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Abstract: A simple approach to enable water-management agencies employing free data to achieve 16 
the goal of using a single set of predictive equations for water-quality retrievals with satisfactory 17 
accuracy is proposed. Multiple regression-derived equations based on surface reflectance, band 18 
ratios, and environmental factors as predictor variables for concentrations of Total Suspended 19 
Solids (TSS), Total Nitrogen (TN), and Total Phosphorus (TP) were derived using a hybrid 20 
forward-selection method that considers Variance Inflation Factor (VIF) in the forward-selection 21 
process. Landsat TM, ETM+, and OLI/TIRS images were jointly utilized with environmental 22 
factors, such as wind speed and water surface temperature, to derive the single set of equations. 23 
The coefficients of determination of the best-fitting resultant equations varied from 0.62 to 0.79. 24 
Among all chosen predictor variables, ratio of reflectance of visible red (Band 3 for Landsat TM and 25 
ETM+, or Band 4 for Landsat OLI/TIRS) to visible blue (Band 1 for Landsat TM and ETM+, or Band 26 
2 for Landsat OLI/TIRS) has a strong influence on the predictive power for TSS retrieval. 27 
Environmental factors including wind speed, remote sensing-derived water surface temperature, 28 
solar altitude, and time difference (in days) between the image acquisition and water sampling 29 
were found important in water-quality parameter estimation. 30 

Keywords: Variance Inflation Factor; VIF; multiple regression; Landsat; Austin; Lady Bird Lake; 31 
water quality; environmental factor; energy flux; urban runoff 32 

 33 

1. Introduction 34 

Continuous monitoring of water quality is essential for the health and welfare of the people and 35 
ecosystems reliant upon them. Urbanization, agriculture, and other anthropogenic factors can alter 36 
water quality [1], and waiting to remediate until a change is clearly visible can be much more costly 37 
than early prevention. Despite this, the cost of adequate temporal and spatial physical 38 
measurements can potentially be prohibitive [2]. For example, the United States Geological Survey 39 
(USGS) regularly monitors water quality in Lady Bird Lake in Austin, Texas, USA; however, the 40 
frequency is only approximately twice per year at a single point near the outlet over the past decade 41 
[3]. Additionally, in situ measurements from year to year do not occur in the same months. As a 42 
result, it is difficult to distinguish whether a change in the water quality measured at a point is truly 43 
a long-term change or the result of a seasonal difference or recent event (e.g., a large precipitation 44 
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event) [4]. Additionally, it is impossible to evaluate the spatial variation in water quality from 45 
single-point measurements.  46 

In recent decades, remote sensing has provided an alternative method for monitoring water 47 
quality in a spatially synoptic manner at a lower cost compared with extensive in situ measurement.  48 
Each water-column constituent exhibits a specific spectral response that can be observed by satellite- 49 
and aircraft-mounted remote sensors [5]. Suspended sediment usually exhibits strong backscattering 50 
of incident light [5], where the actual color depends on the terrestrial origin [6]. Colored dissolved 51 
organic matter (CDOM) is composed of algae, yellow substances, and organic plumes [5], and entails 52 
a broad-band solar-induced fluorescence over 490-530 nm [6]. Phytoplankton exhibits a volume 53 
reflectance (and water-leaving radiance) peak due to chlorophyll-a, with a well-defined Gaussian 54 
distribution around 685 nm [6]. 55 

For a particular wavelength, λ, the spectral radiance from the water observed vertically, known 56 
as the upwelling radiance, Lu, is given by   57 ܮ௨(ߣ) = (ߣ)௪ܮ + Ωܮ௦(ߣ)              (1) 58 

where ܮ௪ is the radiance reflected/backscattered by the water column, in-water constituents, 59 
and the bottom if the water column is optically shallow; ܮ௦ is the skylight radiance; and Ω is the 60 
ratio of radiance directly reflected by the water surface to ܮ௦ [7]. Note that the radiance observed by 61 
a satellite is composed of ܮ௨ , plus atmospheric interference; therefore, it requires atmospheric 62 
correction (discussed below). ܮ௪, ܮ௦, and Ω are influenced by a variety of factors. If the water 63 
column is sufficiently deep, bottom reflectance may be ignored, and ܮ௪ can be assumed to be a 64 
measure of the effects of water-column constituents alone. Atmospheric conditions (e.g., clear, 65 
cloudy, overcast) affect both Ω and ܮ௦, whereas Ω can be further affected by wind speed in the form 66 
of surface ripples [7]. Wind speed has also been found to have some influence on water clarity [8]. 67 

Because of their higher capability to penetrate the water column, visible bands have 68 
conventionally been used to estimate water quality [5]. In addition, infrared bands have also shown 69 
significance in determining water-quality parameters in some studies [9, 10]. However, only near 70 
infrared wavelengths were used in these studies. Thermal infrared bands have not extensively been 71 
used in water-quality estimation. 72 

Site-specific predictive models can be created to relate a number of band radiance 73 
measurements or derived reflectance values [5] to the water-quality parameter of interest by fitting 74 
the model to in situ water-quality measurements. Multiple regression analysis and artificial neural 75 
networks (ANNs) constitute two methods that are frequently used to generate such predictive 76 
models [5, 10, 11, 12]. 77 

In academia, satellite remote-sensing images have been increasingly available for water-quality 78 
determination. However, the popularity of this approach has not been extended to decision making 79 
by management agencies in general [13]. According to Schaeffer et al. [13], the reasons for this 80 
phenomenon include cost, product accuracy, data continuity, and programmatic support. 81 

Cost is always a major constraint, as many water-management agencies have limited budgets 82 
[13]. Even though there are many free remote-sensing data sets available, such as the multispectral 83 
satellite images available from the Landsat program (e.g., Landsat Thematic Mapper (TM), 84 
Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI)/ Thermal Infrared 85 
Sensor (TIRS)) [14], MODIS [15], SeaWiFS [16], etc., the selection of images is predominately limited 86 
to moderate spatial-resolution images from the Landsat program, for example, for terrestrial 87 
pond/lake applications due to the finer spatial resolution of those data relative to other free 88 
remote-sensor image sources and the relatively small sizes/spatial extents of such features. Another 89 
aspect of the cost constraint is the cost to collect field water-sampling data, as the creation of 90 
empirical predictive models necessitates in situ water-quality data. Sometimes, due to cost, logistical, 91 
and other constraints, that means that a water-management agency can only resort to free 92 
water-quality data, such as those made available by the USGS. The downside, as noted above, is that 93 
spatio-temporal sampling density/data availability may be low. This drawback seriously limits the 94 
ability of a water-management agency to utilize free Landsat program data, for example, as the basis 95 
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of a water-quality monitoring program since the satellite images and corresponding in situ 96 
measurements must be acquired in a temporally proximal manner [17]. 97 

As a result, water-management agencies that resort to only using free remote-sensing resources 98 
often only have access to a limited number of useable satellite images for water-quality monitoring.  99 
Such a scenario often leads to the use of a single predictive model to determine water-quality 100 
information from satellite images. Nevertheless, many studies divide their analyses by season [18, 19] 101 
due to systemic seasonal differences in factors such as concentrations of color-producing substances 102 
(including phytoplankton), atmospheric disturbances [19], and solar zenith angle [20]. Some studies 103 
have shown that the predictive power of equations created without distinguishing by season is 104 
lower than it otherwise would be [21, 22].    105 

Since the derived predictive equation is seasonally affected by the environment, a few studies 106 
have incorporated the influencing factors into predictive equation generation. One example is with 107 
the estimation of chlorophyll-a concentration. It has been known that phytoplankton growth is 108 
statistically significantly dependent on water temperature [23, 24]. Incorporating water temperature 109 
(derived from the satellite remote-sensor thermal band) in development of predictive equations has 110 
proven to be helpful in determining chlorophyll-a concentration [25]. However, this approach has not 111 
been investigated extensively. In this study, we consider additional environmental factors based on 112 
energy fluxes between a waterbody and the atmosphere. We posit that including these 113 
environmental factors in predictive equations not only increases prediction accuracy, but also 114 
facilitates the usage of a single set of predictive equations throughout different seasons. The direct 115 
benefit is that one can pool all observation data in creating equations, thus resulting in higher 116 
predictive power. 117 

Programmatic support is also important to water-management agencies, according to Schaeffer 118 
et al. [13]. In most cases, local universities should be sufficient in providing support to 119 
water-management agencies. However, we posit that the methodology adopted for generating 120 
predictive models should entail model construction in a stepwise manner, such that most people 121 
with basic training could implement such methods can follow without much difficulty. For this 122 
reason, in choosing methodology implemented by water-management agencies, simple and 123 
well-understood methods such as multiple regressions should be weighed over more complex 124 
methods, such as ANNs. 125 

Product accuracy is another major concern expressed by the water-management agencies [13].  126 
Even though water-management agencies could utilize predictive models from peer-reviewed 127 
journals, such models may not yield high-accuracy estimates in a given application. Multiple 128 
regression analysis has been employed in many studies for its ease of application. However, for 129 
applications using this method, overfitting from multicollinearity can be a serious concern.  130 
Multicollinearity means that some of the explanatory variables in the multiple regression model are 131 
dependent on one another. The direct result from multicollinearity is that the standard error of 132 
coefficients of explanatory variables is inflated, which means that coefficients of the derived model 133 
are not reliable. Unfortunately, many past studies neither discussed the issue of multicollinearity, 134 
nor provided results of validation of the derived regression models [4, 5, 9, 17, 26, 27, 28, 29]. A 135 
common way to identify multicollinearity of a model is through the usage of indicators such as 136 
Akaike’s Information Criteria [30], Mallow’s Cp [31], PRESS [32], etc. However, such indicators 137 
apply to the whole model so all possible subsets of explanatory variables must be examined, and this 138 
approach becomes unattainable when the number of variables increases [33]. 139 

Other popular methods to identify multicollinearity include the deployment of a principal 140 
component analysis (PCA) or structural equation modeling (SEM) [33]. PCA creates orthogonal 141 
principal components, which are linear combination of variables, and a regression model can be 142 
created based on the orthogonal components in order to eliminate multicollinearity completely.  143 
Some studies show, however, that this methodology can result in a loss in explanatory power. 144 
Additionally, the main limitation of the PCA approach is rooted in the physical interpretation of the 145 
principal components. On the other hand, SEM accepts the existence of collinearity among 146 
explanatory variables and hypothesizes that a model exists among variables. Then all possible 147 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 October 2017                   doi:10.20944/preprints201710.0108.v1

Peer-reviewed version available at PLoS ONE 2018; doi:10.1371/journal.pone.0201255

http://dx.doi.org/10.20944/preprints201710.0108.v1
https://doi.org/10.1371/journal.pone.0201255


 

 

combinations of causal links among variables are tested against the hypothesized model. Since SEM 148 
is not an exploratory technique, SEM is prone to inferential errors made during development and 149 
selection of the hypothetical models [33]. 150 

We propose utilizing the variation inflation factor (VIF) to minimize multicollinearity. Unlike 151 
other indicators described above, VIF is calculated for each predictor variable. VIF has been used in 152 
the field of remote sensing on a limited basis to check multicollinearity of results [34; 35]. Dubovyk et 153 
al. [36] used VIF to choose variables to enter into a logistic regression model. However, to our 154 
knowledge, VIF has not previously been employed in deriving predictive equations for 155 
water-quality parameters. Details regarding VIF computation and the methodology to include VIF 156 
in equation derivation is discussed below in the Methodology section. 157 

The Landsat program constitutes a truly ideal free data-source candidate for 158 
water-management agencies, given the characteristics of the various Landsat sensors, as well its 159 
long-term data continuity.  The Landsat program has maintained the longest uninterrupted satellite 160 
observation record of Earth from its beginning in 1970s. The Landsat program has employed several 161 
sensors over time including MSS, TM, ETM+, and OLI/TIRS (Landsat 8). Only a few water-quality 162 
studies have taken advantage of combining TM, ETM+, and OLI/TIRS datasets [37, 38, 39] even 163 
though these sensors have been shown to be compatible, as shown in Table 1 [39, 40, 41]. Note Table 164 
1 shows only comparable bands among Landsat TM, ETM+, and OLI/TIRS sensors. 165 

Due to the different band numbering in OLI/TIRS, in this study, numbering of bands will be 166 
based on TM/ETM+. For example, if Band 3 is noted, it means Band 3 for TM and ETM+, but Band 4 167 
for OLI/TIRS. 168 

 169 
Table 1. Band attributes of Landsat TM and ETM+ and OLI/TIRS sensors [39, 40, 41]. 170 

  Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8

TM 

Wavelength 
(µm) 0.45-0.52 0.52-0.60 0.63-0.69 0.76-0.90 1.55-1.75 10.40-12.50 2.08-2.35 n/a 

Sensor spatial 
resolution (m) 30 30 30 30 30 60 30 n/a 

ETM+ 

Wavelength 
(µm) 0.45-0.52 0.52-0.60 0.63-0.69 0.77-0.90 1.55-1.75 10.40-12.50 2.09-2.35 0.52-0.90 

Sensor spatial 
resolution (m) 30 30 30 30 30 60 30 15 

OLI/TIRS 

Wavelength 
(µm) 

Band 2 Band 3 Band 4 Band 5 Band 6 Band 10 Band 7 Band 8 
0.45-0.51 0.53-0.59 0.64-0.67 0.85-0.88 1.57-1.65 10.60-11.19 2.11-2.29 0.50-0.68 

Sensor spatial 
resolution (m) 30 30 30 30 30 100 30 15 

 171 
Based on the gaps in the research literature illustrated above, the objectives of this study were: 172 
1. Incorporate environmental factors (such as temperature, wind speed, etc.) into a single set of 173 

predictive equations for remote-sensing water-quality parameter estimation; and 174 
2. Increase model predictive power for a limnological water-quality parameter-estimation 175 

application by considering the effect of multicollinearity in model creation. 176 
The goal of this study is to address all four concerns of utilizing satellite data in decision 177 

making by water-management agencies—i.e., cost, product accuracy, data continuity, and 178 
programmatic support. This study provides water-management agencies with a simple, 179 
easy-to-follow methodology for utilizing free observation data (from Landsat program, USGS, etc.) 180 
in order to address cost and programmatic-support issues for water-quality monitoring. The 181 
Landsat program guarantees long-term data continuity. The proposed methodology provides a 182 
single set of predictive equations; accuracy is maintained because all available data are consolidated 183 
for the creation of a single model. Also, consideration of multicollinearity increases the likelihood for 184 
acceptable estimation accuracy of the derived model in future water-quality parameter retrieval 185 
applications. 186 

 187 
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2. Methodology 188 

2.1. Study Area 189 

The population of City of Austin, Texas, USA has increased dramatically in recent decades, 190 
from 252,000 in 1970 to 926,000 in 2016 [42]. With significant population growth comes an increase in 191 
impervious area, higher runoff and lower water quality in local water bodies. Lady Bird Lake 192 
(formerly Town Lake), situated near the city center, provides an opportunity to remotely monitor 193 
water quality in an urban watershed (Figure 1). The lake, formed by damming the Colorado River, is 194 
maintained at an approximately constant level by the pass-through Longhorn Dam [43]. The surface 195 
area is ~173.6 hectares with a capacity of 905.1 ha-m. The mean depth is 6 meters, with a maximum 196 
depth over 11.7 meters [44]. 197 

 198 

 199 
Figure 1. Locations of water-quality sampling stations (i.e., Sites AC, CC, DC, and EC) on Lady 200 

Bird Lake. 201 
 202 
The USGS maintains a number of water-quality sampling stations on Lady Bird Lake, but only 203 

four of them, EC, DC, CC and AC (Figure 1), monitor the water-quality constituents of interest in 204 
this study within the time frame of available satellite images (i.e., 1983-2015) [3]. Table 2 provides 205 
basic information for these four sampling stations, including summary statistics for these 206 
water-quality quantities of interest—total suspended solids (TSS), total nitrogen (TN), and total 207 
phosphorus (TP)—derived from water-quality samples collected at a depth of 1 m. Secchi disc 208 
transparency, a pseudo-measure of turbidity, was measured in four locations when the samples of 209 
Table 2 were taken (Table 3). Secchi disc depths were much shallower than the average bottom depth 210 
of the lake (6 m); thus, bottom reflection is not observable from above the air-water interface for 211 
these cases. Therefore, contribution of bottom reflectance to the water-leaving radiance (Equation 1) 212 
can be ignored. 213 

 214 
 215 
 216 
 217 
 218 
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Table 2. Summary statistics from in situ USGS water-quality stations in Lady Bird Lake, Texas, 219 
USA, over the time period 1983-2015. 220 

USGS Water 
Quality Stations 
and Site Codes 

Water-Quality Measures and USGS Parameter Code 
TSS (mg/L)

00530* 
TN (mg/L)

00600* 
TP (mg/L) 

00665* 
# of 

Samples Mean Std. 
Dev. 

# of 
Samples Mean Std. 

Dev. 
# of 

Samples Mean Std. 
Dev. 

EC 
301712097470701** 7 4.57 4.24 11 0.58 0.22 4 0.015 0.0058 

DC 
301558097452201** 8 5.75 5.39 8 0.71 0.36 8 0.023 0.017 

CC 
301546097445101** 4 9.50 5.26 6 0.53 0.14 3 0.023 0.012 

AC 
301500097424801** 9 8.44 10.35 13 0.71 0.25 10 0.035 0.035 

All 28 8.19 7.96 38 0.65 0.24 25 0.026 0.024 
* Water-quality parameter code as assigned by USGS 221 
** USGS station number 222 
 223 
Table 3. Secchi disc transparency measurements for in situ USGS water-quality stations in Lady 224 

Bird Lake, Texas, USA, over the time period 1983-2015 225 

Site Code # of measurements Mean (m) Std. Dev. (m) 

EC 11 2.22 0.86 

DC 10 1.68 0.77 

CC 8 1.23 0.62 

AC 15 1.27 0.60 

2.2. Selection of Satellite Images 226 

Selection of Landsat TM, ETM+, and OLI + TIRS images [45] was based on several criteria. 227 
Images selected were cloud-free and were acquired within seven days of in situ water-quality 228 
measurements in Lady Bird Lake [10, 17]. In order to minimize the effects of spatio-temporally-close 229 
rainfall events, only images that entailed daily precipitation depths less than 1.25 cm (0.5 inch) 230 
observed between the dates of the selected images and their associated water-sampling dates (Table 231 
4) were selected. This threshold rainfall depth is chosen based on the initial abstraction rainfall depth 232 
for a watershed with a runoff curve number of 80, since most of the urbanized area around Lady 233 
Bird Lake is residential [46]. Residential districts with small lot sizes (1/4 to 1/8 acre) have a curve 234 
number ranging from 61 to 92, depending on the soil hydrologic group [47]. Rainfall depth below 235 
this threshold is considered to generate insignificant runoff, and thus should have no marked effect 236 
on water quality in the lake. 237 

 238 
Table 4. Dates of Landsat TM and ETM+ satellite images utilized and respective corresponding 239 

water-quality samples. 240 
Sensor Name Image Date Water-Quality Sampling Date 
Landsat 4 TM January 9, 1983 January 6, 1983 
Landsat 5 TM August 18, 1985 August 20, 1985 
Landsat 5 TM January 15, 1988 January 19, 1988 
Landsat 5 TM April 20, 1988  April 19, 1988 
Landsat 5 TM July 25, 1988 July 27, 1988 
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Landsat 5 TM March 6, 1989 February 27, 1989 
Landsat 5 TM April 7, 1989 April 12, 1989 
Landsat 5 TM August 5, 1992 August 10, 1992 
Landsat 5 TM July 24, 1999 July 22, 1999 
Landsat 5 TM December 20, 2001* December 16, 2001 

Landsat 7 ETM+ April 22, 2009 April 18, 2009 
Landsat 5 TM June 4, 2010 June 3, 2010 

Landsat 7 ETM+ May 14, 2011 May 13, 2011 
Landsat 8 (OLI + TIRS) May 14, 2014 May 14, 2014 
Landsat 8 (OLI + TIRS) March 14, 2015 March 10, 2015 

* Excluded from analysis due to issues with atmospheric correction. 241 

2.3. Atmospheric Correction 242 

2.3.1. FLAASH Theory 243 

Surface reflectance values, ρ, corrected for path radiance, were derived using Fast Line-of-sight 244 
Atmospheric Analysis of Spectral Hypercube (FLAASH®) radiative transfer model [48, 49]. Pixel 245 
values were converted from a digital number (DN) to spectral radiance (L) following the Landsat 246 
Data User Handbook [41], and then corrected to surface reflectance using FLAASH. Note that 247 ܮ = ቀ ஺ఘଵିఘ೐ௌቁ + ቀ ஻ఘ೐ଵିఘ೐ௌቁ +  ௔              (2) 248ܮ

where L is the spectral radiance observed by the sensor; ρ is the “correct” surface reflectance for 249 
the pixel of interest; ρe is the average surface reflectance from the pixel of interest and the 250 
surrounding region; S is the spherical albedo of the atmosphere; Lα is the path radiance 251 
backscattered by the atmosphere; and A and B are coefficients dependent upon atmospheric and 252 
geometric conditions. The distinction between ρ and ρe accounts for adjacency/spatial-mixing effects 253 
[48, 49]. 254 

2.3.2. Image Pre-processing 255 

Because water bodies such as Lady Bird Lake are often generally spectrally dark targets [50], 256 
remote-sensing reflectance from such areas is usually lower than the surrounding urban areas. With 257 
FLAASH, significant errors can occur when strong albedo contrasts exist among the materials in the 258 
scene [49]. To minimize this potential problem, a land mask was created and applied in order to 259 
exclude all surrounding land regions [51], leaving just the aquatic areas (i.e., Lady Bird Lake) for 260 
subsequent atmospheric-correction processing. 261 

2.3.3. Determination of FLAASH Parameter Values 262 

Two of the parameters required by FLAASH are: visibility and choice of atmospheric model.  263 
Visibility obtained from historical airport records [52] caused FLAASH to over-compensate in its 264 
correction of atmospheric effects and yield negative reflectance values. Therefore, the 2-band (K-T) 265 
aerosol retrieval method [49] with “urban” setting was used to estimate visibility. Ideally, selection 266 
of an atmospheric model is based on one of the following options, presented in order from most 267 
preferred to least preferred: known standard column water vapor amount, expected surface air 268 
temperature, or tabulated seasonal-latitude combinations [49]. Although there are atmospheric 269 
water-content products available [53], they do not cover all dates of interest in this research. Surface 270 
temperatures have been continuously recorded and archived by Camp Mabry Austin City Airport 271 
and Austin Bergstrom International Airport every hour over the past 30 years [52]. Therefore, 272 
atmospheric models were selected based on the surface air temperature at the time when each 273 
satellite image was acquired (Table 5). The initially-selected December 20, 2001 image was excluded 274 
from subsequent processing because it yielded negative reflectance values after FLAASH 275 
atmospheric correction. 276 
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Table 5. Selection of FLAASH atmospheric model based on measured surface air temperature. 277 

Image Date Surface Air 
Temperature (°C) 

Chosen Atmospheric 
Model 

Suggested Temperature for 
Model (°C) [49] 

January 9, 1983 11 Sub-Arctic Summer 14 

August 18, 1985 33 Tropical 27 

January 15, 1988 10 Sub-Arctic Summer 14 

April 20, 1988 23 Mid-Latitude Summer 21 

July 25, 1988 31 Tropical 27 

March 6, 1989 2 Mid-Latitude Winter -1 

April 7, 1989 25 Tropical 27 

August 5, 1992 30 Tropical 27 

July 24, 1999 32 Tropical 27 

December 20, 2001 11 Sub-Arctic Summer 14 

April 22, 2009 31 Tropical 27 

June 4, 2010 31 Tropical 27 

May 14, 2011 23 Mid-Latitude Summer 21 

May 14, 2014 21 Mid-Latitude Summer 21 

March 14, 2015 22 Mid-Latitude Summer 21 

 278 

2.3.4. Determination of FLAASH Parameter Values 279 

FLAASH should not be applied to thermal bands [49]; therefore, another 280 
atmospheric-correction method was applied to thermal bands. In particular, the single-band 281 
atmospheric-correction method described by Barsi et al. [54] was used. The methodology calculates 282 
atmospheric transmission and path radiance using MODTRAN [49], based on the atmospheric 283 
profiles generated by National Centers for Environmental Prediction (NCEP). Equation 3 provides 284 
the relationship between top-of-atmosphere radiance (LTOA), the target radiance of kinetic 285 
temperature T (LT), the path (upwelling) radiance (Lu), and the sky (downwelling) radiance (Ld): 286 ்ܮை஺ = ்ܮߝ߬ + ௨ܮ + ߬(1 −  ௗ             (3) 287ܮ(ߝ

In Equation 3, atmospheric transmission τ, path radiance Lu, and sky radiance Ld were obtained 288 
from the on-line calculator based on the atmospheric correction method of Barsi et al. [54]. Since 289 
water is a near-perfect blackbody, emissivity (ε) was set as 1 in this study. Emissivity and 290 
transmission are unitless, whereas radiance values are in units of W/m2·sr·μm. 291 

The atmospheric profiles are only available after January 2000. For satellite images acquired 292 
prior to that, atmospheric profiles from “surrogate dates” in 2000 were used in this study. The 293 
surrogate date has nearly identical daily precipitation, temperature, and wind speed as the satellite 294 
image date. By choosing a surrogate date in such a manner, the atmospheric condition of the actual 295 
satellite image date and the surrogate date are expected to be similar. If more than two surrogate 296 
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dates were found based on the above criteria for one satellite image, the one that is temporally 297 
closest to the date in the year in which a given the satellite image was acquired was chosen. Table 6 298 
provides the list of the satellite image dates, the corresponding surrogate dates, and daily 299 
meteorological parameters for both of them. 300 

 301 
Table 6. Comparison between image and surrogate dates in atmospheric profile 302 

determinations. 303 
 Image date weather parameters Surrogate date weather parameters

Satellite 
Date 

Daily 
rainfall 
(mm) 

Daily 
Mean 

Temp (oC) 

Daily mean 
wind speed 

(m/s) 

Surrogate 
Date 

Daily
rainfall 
(mm) 

Daily 
Mean 

Temp (oC) 

Daily mean 
wind speed 

(m/s) 
Jan 9, 1983 0 11 3.1 Dec 20, 2000 0 11 3.1 

Aug 18, 1985 0 31 3.6 Aug 28, 2000 0 32 3.6 
Jan 15, 1988 0 9 2.8 Nov 13, 2000 0 9 3.6 
Apr 20, 1988 0 21 3.6 Apr 22, 2000 0 20 3.4 
Jul 25, 1988 0 30 3.1 Jul 26, 2000 0 31 3.2 
Mar 6, 1989 0 3 5.8 Dec 27, 2000 0 3 4.1 
Apr 7, 1989 0 22 2.8 May 14, 2000 0 23 2.8 
Aug 5, 1992 0 29 3.1 Aug 20, 2000 0 30 3 
Jul 24, 1999 0 29 1.7 Jul 24, 2000 0 29 1.6 

2.3.5. Determining Surface Temperature from Landsat Thermal Bands 304 

Target temperature (i.e., water surface temperature) was then derived after atmospheric 305 
correction according to equations provided in the Landsat Data User Manual [41]. For Landsat 306 
ETM+, the low-gain channel was used because the signal reflected from water-column constituents 307 
entail low signal strength. For Landsat TIRS, only band 10 was used because data from band 11 have 308 
been contaminated by a stray-light effect, and a remedy has not yet been found [55].  Bands 10 and 309 
11 here are band numbering from Landsat TIRS. 310 

2.3.6. Post-processing for Atmospherically-Corrected Surface Reflectance 311 

Surface reflectance values at the water-quality stations were extracted from the 312 
FLAASH-corrected satellite images. Pixels located at the exact coordinates of the respective 313 
water-quality sampling stations are not necessarily the ideal pixels for which reflectance values 314 
should be extracted. Reasons for this include the geometric-offset error between the map coordinates 315 
of a pixel and actual corresponding in situ sampling planimetric locations; random surface debris; 316 
light unpredictably scattered or reflected into the instantaneous field-of-view (IFOV) of the sensor or 317 
onto the aquatic area of interest [56]; and optically shallow water near the sampling stations, 318 
yielding potentially confounding issues associated with bottom reflectance. To compensate for this, 319 
the search range was expanded to 90 m (i.e., a search neighborhood comprised of 3 x 3 image pixels, 320 
centered around the pixel located at the station coordinates). The pixel within this zone with the 321 
lowest value in band 5 was considered to contain the most information regarding water-column 322 
constituents [57]. If two pixels had the same band 5 values, the pixel closest to the coordinates of 323 
water-quality sampling location was selected. 324 

2. Multiple Regression Analysis  325 

Multiple regression equations were derived to predict constituent concentrations (TSS, TN, and 326 
TP, i.e. the dependent variables) from the predictor variables, such as band reflectance. The 327 
procedure for selection of predictor variables is delineated below. 328 

 The spectral bands and associated band ratios were all chosen as candidates for independent 329 
variables.  Band ratios were included as independent variables in the regression analysis [10] 330 
because they are less apt to be influenced by lighting conditions [56]. 331 
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Radiance data from the thermal bands (band 6 of Landsat TM and ETM+, and band 10 of 332 
Landsat TIRS) were converted to water surface temperature.  As discussed, water temperature has 333 
been found to be related to phytoplankton concentration [23, 24], and thus, related to water quality 334 
[58]. However, in this study, most of the satellite image dates differ by several days compared with 335 
the closest corresponding actual water-quality sampling date; thus, the water surface temperature 336 
derived from the satellite images does not represent the actual water temperature at the time of 337 
water sampling. 338 

Equation 4 considers the net energy fluxes between a waterbody and the atmosphere [59]: 339 ܰܶܧ = ܹܴܵ௡௘௧ − ௡௘௧ܴܹܮ) + ܨܪܮ +  340 (4)           (ܨܪܵ
where NET is the net energy flux, SWRnet indicates the net short-wave radiation energy flux 341 

(Equation 5), LWRnet indicates the net long-wave radiation flux (Equations 6 and 7), LHF is the 342 
latent heat flux (Equation 8), and SHF is the sensible heat flux (Equation 9).  These terms are 343 
calculated by the following equations [59]: 344 ܹܴܵ௡௘௧ = (1 − ܽ)ܹܴܵௗ௢௪௡              (5) 345 ܴܹܮ௡௘௧ ≈ ߪߝ ௦ܶସ ቀ0.39 − 0.05݁௔భమቁ (1 − (ଶܥ0.51 + ߪߝ4 ௦ܶଷ( ௦ܶ − ௔ܶ)      (6) 346 

and ܥ ≈ 1.61(1 − ௌௐோ೏೚ೢ೙ௌௐோ೎ೞ + ܨܪܮ 347 (7)            (0.0019݊ = ௘ܷ(ܳ௦ܥ௘ܮߩ − ܳ௔)              (8) 348 ܵܨܪ = )௛ܷܥ௣ܥߩ ௦ܶ − ௔ܶ)               (9) 349 
where ܽ is the surface albedo (usually very low for water so SWRnet ≈ SWRdown), ε is the surface 350 

emissivity (≈ 0.97), σ is the Stefan-Bolzman constant, Ts is the water surface temperature, Ta is the air 351 
temperature, ea is the surface vapor pressure, C is the cloud cover index (Equation 7), SWRcs is the 352 
clear-sky short wave radiation, n is the noon solar altitude, ߩ is the density of air, Le is the latent 353 
heat of evaporation, Ce is the turbulent exchange coefficient for latent heat, U is the wind speed, Qs 354 
and Qa are saturation specific humidity at the surface and at near-surface atmosphere, respectively, 355 
and Ch is the turbulent exchange coefficient for sensible heat. 356 

Some of the variables in Equations 5 to 9 are known or can be reasonably assumed as constants 357 
(such as ܽ, ε, σ, ߩ, Le, Ce, and Ch [60]). The surface vapor pressure, ea, is dependent on water surface 358 
temperature [61]. Qs and Qa are both dependent on temperature as well [62]. The air temperature 359 
and noon solar altitude (Ta, and n respectively) can be obtained from the historical observation 360 
record. The water surface temperature Ts is obtained from thermal band data. That leaves only one 361 
variable unknown, which is the clear-sky short wave radiation SWRcs. Calculating SWRcs involves a 362 
complex procedure [63] so it is difficult to associate it with distinct environmental factor(s); thus, we 363 
did not consider it in evaluating heat flux in this study. 364 

Assuming that the temperature change between the image date and the water-sampling date 365 
directly corresponds with the cumulative heat flux between the dates, the following variables are 366 
needed in order to account for the temperature change between the image-acquisition date and the 367 
water-sampling date [52]: 368 

1. Time offset (in days) between the image date and the water-quality sampling date (positive 369 
offset means that the image date is later than the sampling date);  370 

2. Water surface temperature (in K) derived from the thermal band; 371 
3. Air temperature (in K): both instantaneous temperature at the time of satellite image 372 

acquisition, and daily mean air temperature between the image date and the water-quality sampling 373 
date are considered; 374 

4. Wind speed (in m/s): both instantaneous wind speed at the time of satellite image acquisition 375 
and the daily mean wind speed between the image date and the water-quality sampling date are 376 
considered; and 377 

5. Noon solar altitude (in degrees): the mean noon solar altitude between the image date and 378 
the water-quality sampling date.   379 

Instantaneous temperature and wind speed were interpolated from the hourly historical data 380 
[52]. And further considering Equations 5 to 9, the full list of variables considered in the multiple 381 
regression process is provided in Table 7. A look-up table between variable abbreviations and 382 
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variable descriptions is provided as Table 8. As described above, in this study, the band number is 383 
based on band-numbering scheme for TM and ETM+. 384 

 385 
Table 7. Reflectance bands (i.e., band (B1), band 2 (B2), etc.) and ratios used in the 386 

variable-selection process. 387 
Water 

constituent 
# of valid 

observations Initial predictor variables before p-threshold test 

TSS 28 
B1, B2, B3, B4, B2/B1, B3/B1, B4/B1, B3/B2, B4/B2, B4/B3, Doff, 

Ts, Ta, Tmean, Ts-Ta, Ts-Tmean, W, Wmean, Alt, Alt2 TN 38 
TP 25 

 388 
Table 8. Look-up table for variable abbreviation and description of variables. 389 

Variable 
abbreviations Variable description 

B1, B2, B3, B4 Reflectance value for Band 1, Band 2, Band 3, and Band 4, respectively. 
Doff Date offset between the image date and the water-quality sampling date 
Ts Water surface temperature derived from the remote-sensor thermal band 
Ta Instantaneous temperature at time of satellite image acquisition 

Tmean Daily mean air temperature between the image date and the water quality 
sampling date 

W Instantaneous wind speed at the time of satellite image acquisition 

Wmean 
Daily mean wind speed between the image date and the water quality 

sampling date 

Alt 
Mean noon solar altitude between the image date and the water-quality 

sampling date 
  390 
Selection of predictor variables is based on a hybrid forward selection that considers the 391 

variation inflation factor (VIF).  In conventional forward selection, variables are added to the 392 
regression one at a time, starting with no predictor variables being selected. The p-value threshold 393 
includes a predictor in the regression equation if its p-value is below a “probability to enter,” and 394 
includes a predictor that will most improve the fit first (i.e., “forward”).  A default value of 0.25 in 395 
JMP [64] was used for “probability to enter.” 396 

In addition to p-value, the variation inflation factor (VIF) was used to minimize 397 
multicollinearity of the model. Multicollinearity occurs when a predictor variable is a linear 398 
combination of other predictor variables in the model. The direct consequence of multicollinearity is 399 
that the error variance is inflated, which may result in low prediction power if the overfitted model 400 
is used with a new set of data. VIF is calculated as: 401 ܸܨܫ௝ = 1 (1 − ௝ܴଶ)൘                 (10) 402 

where ௝ܴଶis the multiple coefficient of determination between the j-th predictor variable of 403 
interest and the rest of the predictor variables. The rule of thumb to avoid serious multicollinearity is 404 
that all chosen predictor variables should have VIF less than 10 [65]. Unlike other criteria such as 405 
Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and Mallow’s Cp, VIF is 406 
generated for each predictor variable. Also, VIF has a suggested absolute criterion, whereas other 407 
criteria (AIC, BIC, Cp, etc.) provide only relative comparison between models. 408 

We propose a novel approach that considers VIF while adding variables in forward selection.  409 
When a variable is added according to the rules of forward selection, VIFs of all included variables 410 
(including the one that is just added) are also checked. If VIFs are all below the threshold of 10, the 411 
newly-added variable is allowed, and the next variable is chosen according to the rule of forward 412 
selection. However, if any VIF is found to be larger than the threshold for any of the variables, the 413 
most recently-added variable is deleted and the selection procedure stops. Coefficients of variables, 414 
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p-values, and VIF are dynamically recalculated when any variable is deleted from the model. The 415 
procedure is illustrated in Figure 2. 416 

 417 
Figure 2. Flow chart of the hybrid forward-selection process for selecting predictor variables in 418 

multiple regression analysis. 419 
The derived multiple linear equations were then validated by bootstrapping and 420 

Leave-One-Out Cross Validation (LOOCV).  Bootstrapping and LOOCV are both resampling 421 
methodologies [66]. Bootstrapping assumes that samples (i.e., observations – sets of response and 422 
associated prediction variables in this case) represent the whole population, so a random resampling 423 
from the samples provides a prediction of what one expects to encounter (statistically) from 424 
unknown, future data. LOOCV leaves one sample out at a time and calibrates for the coefficients of 425 
predictor variables based on the rest of the observations. The left-out sample is used for validation. 426 
The package CARET in the software R [67] was used to perform validation by bootstrapping and 427 
LOOCV. For bootstrapping, 1000 trials were specified. 428 

3. Results 429 

The best-fitting regression equations chosen by the hybrid forward selection for each 430 
water-quality constituent (TSS, TN and TP) are provided in Table 9. The results in Table 9 include 431 
the predictor variables, importance of the predictor variable, associated regression coefficients and 432 
standard error, 95% confidence intervals for the regression coefficients, p-values, and VIF values for 433 
each of the response variables (TSS, TN, and TP). The importance values are calculated by dividing 434 
the change in R2 when the variable of interest is dropped from the model by the overall R2 when the 435 
variable of interest is included [68]. The sum of importance values of all variables does not equal to 1 436 
since the importance is relative only. Note that the response variables are transformed to obtain a 437 
better regression fit, and the band-numbering convention is based on TM and ETM+ band numbers, 438 
as discussed previously. 439 

Table 9. Best fitting multiple regression models for TSS, TN and TP using the hybrid forward 440 
selection considering VIF. 441 

Coefficient of 
predictor 

Confidence 
Interval for 
coefficient 

 

Resp. 
Variable R2 

Num. 
of 

Obs. 

Pred. 
Variable 

Imp. 
of Var. Value Std. 

Error 
Lower 

95% 
Upper 

95% p VIF 
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૛ࡿࡿࢀ√  0.68 28 

(intercept) - -0.67 0.50 -1.69 0.36 0.19 - 
B3/B1 0.93 1.67 0.24 1.16 2.17 <0.0001 1.21 

W 0.21 0.21 0.065 0.077 0.34 0.0034 1.08 
Ts-Tmean 0.04 0.038 0.027 -0.018 0.093 0.18 1.16 

૛ࡺࢀ√  0.62 38 

(intercept) - 4.36 0.91 2.50 6.21 <0.0001 - 
Wmean 0.39 -0.053 0.012 -0.078 -0.029 <0.0001 1.26 

Ts 0.32 -0.012 0.0031 -0.019 -0.0062 0.0003 1.31 
B1 0.18 4.50 1.50 1.44 7.55 0.0053 2.35 

B4/B1 0.11 -0.049 0.020 -0.090 -0.0089 0.018 2.73 
Doff 0.11 -0.013 0.0051 -0.023 -0.0021 0.020 1.18 

B2/B1 0.05 0.11 0.067 -0.030 0.24 0.12 4.50 

 25 0.79 (ࡼࢀ)ࢍ࢕࢒

(intercept) - 26.40 9.57 6.30 46.50 0.013 - 
Alt2 0.27 0.00049 0.00012 0.00024 0.00073 0.0005 7.13 
Ts 0.16 -0.11 0.034 -0.18 -0.039 0.0044 8.68 

Doff 0.06 0.050 0.024 0.00028 0.10 0.049 1.77 
B3/B2 0.06 1.16 0.57 -0.044 2.36 0.058 1.72 

W 0.04 -0.10 0.062 -0.23 0.026 0.11 3.06 
Wmean 0.04 -0.11 0.065 -0.24 0.032 0.12 1.84 

 442 
The resulting multiple regression-based models are provided in Equations 11 to 13: 443 ܶܵܵ = (−0.67 + 1.67 ∙ ஻ଷ஻ଵ + 0.21 ∙ ܹ + 0.038 ∙ ( ௦ܶ − ௠ܶ௘௔௡))ଶ       (11) 444 ܶܰ = (4.36 − 0.053 ∙ ௠ܹ௘௔௡ − 0.012 ∙ ௦ܶ + 4.5 ∙ 1ܤ − 0.049 ∙ ஻ସ஻ଵ − 0.013 ∙ ௢௙௙ܦ + 0.11 ∙ ஻ଶ஻ଵ)ଶ (12) 445 ܶܲ = ݁(ଶ଺.ସା଴.଴଴଴ସଽ∙஺௟௧మି଴.ଵଵ∙ ೞ்ା଴.଴ହ∙஽೚೑೑ାଵ.ଵ଺∙ಳయಳమି଴.ଵ∙ௐି଴.ଵଵ∙ௐ೘೐ೌ೙)       (13) 446 
Plots of the observed versus predicted concentrations of TSS, TN, and TP are plotted in Figures 447 

3, 4, and 5, respectively. The 1:1 line is added to all three figures.  448 

 449 
Figure 3. Observed versus predicted values for total suspended solids (TSS) (R2 = 0.68). 450 

 451 
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 452 
Figure 4. Observed versus predicted values for total nitrogen (TN) (R2 = 0.62). 453 

 454 

 455 
Figure 5. Observed versus predicted values for total phosphorus (TP) (R2 = 0.79). 456 

 457 
The derived multiple linear predictive equations were validated by bootstrapping and LOOCV.  458 

The results are shown in Table 10. Table 10 shows that the equations have satisfactory predictive 459 
power for future, unknown data since validation R2 values are above 0.5, except for weaker results 460 
regarding TN [69]. 461 

 462 
 463 
 464 
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Table 10. Validation results of the predictive equations. 465 
Equation Calibration R2 Validation R2 from Bootstrapping Validation R2 from LOOCV 

TSS 0.68 0.62 0.55 
TN 0.62 0.46 0.47 
TP 0.79 0.53 0.54 

4. Discussion 466 

The multiple linear equations derived from the regression analysis indicate that 467 
weather-related variables play an important role in predicting water-quality parameters. In fact, 468 
many weather variables bear more importance than the multispectral variables do. The relative 469 
importance of each variable is provided in Table 9. If all the weather variables are stripped from 470 
Table 9, the predictive variables related to Landsat bands alone provide only coefficients of 471 
determination, R2, of 0.53, 0.26, and 0.36 for TSS, TN, and TP, respectively. 472 

Kloiber et al. [10] found that both B1 and the ratio B3/B1 can be used to predict the Secchi disk 473 
transparency, which is closely related to TSS. From Kloiber et al. [10], the regression model 474 
containing B3/B1 and B1 predicted Secchi disk transparency with R2 of 0.75. We also found B3/B1 as 475 
the dominant important variable in determining TSS concentrations, but did not find B1 as one of the 476 
significant prediction variables. Kloiber et al. [10] accrued a higher R2 than our study since Kloiber et 477 
al. limited their in situ data collection to ±1 day from the corresponding satellite image acquisitions. 478 
In the current study, the predictive equation that includes B3/B1 alone has a R2 of 0.53 for TSS 479 
because our available data only allows in situ samples to be ±7 days from satellite image acquisitions.  480 
Considering weather variables successfully boosted R2 to 0.68, such that it was comparable with that 481 
of Kloiber et al. [10] (i.e., 0.75). 482 

For TSS, we found the instantaneous wind speed, W, to be an important prediction variable. 483 
Since the instantaneous wind speed is chosen, instead of the daily mean wind speed between the 484 
image date and the water-quality sampling date (Wmean), it indicates that the instantaneous effect of 485 
wind (such as the surface ripple effect) is more important to TSS determination than the long-term 486 
heat-exchange effect. Even though the difference between the water surface temperature and the 487 
daily mean air temperature between the image date and the water-quality sampling date is selected 488 
as one of the prediction variables, it is of little importance in the model. It was chosen because the 489 
default forward-selection method has a lenient inclusion criterion (p = 0.25).   490 

Dewidar and Khedr [9] determined that the band ratio B2/B1 is important in determining the 491 
TN concentration in brackish lagoons. However, the correlation between B2/B1 and TN was low in 492 
Dewindar and Khedr [9], with a correlation coefficient of 0.298. B2/B1 was also chosen by this study 493 
as one of the predictor variables, but B2/B1 still bears little predictive power as shown in Table 9. In 494 
contrast, the daily mean wind speed between the image date and the water-quality sampling date 495 
(Wmean) and water surface temperature (Ts) were determined to be the two most important predictor 496 
variables for TN prediction. 497 

The high importance of water surface temperature Ts fortified the hypothesis that water 498 
temperature is related to the growth of microorganisms. The high importance of the daily mean 499 
wind speed between the image date and the water-quality sampling date (Wmean) and date difference 500 
(Doff) indicate that temperature change due to accumulated heat flux between the image date and 501 
sampling date is important. Referring to Equations 8 and 9, the mechanism involved should be the 502 
latent heat flux because latent heat flux (Equation 8) and sensible heat flux (Equation 9) are the only 503 
two components in the heat flux budget that involve wind speed. Latent heat flux is a main 504 
component of heat exchange between water and the atmosphere, and sensible heat plays a much 505 
lesser role [70]. 506 

As for TP, similar to TN prediction, the water surface temperature Ts still bears considerable 507 
importance. However, wind speed and Doff are not as important for estimating TP as it is for TN 508 
prediction, as the relative importance of variables in Table 9 indicates. It is intriguing that the square 509 
of noon solar altitude, Alt2, has high importance in TP prediction. Referring to Equations 6 and 7, 510 
this implies that long wave radiation cooling correlates well with TP prediction. The weak 511 
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importance of wind speed and a strong importance of solar altitude for TP prediction jointly suggest 512 
that long wave radiative cooling constitutes the main process important for predicting TP 513 
concentration. 514 

It is worth noting that, for TP prediction, optical multispectral data variables yield insignificant 515 
prediction power, and most of the prediction power is contributed by Alt2 and Ts. 516 

From the analyses above, it seems that determinations of TN and TP are influenced by quite 517 
different components of the net heat flux between air and water. For TN, latent heat flux seems to be 518 
the dominant factor, but long wave radiative cooling seems to be the dominant factor for TP. In other 519 
words, the difference in how the budget of cumulative heat flux between the image and sampling 520 
dates is constructed has different effects on water-quality constituents related to TN or TP. This can 521 
be reasoned by two effects: 522 

1. TP concentration is highly correlated with chlorophyll-a [71], which is the photosynthetic 523 
pigment in algae or phytoplankton. However, optimal algae growth is at a depth within the water 524 
column [72], which means the transient change in heat flux due to wind speed at the surface will 525 
correlate poorly with algae growth.    526 

2. Solar altitude affects not only long wave radiation, but also the penetration depth of light into 527 
the water column [73], which affects growth of phytoplankton, or algae, in water.  Since the offset in 528 
correlation between chlorophyll-a concentration and TP concentration has seasonal variations [74], 529 
including solar altitude Alt (or the closely correlated square of solar altitude Alt2) in the predictive 530 
model can account for the seasonal offset.   531 

The inclusion of Alt2 in the model probably signifies the combined effect of both effects. 532 

5. Field Application 533 

To demonstrate the utility of water-quality monitoring by satellites via our proposed method, 534 
water-quality quantities for Lady Bird Lake on May 14, 2014 were estimated using Equations 11 to 535 
13, respectively. This date was chosen because storms occurred the previous day and also the 536 
morning of the satellite flyover day before flyover time with cumulative rainfall depth of 27 mm, 537 
likely making it easier to discern the effect of urban stormwater runoff to the lake. Figures 6 to 8 give 538 
the respective predicted spatial distribution of TSS, TN, and TP concentrations. 539 

The water quality in the northwestern part of the lake is generally better than that in the 540 
southeastern extent, which is expected as a result of urban runoff. Lady Bird Lake has three major 541 
tributaries in the metropolitan Austin area: Barton Creek, Shoal Creek, and Waller Creek. The 542 
confluence points of the three streams are indicated in Figures 6-8. Barton Creek entails an extensive 543 
green belt around its riparian zone, and strict development regulations are in force because it is 544 
located within the Edwards Aquifer recharge zone [75]. As a result, there is no marked change in 545 
TSS, TN, and TP at the confluence point of Barton Creek, relative to proximal areas of the lake. To the 546 
contrary, the confluence points of Shoal Creek and Waller Creek show significant increase in TSS, 547 
TN, and TP. This illustrates the effects of amount of conservation efforts spent on each watershed. 548 
The influence of Shoal Creek is more visible in Figures 6-8 than that of Waller Creek because Shoal 549 
Creek has a larger drainage area [76]. Such details in spatial distribution can only be achieved via 550 
satellite-derived water-quality predictions and can serve as the precursor examination for more 551 
detailed water-quality examinations. 552 

 553 
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 554 
Figure 6. TSS concentrations for Lady Bird Lake, Austin, Texas, USA, May 14, 2014. 555 

 556 

 557 
Figure 7. TN concentrations for Lady Bird Lake, Austin, Texas, USA, May 14, 2014. 558 

 559 

 560 
Figure 8. TP concentrations for Lady Bird Lake, Austin, Texas, USA, May 14, 2014. 561 

6. Conclusions 562 

Multiple regression-derived equations using reflectance bands, band ratios, and environmental 563 
factors as predictor variables for concentrations of TSS, TN, and TP, respectively, were derived using 564 
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a hybrid forward-selection method that considers VIF in the forward-selection process. Landsat TM, 565 
ETM+, and OLI/TIRS (Landsat 8) images were all used to derive the single set of equations. The 566 
coefficients of determination of the best-fitting resultant equations varied from 0.62 to 0.79. The 567 
predictive equations were also validated by bootstrapping and LOOCV with coefficients of 568 
determination in the range of 0.46 to 0.62. 569 

Among all chosen predictor variables, B3/B1 has the strongest influence on the predictive 570 
power for TSS retrieval. The band ratio of B3/B1 was also selected by Kloiber et al. [10] in predicting 571 
Secchi disc transparency, indicating a correlation between Secchi disc transparency and TSS. Other 572 
reflectance bands and band ratios, such as B1, B2/B1, B4/B1, and B3/B2 are also influential in 573 
estimating TN and TP concentrations, but they are not dominant factors. 574 

Environmental factors, such as wind speed and water surface temperature, were crucial in 575 
determination of water-quality parameters in this study. Inclusion of environmental factors allows 576 
usage of a single set of predictive equations across the seasons, as such predictive equations are 577 
innately adapted to the environmental changes for different seasons. The predictive equation will 578 
also likely to be more accurate because the pooling of all observation data. 579 

The instantaneous wind speed, W, bears considerable importance in TSS determination, which 580 
is explained by wind-generated surface ripple effects. Water surface temperature Ts (derived from 581 
satellite remote-sensor thermal band image data) is important in determination of both TN and TP 582 
concentrations, as the growth of microorganisms in water is correlated with water nutrient 583 
concentrations. 584 

However, the time offset between the satellite image-acquisition date and water-sampling date 585 
must be accounted for in water nutrient parameter (i.e., TN and TP) retrieval. The heat flux budget 586 
between air and the water surface was considered, and components in the budget equations were 587 
included in the forward-selection procedure. In additional to the predictor variables identified 588 
above, the daily mean wind speed between the image-acquisition date and water-sampling date 589 
(Wmean) and square of noon solar altitude (Alt2) were identified as the most important predictor 590 
variables for TN and TP determinations, respectively. The time difference (in days) between the 591 
image-acquisition date and water-sampling date (Doff) was also chosen for TN and TP 592 
determination. 593 

According to the heat flux budget equations, the inclusion of Wmean, Ts, and Doff indicates the 594 
dominance of latent heat flux in the determination of TN. On the other hand, the inclusion of Alt2, 595 
Doff, and Ts in the TP model is an expression of the higher weight of long wave radiation cooling in 596 
TP estimation. Since chlorophyll-a concentration is highly correlated with TP concentration, we 597 
hypothesized that latent heat cooling is less important in TP determination because phytoplankton 598 
has the highest growth rate at a certain depth in water, which is less correlated with transient heat 599 
flux from evaporation at the surface. 600 

The results showed that: 601 
1. Environmental factors can constitute important ancillary variables in water-quality 602 

parameter estimation based on satellite remote-sensor images; 603 
2. By including environmental factors, it is feasible to pool all observation data to create a single 604 

set of predictive equations, and use it to estimate water quality for all seasons; 605 
3. A single set of predictive equations can be determined to retrieve year-round water-quality 606 

parameters (i.e., TSS, TN, and TP) with satisfactory accuracy from Landsat TM, ETM+, and OLI/TIRS 607 
imagery on the same lacustrine water body;  608 

4. The derived predictive equations are robust enough to withstand the drastic change in the 609 
environment over 30+ years (1983 to 2015) while population in the metropolitan area almost tripled 610 
(from 373,000 in 1983 to 900,000 in 2015) over the same period of time [42]; and 611 

5. Including VIF as part of the forward-selection process comprises a reliable methodology for 612 
choosing predictor variables. 613 

In the future, the hybrid forward-selection method can be further refined to entail a stricter 614 
criterion for the inclusion of predictor variables. The default p=0.25 incurred inclusion of a few 615 
predictor variables that were not significant in the final selection of variables.   616 
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In addition, inclusion of ancillary environmental factors involving long-term averaging, such as 617 
average wind speed (Wmean), into the regression models demonstrated that it is possible to 618 
satisfactorily estimate water-quality parameters, even when a large temporal offset between satellite 619 
image-acquisition and in situ water sampling exists. Currently, the recommended longest temporal 620 
window between remote-sensor image-acquisition and water-sampling date is approximately seven 621 
days [17]. Since these environmental factors are part of the heat flux equations, including 622 
environmental factors in predictive equations means an active compensation in estimation error due 623 
to the temporal offset in collecting image and water-sample data. This hypothesis needs further 624 
testing as part of future research efforts. 625 
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