Preprint
Article

Docosahexaenoic Acid Induces Cell Death through Downregulation of Hedgehog Signaling via Surt6 Activation in Human EGFR Mutant Non-Small Cell Lung Cancer

Altmetrics

Downloads

734

Views

566

Comments

0

Submitted:

20 October 2017

Posted:

24 October 2017

You are already at the latest version

Alerts
Abstract
Omega-3 polyunsaturated fatty acids (ω3-PUFAs), including docosahexaenoic acid (DHA), have been shown to exert anticancer effects by inducing apoptotic cell death. However, the mechanism for DHA-induced cell death in lung cancer is not fully understood. Here, we show that DHA induces apoptosis in two human EGFR mutant non-small cell lung cancer (NSCLC) cell lines, and that DHA-induced cell death is accompanied by SIRT6 activation and attenuated Hedgehog (Hh) signaling. Knockdown of SIRT6 using siRNAs inhibited DHA-induced apoptosis, whereas SIRT6 overexpression increased apoptotic cell death. DHA-induced SIRT6 activation was associated with downregulation of Hh signaling, and knockdown of SIRT6 resulted in augmentation of Hh signaling. Pretreatment of NSCLC cells with a Smoothened agonist prevented DHA-induced decreases in the levels of Hh signaling proteins and increases in cleaved PARP levels. Moreover, endogenous production of ω3-PUFAs in PC9 cells via fat-1 expression resulted in elevated SIRT6 levels and reduced levels of Hh signaling molecules, including Gli, following DHA treatment. Overall, these results implicate that ω3-PUFAs induce apoptosis by downregulating Hh signaling via SIRT6 activation in human EGFR mutant NSCLC cells. These findings suggest that ω3-PUFAs potentially represent an effective therapy for the chemoprevention and treatment of NSCLC.
Keywords: 
Subject: Medicine and Pharmacology  -   Oncology and Oncogenics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated