-of-atmosphere radiance (L_{TOA}), the target radiance of kinetic
 286 temperature T (L_T), the path (upwelling) radiance (L_u), and the sky (downwelling) radiance (L_d):

$$287 \quad L_{TOA} = \tau \varepsilon L_T + L_u + \tau(1 - \varepsilon)L_d \quad (3)$$

288 In Equation 3, atmospheric transmission τ , path radiance L_u , and sky radiance L_d were obtained
 289 from the on-line calculator based on the atmospheric correction method of Barsi et al. [54]. Since
 290 water is a near-perfect blackbody, emissivity (ε) was set as 1 in this study. Emissivity and
 291 transmission are unitless, whereas radiance values are in units of $\text{W}/\text{m}^2 \cdot \text{sr} \cdot \mu\text{m}$.

292 The atmospheric profiles are only available after January 2000. For satellite images acquired
 293 prior to that, atmospheric profiles from “surrogate dates” in 2000 were used in this study. The
 294 surrogate date has nearly identical daily precipitation, temperature, and wind speed as the satellite
 295 image date. By choosing a surrogate date in such a manner, the atmospheric condition of the actual
 296 satellite image date and the surrogate date are expected to be similar. If more than two surrogate

297 dates were found based on the above criteria for one satellite image, the one that is temporally
 298 closest to the date in the year in which a given the satellite image was acquired was chosen. Table 6
 299 provides the list of the satellite image dates, the corresponding surrogate dates, and daily
 300 meteorological parameters for both of them.

301

302 **Table 6.** Comparison between image and surrogate dates in atmospheric profile
 303 determinations.

Satellite Date	Image date weather parameters			Surrogate Date	Surrogate date weather parameters		
	Daily rainfall (mm)	Daily Mean Temp (°C)	Daily mean wind speed (m/s)		Daily rainfall (mm)	Daily Mean Temp (°C)	Daily mean wind speed (m/s)
Jan 9, 1983	0	11	3.1	Dec 20, 2000	0	11	3.1
Aug 18, 1985	0	31	3.6	Aug 28, 2000	0	32	3.6
Jan 15, 1988	0	9	2.8	Nov 13, 2000	0	9	3.6
Apr 20, 1988	0	21	3.6	Apr 22, 2000	0	20	3.4
Jul 25, 1988	0	30	3.1	Jul 26, 2000	0	31	3.2
Mar 6, 1989	0	3	5.8	Dec 27, 2000	0	3	4.1
Apr 7, 1989	0	22	2.8	May 14, 2000	0	23	2.8
Aug 5, 1992	0	29	3.1	Aug 20, 2000	0	30	3
Jul 24, 1999	0	29	1.7	Jul 24, 2000	0	29	1.6

304 2.3.5. Determining Surface Temperature from Landsat Thermal Bands

305 Target temperature (i.e., water surface temperature) was then derived after atmospheric
 306 correction according to equations provided in the Landsat Data User Manual [41]. For Landsat
 307 ETM+, the low-gain channel was used because the signal reflected from water-column constituents
 308 entail low signal strength. For Landsat TIRS, only band 10 was used because data from band 11 have
 309 been contaminated by a stray-light effect, and a remedy has not yet been found [55]. Bands 10 and
 310 11 here are band numbering from Landsat TIRS.

311 2.3.6. Post-processing for Atmospherically-Corrected Surface Reflectance

312 Surface reflectance values at the water-quality stations were extracted from the
 313 FLAASH-corrected satellite images. Pixels located at the exact coordinates of the respective
 314 water-quality sampling stations are not necessarily the ideal pixels for which reflectance values
 315 should be extracted. Reasons for this include the geometric-offset error between the map coordinates
 316 of a pixel and actual corresponding *in situ* sampling planimetric locations; random surface debris;
 317 light unpredictably scattered or reflected into the instantaneous field-of-view (IFOV) of the sensor or
 318 onto the aquatic area of interest [56]; and optically shallow water near the sampling stations,
 319 yielding potentially confounding issues associated with bottom reflectance. To compensate for this,
 320 the search range was expanded to 90 m (i.e., a search neighborhood comprised of 3 x 3 image pixels,
 321 centered around the pixel located at the station coordinates). The pixel within this zone with the
 322 lowest value in band 5 was considered to contain the most information regarding water-column
 323 constituents [57]. If two pixels had the same band 5 values, the pixel closest to the coordinates of
 324 water-quality sampling location was selected.

325 **2. Multiple Regression Analysis**

326 Multiple regression equations were derived to predict constituent concentrations (TSS, TN, and
 327 TP, i.e. the dependent variables) from the predictor variables, such as band reflectance. The
 328 procedure for selection of predictor variables is delineated below.

329 The spectral bands and associated band ratios were all chosen as candidates for independent
 330 variables. Band ratios were included as independent variables in the regression analysis [10]
 331 because they are less apt to be influenced by lighting conditions [56].

332 Radiance data from the thermal bands (band 6 of Landsat TM and ETM+, and band 10 of
 333 Landsat TIRS) were converted to water surface temperature. As discussed, water temperature has
 334 been found to be related to phytoplankton concentration [23, 24], and thus, related to water quality
 335 [58]. However, in this study, most of the satellite image dates differ by several days compared with
 336 the closest corresponding actual water-quality sampling date; thus, the water surface temperature
 337 derived from the satellite images does not represent the actual water temperature at the time of
 338 water sampling.

339 Equation 4 considers the net energy fluxes between a waterbody and the atmosphere [59]:

$$340 \quad NET = SWR_{net} - (LWR_{net} + LHF + SHF) \quad (4)$$

341 where NET is the net energy flux, SWR_{net} indicates the net short-wave radiation energy flux
 342 (Equation 5), LWR_{net} indicates the net long-wave radiation flux (Equations 6 and 7), LHF is the
 343 latent heat flux (Equation 8), and SHF is the sensible heat flux (Equation 9). These terms are
 344 calculated by the following equations [59]:

$$345 \quad SWR_{net} = (1 - a)SWR_{down} \quad (5)$$

$$346 \quad LWR_{net} \approx \varepsilon\sigma T_s^4 \left(0.39 - 0.05e_a^{\frac{1}{2}} \right) (1 - 0.51C^2) + 4\varepsilon\sigma T_s^3(T_s - T_a) \quad (6)$$

$$347 \quad \text{and } C \approx 1.61 \left(1 - \frac{SWR_{down}}{SWR_{cs}} + 0.0019n \right) \quad (7)$$

$$348 \quad LHF = \rho L_e C_e U (Q_s - Q_a) \quad (8)$$

$$349 \quad SHF = \rho C_p C_h U (T_s - T_a) \quad (9)$$

350 where a is the surface albedo (usually very low for water so $SWR_{net} \approx SWR_{down}$), ε is the surface
 351 emissivity (≈ 0.97), σ is the Stefan-Bolzman constant, T_s is the water surface temperature, T_a is the air
 352 temperature, e_a is the surface vapor pressure, C is the cloud cover index (Equation 7), SWR_{cs} is the
 353 clear-sky short wave radiation, n is the noon solar altitude, ρ is the density of air, L_e is the latent
 354 heat of evaporation, C_e is the turbulent exchange coefficient for latent heat, U is the wind speed, Q_s
 355 and Q_a are saturation specific humidity at the surface and at near-surface atmosphere, respectively,
 356 and C_h is the turbulent exchange coefficient for sensible heat.

357 Some of the variables in Equations 5 to 9 are known or can be reasonably assumed as constants
 358 (such as a , ε , σ , ρ , L_e , C_e , and C_h [60]). The surface vapor pressure, e_a , is dependent on water surface
 359 temperature [61]. Q_s and Q_a are both dependent on temperature as well [62]. The air temperature
 360 and noon solar altitude (T_a , and n respectively) can be obtained from the historical observation
 361 record. The water surface temperature T_s is obtained from thermal band data. That leaves only one
 362 variable unknown, which is the clear-sky short wave radiation SWR_{cs} . Calculating SWR_{cs} involves a
 363 complex procedure [63] so it is difficult to associate it with distinct environmental factor(s); thus, we
 364 did not consider it in evaluating heat flux in this study.

365 Assuming that the temperature change between the image date and the water-sampling date
 366 directly corresponds with the cumulative heat flux between the dates, the following variables are
 367 needed in order to account for the temperature change between the image-acquisition date and the
 368 water-sampling date [52]:

369 1. Time offset (in days) between the image date and the water-quality sampling date (positive
 370 offset means that the image date is later than the sampling date);

371 2. Water surface temperature (in K) derived from the thermal band;

372 3. Air temperature (in K): both instantaneous temperature at the time of satellite image
 373 acquisition, and daily mean air temperature between the image date and the water-quality sampling
 374 date are considered;

375 4. Wind speed (in m/s): both instantaneous wind speed at the time of satellite image acquisition
 376 and the daily mean wind speed between the image date and the water-quality sampling date are
 377 considered; and

378 5. Noon solar altitude (in degrees): the mean noon solar altitude between the image date and
 379 the water-quality sampling date.

380 Instantaneous temperature and wind speed were interpolated from the hourly historical data
 381 [52]. And further considering Equations 5 to 9, the full list of variables considered in the multiple
 382 regression process is provided in Table 7. A look-up table between variable abbreviations and

383 variable descriptions is provided as Table 8. As described above, in this study, the band number is
 384 based on band-numbering scheme for TM and ETM+.

385
 386
 387

Table 7. Reflectance bands (i.e., band (B1), band 2 (B2), etc.) and ratios used in the variable-selection process.

Water constituent	# of valid observations	Initial predictor variables before p-threshold test
TSS	28	B1, B2, B3, B4, B2/B1, B3/B1, B4/B1, B3/B2, B4/B2, B4/B3, D _{off} , T _s , T _a , T _{mean} , T _s -T _a , T _s -T _{mean} , W, W _{mean} , Alt, Alt ²
TN	38	
TP	25	

388
 389

Table 8. Look-up table for variable abbreviation and description of variables.

Variable abbreviations	Variable description
B1, B2, B3, B4	Reflectance value for Band 1, Band 2, Band 3, and Band 4, respectively.
D _{off}	Date offset between the image date and the water-quality sampling date
T _s	Water surface temperature derived from the remote-sensor thermal band
T _a	Instantaneous temperature at time of satellite image acquisition
T _{mean}	Daily mean air temperature between the image date and the water quality sampling date
W	Instantaneous wind speed at the time of satellite image acquisition
W _{mean}	Daily mean wind speed between the image date and the water quality sampling date
Alt	Mean noon solar altitude between the image date and the water-quality sampling date

390

391 Selection of predictor variables is based on a hybrid forward selection that considers the
 392 variation inflation factor (VIF). In conventional forward selection, variables are added to the
 393 regression one at a time, starting with no predictor variables being selected. The p-value threshold
 394 includes a predictor in the regression equation if its p-value is below a “probability to enter,” and
 395 includes a predictor that will most improve the fit first (i.e., “forward”). A default value of 0.25 in
 396 JMP [64] was used for “probability to enter.”

397
 398
 399
 400
 401

In addition to p-value, the variation inflation factor (VIF) was used to minimize
 398 multicollinearity of the model. Multicollinearity occurs when a predictor variable is a linear
 399 combination of other predictor variables in the model. The direct consequence of multicollinearity is
 400 that the error variance is inflated, which may result in low prediction power if the overfitted model
 401 is used with a new set of data. VIF is calculated as:

$$VIF_j = \frac{1}{(1 - R_j^2)} \quad (10)$$

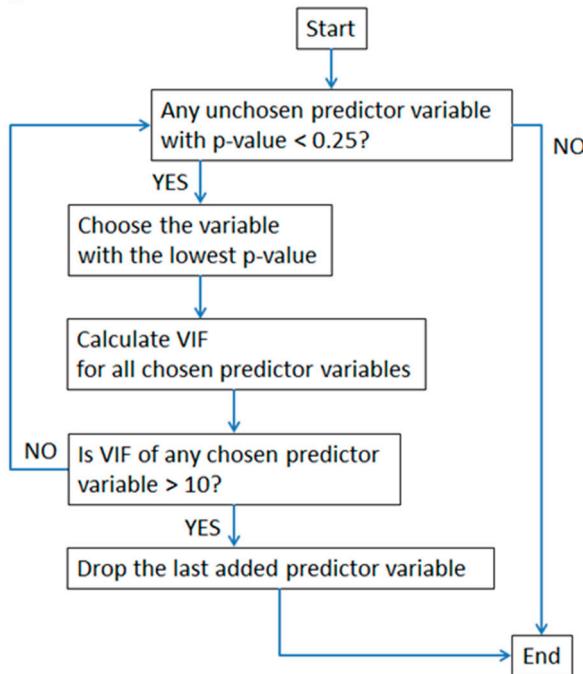
402
 403
 404
 405
 406
 407
 408

where R_j^2 is the multiple coefficient of determination between the j-th predictor variable of
 403 interest and the rest of the predictor variables. The rule of thumb to avoid serious multicollinearity is
 404 that all chosen predictor variables should have VIF less than 10 [65]. Unlike other criteria such as
 405 Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and Mallow's Cp, VIF is
 406 generated for each predictor variable. Also, VIF has a suggested absolute criterion, whereas other
 407 criteria (AIC, BIC, Cp, etc.) provide only relative comparison between models.

408
 409
 410
 411
 412
 413
 414

We propose a novel approach that considers VIF while adding variables in forward selection.
 409 When a variable is added according to the rules of forward selection, VIFs of all included variables
 410 (including the one that is just added) are also checked. If VIFs are all below the threshold of 10, the
 411 newly-added variable is allowed, and the next variable is chosen according to the rule of forward
 412 selection. However, if any VIF is found to be larger than the threshold for any of the variables, the
 413 most recently-added variable is deleted and the selection procedure stops. Coefficients of variables,

415 p-values, and VIF are dynamically recalculated when any variable is deleted from the model. The
 416 procedure is illustrated in Figure 2.



417
 418 **Figure 2.** Flow chart of the hybrid forward-selection process for selecting predictor variables in
 419 multiple regression analysis.

420 The derived multiple linear equations were then validated by bootstrapping and
 421 Leave-One-Out Cross Validation (LOOCV). Bootstrapping and LOOCV are both resampling
 422 methodologies [66]. Bootstrapping assumes that samples (i.e., observations – sets of response and
 423 associated prediction variables in this case) represent the whole population, so a random resampling
 424 from the samples provides a prediction of what one expects to encounter (statistically) from
 425 unknown, future data. LOOCV leaves one sample out at a time and calibrates for the coefficients of
 426 predictor variables based on the rest of the observations. The left-out sample is used for validation.
 427 The package CARET in the software R [67] was used to perform validation by bootstrapping and
 428 LOOCV. For bootstrapping, 1000 trials were specified.

429 **3. Results**

430 The best-fitting regression equations chosen by the hybrid forward selection for each
 431 water-quality constituent (TSS, TN and TP) are provided in Table 9. The results in Table 9 include
 432 the predictor variables, importance of the predictor variable, associated regression coefficients and
 433 standard error, 95% confidence intervals for the regression coefficients, p-values, and VIF values for
 434 each of the response variables (TSS, TN, and TP). The importance values are calculated by dividing
 435 the change in R^2 when the variable of interest is dropped from the model by the overall R^2 when the
 436 variable of interest is included [68]. The sum of importance values of all variables does not equal to 1
 437 since the importance is relative only. Note that the response variables are transformed to obtain a
 438 better regression fit, and the band-numbering convention is based on TM and ETM+ band numbers,
 439 as discussed previously.

440 **Table 9.** Best fitting multiple regression models for TSS, TN and TP using the hybrid forward
 441 selection considering VIF.

					Coefficient of predictor		Confidence Interval for coefficient			
Resp. Variable	R2	Num. of Obs.	Pred. Variable	Imp. of Var.	Value	Std. Error	Lower 95%	Upper 95%	p	VIF

$\sqrt[2]{TSS}$	0.68	28	(intercept)	-	-0.67	0.50	-1.69	0.36	0.19	-
			B3/B1	0.93	1.67	0.24	1.16	2.17	<0.0001	1.21
			W	0.21	0.21	0.065	0.077	0.34	0.0034	1.08
			T _s -T _{mean}	0.04	0.038	0.027	-0.018	0.093	0.18	1.16
$\sqrt[2]{TN}$	0.62	38	(intercept)	-	4.36	0.91	2.50	6.21	<0.0001	-
			W _{mean}	0.39	-0.053	0.012	-0.078	-0.029	<0.0001	1.26
			T _s	0.32	-0.012	0.0031	-0.019	-0.0062	0.0003	1.31
			B1	0.18	4.50	1.50	1.44	7.55	0.0053	2.35
			B4/B1	0.11	-0.049	0.020	-0.090	-0.0089	0.018	2.73
			D _{off}	0.11	-0.013	0.0051	-0.023	-0.0021	0.020	1.18
			B2/B1	0.05	0.11	0.067	-0.030	0.24	0.12	4.50
$\log(TP)$	0.79	25	(intercept)	-	26.40	9.57	6.30	46.50	0.013	-
			Alt ²	0.27	0.00049	0.00012	0.00024	0.00073	0.0005	7.13
			T _s	0.16	-0.11	0.034	-0.18	-0.039	0.0044	8.68
			D _{off}	0.06	0.050	0.024	0.00028	0.10	0.049	1.77
			B3/B2	0.06	1.16	0.57	-0.044	2.36	0.058	1.72
			W	0.04	-0.10	0.062	-0.23	0.026	0.11	3.06
			W _{mean}	0.04	-0.11	0.065	-0.24	0.032	0.12	1.84

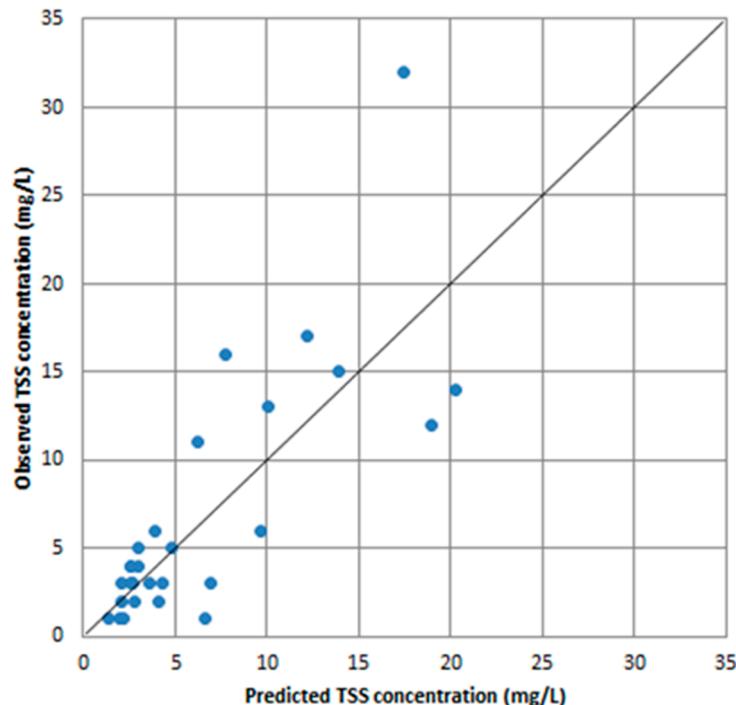
442

443 The resulting multiple regression-based models are provided in Equations 11 to 13:

444
$$TSS = (-0.67 + 1.67 \cdot \frac{B3}{B1} + 0.21 \cdot W + 0.038 \cdot (T_s - T_{mean}))^2 \quad (11)$$

445
$$TN = (4.36 - 0.053 \cdot W_{mean} - 0.012 \cdot T_s + 4.5 \cdot B1 - 0.049 \cdot \frac{B4}{B1} - 0.013 \cdot D_{off} + 0.11 \cdot \frac{B2}{B1})^2 \quad (12)$$

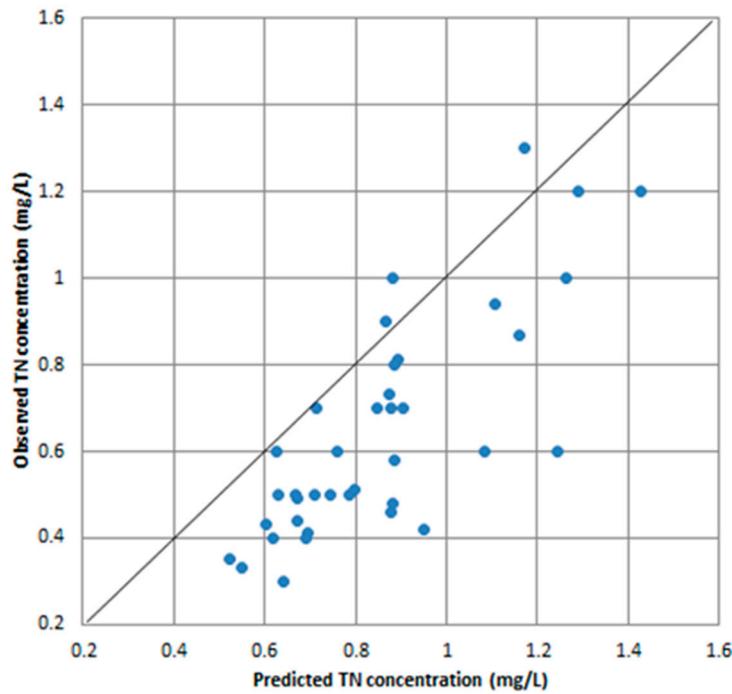
446
$$TP = e^{(26.4 + 0.00049 \cdot Alt^2 - 0.11 \cdot T_s + 0.05 \cdot D_{off} + 1.16 \cdot \frac{B3}{B2} - 0.1 \cdot W - 0.11 \cdot W_{mean})} \quad (13)$$

447 Plots of the observed versus predicted concentrations of TSS, TN, and TP are plotted in Figures
448 3, 4, and 5, respectively. The 1:1 line is added to all three figures.

449

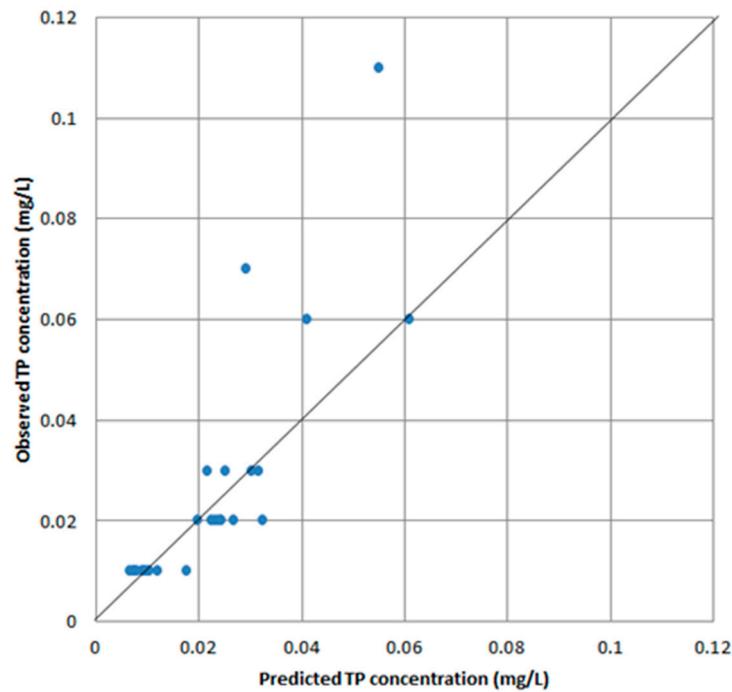
450 Figure 3. Observed versus predicted values for total suspended solids (TSS) ($R^2 = 0.68$).

451



452
453
454

Figure 4. Observed versus predicted values for total nitrogen (TN) ($R^2 = 0.62$).



455
456
457

Figure 5. Observed versus predicted values for total phosphorus (TP) ($R^2 = 0.79$).

458
459
460
461

The derived multiple linear predictive equations were validated by bootstrapping and LOOCV. The results are shown in Table 10. Table 10 shows that the equations have satisfactory predictive power for future, unknown data since validation R^2 values are above 0.5, except for weaker results regarding TN [69].

462
463
464

465

Table 10. Validation results of the predictive equations.

Equation	Calibration R ²	Validation R ² from Bootstrapping	Validation R ² from LOOCV
TSS	0.68	0.62	0.55
TN	0.62	0.46	0.47
TP	0.79	0.53	0.54

466 4. Discussion

467 The multiple linear equations derived from the regression analysis indicate that
 468 weather-related variables play an important role in predicting water-quality parameters. In fact,
 469 many weather variables bear more importance than the multispectral variables do. The relative
 470 importance of each variable is provided in Table 9. If all the weather variables are stripped from
 471 Table 9, the predictive variables related to Landsat bands alone provide only coefficients of
 472 determination, R², of 0.53, 0.26, and 0.36 for TSS, TN, and TP, respectively.

473 Kloiber et al. [10] found that both B1 and the ratio B3/B1 can be used to predict the Secchi disk
 474 transparency, which is closely related to TSS. From Kloiber et al. [10], the regression model
 475 containing B3/B1 and B1 predicted Secchi disk transparency with R² of 0.75. We also found B3/B1 as
 476 the dominant important variable in determining TSS concentrations, but did not find B1 as one of the
 477 significant prediction variables. Kloiber et al. [10] accrued a higher R² than our study since Kloiber et
 478 al. limited their *in situ* data collection to ± 1 day from the corresponding satellite image acquisitions.
 479 In the current study, the predictive equation that includes B3/B1 alone has a R² of 0.53 for TSS
 480 because our available data only allows *in situ* samples to be ± 7 days from satellite image acquisitions.
 481 Considering weather variables successfully boosted R² to 0.68, such that it was comparable with that
 482 of Kloiber et al. [10] (i.e., 0.75).

483 For TSS, we found the instantaneous wind speed, W, to be an important prediction variable.
 484 Since the instantaneous wind speed is chosen, instead of the daily mean wind speed between the
 485 image date and the water-quality sampling date (W_{mean}), it indicates that the instantaneous effect of
 486 wind (such as the surface ripple effect) is more important to TSS determination than the long-term
 487 heat-exchange effect. Even though the difference between the water surface temperature and the
 488 daily mean air temperature between the image date and the water-quality sampling date is selected
 489 as one of the prediction variables, it is of little importance in the model. It was chosen because the
 490 default forward-selection method has a lenient inclusion criterion (p = 0.25).

491 Dewidar and Khedr [9] determined that the band ratio B2/B1 is important in determining the
 492 TN concentration in brackish lagoons. However, the correlation between B2/B1 and TN was low in
 493 Dewendar and Khedr [9], with a correlation coefficient of 0.298. B2/B1 was also chosen by this study
 494 as one of the predictor variables, but B2/B1 still bears little predictive power as shown in Table 9. In
 495 contrast, the daily mean wind speed between the image date and the water-quality sampling date
 496 (W_{mean}) and water surface temperature (T_s) were determined to be the two most important predictor
 497 variables for TN prediction.

498 The high importance of water surface temperature T_s fortified the hypothesis that water
 499 temperature is related to the growth of microorganisms. The high importance of the daily mean
 500 wind speed between the image date and the water-quality sampling date (W_{mean}) and date difference
 501 (D_{off}) indicate that temperature change due to accumulated heat flux between the image date and
 502 sampling date is important. Referring to Equations 8 and 9, the mechanism involved should be the
 503 latent heat flux because latent heat flux (Equation 8) and sensible heat flux (Equation 9) are the only
 504 two components in the heat flux budget that involve wind speed. Latent heat flux is a main
 505 component of heat exchange between water and the atmosphere, and sensible heat plays a much
 506 lesser role [70].

507 As for TP, similar to TN prediction, the water surface temperature T_s still bears considerable
 508 importance. However, wind speed and D_{off} are not as important for estimating TP as it is for TN
 509 prediction, as the relative importance of variables in Table 9 indicates. It is intriguing that the square
 510 of noon solar altitude, Alt², has high importance in TP prediction. Referring to Equations 6 and 7,
 511 this implies that long wave radiation cooling correlates well with TP prediction. The weak

512 importance of wind speed and a strong importance of solar altitude for TP prediction jointly suggest
513 that long wave radiative cooling constitutes the main process important for predicting TP
514 concentration.

515 It is worth noting that, for TP prediction, optical multispectral data variables yield insignificant
516 prediction power, and most of the prediction power is contributed by Alt² and T_s.

517 From the analyses above, it seems that determinations of TN and TP are influenced by quite
518 different components of the net heat flux between air and water. For TN, latent heat flux seems to be
519 the dominant factor, but long wave radiative cooling seems to be the dominant factor for TP. In other
520 words, the difference in how the budget of cumulative heat flux between the image and sampling
521 dates is constructed has different effects on water-quality constituents related to TN or TP. This can
522 be reasoned by two effects:

523 1. TP concentration is highly correlated with *chlorophyll-a* [71], which is the photosynthetic
524 pigment in algae or phytoplankton. However, optimal algae growth is at a depth within the water
525 column [72], which means the transient change in heat flux due to wind speed at the surface will
526 correlate poorly with algae growth.

527 2. Solar altitude affects not only long wave radiation, but also the penetration depth of light into
528 the water column [73], which affects growth of phytoplankton, or algae, in water. Since the offset in
529 correlation between *chlorophyll-a* concentration and TP concentration has seasonal variations [74],
530 including solar altitude Alt (or the closely correlated square of solar altitude Alt²) in the predictive
531 model can account for the seasonal offset.

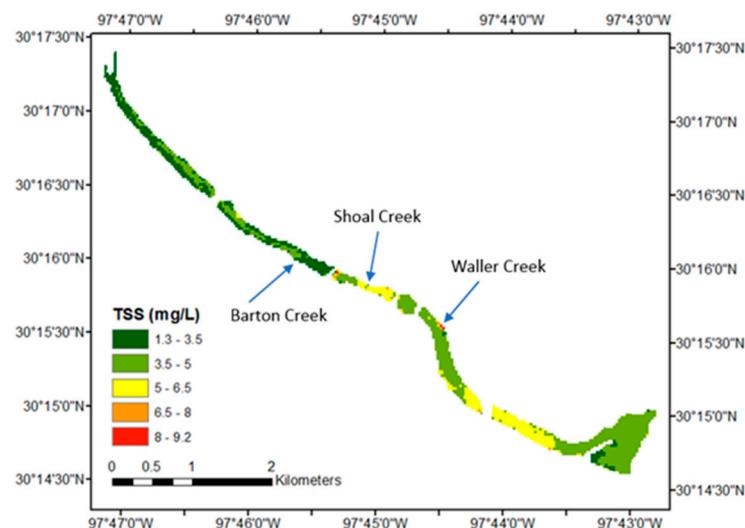
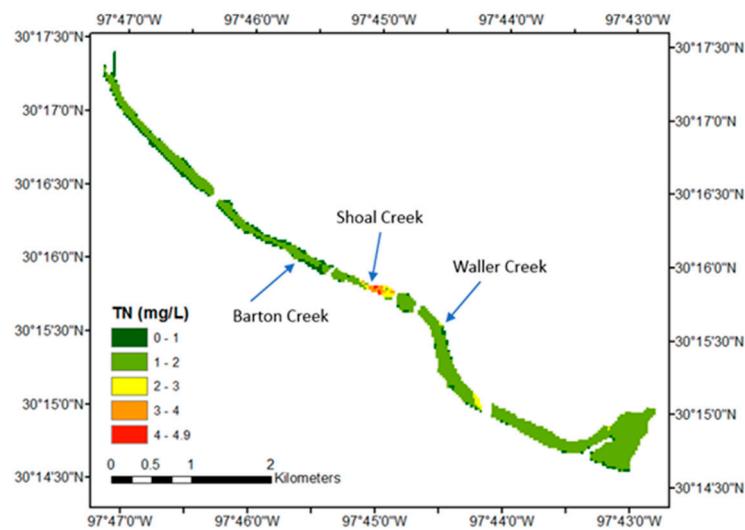
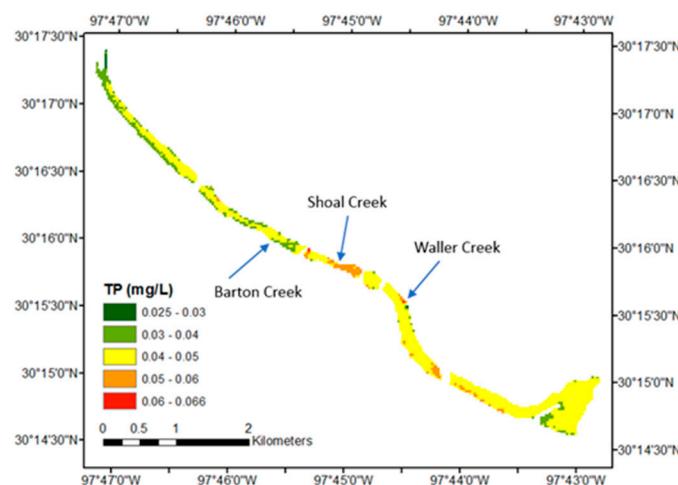
532 The inclusion of Alt² in the model probably signifies the combined effect of both effects.

533 5. Field Application

534 To demonstrate the utility of water-quality monitoring by satellites via our proposed method,
535 water-quality quantities for Lady Bird Lake on May 14, 2014 were estimated using Equations 11 to
536 13, respectively. This date was chosen because storms occurred the previous day and also the
537 morning of the satellite flyover day before flyover time with cumulative rainfall depth of 27 mm,
538 likely making it easier to discern the effect of urban stormwater runoff to the lake. Figures 6 to 8 give
539 the respective predicted spatial distribution of TSS, TN, and TP concentrations.

540 The water quality in the northwestern part of the lake is generally better than that in the
541 southeastern extent, which is expected as a result of urban runoff. Lady Bird Lake has three major
542 tributaries in the metropolitan Austin area: Barton Creek, Shoal Creek, and Waller Creek. The
543 confluence points of the three streams are indicated in Figures 6-8. Barton Creek entails an extensive
544 green belt around its riparian zone, and strict development regulations are in force because it is
545 located within the Edwards Aquifer recharge zone [75]. As a result, there is no marked change in
546 TSS, TN, and TP at the confluence point of Barton Creek, relative to proximal areas of the lake. To the
547 contrary, the confluence points of Shoal Creek and Waller Creek show significant increase in TSS,
548 TN, and TP. This illustrates the effects of amount of conservation efforts spent on each watershed.
549 The influence of Shoal Creek is more visible in Figures 6-8 than that of Waller Creek because Shoal
550 Creek has a larger drainage area [76]. Such details in spatial distribution can only be achieved via
551 satellite-derived water-quality predictions and can serve as the precursor examination for more
552 detailed water-quality examinations.

553

554
555
556**Figure 6.** TSS concentrations for Lady Bird Lake, Austin, Texas, USA, May 14, 2014.557
558
559**Figure 7.** TN concentrations for Lady Bird Lake, Austin, Texas, USA, May 14, 2014.560
561**Figure 8.** TP concentrations for Lady Bird Lake, Austin, Texas, USA, May 14, 2014.

562

6. Conclusions

563
564

Multiple regression-derived equations using reflectance bands, band ratios, and environmental factors as predictor variables for concentrations of TSS, TN, and TP, respectively, were derived using

565 a hybrid forward-selection method that considers VIF in the forward-selection process. Landsat TM,
566 ETM+, and OLI/TIRS (Landsat 8) images were all used to derive the single set of equations. The
567 coefficients of determination of the best-fitting resultant equations varied from 0.62 to 0.79. The
568 predictive equations were also validated by bootstrapping and LOOCV with coefficients of
569 determination in the range of 0.46 to 0.62.

570 Among all chosen predictor variables, B3/B1 has the strongest influence on the predictive
571 power for TSS retrieval. The band ratio of B3/B1 was also selected by Kloiber et al. [10] in predicting
572 Secchi disc transparency, indicating a correlation between Secchi disc transparency and TSS. Other
573 reflectance bands and band ratios, such as B1, B2/B1, B4/B1, and B3/B2 are also influential in
574 estimating TN and TP concentrations, but they are not dominant factors.

575 Environmental factors, such as wind speed and water surface temperature, were crucial in
576 determination of water-quality parameters in this study. Inclusion of environmental factors allows
577 usage of a single set of predictive equations across the seasons, as such predictive equations are
578 innately adapted to the environmental changes for different seasons. The predictive equation will
579 also likely to be more accurate because the pooling of all observation data.

580 The instantaneous wind speed, W , bears considerable importance in TSS determination, which
581 is explained by wind-generated surface ripple effects. Water surface temperature T_s (derived from
582 satellite remote-sensor thermal band image data) is important in determination of both TN and TP
583 concentrations, as the growth of microorganisms in water is correlated with water nutrient
584 concentrations.

585 However, the time offset between the satellite image-acquisition date and water-sampling date
586 must be accounted for in water nutrient parameter (i.e., TN and TP) retrieval. The heat flux budget
587 between air and the water surface was considered, and components in the budget equations were
588 included in the forward-selection procedure. In addition to the predictor variables identified
589 above, the daily mean wind speed between the image-acquisition date and water-sampling date
590 (W_{mean}) and square of noon solar altitude (Alt^2) were identified as the most important predictor
591 variables for TN and TP determinations, respectively. The time difference (in days) between the
592 image-acquisition date and water-sampling date (D_{off}) was also chosen for TN and TP
593 determination.

594 According to the heat flux budget equations, the inclusion of W_{mean} , T_s , and D_{off} indicates the
595 dominance of latent heat flux in the determination of TN. On the other hand, the inclusion of Alt^2 ,
596 D_{off} , and T_s in the TP model is an expression of the higher weight of long wave radiation cooling in
597 TP estimation. Since *chlorophyll-a* concentration is highly correlated with TP concentration, we
598 hypothesized that latent heat cooling is less important in TP determination because phytoplankton
599 has the highest growth rate at a certain depth in water, which is less correlated with transient heat
600 flux from evaporation at the surface.

601 The results showed that:

602 1. Environmental factors can constitute important ancillary variables in water-quality
603 parameter estimation based on satellite remote-sensor images;

604 2. By including environmental factors, it is feasible to pool all observation data to create a single
605 set of predictive equations, and use it to estimate water quality for all seasons;

606 3. A single set of predictive equations can be determined to retrieve year-round water-quality
607 parameters (i.e., TSS, TN, and TP) with satisfactory accuracy from Landsat TM, ETM+, and OLI/TIRS
608 imagery on the same lacustrine water body;

609 4. The derived predictive equations are robust enough to withstand the drastic change in the
610 environment over 30+ years (1983 to 2015) while population in the metropolitan area almost tripled
611 (from 373,000 in 1983 to 900,000 in 2015) over the same period of time [42]; and

612 5. Including VIF as part of the forward-selection process comprises a reliable methodology for
613 choosing predictor variables.

614 In the future, the hybrid forward-selection method can be further refined to entail a stricter
615 criterion for the inclusion of predictor variables. The default $p=0.25$ incurred inclusion of a few
616 predictor variables that were not significant in the final selection of variables.

617 In addition, inclusion of ancillary environmental factors involving long-term averaging, such as
618 average wind speed (W_{mean}), into the regression models demonstrated that it is possible to
619 satisfactorily estimate water-quality parameters, even when a large temporal offset between satellite
620 image-acquisition and *in situ* water sampling exists. Currently, the recommended longest temporal
621 window between remote-sensor image-acquisition and water-sampling date is approximately seven
622 days [17]. Since these environmental factors are part of the heat flux equations, including
623 environmental factors in predictive equations means an active compensation in estimation error due
624 to the temporal offset in collecting image and water-sample data. This hypothesis needs further
625 testing as part of future research efforts.

626 References

627 [1] Kannel, P.R.; Lee, S.; Kanel, S.R.; Khan, S.P.; Lee, Y.-S. Spatial-temporal variation and comparative
628 assessment of water qualities of urban river system: a case study of the river Bagmati (Nepal). *Environ. Monit.
629 Assess.* **2007**, *129*, 433-459.

630 [2] Harmel, R.D.; King, K.W.; Haggard, B.E.; Wren, D.G.; Sheridan, J.M. Practical guidance for diacharge
631 and water quality data collection on small watersheds. *Tran. ASABE* **2006**, *49*(4), 937-948.

632 [3] USGS Water Data for the Nation. Available online: <http://waterdata.usgs.gov/nwis> (accessed on 9
633 October 2017).

634 [4] McCullough, I.M.; Loftin, C.S.; Sader, S.A. High-frequency remote monitoring of large lakes with
635 MODIS 500 m imagery. *Remote Sens. Environ.* **2012**, *124*, 234-241.

636 [5] Liu, Y.; Islam, M.A.; Gao, J. Quantification of shallow water quality parameters by means of remote
637 sensing. *Prog. Phys. Geog.* **2003**, *27*(1), 24-43.

638 [6] Bukata, R.P. *Satellite Monitoring of Inland and Coastal Water Quality: Retrospection, Introspection, Future
639 Directions*; Taylor and Francis Group: Boca Raton, FL, USA, 2005.

640 [7] Doxaran, D.; Froidefond, J.-M., Lavender, S.; Castaing, P. Spectral signature of highly turbid waters
641 application with SPOT data to quantify suspended particulate matter concentrations. *Remote Sens. Environ.* **2002**,
642 *81*, 149-161.

643 [8] Wu, G.; Leeuw, J.D.; Liu, Y. Understanding seasonal water clarity dynamics of Lake Dahuchi from in
644 situ and remote sensing data. *Water Reso. Manage.* **2009**, *23*, 1849-1861.

645 [9] Dewidar, K.H.; Khedr, A. 2001. Water quality assessment with simultaneous Landsat-5 TM at Manzala
646 Lagoon, Egypt. *Hydrobiologia* **2001**, *457*, 49-58.

647 [10] Kloiber, S.M.; Brezonik, P.L.; Olmanson, L.G.; Bauer, M.E. A procedure for regional lake water clarity
648 assessment using Landsat multispectral data. *Remote Sens. Environ.* **2002**, *82*, 38-47.

649 [11] Kishino, M.; Tanaka, A.; Ishizaka, J. Retrieval of Chlorophyll a, suspended solids, and colored
650 dissolved organic matter in Tokyo Bay using ASTER data. *Remote Sens. Environ.* **2005**, *99*, 66-74.

651 [12] Filippi, A.M. Derivative-neural spectroscopy for hyperspectral bathymetric inversion. *Prof. Geogr.*
652 **2007**, *59*(2), 236-255.

653 [13] Schaeffer, B.A.; Schaeffer, K.G.; Keith, D.; Lunetta, R.S.; Conmy, R.; Gould, R.W. Barriers to adopting
654 satellite remote sensing for water quality management. *Int. J. Remote Sens.* **2013**, *34*(21), 7534-7544.

655 [14] Free Landsat 7 Data Available from USGS. Available online:
656 <http://landsat.gsfc.nasa.gov/free-landsat-7-data-available-from-usgs/> (accessed on 29 September 2017).

657 [15] About MODIS: Moderate Resolution Imaging Spectroradiometer. Available online:
658 <https://modis.gsfc.nasa.gov/about/> (accessed on 29 September 2017).

659 [16] SeaWiFS Project. Available online: <https://oceancolor.gsfc.nasa.gov/SeaWiFS/> (accessed on 29
660 September 2017).

661 [17] United States Geological Survey. *Predicting Water Quality by Relating Secchi-Disk Transparency and
662 Chlorophyll A Measurements to Satellite Imagery for Michigan Inland Lakes, August 2002*; U.S. Geological Survey:
663 Reston, VA, USA, 2004.

664 [18] Barrett, D.C.; Frazier, A.E. 2016. Automated method for monitoring water quality using Landsat
665 imagery. *Water.* **2016**, *8*, 257.

666 [19] Kallio, K.; Attila, J.; Harma, P.; Koponen, S.; Pulliainen, J.; Hyttiainen, U.-M.; Pyhalahti, T. Landsat
667 ETM+ images in the estimation of seasonal lake water quality in boreal river basins. *Environ. Manage.* **2008**, *42*,
668 511-522.

669 [20] Okin, G.S.; Gu, J. 2015. The impact of atmospheric conditions and instrument noise on atmospheric
670 correction and spectral mixture analysis of multispectral imagery. *Remote Sens. Environ.* **2015**, *164*, 130-141.

671 [21] Karakaya, N.; Evrendilek, F. 2011. Monitoring and validating spatio-temporal dynamics of
672 biogeochemical properties in Mersin Bay (Turkey) using Landsat ETM+. *Environ. Monit. Assess.* **2011**, *181*,
673 457-464.

674 [22] Lim, J.; Choi, M. Assessment of water quality based on Landsat 8 operational land imager associated
675 with human activities in Korea. *Environ. Monit. Assess.* **2015**, *187*, 384.

676 [23] Rasconi, S.; Gall, A.; Winter, K.; Kainz, M.J. Increasing water temperature triggers dominance of small
677 freshwater plankton. *PLOS ONE.* **2015**, *10*(10), e0140449

678 [24] Voutilainen, A.; Jurvelius, J.; Lilja, J.; Viljanen, M.; Rahkola-Sorsa, M. Associating spatial patterns of
679 zooplankton abundance with water temperature, depth, planktivorous fish and chlorophyll. *Boreal Environ. Res.*
680 **2015**, *21*, 101-114.

681 [25] Bonansea, M.; Rodriguez, M.C.; Pinotti, L.; Ferrero, S. Using multi-temporal Landsat imagery and
682 linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina). *Remote Sens.*
683 *Environ.* **2015**, *158*, 28-41.

684 [26] Alparslan, E.; Coskun, H.G.; Alganci, U. An investigation on water quality of Darlik Dam drinking
685 water using satellite images. *Thescientificworldj.* **2010**, *10*, 1293-1306.

686 [27] Wang, Y.; Xia, H.; Fu, J.; Sheng, G. Water quality change in reservoirs of Shenzhen, China: detection
687 using LANDSAT/TM data. *Sci. Total Environ.* **2004**, *328*, 195-206.

688 [28] Wu, G.; Leeuw, J.D.; Skidmore, A.K.; Prins, H.H.T.; Liu, Y. Comparison of MODIS and Landsat TM5
689 images for mapping tempo-spatial dynamics of Secchi disk depths in Poyang Lake National Nature Reserve,
690 China. *Int. J. Remote Sens.* **2008**, *29*(8), 2183-2198.

691 [29] Zhou, Z.; Wang, X. Quantitative Remote Sensing Researches on Water Quality of the Weihe River
692 Based on SPOT-5 Imagery. *Proceedings of Information Technology and Environmental System Sciences.* 2008,
693 538-542.

694 [30] Lovric, M. *International Encyclopedia of Statistical Science*. Springer-Verlag: Berlin Heidelberg, Germany,
695 2011.

696 [31] Gilmour, S.G. The interpretation of Mallow's Cp-statistic. *J. R. Stat. Soc.* **1996**, *45*(1), 49-56.

697 [32] Hair Jr., J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. *Multivariate Data Analysis A Global Perspective*, 7th
698 Ed. Pearson: Upper Saddle River, NJ, USA, 1998

699 [33] Graham, M.H. Confronting multicollinearity in ecological multiple regression. *Ecology.* **2003**, *84*(11),
700 2809-2815.

701 [34] Yang, J.; Weisberg, P.J.; Bristow, N.A. 2012. Landsat remote sensing approaches for monitoring
702 long-term tree cover dynamics in semi-arid woodlands: Comparison of vegetation indices and spectral mixture
703 analysis. *Remote Sens. Environ.* **2012**, *119*, 62-71.

704 [35] Alsharif, A.A.A.; Pradhan, B. Urban sprawl analysis of Tripoli Metropolitan City (Libya) using remote
705 sensing data and multivariate logistic regression model. *J. Indian Soc. Remote Sens.* **2014**, *42*(1), 149-163.

706 [36] Dubovyk, O.; Menz, G.; Conrad, C.; Kan, E.; Machwitz, M.; Khamzina, A. Spatio-temporal analyses of
707 cropland degradation in the irrigated lowlands of Uzbekistan using remote-sensing and logistic regression
708 modeling. *Environ Monit Assess.* **2012**, *185*, 4775-4790.

709 [37] Sun, D.; Hu, C.; Qiu, Z.; Shi, K. Estimating phycocyanin pigment concentration in productive inland
710 waters using Landsat measurements: A case study in Lake Dianchi. *Opt Express.* **2015**, *23*(3), 3055-3074.

711 [38] Zheng, Z.; Li, Y.; Guo, Y.; Xu, Y.; Liu, G.; Du, C. Landsat-based long-term monitoring of total
712 suspended matter concentration pattern change in the wet season for Dongting Lake, China. *Remote Sens.* **2015**,
713 *7*, 13975-13999.

714 [39] Lymburner, L.; Botha, E.; Hestir, E.; Anstee, J.; Sagar, S.; Dekker, A.; Malthus, T. Landsat 8: Providing
715 continuity and increased precision for measuring multi-decadal time series of total suspended matter. *Remote*
716 *Sens. Environ.* **2016**, *185*, 108-118.

717 [40] Mishra, N.; Haque, M.O.; Leigh, L.; Aaron, D.; Helder, D.; Markham, B. Radiometric cross calibration
718 of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). *Remote*
719 *Sens.* **2014**, *6*, 12619-12638.

720 [41] Landsat Missions. Available online: <http://landsat.usgs.gov/index.php> (accessed on 9 October 2017).

721 [42] Demographic Data. Available online: <http://www.austintexas.gov/page/demographic-data> (accessed
722 on 2 October 2017).

723 [43] What are some general characteristics of each lake? Available online:
724 <https://www.austintexas.gov/faq/what-are-some-general-characteristics-each-lake> (accessed on 2 October
725 2017).

726 [44] Texas Water Development Board. *Volumetric Survey of Lady Bird Lake*; Texas Water Development
727 Board, Austin, TX, USA, 2009.

728 [45] USGS Global Visualization Viewer. Available online: <http://glovis.usgs.gov/> (accessed on 9 October
729 2017).

730 [46] 2014 Land Use Inventory. Available online:
731 <ftp://ftp.ci.austin.tx.us/GIS-Data/planning/maps/Landuse%20Inventory%202014.pdf> (accessed on 9 October
732 2017).

733 [47] Urban Hydrology for Small Watersheds (TR-55). Available online:
734 https://www.nrcc.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044171.pdf (accessed on 9 October 2017).

735 [48] Perkins, T.; Adler-Golden, S.; Matthew, M.; Berk, A.; Anderson, G.; Gardner, J. Retrieval of
736 atmospheric properties from hyper- and multi-spectral imagery with the FLAASH atmospheric correction
737 algorithm. *P. Soc. Photo-Opt. Ins.* **2005**, 5979, 1-11.

738 [49] Exelis, Inc. *Atmospheric Correction Module: QUAC and FLAASH User's Guide*, Ver. 4.7. Exelis Inc.:
739 Boulder, CO, USA, 2009.

740 [50] Siegel, D.A.; Wang, M.; Maritorena, S.; Robinson, W. Atmospheric correction of satellite ocean color
741 imagery: the black pixel assumption. *Appl. Optics* **2000**, 39(21), 3582-3591.

742 [51] Hadjimitsis, D.G.; Clayton, C.R.; Hope, V.S. An assessment of the effectiveness of atmospheric
743 correction algorithms through the remote sensing of some reservoirs. *Int. J. Remote Sens.* **2004**, 25(18), 3651-3674.

744 [52] National Weather Service Automated Surface Observing System. Available online:
745 <http://www.nws.noaa.gov/asos/> (accessed on 30 November 2016).

746 [53] MODIS Total Precipitable Water. Available online:
747 <https://modis.gsfc.nasa.gov/data/dataproducts/mod05.php> (accessed on 9 October 2017).

748 [54] Barsi, J.A.; Schott, J.R.; Palluconi, F.D., Hook, S.J. 2005. Validation of a Web-Based Atmospheric
749 Correction Tool for Single Thermal Band Instruments, Proceedings of SPIE: 58820E1-58820E7.

750 [55] Barsi, J.A.; Schott, J.R.; Hook, S.J.; Raqueno, N.G.; Markham, B.L.; Radocinski, R.G. Landsat-8 Thermal
751 Infrared Sensor (TIRS) vicarious radiometric calibration. *Remote Sens.* **2014**, 6, 11607-11626.

752 [56] Jensen, J.R. *Remote Sensing of the Environment - an Earth Resource Perspective*, 2nd ed.; Prentice Hall:
753 Upper Saddle River, NJ, USA, 2007.

754 [57] Frazier, P.S.; Page, K.J. Water body detection and delineation with Landsat TM data. *Photogramm. Eng.*
755 *Rem. S.* **2000**, 66(12), 1461-1467.

756 [58] Boyer, J.N.; Kelble, C.R.; Ortner, P.B.; Rudnick, D.T. Phytoplankton bloom status: Chlorophyll a
757 biomass as an indicator of water quality condition in the southern estuaries of Florida, USA. *Ecol. Indic.* **2009**,
758 9(6), S56-S67.

759 [59] Kumar, B.P.; Vialard, J.; Lengaigne, M.; Murty, V.S.N.; McPhaden, M.J. TropFlux: air-sea fluxes for the
760 global tropical oceans—description and evaluation. *Clim. Dynam.* **2012**, 38(7), 1521-1543.

761 [60] DeCosmo, J.; Katsaros, K.B.; Smith, S.D.; Anderson, R.J.; Oost, W.A.; Bumke, K.; Chadwick, H. Air-sea
762 exchange of water vapor and sensible heat: the Humidity Exchange Over the Sea (HEXOS) results. *J.*
763 *Geophys. Res.* **1996**, 101, 12001-12016.

764 [61] Thomson, G.W. The Antoine equation for vapor-pressure data. *Chem. Rev.* **1946**, 38(1), 1-39.

765 [62] Stull, R.B. *Meteorology for Scientists and Engineers*, 3rd Ed.; Brooks Cole: Boston, MA, USA, 2011.

766 [63] Gubler, S.; Gruber, S.; Purves, R.S. Uncertainties of parameterized surface downward clear-sky
767 shortwave and all-sky longwave radiation. *Atmos. Chem. Phys.* **2012**, 12, 5077-5098.

768 [64] JMP Documentation. Available online: http://www.jmp.com/en_us/support/jmp-documentation.html
769 (accessed on 9 October 2017).

770 [65] Chatterjee, S.; Simonoff, J.S. *Handbook of Regression Analysis*; Wiley Publication: Somerset, NJ, USA,
771 2013.

772 [66] Efron, B.; Tibshirani, R.J. *An Introduction to the Bootstrap*; CRC Press: Boca Raton, FL, USA, 1993.

773 [67] Caret: Classification and Regression Training. Available online:
774 <https://cran.r-project.org/web/packages/caret/index.html> (accessed on 9 October 2017).

775 [68] Judd, C.M.; McClelland, G.H.; Ryan, C.S. *Data Analysis: A Model Comparison Approach*; Routledge: New
776 York, NY, USA, 2008.

777 [69] Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model
778 evaluation guidelines for systematic quantification of accuracy in watershed simulations. *T. ASABE*. **2007**, 50(3),
779 885-900.

780 [70] Foltz, G.R.; McPhaden, M.J. Mixed layer heat balance on intraseasonal time scales in the Northwestern
781 tropical Atlantic Ocean. *J. Clim.* **2005**, 18, 4168-4184.

782 [71] Dillon, P.J.; Rigler, F.H. The phosphorus-chlorophyll relationship in lakes. *Limnol. Oceanogr.* **1974**,
783 19(5), 767-773.

784 [72] Sommer, U. Seasonal succession of phytoplankton in Lake Constance. *BioScience* **1985**, 35(6), 351-357.

785 [73] Bukata, R.P.; Jerome, J.H.; Kondratyev, K.Y.; Pozdnyakov, D.V. *Optical Properties and Remote Sensing of*
786 *Coastal Waters*; CRC Press: Boca Raton, FL, USA, 1995; pp. 362.

787 [74] Marshall, C.T.; Peters, R.H. General patterns in the seasonal development of chlorophyll a for
788 temperate lakes. *Limnol. Oceanogr.* **1989**, 34(5), 856-867.

789 [75] American Water Works Association. Conserving forest to protect water. *Opflow*. **2004**, 30(5), 1, 4-7.

790 [76] City of Austin Watershed Regulation Areas. Available online:
791 http://www.austintexas.gov/sites/default/files/files/Watershed/watershed_regs_map.pdf (accessed on 3
792 October 2017).