

1 Article

2 Does Marine Surface Tension Have Global Biogeography? 3 Addition for the OCEANFILMS Package

4 Scott Elliott ^{1,*}, Susannah Burrows ², Philip Cameron-Smith ³, Forrest Hoffman ⁴, Elizabeth
5 Hunke ¹, Nicole Jeffery ¹, Yina Liu ², Mathew Maltrud ¹, Oluwaseun Ogunro ⁴, Luke Van Roekel ¹,
6 Shanlin Wang ¹, Michael Brunke ⁵, Clara Deal ⁶, Meibing Jin ⁶, Robert Letscher ⁷, Nicholas
7 Meskhidze ⁸, Lynn Russell ⁹, Isla Simpson ¹⁰, Dale Stokes ⁹ and Oliver Wingenter ¹¹

8 ¹ Climate Ocean Sea Ice Modeling (COSIM), Los Alamos National Laboratory, New Mexico USA; sme@lanl.gov

9 ² Atmospheric and Environmental Molecular Science Divisions, Pacific Northwest National Laboratory, Richland,
10 Washington USA; Susannah.Burrows@pnnl.gov

11 ³ Atmosphere and Energy Division, Lawrence Livermore National Laboratory, California USA; cameron smith1@llnl.gov

12 ⁴ Computational Earth Sciences Group, Oak Ridge National Laboratory, Tennessee USA; forrest@climatemodeling.org

13 ⁵ Department of Atmospheric Sciences, University of Arizona, Tucson, Arizona USA; brunke@atmo.arizona.edu

14 ⁶ International Arctic Research Center, Fairbanks, Alaska USA; clara.deal@gmail.com, mjin@alaska.edu

15 ⁷ Department of Marine Sciences, University of New Hampshire, Durham, New Hampshire

16 USA; robert.letscher@uci.edu

17 ⁸ Marine and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina USA; nmeskhi@ncsu.edu

18 ⁹ Scripps Institution of Oceanography, San Diego, California USA; lmrussell@ucsd.edu, dstokes@ucsd.edu

19 ¹⁰ National Center for Atmospheric Research, Boulder, Colorado USA; islas@ucar.edu

20 ¹¹ Chemistry Department, New Mexico Institute of Mining and Technology, Socorro, New Mexico USA; oliver@nmt.edu

21 * Correspondence: sme@lanl.gov; Tel.: +01-505-606-0118

22 **Abstract:** We apply principles of Gibbs phase plane chemistry to and across the entire
23 ocean-atmospheric interface. Surface tension increments support a two dimensional, tangential
24 pressure well known to determine rates of bulk gas, bubble, salt, spray and momentum transfer
25 plus both sensible and latent heat fluxes. Hence it is worth asking whether tension mapping
26 follows from current understanding of two dimensional composition. A history is provided
27 dating back centuries and demonstrating that detrital organic macromolecules are central; subtle
28 surfactant functional variation creates a microforcing field which dissipates turbulent energy at
29 the sub-meter scale. Since we have just distributed major biopolymeric classes emitted as primary
30 organic aerosol, further climate links can be established by considering full planar
31 thermochemistry. Organic microlayer behaviors are reviewed with attention to confined, analog
32 phase transitions among two dimensional “solid, liquid, (and) gaseous” states serving as elasticity
33 indicators. We also discuss surfactant properties of general marine dissolved organic carbon,
34 demonstrating that only proteins and lipids are capable of occupying significant local micro-area.
35 The literature often suggests albumin and stearic acid as best proxies, and so we distribute their
36 concentrations through multilevel global ecodynamic simulations. Consensus distributions are
37 obtained in order to control adsorptive equilibria. Working from conservation of planar free
38 energy, a parametric equation of state is devised relating excess coverage to the surface
39 pressure-modulus. Constant settings for the proxy pair are drawn from laboratory study, and they
40 successfully reproduce frequencies for surfactant solid-to-gas occurrence in ambient compression
41 experiments. Functionally resolved organic measurements are rare and so we group them into
42 super-ecological province tables showing that our bulk concentration estimates are reasonable.
43 Outputs are then fed into a coverage-tension-elasticity code. Resulting contours traverse the
44 critical range for piston velocity, bubble-spray and damping effects on either a regional or
45 seasonal basis. There is also a possibility for widespread microlayer crystallization in polar seas.
46 The concepts are a direct extension of our organic aerosol work, and the two approaches could be

47 inserted into Earth System Models in tandem. Uncertainties in the logic are enumerated and
48 include kinetic and thermochemical factors at multiple scales. But the problems are reducible
49 through molecular modeling coupled to renewed laboratory and field study. Connections to
50 marine colloids-gels, microlayer iron chelation, and linings of the ice channel network are
51 discussed additionally.

52 **Keywords:** Gibbs phase plane; surface tension and pressure; gas, momentum and heat fluxes;
53 biogeochemical mapping; organic macromolecules; surfactants; elasticity; proteins; lipids;
54 compression; two dimensional equation of state

55 1. Introduction

56 Composition of the marine atmospheric interface determines surface tension across most of the
57 exterior of the planet [1-9], so that fluxes of multiple climate-critical quantities are effectively
58 modulated through a single physicochemical-energetics filter. Transfer of trace greenhouse and
59 aerosol-source gases, organic and salt aerosol mass, momentum, heat and water vapor are all
60 defined by chemistry-driven gradients in tension at the sea-air boundary [10-15]. It has long been
61 suspected that variable concentration patterns of detrital, surface-active biomacromolecules exert
62 key control over upper ocean and microlayer dynamics, differing in their tension influence among
63 diverse regional ecosystems. Structural identities must not only be known for the compounds
64 involved but also distributed geographically in order to assess this possibility; organic functional
65 groups closely constrain the two dimensional forces imparted [6,16-19]. Several attempts have been
66 made to simulate the geophysical effects of high molecular weight surfactants at the level of Earth
67 System Modeling, but this has been done mainly by assuming proportionality of the collective
68 material to chlorophyll [20-24]. Mixed layer pigments are detectable from space, and indeed they
69 necessarily track source biota for the surface organics, so that this has proven to be an eminently
70 reasonable starting point. But detailed microchemical information remains lacking.

71 In our own aerosol-oriented group, we have recently become interested in constructing
72 biogeographies for individual classes of macromolecule, since functionality plays strongly into the
73 generation of sea spray [4,25-29]. Our initial angle has been that of adsorption -upper ocean films
74 accumulate and are sculpted through surfactant equilibration and the intense physicochemical
75 competition for microlayer sites. Such processes regulate both organic and salt mass entering
76 primary marine aerosol modes through bubble breaking [30-33]. Isotherms representing surfactant
77 families that reside along bubble interfaces were tested then inserted into global biogeochemistry
78 calculations, accompanied by full modern mapping techniques [30,33]. Improvements to the
79 simulation of primary aerosol mass have already been realized [31].

80 But adsorption of high molecular weight organics necessarily also implies alterations to the
81 fundamental tension property of the global interfacial system. This takes place through classic two
82 dimensional (Gibbsian) equivalency of the chemical potential [5,34-37]. In the present work, we
83 extend the adsorptive surfactant calculations to assess any need which may exist for development
84 of a further bioorganic geography –that of the film tension. We construct chemically driven global
85 patterns and maps for this key quantity, or more precisely speaking for its absolute reduction
86 known traditionally as the two dimensional pressure (tangential [2,36,38]). Crude, ideal equations
87 of state are constructed which apply in a preliminary fashion to the full, planet encircling marine
88 microlayer. We perform the implied mapping exercises first at the scale of marine biogeochemical
89 provinces [39-40], selecting and grouping them to optimize our use of a fairly sparse measurement
90 base. Offline semi-dynamic biogeochemistry calculations are then conducted as a further
91 demonstration of principle [33,41-43]. These are postprocessed through a macromolecular
92 distribution mechanism then a coupled surface pressure-area parameterization ([33]; appendix
93 here). Emphasis is placed to begin with upon the two most basic issues involved -will geographic
94 differences in surface tension be identifiable-computable? And will they be important to the many
95 geochemical and climate-relevant fluxes with which they have been connected?

96 The arguments synthesized in this tension mapping effort rely heavily on surfactant
97 physicochemical data and theory which are typically unfamiliar to students of global change. Since

99 one goal of the exercise is to motivate tests at the level of Earth System Modeling, we are careful to
100 proceed in a stepwise manner. A rough outline for the remainder of the text is as follows:

101 (Section 1 -Introductory material above then) Section 2 (Background) -A history of the problem
102 is provided dating back centuries but moving forward into the post World War II era. This story
103 line often involves wave calming by diverse organic substances, and it demonstrates clearly that
104 global film composition could be pivotal. We also extend from the historical realm to related but
105 much more recent research on trace gas and salt spray transfer, which have become understood
106 only during the era of global change; Section 3 (Physical Chemistry) -Subtle variations in the
107 functional structure of disperse, adsorbed detrital-biomacromolecules are described, causing them
108 to exert Van der Waals, Coulombic and other microforces globally and tangentially at one and the
109 same time. The result is dissipation of turbulent and wave energies at the centimeter to meter scale.
110 Hence the suspected control over a broad spectrum of flux types through the surface tension
111 property -or rather its difference-from-baseline the surface pressure (π). In this same area of the text
112 we introduce the concepts of two dimensional "gas, liquid and solid" state analogs occurring
113 within the phase plane, since they indicate film elasticity and so have utility in terms of validation;
114 Section 4 (Observations) -A quick review of measurable influence on bulk gas piston velocities,
115 bubble-foam-spray behavior and number generation, plus transfer of momentum and the various
116 heat varieties. We end with the definition of a round-figure 2D pressure band characterizing the
117 strongest effects in all cases. This is primarily to enable quick visual inspection of global maps for
118 the relevant film chemistry contours.

119 Section 5 (The Compounds) – A brief tutorial regarding detailed composition and interactions
120 of upper ocean dissolved organic carbon-containing material (the well known DOC). We
121 demonstrate through surface chemical equilibrium arguments that among the broad variety of
122 mixed layer macromolecules and degradation products, only proteins and lipids are likely to be
123 capable of occupying any significant fraction of local micro-interfacial area. Hence these forms
124 become our natural focus, since their influence on tension must be dominant; Section 6 (Surrogates)
125 Both the general and chemical oceanographic surfactant literatures suggest as proxies the specific
126 high molecular weight substances albumin and stearic acid. Together they therefore enable a proxy
127 or substitute representation of the two main biomacromolecular families; Section 7
128 (Concentrations) -Distributions for the two surface active classes are mapped across the planetary
129 mixed layer in standard units of μM carbon, calling upon multiple global biogeochemical models at
130 multiple levels of complexity to do so. A rough consensus is obtained for regional scale protein and
131 lipid levels, and this is presented in tabular form across super-eco-chemical provinces we christen
132 "Surfactomes" for obvious reasons under present circumstances; Section 8 (Spreading) -Effective
133 two dimensional equations of state are developed in an accompanying appendix then imported
134 into the overall text for implementation, working from Gibbsian surfactant thermochemistry up to
135 empirical isotherms. This leads to a simple parameterization for the critical variables film coverage,
136 surface pressure and its modulus. All are thus unified for insertion into Earth System Models.

137 Arbitrary dissolved organics can be entered into the film spreading strategy, but for
138 demonstration purposes we restrict ourselves to the selected proxy pair. Constants and switches for
139 the calculation are drawn from decades of laboratory study spanning several disciplines, and it is
140 shown that classic planar phase diagrams of the real ocean are readily reproducible. Our true global
141 mapping exercise begins in Section 9 (and it includes Sensitivity Tests) -Global π plots (Δ tension)
142 are constructed from a down-selection of the readily available biogeochemistry models. A
143 well-delineated, basin scale geography is immediately apparent, and regular crossing of the crucial
144 2D force band is tentatively identifiable. The sensitivity variations we conduct show that our film
145 chemical geography is internally consistent, but may be subject to coastal and high latitude
146 extremes which cannot yet be verified; Section 10 (Uncertainties) -In an attempt to be entirely
147 forthright regarding complexities inherent to our manipulations, we table a fairly comprehensive
148 list of potential error sources. Some are classified as parametric, others must be structural and many
149 are large; Section 11 (Discussion) -Gaian consequences of the strategy are enumerated and then
150 expanded upon. They include biological control on vertical ocean-atmosphere mixing, derived
151 directly from detrital organic chemistry taking place at the boundary between the two media. We
152 believe additionally that the community should consider the potential for -the steering of currents,

153 winds and extreme weather events. Finally the case is built that our system of organization for
154 organic tension is readily testable in coupled climate models. A highly parameterized Equation of
155 (film surfactant chemical) State, as presented in the appendix and developed in the above sections,
156 already has a strong parallel in our own coding: Very similar algorithms appear in the form of the
157 OCEANFILMS package, which our group uses to adsorb carbon for emission into the primary
158 marine aerosol.

159
160 **2. Historical and Background**
161

162 It has been known for millennia that certain organic liquids spread onto the natural water-air
163 boundary can exert a calming effect on waves of many scales [9,17,44]. There have in fact been
164 numerous documented attempts to actively, chemically de-engineer harbor mouth and shipping
165 lane breakers. Some of these date back hundreds of years [45,46]. Well-known classical and
166 eighteenth-nineteenth century figures mentioned in this connection include Plutarch, Pliny the
167 Elder, Benjamin Franklin, Reynolds and Aitken. During and after the World Wars it became clear
168 that the surfactant influence on upper ocean mixing must also be operative at regional to planetary
169 scales [47-49], and furthermore that it extends to the turbulent eddy spectrum arising just below the
170 atmospheric interface [38,50]. This latter connection implies influence upon large scale transfer of
171 many other properties -solute mass, heat energy and also via temperature dependence of the vapor
172 pressure, even water vapor must be included [2,46,51]. Extension of the concepts to
173 surfactant-tension control on bubble and spray distributions lagged only slightly [25,52-54]. Effects
174 on trace gas fluxes operating in the greenhouse and marine aerosol-cloud systems also began to
175 draw attention during the era of global change biogeochemistry [2,6,55].

176 The physical mechanisms by which these linkages make themselves felt encompass
177 intimate-intricate interactions among (to offer a set of partial examples) -Prandtl, Monin-Obhukov,
178 Gibbs-Marangoni, laminar renewal, viscoelastic and microlayer rheological theories. As might be
179 imagined, the fluid dynamics encountered as one moves through this list can become quite
180 daunting in and of itself. Coupling of the requisite hydrodynamics with an equally complex
181 environmental (organic) chemical assemblage is perhaps one reason such concepts have been slow
182 to take hold within Earth System Models. We have collected and harvested some of the clearer
183 explanations available for tight connections within the physical system [17,18,46,50,56-61], in order
184 to provide the appropriate justification for our geochemical mapping efforts. The detailed approach
185 presented later, however, remains purely empirical. We now provide the reader with an heuristic
186 summary of surfactant influence on atmospheric and oceanographic mixing theories, incorporating
187 and accounting the many tension and film rheological factors. But the text then zooms in on
188 potential bio-geochemical-geographic differences and distinctions. It is argued that the latter are
189 strong enough to be of interest in the context of boundary layer vertical transport as handled in
190 Earth System Models.

191 Crudely speaking, a single thin and in fact monomolecular layer of appropriately mixed
192 organics may exert unexpectedly dramatic control, on any and all fluid movement near the air-sea
193 interface [8,45,46,48,59,61]. Working from the geometric top of the relevant environment
194 downward as a conceptual device, it is often noted that surfactants can suppress the capillary
195 (centimeter scale) waves that act upon boundary layer meteorology as roughness elements
196 [8,9,18,59,62-65]. This occurs through modified hydrodynamic boundary conditions allowing for
197 energy dispersion at certain key frequencies [17,56]. The normal cascade of momentum flow and
198 turbulent exchange from the atmosphere into the sea is interrupted. In some cases it may be shut off
199 almost completely, leading to a gross reduction in vertical stirring within only minutes [45,46,59]. A
200 readily observable glassy slick will often follow, sometimes extending over large areas and lasting
201 for many hours and detectable at altitude or from space [8,12,38,64]. The crucial chemical
202 dependence of the effect is common knowledge to the shipping industry, because oily waste
203 materials ejected at the water line are only sometimes calming. Clearly not all organic substances
204 have the capability.

205 Simultaneously, ocean eddies approaching the water-air interface from below alternately
206 dilate and compress the border that runs between the major geophysical phases [18,38].

207 Surface-constrained turbulent structures experience energy loss or extraction due to differential
208 elasticities arrayed along the microlayer. These follow in turn from the presence of the
209 macromolecules and biopolymers, for which distributions are patchy in both spatial and chemical
210 senses. The effect may be tightly confined locally, but on the average it can also extend over
211 hundreds of kilometers [6,8,18,59,64]. Multi-scale tension gradients are thus the rule across the top
212 of global ocean, and they are most reasonably attributed to variability (heterogeneity) in the natural
213 surfactant distribution [9,19,64]. The eddy-energy extraction processes may also be portrayed as an
214 alteration to thickness of the hypothetical laminar layer barrier, which in many conceptions
215 regulates both mass and energy transfer. Surface renewal may constitute a rate determining step so
216 that the flow of either dissolved gases or heat is blocked [6,9,50,51]. Water vapor is in turn affected
217 through skin temperature because this sets the vapor pressure [2,51,66,67]. Vivid demonstrations of
218 the above phenomena have been documented over many generations –sometimes accidentally,
219 sometimes intentionally, within laboratories, perhaps witnessed in the field or even detected from
220 space up to the largest scales [6,18,28,45,46,50,59,64]. We now proceed to an analysis of the
221 underlying marine chemical principles involved, their efficacy with regard to geophysical fluids,
222 and their distribution over the ocean.

223

224 3. Physical Chemistry Concepts

225

226 The situation is apparently enormously complex even at a purely physical level. Since our
227 initial research must be confined to biogeochemical and biogeographic issues, we adopt an almost
228 entirely empirical view of the hydrodynamics. Henceforward it becomes a black box into which the
229 physical chemistry is injected but with copious supporting data on hand. Emphasis is now placed
230 on the development of realistic, large scale chemical parameterizations for the natural (surfactant)
231 biomacromolecular properties and distributions. A few definitions are required and provided
232 immediately, with details appearing along with more complete derivations/equations in the
233 attached appendix.

234

235 In the common parlance, we refer to the any reduction to seawater tension as a two
236 dimensional pressure, and for purposes of clarity the related quantities will often be prefaced as
237 “2D” [2,38]. Certain inorganic solutes and coatings actually increase the energetic cost of area
238 generation, giving values which are effectively negative. These substances act on the physics by
239 default since they are segregated on a mass basis from the ambient microlayer, but we will not need
240 to deal with them further [68-70]. The more familiar decreases in surface energy associated with
241 amphiphilic organics can be understood as follows -hydrogen bond breaking among solvent water
242 molecules may be partially compensated by reformation at the point of surfactant penetration if a
243 film is present -head moieties are hydrophilic. But liquid-facing point groups tend also to be
244 uniformly charged, meaning there are repulsions which must be accounted. Meanwhile phobic
245 arms relegated to the gas phase contribute to the overall push-pull attributable to the surficial or
246 planar interactions. Van der Waals attractions above the interface draw net area inward, while
247 double bonds may repel one another thus working in the opposite direction. The overall
248 physicochemical forces are merely Newtonian and can be tallied theoretically or studied in the
249 laboratory -but in either case, they are best viewed collectively in units of per length. In fact all is
250 analogous with traditional bulk pressure but aligned in a new dimension -along the water-air
251 interface. It is the overall chemical assistance with, or boost to, formation of extra interfacial area
252 that is termed a 2D or surface pressure. The usual symbol is π and see our quick but more formal
253 treatment in the appendix.

254

255 Any real exposition of the surfactant-organochemical force-energy requires many pages to
256 reach even a microscopic level of completeness. But high quality textbook approaches appear on
257 about a decadal scale and they have been closely consulted [36,38,71,72]. We will not be so bold as
258 to attempt a balance or comparison of the numerous competing surfactant processes which must
259 operate among detrital carbon forms at the planetary scale. In fact the 2D forces of interest are
260 embedded in, and must be exert themselves despite coexistence with -unexpected alternate
rheologies including slimes, a size distribution of gelatinous particles buoyed from the mixed layer,
dust and its coatings settling from the atmosphere, entire film-confined ecosystems dominated by

261 bacteria but not lacking protozoa, plus injections of oxidizing power from the light rich medium
262 above [58,73-76]. We focus for simplicity and of necessity on the (interfacial) spaces in between. It
263 seems clear from our logic that molecular dynamic simulations of the micro-situation might
264 someday be profitably undertaken, as support for a tension-globalization effort among Earth
265 System modelers. For example, such (computational-theoretical) research could be geographically
266 distributed point by point, by analogy with our province strategy. For the moment, however, the
267 above notions of tangential physicochemical force are merely carried along conceptually, since we
268 rely for quantitation on a rich but underexploited array of historical and experimental outcomes.
269 These are drawn in balance from laboratory and ship-based research.

270 Our appendix argues that the set of macromolecules or biopolymers distributed along a liquid
271 interface may be considered independently as a physical phase unto itself, with components in the
272 plane undergoing transitions of state [5,18,38,71]. A thermochemical summary is given with the
273 equations, but the reader is encouraged simply to picture surfactant phase transformations, defined
274 in the Gibbsian sense and taking place directly beside the neighboring, massive concentration
275 supply of the bulk. The processes are confined to a microlayer plane which is usually
276 monomolecular. Analogies with simple gas, liquid and solid behaviors become a convenient
277 organizational tool [5,17,63,77]. In the laboratory real organic films can be synthesized or collected,
278 then spread on seawater samples and compressed by paddle devices, so that they impart increasing
279 and measureable influence on the tension. The summed forces referred to as π increase together as
280 area A is reduced. Mixing effects may be nonlinear but we set this issue aside for the present.
281 Gently sloping π -A diagrams are classified with reference to the much more familiar textbook
282 (bulk) P-V variety as the marker for a 2D "gas". In some cases a certain ideality is approached and
283 the reader can likely guess the rather elegant form of the resulting equation of state [36,37].

284 By the same token a surface "solid" exhibits little change in π until a condensation threshold is
285 reached -but then the forces rise rapidly (incompressibility is achieved). 2D liquids lie in between
286 the extremes. Further parallels with our inherent understanding of bulk behaviors abound, and
287 some are developed in the appendix. The pseudo-phase picture is naturally murkier for complex
288 natural (aqueous) organic systems since actual mixtures and mixing rules cause deviations, but our
289 task here is to distill and organize. The strict, clear-cut phase analogies will prove crucial to our
290 verification process. For the moment, the reader is encouraged to visualize the plots or curves
291 involved as a 2D gas is 'compressed' along a water surface -by contrast and-or comparison with a
292 2D surfactant solid. The planar gas will necessarily cause or respond to pressure increases faster
293 and at lower concentration as area is systematically removed. This means that finite, measurable
294 gradients will be associated with its adsorption, and they are precisely the ones with dissipative
295 effect.

296 Refer to the fundamental sample plots in Davies and Rideal [38], Jarvis et al. [63], Barger and
297 Means [5] and Frew [18] for further orientation. Surface tension slopes are normally monitored via
298 the elastic modulus $-d\pi/d\ln A$ as defined rigorously in the appendix section, and this is the real link
299 from a fluid dynamic standpoint [17,18,59]. Notice that the slope quantity is typically computed
300 over a natural log increment, effectively normalizing to fractional area so that 2D units are
301 unaltered. But in any event, the derivative can only exist where π rises significantly above zero.
302 Pressure is the first measured, more readily conceived and most often reported quantity. It is given
303 priority in the analysis that follows.

304 4. Observation of Tension Effects

305

306 Surface pressure data are summarized in Table 1 for their association with multiple, critical
307 Earth System flux types. Rough ranges of π are quoted for which significant alterations have been
308 recorded with respect to bulk gas, salt, and momentum transfer. Literature sources are, on a
309 row-by-row basis –trace gas transfer [6,18,19,21,50,78,79], salt spray flux [14,25,28,29,49,52,53],
310 capillary waves and ripples [9,17,59,61,63,80,81], wind in the planetary boundary layer
311 [20,46,59,65,82-84]. The tabled information is presented primarily for motivational purposes, since
312 we will not make any direct fluid theoretical connections. Strong changes to bulk piston velocities,
313 sea spray number production rates, ripple or capillary damping coefficients and observations of the

315 drag coefficient and/or wind speed have all been documented in close conjunction with surfactant
 316 data. The π deltas have consistently been explained in the literature by appealing to the existence of
 317 two dimensional phases among varietal and heterogeneously distributed biomacromolecules of the
 318 film [6,18,19,59]. The influence and behaviors are always aligned with the phase states 2D gas,
 319 liquid, solid.

320

321 **Table 1.** A sampling of global ocean (2D) surface pressure ranges $\Delta\pi$ along with documented
 322 influence on several components-parameters related to sea-air flux types. All processes are
 323 dominated by the biomacromolecular surfactant effects cited here. While mechanisms of reduction
 324 actually trace to the elastic modulus, surface tension is more often reported and the two quantities
 325 are intimately interconnected.

326

Phenomenon	Measured π	Parameter	Effect	References/Authors
Trace Gas Transfer	0.3-3 mN/m	Piston Velocity	Lower 3x	Davies 1966 and 1972; Goldman et al. 1988; Frew 1997; Tsai and Liu 2003, Frew et al. 2006; Bell et al. 2013
Salt Spray Flux	1-10	Number or Efficiency	+3x	Blanchard 1963; Garrett 1968; Paterson and Spillane 1969; Detwiler and Blanchard 1978; Lewis and Schwartz 2004; Modini et al. 2013; Alpert et al. 2015
Ripples/Capillaries	0.3-3	Damping e-Fold Distance	Lower 3x	Garrett 1967; Jarvis et al. 1967; Ermakov et al. 1986; Wei and Wu 1992; Bock and Frew, 1993; Hunter 1997; Dysthe 2006
Boundary Wind	>1 (so above background)	Drag Coefficient	Lower 3x	Hicks et al. 1974; Deacon 1979; Ermakov et al. 1986; Asher 1997; Mitsuyasu and Bock 2001; Simpson et al. 2014; Cox et al. 2016

327

328 Bulk tracer fluxes as for example of the most common greenhouse species carbon dioxide or
 329 else the atmospheric sulfur carrier dimethyl sulfide [21,79] are significantly slowed by removal of
 330 energy and small eddies from the far upper ocean turbulence spectrum [20,50]. The efficiency with
 331 which (foam) bubble domes can deliver spray particles to an adjacent atmosphere depends on the
 332 rate and degree of fluid withdrawal by marginal regeneration, which in turn requires stabilization
 333 due to Marangoni surfactant forces in the double layer [28,85]. In fact organic adsorbates are crucial
 334 across the sum total of time dependent bubble evolution, from wave entrainment through
 335 disintegration into the subsurface size spectrum and finally in determining the rising rates that fuel
 336 formation of white caps [25,29,86-88].

337 The suppression of capillaries regards dissipation of centimeter wave energy into surfactant
 338 gradients at the upper boundary [17,56,61]. Deacon attributed tropical wind speed reductions
 339 determined from a flux tower near coral reefs in Indonesia to a specific mucus mixture (dominated
 340 by cetyl palmitate [83]), but heterogeneity of the surfactant system is now much better appreciated.
 341 A dramatic historical rescue described anecdotally by Cox and company [46] demonstrates
 342 near-miraculous breaker control by fish oil, which is really a set of fatty acids boasting double
 343 bonded tail groups –and thus also expanded 2D gas behavior. The authors carefully distinguished a
 344 lack of activity for pure petroleum products, which are highly aliphatic so that they merely bead up
 345 at the interface [36]. Simpson et al. [84] have recently demonstrated that a new source of ocean
 346 roughness may be needed by CMIP class models to achieve balance with atmospheric reanalyses, in
 347 gyre and low marine productivity zones where surfactants are probably lacking. In all of these
 348 cases, detailed chemistry and surface tension are the critical interacting variables.

349 This brief sample of the literature in fact previews a majority of the most important tension
350 modulation issues to be examined here. For reference purposes we now define a band of surface
351 pressures over which the geophysical fluid impacts should be expected. The contours
352 recommended can be applied by our reader with equal convenience to upcoming tabled or mapped
353 data. Roughly speaking, the relevant pressure analog (area generating) π are recorded in an
354 assortment of bench and field experiments to be on the order of 0.3 to 3 wherever substantial effects
355 are encountered, in the tangential units mN/m (mJ/m²). Such values are expected to lower several
356 biogeochemical and climate flux coefficients or parameters by a factor of three or so across the
357 board. Exceptions occur in the salt spray data, where physicochemistry becomes so complex that
358 even the sign of the perturbation cannot be specified –but still it is reported to be of order 3. The
359 underlying organic film structures have not been incorporated into any relevant, extant
360 biogeochemistry or climate parameterizations [66,89–92]. Hence we begin by attempting to map the
361 potential for such improvements, moving forward from regional ecogeographic scales [39,40]. Our
362 survey has so far been restricted to trace gas, salt spray and momentum transfer data, so that
363 extensions to heat and water vapor await attention [51,60,67,93].

364 Based on Table 1, we propose that a useful assessment of tension biogeography can be
365 constructed by exploring the position of a plotted 0.3-3 mN/m band, distributed in the standard
366 manner over global modeling maps of the sea surface. Patterns tracking on either side of unit π , as
367 they color the top of the ocean, should constitute a reasonable initial guide as we attempt to answer
368 the second key question put forward in the introduction –that of importance. Values lower than a
369 few tenths may well prove insufficient to support global climate effects. Simultaneously there may
370 be maxima, plateaus or optima so that higher quantities cannot be ignored, even though they may
371 well prove to be coastal and rare. Downturns in Table 1-type influence have been reported at high π
372 [9,80], and they likely have the related-symmetrical physicochemical explanation that tightly
373 condensed microlayers again display constant tension, though at greatly reduced values [38,94,95].
374 Effectively then for the duration of this paper, we seek to identify trace contours of about 0.3 to 3
375 mN/m distributed over the microlayer of the total planet. It is postulated for purposes of initial
376 evaluation that geochemical plus climatological effects of marine biosurfactants will be at their
377 greatest within this band of surface pressures.
378

379 5. Compound Identities

380

381 The upper ocean contains about 50 micromolar dissolved organic carbon at high latitudes
382 (DOC), rising to more than 80 at the equator [96]. This detrital mass is most often portrayed and
383 studied as a conveyor of carbon atoms to the deep sea, or else as a long-lived reservoir for nutrient
384 elements which may ultimately be recycled from reduced forms [97]. In order to elucidate more
385 detailed physicochemical behaviors -here emphasizing top-of-the-ocean interfacial activity-
386 additional information is needed regarding the wide variety of attached functional groupings. A
387 (highly) condensed assessment is provided in Table 2, for the macromolecular and biopolymeric
388 content of the dissolved, global marine carbon pool. Information is adapted from our own earlier
389 work [30,33,37] but supplemented with data from Gagosian et al. 1982; Van Vleet and Williams,
390 1983; Kumar, 2000; Dittmar and Kattner, 2003; Tuckermann and Cammenga, 2004; Aluwihare et al.
391 2005; Petters and Kreidenweis, 2007; Petters and Petters, 2016 and Rossignol et al. 2016
392 [26,76,77,98–103].

393 Biomacromolecular classes protein, polysaccharide and lipid comprise the most abundant
394 components of autotrophic cell interiors, and they are present almost uniformly within generic
395 phytoplankton in the ratio 60 to 20 to 20 percent [37,104,105]. Setting aside mineral hard parts since
396 our focus is on the dissolved fraction and its ability to occupy surfaces, we note that various
397 primary producers also synthesize mildly amphiphilic protective polymers such as chitin and
398 peptidoglycan [98,101,106]. All these high molecular weight substances plus familiar but trace-level
399 organics such as the genetic carriers are released freely into the water column, whenever producer
400 cells are disrupted by grazing, viral lysis or senescence [41,42,107,108]. Even during the freshest
401 stages of the ensuing degradation sequence, denaturing and other reconfigurations must be taken
402 into account [37,109]. Photochemistry, random enzyme attack, and bacterial consumption shuffle

403 and remove the initial ordering-structures, while a certain amount of recondensation then
 404 repackages carbon chains into the heterogeneous material known as humic acid [110,111]. The
 405 global upper ocean chemical transformations described here have been amply reviewed by Benner
 406 [109], while typical loss constants are roughly known and can be constructed from time series and
 407 vertical profiles as noted by Elliott-Ogunro et al. [33,37]. Estimating biopolymeric longevity is an
 408 underpinning to our strategy, since even a crude knowledge permits dynamic distribution of
 409 regional mixed layer concentrations [33] and so potentially an attack on the 0.3-3 π contour.
 410

411 **Table 2.** Selected families of marine biomacromolecules with representative half saturation
 412 concentrations for adsorption, and corresponding two dimensional phase states within the
 413 mono-microlayer system.
 414

Chemistry	Monomeric Units	Examples	C(1/2 π max) (μM)	Surface Phase
Protein	Amino Acids	Enzymes, Collagen and structural	10 ¹ -10 ²	2D Gas
Polysaccharide	Sugars	Alginates, Uronics	10 ⁵	(soluble)
Lipid	(aliphatic with some double bonding)	Fatty Acids, Sterols, Triglycerides	10 ⁰ (estimate)	2D Solid (often)
Aminosugars	Replace OH by N- in the saccharide	Chitin, Chitosan	(insoluble)	2D Solid (Chitos)
Hybrids of above	Combined	Peptidoglycan, Lipopolysaccharide	10 ⁴ (Peptido)	Planar Mixing Interactions
Humic/Fulvic	Recondensates	Suwannee River, Deep Arctic	10 ⁵	2D Liquid
Atmospheric	(C chains, rings)	Levoglucosan, dicarboxylics, lipids, then oxidation	>10 ⁶ (Levo)	(soluble, Levo)

415
 416 Actual complexity of the marine organic system is only hinted at in the Table –beyond the
 417 major macro-chemical classes lie numerous subcategories and it is often noted that only a few tens
 418 of percent of the total composition has ever actually been characterized by laboratory analysis (ship
 419 board or otherwise [105,109,112]). For the exclusively surface-chemical purposes at hand, however,
 420 a convenient simplification can immediately be invoked. Experimental data on adsorption
 421 equilibria are often available as evidenced by our ability to harvest and utilize them in the earlier,
 422 primary organic aerosol work. As a quick reflection of surface activity we tabulate the most readily
 423 obtained metric, which is in fact the solution half maximum concentration for surface pressure (this
 424 can be viewed as a thermochemical constant –penultimate column). Most of global DOC resides in
 425 the refractory humic reservoir when taken on an integrated basis. We can safely assume that other
 426 types are present at (order) tens micromolar or less, and thus it is immediately obvious that only
 427 proteins and lipids need to be propagated further through the current exercise. Only these
 428 particular organic structures can occupy any significant portion of a given local film area or
 429 monolayer mesh. The question of characterizing their two dimensional chemical behavior remains,
 430 but at this stage we can follow longstanding tradition while simultaneously promoting it to the
 431 level of global modeling –students of the marine surfactant system have long since converged on a
 432 small and closely related set of proxy compounds.
 433

434 6. Surrogates or Proxies

435
 436 Multiple surfactant research groups, operating across the decades, have agreed upon standard
 437 surrogates which can be exploited to understand the oceanographic tension losses imparted by
 438 natural biomacromolecules [5,18,38,63,77,94,95]. A long version of their collective list would
 439 contain albumin, lysozyme, casein and collagen to represent protein behaviors, and this is true even

440 though the compounds are mainly terrestrial. To substitute for the lipid family, add the couple
441 stearic acid-stearyl alcohol to provide 2D solid activity. And finally we note that many authors
442 include the less extreme but also lipidic species oleic acid and oleyl alcohol. These act as 2D
443 liquid-to-gaseous contributors rather than "crystals". The approach can be further refined by
444 down-selecting albumin and stearic acid alone, since they have been the most commonly
445 referenced. Plus we carry oleic acid additionally (olive oil), as a convenient optional sensitivity
446 member since the total variety of lipids is especially intricate [109,113].

447 This leaves us with just two primary compounds to adsorb and mix onto conceptual or
448 simulated microlayer surfaces, prior to switching-in the oleic. The Table 1-2 situation has thus been
449 rendered quite tractable for initial calculations. The reader will find that commercial surfactant
450 analogs are often discussed in the literature, including polyethylene glycol derivatives, sodium
451 dodecyl sulfate and the PEG-lipid hybrid Triton X-100 [5,28,59,85,114]. But the ease with which
452 synthetic, artificial substances can be applied and studied in fact becomes problematic, since their
453 2D phase behaviors often go uncharacterized and are difficult to match with authentic global
454 detritus [65,114,115]. Our tendency is to remain as natural (organic) as possible in our surrogate
455 choices, even when they cannot be truly marine in nature –albumin, stearate and oleate are all
456 typically obtained from terrestrial biomass. But the historical chemical oceanographic literature is
457 completely consistent –the albumin-to-stearic pairing is a preferred starting point.

458 These two main model compounds are characterized respectively by 1.) gradualized tension
459 effects at low but increasing coverage (the protein, 2D gaseous behavior), versus 2.) total inactivity
460 during accumulation then a sudden structural collapse (the fatty acid, 2D solid). A
461 parameterization for the dual-surfactant equation of state is developed in the appendix. Our reader
462 is referred to the classic chemical oceanographic publication Jarvis et al. [63] for an early portrayal
463 of the two-component relationship, and also to view π -A (PV analog) mixing and compression
464 curves which can be mimicked and which are actually drawn from real, distributed marine
465 microlayers. Related older works from Liss [2] and the Barger group [3-5] may also prove helpful.
466 Much of this research was in fact sponsored by the U.S. Navy in the interest of understanding
467 global patterns of wave suppression. Having down-selected an historically grounded proxy subset,
468 we now have all the new information needed to begin scanning variable organic-tension situations
469 around the planet.

470

471 7. Mixed Layer Concentrations

472

473 It has already been noted that disruption injects cell internal carbon at the 60-20-20 ratio and so
474 we adopt the first and last values for protein versus lipidic substance. Grazing and mortality rates
475 are readily computed from contemporary biogeochemical models [42,108]. In conjunction with
476 macromolecular residence time estimates (above), bulk mixed layer concentration patterns can thus
477 be estimated quite directly. This is done working first from about a generation and a half of
478 ecological geographies which by now happen to be available [39,40,116], and then further in an
479 offline mode relative to the global simulations [33,43]. Checks are performed against the hundred
480 or so molecule-specific measurements (collected in Ogunro et al. [33] but see for example Lee and
481 Bada [117] for a flavor of the analytical chemistry challenges). Finally, the combined upper ocean
482 dissolved material is mixed adsorptively into/onto the microlayer per the appendix. This is done by
483 ignoring the potential nonlinear interactions in the plane, but should be adequate as a scanning
484 device [36,38].

485

486 Specific mixed layer concentration results are given in Table 3, with primary references
487 Longhurst [39,40], Ogunro et al. [33] and Letscher et al. [43] placed as information sources in the
488 first column. The sequence of development is as follows. A well-known general marine
489 biogeography series [116 and derivatives] was mined for province level definitions most applicable
490 to our surfactant questions. Due attention was paid to the combination of proximity to
491 measurement tracks-stations plus relevance to the climate system. For example, the equatorial
492 Pacific has been often sampled and figures prominently in the interaction of biogeochemistry with
493 the Southern Oscillation [118,119]. The provinces were aggregated across basins (longitudes) to
build super-divisions which we will refer to here as "surfactomes". There are similarities with the

494 biologist's notion of an ecotone, but our nomenclature is tailored to the microfilm. Regional
 495 primary production values computed as in Platt and Sathyendranath [116] then promoted to the
 496 textbook level in Longhurst [39,40] were binned as background versus bloom level, assumed to be
 497 in balance with grazing (diatom events excluded), partitioned according to standard ecodynamic
 498 model routings [42], fractionated by 60 and 20, then placed in steady state with their respective
 499 macromolecular lifetimes [33,37]. Note that the more intense values associated with seasonal peaks
 500 are presented as parentheticals. Offline but more (semi-) dynamic simulation results for the
 501 collective global proteins and lipids were then duplicated directly from the original work Ogunro et
 502 al. [33]. Plus the Ogunro mechanism was further tested by superposition on output from a related
 503 ecodynamics code tailored specifically for dissolved organic work [43]. Summary values for use in
 504 surfactant calculations were selected and placed in end lines for each of the two macromolecular
 505 classes. Fully dynamic biopolymer transport is now being computed in the Department of Energy
 506 global marine systems model, on variable mesh numerical ocean grids. These latest results have
 507 been scanned informally for general agreement, but are not yet suitable for publication.
 508

509 **Table 3.** A summary of community knowledge for global concentration distributions of the major
 510 surface active macromolecules (μM dissolved carbon). Steady background levels are
 511 non-parenthetical, and are followed where relevant by (bloom) values. Tropical concentrations tend
 512 to vary little over an annual cycle. Province definitions are taken from the Longhurst ecological
 513 geographies then bundled -in order to optimize the use of sparse individual compound data- into
 514 what we refer to as "Surfactomes" (e.g. Coastal middle latitudes etc.). Ecodynamic models here
 515 share the same heritage but have been applied in two divergent contexts -studies respectively of
 516 Arctic methane cycling leading to dynamic global macromolecular distributions, or else dissolved
 517 organic elemental ratios (Ogunro then Letscher). Observations are transferred directly from the
 518 validation list for the first code, summarizing about three dozen chemically resolved studies. Most
 519 involve multiple ship cruises. The abbreviation "na" should be read as not available.
 520

Provinces	CALC CNRY	CAMR PNEC ARAB	BPLR BERS ARCT	KURO NPPF GFST	PEQD ETRA	WARM WTRA MONS	NPTG NAST NATR
Surfactomes	Coastal (mid-lat)	Coastal (low-lat)	Polar	Westerly	Equator (East)	Equator (West)	Gyre
Protein							
Longhurst	4 (22)	6 (20)	1.5 (27)	0.8 (8)	5	1	0.8
Ogunro 2015	3 (10)	3 (10)	1 (10)	3 (7)	3-10	1-3	1
Letscher 2015	5 (10)	5(7)	1 (10)	3 (7)	3-10	7	3
Measurements			1 (na)	0.3 (3)	0.5-1		0.5-1
Carry forward	4 (15)	5 (15)	1 (15)	1 (5)	5	3	1
Lipid							
Longhurst	0.1 (0.7)	0.2 (0.7)	0.03(0.9)	0.03 (0.3)	0.2	0.05	0.03
Ogunro 2015	0.03 (1)	0.01 (0.05)	0 (3)	0.01 (0.3)	0.03-3	0.01	0.01-0.03
Letscher 2015	0.01 (0.3)	0.01 (0.03)	0 (3)	0 (1)	0.03-0.3	<0.01	0.01
Measurements	0.3 (3)				0.1-3		0.003-0.3
Carry forward	0.1 (1)	0.03 (0.1)	0 (3)	0.01 (0.3)	1	0.03	0.01

521
 522 The super-provinces are arranged in the table moving from left to right in roughly decreasing
 523 order of bloom-period biological activity (coast, pole, westerly, equator, gyre). This sequence is in
 524 turn controlled largely by convective nutrient supply since most of the ocean experiences light
 525 replete conditions at least some time during a typical year. Meanwhile our initial tabular
 526 arrangement highlights seasonality via the background (bloom) pairings. The potential for tension
 527 gradient patterns to arise is already hinted at, since concentrations for the global 2D gas (protein)
 528 approach then recede from saturation levels whether in the time or space dimension (C at half max
 529 in Table 2). But we must also consider the 2D solids (lipids) and this requires a more rigorous
 530 treatment of the equation of surface-active film state (appendix). It is also clear from Table 3 that

531 systematic global measurements remain sorely needed. Even relative to the lumped "surfactomes"
532 only a few cells could be filled for the current effort. The total number of data points referred to is of
533 order dozens at most [33]. Lack of analytical chemical information is one of the reasons for applying
534 a variety of modeling approaches, ranging from steady states based on satellite chlorophyll to
535 semi-dynamics drawing on partially labile DOC [39 or 40 versus 33]. Agreement between the
536 computations and sparse global measurements may be assessed by scanning downward along the
537 columns, toward the lines labeled "carry forward". It is only within about a factor of 3 at best, and
538 this point becomes crucial in later sections.

539

540 8. Spreading Exercises

541

542 Our original organoaerosol papers plus follow ons [30-33,37] have thus far dealt exclusively
543 with the foundational Langmuir isotherm, and we quickly determined here that simple, initial
544 functional forms work well to represent laboratory profiles of the protein π [95]. The lipid proxy by
545 contrast constitutes an extreme, textbook instance of 2D solidification in π -A space. Hence in the
546 appendix area, we introduce what will be referred to as a "power-Langmuir" form in which the
547 classic sigmoid is adjustable. This is primarily to handle stearate, though there are also benefits in
548 dealing with the protein multiplex (ring formation, bunching and balling at the interface).
549 Dominant terms are raised to the nth degree and thus are capable of loosening or tightening the
550 standard pressure plot as a function of concentration (area). Steepness of the 2D solid collapse can
551 therefore be captured. The function we propose is really nothing more than a saturating Freundlich
552 isotherm. Interfacial molecular dynamics modeling can and should be called upon to improve this
553 situation. But empirical approaches are a typical and acceptable expedient in surface chemistry, and
554 in the current context they should be more than sufficient to proceed [5,36,72]. Our rudimentary π
555 have been carefully adjusted for near agreement with laboratory data [63,94,95]. The modulus is
556 defined as usual to be the derivative against fractional surfactant area change (ϵ per reference [17]).
557 Its value is computed here numerically. Finally, a nominal surface phase state is assigned given
558 results from the simulations or data based on the most common 2D definitions [5,18]. We also
559 supplemented with the more recent interpretations of Frew et al. [19]. This procedure allows us the
560 opportunity to check against the magnitude, form and planar phase of real oceanographic π -A.

561 Results of these conceptual global exercises are summarized in Table 4. Ambient π and phase
562 state identifications are drawn from a variety of the above references and more
563 [2-7,9,17,18,85,120-124]. To complete the presentation, ratios of final surfactome-level protein to
564 lipid concentration were fed systematically into our appendix π -A-modulus code. We imagined or
565 hypothesized skimming (harvesting) the ocean microlayer over divergent ecozones, skillful
566 laboratory-style extraction of the organics, then redistribution onto artificial seawater. Furthermore
567 fast equilibration is assumed, in order to guarantee closely tracking reference concentrations just
568 below the Gibbs plane. The interfacial composition and accompanying solute levels are then
569 tightened together in a computational Langmuir-Blodgett (trough) experiment to give π
570 Typical curve suites attributable to the open ocean are readily reproduced, given one critical
571 proviso: In detailed laboratory work material is often lost to redissolution, stacking or the extraction
572 medium (see especially [63] but also [2-5]). At local ambient concentrations for the
573 biomacromolecules, we compare with several decades worth of film pressure measurements.
574 Though as usual in the world of marine organics data remain scarce, the tabled patterns and trends
575 are quite encouraging. Surface pressures tend to increase in reverse order and migrate across the
576 crucial Table 1 range -moving from gyre or warm pool toward either neighboring equatorial
577 ecosystems or (bloom period) boundary current extensions. Given the inherent uncertainties, polar
578 and coastal values could actually traverse the 0.3-3 mN/m band on a seasonal basis. Modulus
579 translated into 2D phase information per for example [18] gives the appropriate relationships along
580 the g-l-s spectrum of possibilities. Exact alignment among the states is not perfect but is not
581 anticipated. Overall, our fourth table allows us to begin addressing, for the first time, the two key
582 questions proposed at the top of the paper. Based on a coarse regional view, biogeographic
583 dependencies are likely for the tension difference and there is a potential for spanning of the crucial

584 geophysical fluidic π range. For an integrated global perspective, we now move on to the mapping
 585 exercise.

586

587 **Table 4.** Upper lines -surface pressure estimates based on collected results from Table 3 and
 588 computed per the appendix, with a selection of data spanning several decades for comparison. In
 589 the center of the table some local (appendix-style numerical) elastic modulus results are offered.
 590 Finally in the lower lines, model and data π -A experiments are reported in the form of phases. The
 591 background (bloom) nonparenthetical (parenthetical) convention is retained. Letters g, l and s stand
 592 for 2D gas, liquid and solid.

593

Surfactomes	Coastal (mid-lat)	Coastal (low-lat)	Polar	Westerly	Equator (East)	Equator (West)	Gyre
Surface Pressure and Modulus , units mN/m both cases							
π (appendix)	2.4 (9.4)	2.9 (6.7)	0.65 (50)	0.65 (2.9)	6.5	1.8	0.65
π (data)	0.3 (23)	0.1 (10)		0.1 (5)			0.1-1 (na)
ε (local)	6.6 (25)	8.0 (18.1)	1.6 (175)	1.5 (8.2)	10	4.9	1.6
2D Phase							
Model	g (l-s)	g (g)	g (s)	g (l)	s	g	g
Data	g-l (l)	g-l (l)			l-s		

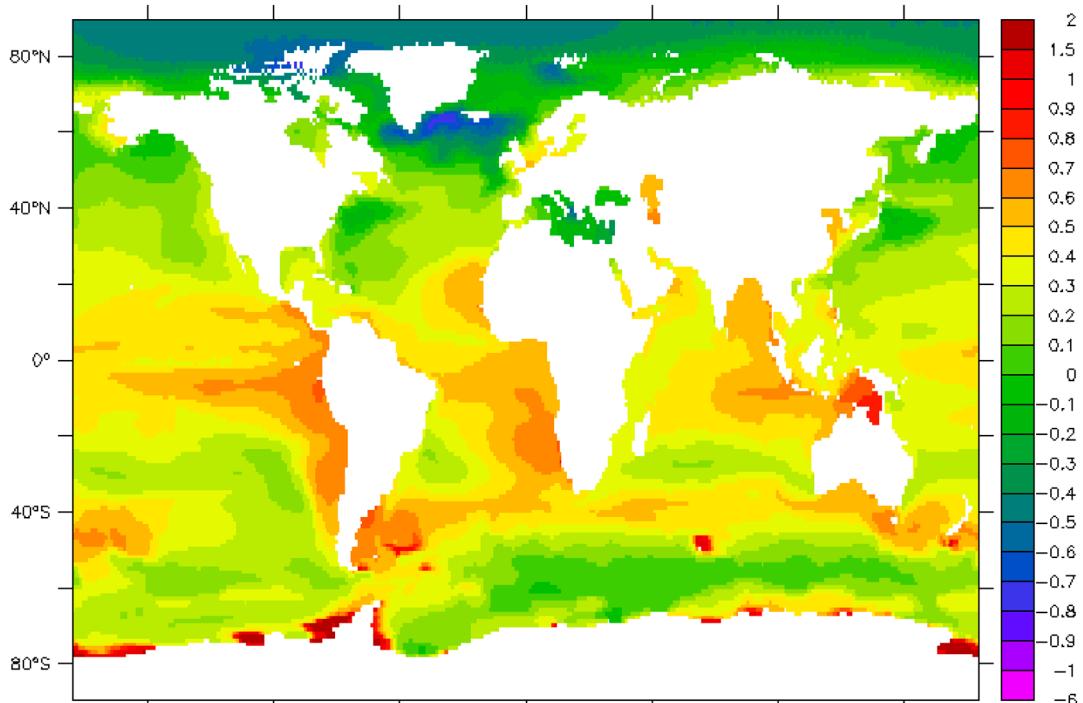
594

595 9. Maps and Sensitivity

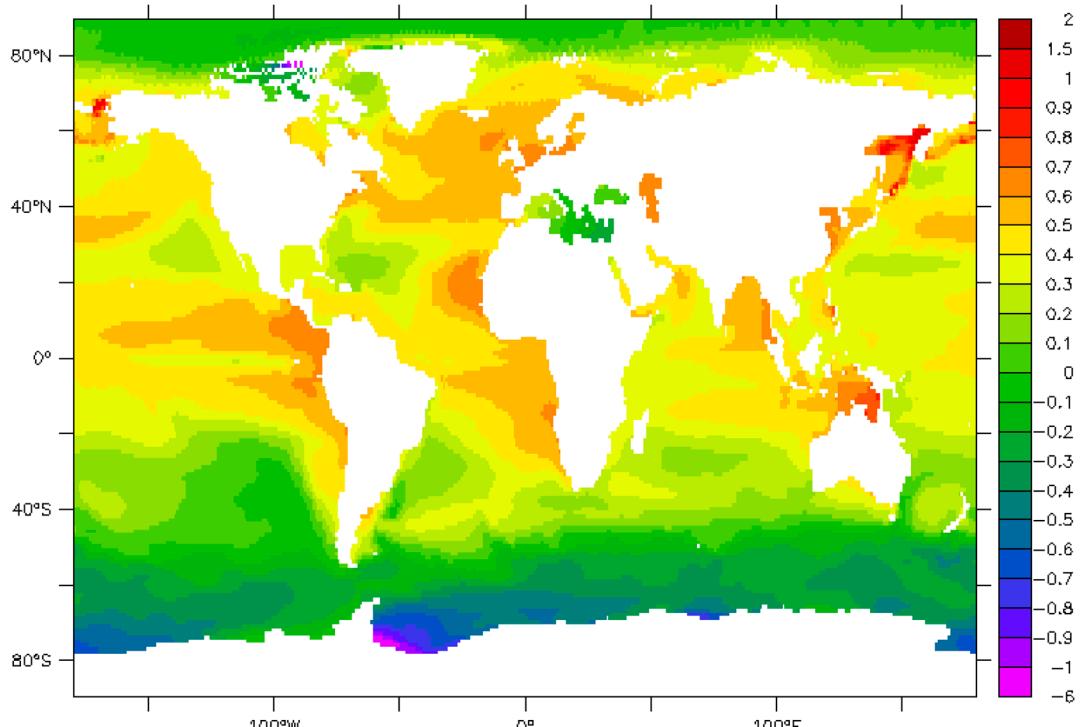
596

597 Protein and lipid distributions from the Ogunro et al. computation [33] were called upon to
 598 support initial attempts to map surface tension at a detailed global scale. The O15 values are
 599 central among Table 3 model outputs. Background biogeochemistry in this work traces to early
 600 marine methane cycle simulations [125] and so ultimately to the foundational BEC ecodynamics
 601 code [41,42]. Ogunro and company proposed source-removal functions closely matching our
 602 Longhurst biogeographic steady state, but phytoplankton and zooplankton levels were extracted
 603 directly from model history files. They may thus be viewed as dynamic and the whole procedure
 604 as semi-dynamic. Our appendix surface pressure algorithm was migrated into a common offline
 605 data analysis package (NOAA Ferret), so that it could operate on upper mixed layer
 606 concentrations to produce π patterns suitable for analysis. We now discuss the fully mapped
 607 results referring to central months of the seasons –primarily February and August corresponding
 608 to winter and summer in the two hemispheres. All results represent a generic year near the turn of
 609 the last century [41,125]. Major sensitivity tests are also described in this section. Any monthly
 610 output not shown can be made available on request from the first author.

611 The original Ogunro mechanism is adopted verbatim as our global baseline, and in Figure 1
 612 we scan Northern Hemispheric winter then summer results (opposite for the Southern Ocean). A
 613 logarithmic color bar is arranged so that the suggested indicator band 0.3-3 mN/m is central and
 614 can easily be located (-0.5 to 0.5 in log space). An upper limit of 100 was chosen as a round decadal
 615 value bracketing the large lipid π maximum recorded for stearic acid [94]. It is immediately clear in
 616 the very first panel that marine surface tension probably does indeed possess a computable and
 617 measurable biogeography. Hence question 1 as posed above has already been answered in the
 618 affirmative. A limit of detection for the classic fluid drop technique is of order tenths mN/m [2,81].
 619 If our proxy assemblage is at all realistic, it should be possible for the shipboard analytical chemist
 620 to identify 2D pressure lows in many areas –e.g. in the absence of biological activity during polar
 621 night- and moreover, planar solid-driven peaks may be observable in high latitude summer
 622 (Antarctic coast then Sea of Okhotsk and Bering in our 6-monthly plots). In the North Pacific and
 623 Atlantic, a swath of low π flows from the subpolar regime across middle latitudes and into the
 624 subtropics moving generally east to west. In autumn it is bracketed by lingering activity in the
 625 respective western boundary current extensions and along equatorial upwellings.


626 The overall patterns displayed in Figure 1 seem accessible and familiar, perhaps because the
 627 colors are bright and follow typical biogeochemical markers such as the remotely sensed
 628 chlorophyll distribution [39,40]. But such relationships are long suspected [20,21]. In the present

629 work we add a new dimension to the problem –the set of dynamic physicochemical (interfacial)
630 explanations for the phenomena. A marine geography of tension is readily apparent in broad
631 outline, indeed driven by biology in the general sense but more fundamentally by surfactant
632 behavior of specific detrital macromolecules and polymers. At middle latitudes, the estimated
633 surface pressure values only fall to a minimum of about unity in the remote central ocean ($\log=0$).
634 Blue to purple tones are largely absent from this initial color distribution. The geophysical fluid
635 dynamic effects defined in Table 1 would be more strongly indicated if there were obvious
636 regional or seasonal transitions across the 0.3-3 ribbon recommended earlier as a reference. And so
637 we dig a bit deeper into the matter.


638 Mixed layer biogeochemistry models underlying Tables 3 and 4 (whether conceptual,
639 productivity and biogeography based, or ultimately semi-dynamic) were all consulted first and
640 foremost because measurements of the individual macromolecular classes are so disperse
641 [33,37,109]. There could be no opportunity for space filling or interpolation from a mere handful of
642 province scale averages, typically all that may be at hand for a specific macromolecular carbon
643 concentration. But in fact the reader should note that both our protein levels and the π driven by
644 them could well be biased high (contrast with lines led by the terms “measurements” in 3 or
645 “data” in 4), while computed lipid values may by contrast fall on the low side of ambient. There
646 are good reasons to suspect that these discrepancies may be real. Enzymes released from a
647 disrupted phytoplanktonic cell do not remain in their pristine, operative state. Denaturing,
648 segregation into peptides and amino acids, recombination and oxidation in the submarine light
649 field will all modulate concentrations and amphiphilicities. Regarding the lipids, we merely
650 remark that no global model can resolve rich generation occurring coastally then transported
651 outward to the pelagic realm [113,126]. In a second simulation we therefore lowered (raised) the
652 protein (lipid) distributions (respectively) by factors of three. This was accomplished by adjusting
653 the removal time constants in both cases. February and August results are shown as our Figure 2.
654 Well-characterized features emerge in the pre-defined 0.3-3 mN/m regime. And solidification (2D
655 crystallization) is pervasive at high latitudes. Thus several crucial properties of the tension
656 distribution system are amplified, and they deserve specific comment.

657 We focus first on middle latitude Northern Hemispheric surfactants in the August plot –or
658 rather their absence therefrom. The double-triangular 2D pressure minimum running from
659 California over Hawaii to the Philippines may be attributed to restricted gyre and warm pool
660 biology, bordered on either side by nutrient upwelling regions –the boundary current extension
661 plus equatorial divergence. A westerly bloom remains imprinted upon the interface since
662 succession and chemical persistence carry the macromolecules through into summer. The central
663 Pacific path of the minima falls precisely in an area where reanalyses indicate that CMIP class
664 climate models may be overestimating wind speeds [84, Figure A1]. A straightforward resolution
665 suggests itself –the ocean surface is perhaps rougher than expected here, because Table 1 damping
666 relaxation is not model-accounted. Brunke and company have demonstrated several times in
667 several ways [67,93] that turbulent flux parameterizations attempting to functionalize oceanic
668 ripples tend to overestimate momentum transfer. This may occur because they are typically
669 formulated from a purely meteorological perspective. Lack of the smoothing influence of marine
670 organic chemistry is therefore a contending explanation. It is worth recalling that aerodynamic
671 drag studies are most often conducted (for obvious reasons) either in the coastal context, at middle
672 latitudes or else in seasonable weather [92,126,127]. These are conditions under which our
673 arguments and figures suggest that regional slicking should be operative. At least some versions of
674 the tension biogeography thus imply that flux measurement designs should factor in film
675 geochemistry.

676

677

678

679

680 **Figure 1.** Log surface pressure maps (Δ tension) assembled using baseline Ogunro et al. model
681 output [33] plus marine 2D equations of state described in the appendix. Color bar has been set so
682 that a reference range of 0.3-3 mN/m is central (-0.5 to 0.5 in log units). February and August
683 monthly averages are shown for a typical year near the turn of the millennium.
684

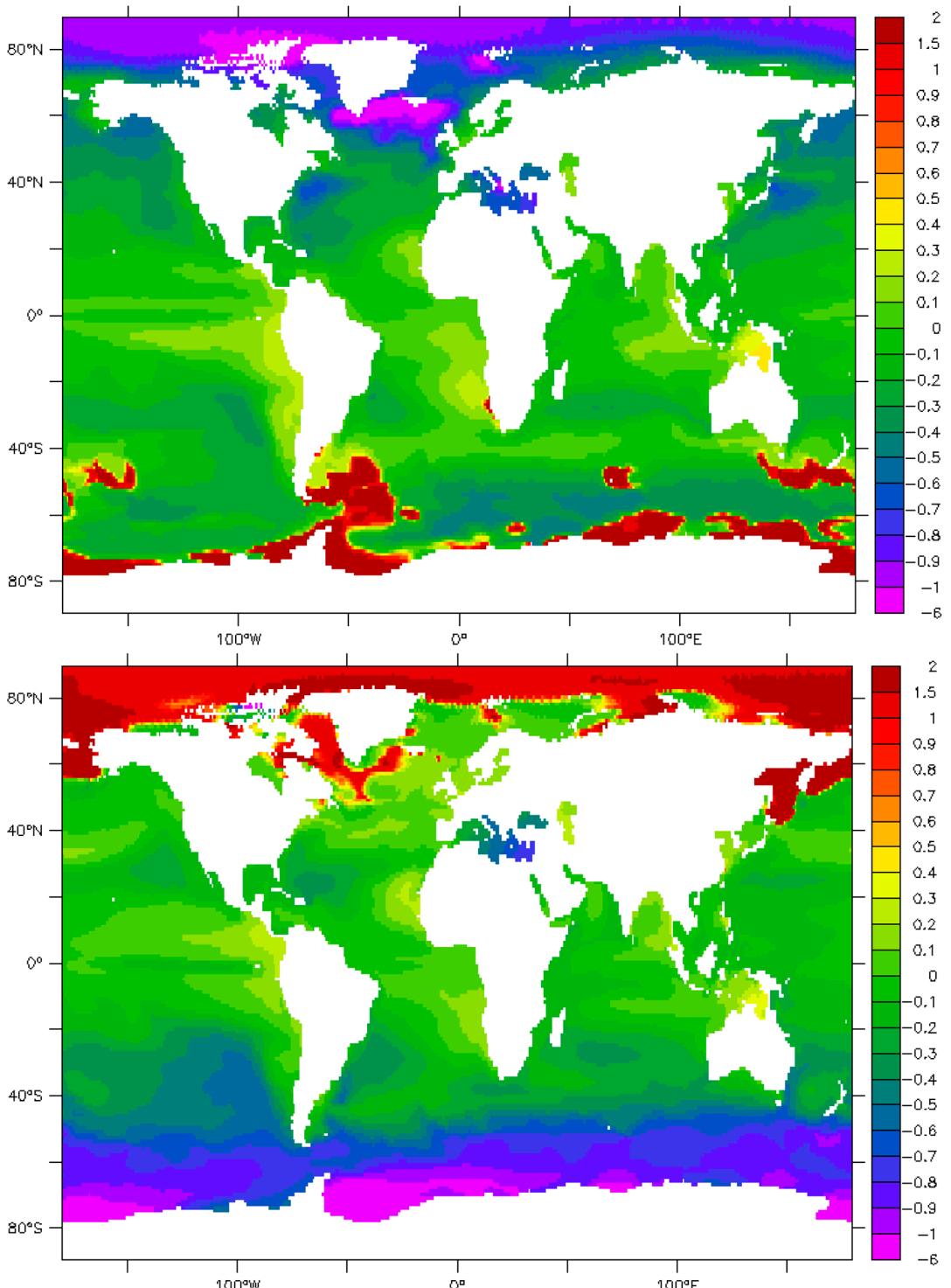
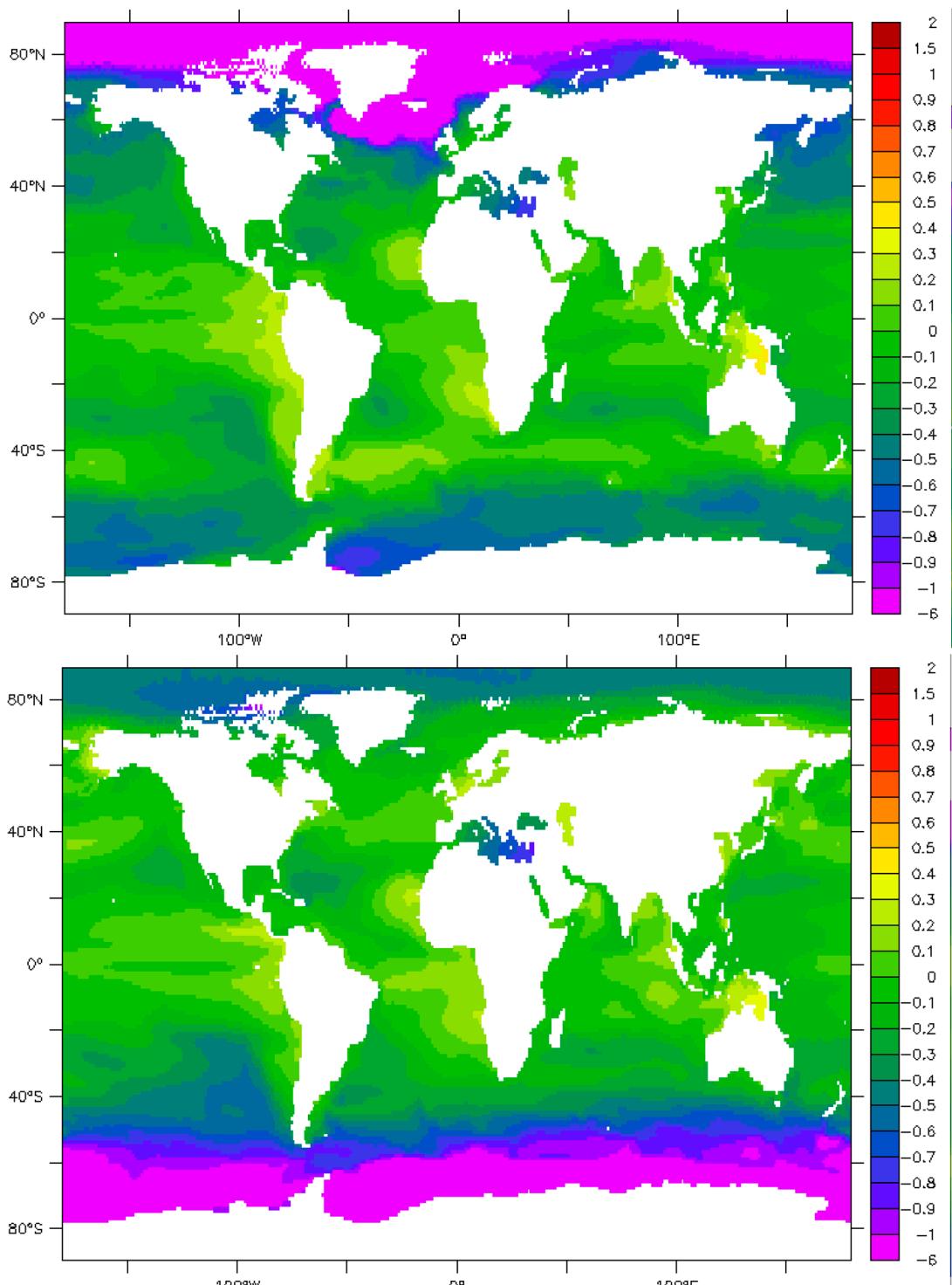
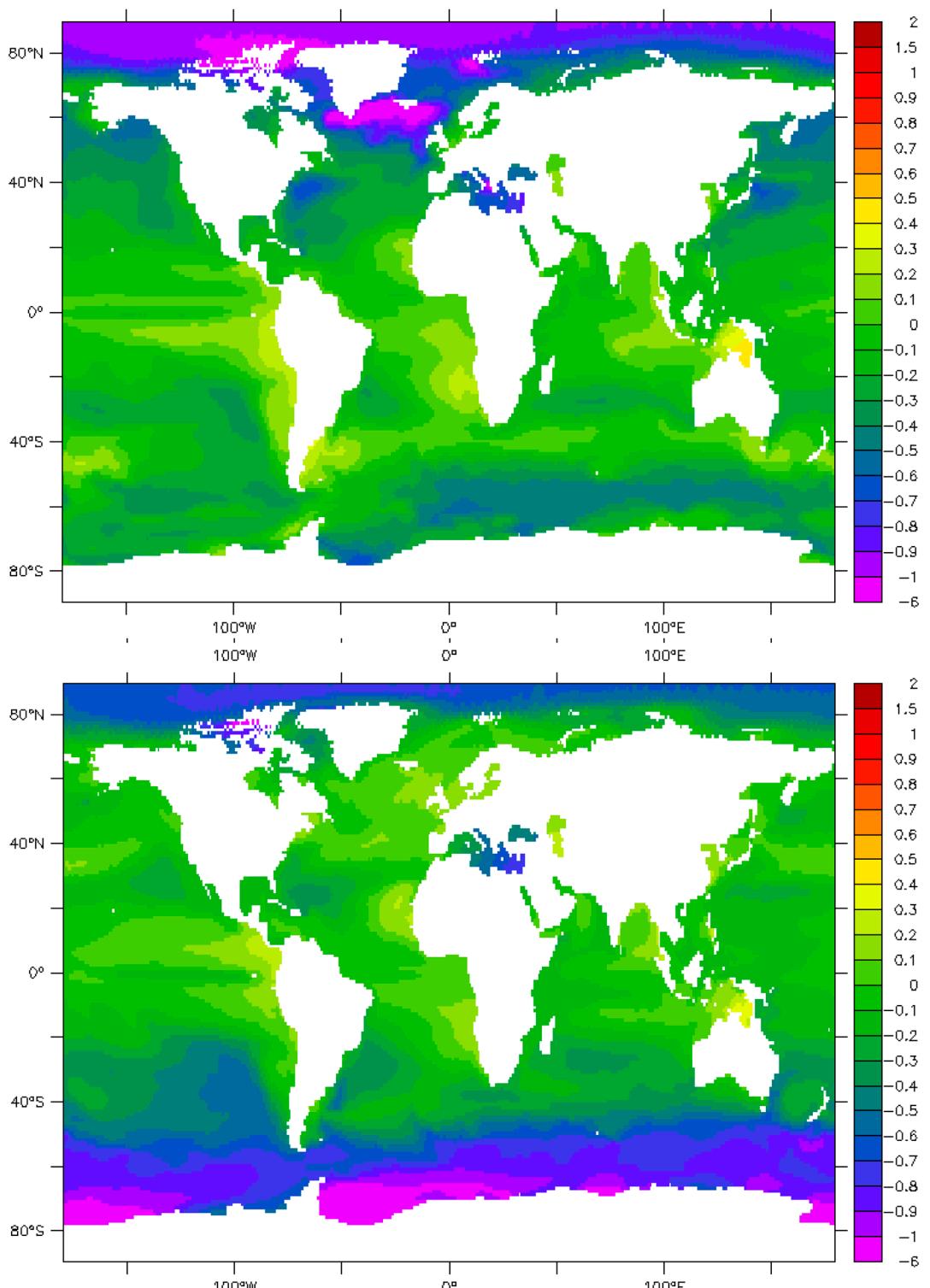




Figure 2. Log surface pressure maps (Atension) constructed as in Figure 1 but with protein (or lipid) levels lowered (or raised) by a factor of three. Color bar has been set so that a reference range of 0.3-3 mN/m is central (-0.5 to 0.5 in log units). February and August monthly averages are shown for a typical year near the turn of the millennium.

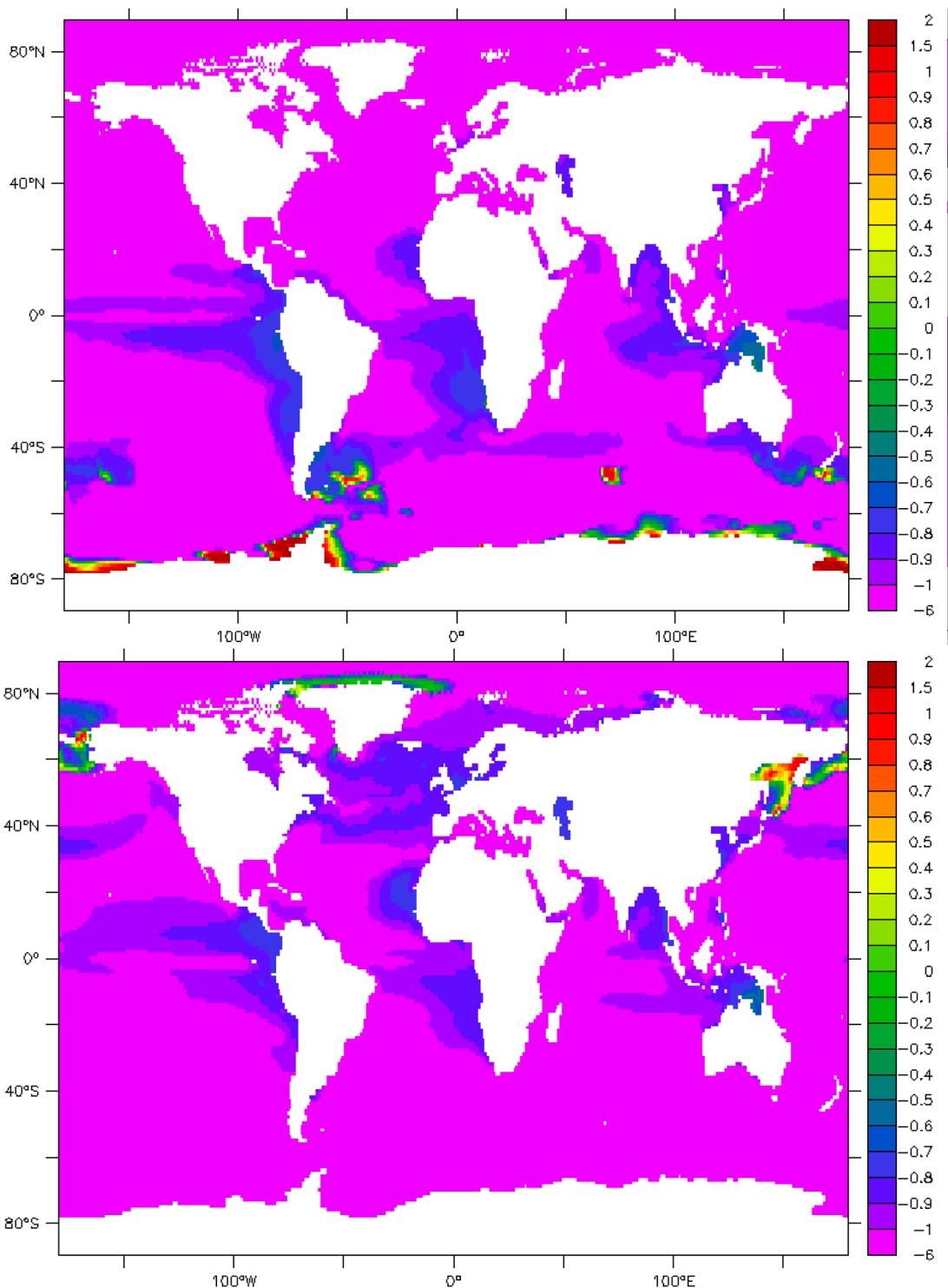

686
687
688
689
690
691

Figure 3. Log surface pressure maps (Atension) constructed as in Figure 2 but with lipid levels returned to baseline. Color bar has been set so that a reference range of 0.3-3 mN/m is central (-0.5 to 0.5 in log units). May and November monthly averages are shown for a typical year near the turn of the millennium.

701
702 **Figure 4.** Log surface pressure maps (Δt ension) constructed as in Figure 2 so that albumin is cut by
703 three relative to the baseline -but with lipid levels zeroed. Color bar has been set so that a reference
704 range of 0.3-3 mN/m is central (-0.5 to 0.5 in log units). February and August monthly averages are
705 shown for a typical year near the turn of the millennium.
706

707

708

709 **Figure 5.** Log surface pressure maps (Atension) with protein levels decremented 10x while lipids
710 are returned to baseline. Color bar has been set so that a reference range of 0.3-3 mN/m is central
711 (-0.5 to 0.5 in log units). February and August monthly averages are shown for a typical year near
712 the turn of the millennium.

713

714 Yellow-to-red tones in the bottom panel of Figure 2 suggest a “crystallization” of the regional
715 scale microfilm over the entire Arctic Ocean, due to just a small augmentation in average lipid
716 concentrations (stearate). This result would be fascinating if real, but it cannot currently be
717 verified. Potential implications include unexpected microlayer effects on wind fields of the ice
718 domain, and on gas-bubble-aerosol mass transfer both at the pack edge and along leads. In fact the
719 2D condensation result penetrates far beneath the contour of summer ice coverage, tracking BEC
720 primary production. It should be clear that even a minor underestimate of generalized surfactant
721 levels could have very major implications for high latitude climate. Closely related (detrital)
722 biomacromolecules are also generated independently inside of sea ice, by the resident sympagic
723 algae. At extreme temperatures and salinities characterizing the interior of the pack, organics tend
724 to coalesce, gel and also coat pore spaces and their interconnecting channels [128]. They could thus
725 alter brine drainage rates, nutrient resupply chains, and possibly the average regional scale
726 freezing point [129]. Surface physicochemistry yet again offers the relevant theoretical framework.
727 Equations will strongly resemble room temperature film thermodynamics as outlined in our
728 appendix [130].

729 Figure 2 very directly addresses the second issue raised at the top of the text -but without
730 offering a definitive answer. It seems likely that the specific surrogate pairing of albumin with
731 stearic acid, put forward by so many environmental surface chemistry groups over the years, is
732 actually giving us a fair representation of the relative regional tension variation. The π maps
733 presented here would then be consistent with 1.) unexpected roughness across broad sectors of the
734 middle latitude open ocean, 2.) overestimation of momentum transfer in turbulent flux
735 parameterizations lacking film chemistry, and even 3.) 2D microfilm collapse over large areas at
736 high latitudes. But data remain lacking to assess these options. For the moment all that can be done
737 is to respectfully provide guidance for molecular dynamics models or any renewed experimental
738 work.

739 We believe due to (slightly) improved agreement with (highly) impoverished data sets for
740 protein-like material and for π (Tables 3 and 4) that the albumin/3 calculation may be our
741 most realistic product. For the sake of completeness we append as Figure 3 the associated May and
742 November plots. They are somewhat less eye-catching because lipid blooms have been subdued
743 by a return to baseline, but on the other hand the two-triangle depression is emphasized in
744 autumn as it runs across the northern basin Pacific. Alb/3 is finally taken as a sub-baseline for two
745 further maps of interest –lipid and protein influence switched off in turn. With the stearate
746 contribution removed, no zones of high surface pressure remain (all below 10 mN/m in Figure 4,
747 contrast for example 1 and 2). But such waters and their microlayers have always been clearly
748 identifiable given sufficiently sensitive analytical tools, for example in many of the classic
749 (surfactant) chemical oceanographic studies. In particular, condensed behavior seems to be
750 common along the equatorial Pacific [4,63]. Coastal π -A experiments provide numerous examples
751 as well, with dozens of curves attributable to the California Current alone [3,77]. The suggestion is
752 this - at least some form of 2D solid will be a necessary component in successful parameterizations
753 (appendix Figure A1). Under reduction of a protein proxy (Figure 5), central basin surface
754 pressures fall below tenths mN/m whereas historical droplet determinations demonstrate that
755 such values should often be detectable [2,81]. Conceptual interplay between Figures 4 and 5
756 therefore indicates that the appendix surrogate combination is quite an effective one, as predicted
757 by many surfactant chemical groups over the decades.

758 Global tests for which results will not be shown include (2D) liquefaction of the lipid proxy
759 by substituting oleic acid profiles [5,63], swapping-in of casein or lysozyme in place of the albumin
760 gas-liquid [95], alterations to the half saturation reference points, and finally sensitivities to other
761 equation of state parameters as outlined in the appendix (Table A1). Results of the previous figures
762 are not contradicted, and largely in fact they are continually confirmed by these further exercises.
763 Overall it seems safe to say that the marine biosurfactant family of macromolecules and polymers
764 should indeed describe a distinct biogeography of surface tension, along with its absolute
765 difference the 2D pressure, while intra-basin and seasonal variations may well push global film
766 dynamics regularly across the 0.3-3 mN/m reference contour band. The latter transition, per Table

767 1, implies a fluid geography of effects on both ocean and atmosphere boundary layer physics.
768 Patterns may be decipherable through the phase plane equation of state approach.
769

770 10. Uncertainties 771

772 Some of the errors inherent in the above development are unambiguously parametric, and
773 were explored in part as the figure set 1 through 5. Examples include macromolecular release rates
774 and surrogate choices. Many of the potential uncertainties are more pervasive, however. Several
775 derive unavoidably from our general oversimplification of the tightly coupled, nested phase,
776 kinetic-thermochemical system residing at the global microlayer. These might be termed
777 "structural" issues. To influence the energetics of tension, polymers must undergo a full life cycle
778 of transformations playing out over hours to weeks and including at least the following steps –
779 biological release (becoming detritus); chemical reactions in a warm, oxidizing and light
780 permeated medium (the mixed layer); transport toward the atmospheric interface across the very
781 spectrum of turbulent eddies about to be controlled; equilibration at some locality along the
782 undulating wave system and finally, surfactant function within the Gibbs plane. By now we hope
783 to have convinced the reader that the latter constitutes an intimate, rich and layered
784 biogeochemical medium in its own right. The two dimensional phase experiences continual
785 compression and dilation by the wave field, interactions with constituents of the bulk atmospheric
786 gas phase sometimes in bubble or aerosol form, and more besides. Approximations already stated
787 or implied but well worth reiterating –we have assumed a rapidly stirred upper ocean; uniform
788 heteropolycondensate evolution among the DOC except for a few adjustable exponential time
789 constants, instant stabilization into the surfactant medium, fixed moderate thermochemical
790 temperatures which are actually confined to the laboratory and middle latitudes, undisturbed
791 occupation of an idealized pristine monolayer, experiment-like responses constrained to be
792 nonstacking and nonhysteretic, a complete lack of 2D-internal removal or reactive processes. And
793 again more besides.

794 Potential sources of error in calculations of this nature are so numerous that we feel
795 compelled to construct yet another Table for the convenience of the reader (number 5). Row by
796 row (topic-wise) literature sources including new additions are –organic release [128,131,132],
797 water column processing [133-137], transport [138-141], interfacial attachment
798 [1,29,46,62,77,80,142], monolayer (mixing state) [36,38,142-144], monolayer (crowding)
799 [2,74,75,145-147], monolayer (temperature) [38,95,148], monolayer (salt effects) [94,95,149],
800 monolayer (pH) [77,94,149,150], the multilayer–plex [31,36,95,135,142], caps and foam
801 [28,151-154], atmospheric interactions [76,103,155,156]. We will not attempt to quantify net effects
802 of these biases. Any one of them could arguably inject a factor of three flexibility into the logic
803 train, and some would operate in two directions. In fact we have already used a round
804 half-decadal value several times just in carrying out our plotting procedures. Since uncertainties
805 must propagate, both cancellation and large misjudgments are statistical possibilities. It may be
806 that either the sum of uncertainty disappears, or else that it is much greater than suspected.
807 Measurement constraints are few but real (earlier tables) and we exploit them as fully as possible.
808 Effectively we posit that traditional fluid drop methods, skim sampling and experimental π -A
809 curves are all consistent with our results. Thus they support our hypotheses, or at least do not offer
810 contra-indications. But it is of course difficult not to view sparse comparisons with skepticism.

811 Our position, as might be imagined, is that parameter flexibility explored in the figures
812 already points to major opportunities, for the international community of environmental and
813 surfactant chemists. It is obvious that improved geographic coverage is sorely needed for all of the
814 quantities concerned –the families of lipids, polymers, hybrids and degradation products among
815 high molecular weight compounds, their concentration gradients (provincial and vertical), planar
816 densities and specific behaviors during surface activity. We include in our thinking the potential
817 for molecular dynamics and statistical mechanics modeling, plus contributions from analytical
818 environmental chemistry groups oceanographic and otherwise. There is also much to be learned
819 from marine aerosol research, which has long focused on aqueous/salt/organic phase relationships
820 critical to ccn number and cloud brightness [102,103,143,144,157].

821

822 **Table 5.** Itemization of uncertainty areas in the present work. Staging refers to the life cycle of
 823 events which must be tracked for detrital then surface active biomacromolecules if they are to
 824 influence energetics at the sea-air interface. An “issue” here may be biological or physical-chemical
 825 and reflects (over?) simplifications in the logic. The comment column adds detail. Referencing is
 826 limited to just a brief selection in all cases. Blanks carry information downward.
 827

Stage	Issue	Comment	Sample references
<i>Organic Release Mechanism</i>	Exudation could add to mass and functionality	Siderophores common pelagic examples, but also in brine channels	Hassler and Schoemann 2009; Hassler et al. 2011; Krembs et al. 2011
<i>Water Column Processing</i>	Polymer kinetics and colloid formation, rapid bacterial consumption	Gel adsorption could divert... or contribute to upward carbon fluxes	Alldredge et al. 1993; Passow et al. 1994; Chin et al. 1998; Wells 2002; Verdugo et al. 2004
<i>Transport upward to the Interface</i>	Time scale...Do our horizontal averages omit gradients?	Diffusion likely sufficient, bubble impact speeds, 1D needed	Kraus and Turner 1967; Bowden 1975; Johnson et al. 1981; Woolf 1997
<i>Surface Attachment and Detachment</i>	Equilibration to surface not instantaneous, nor is the reverse process	Anecdotal evidence that time scale ~seconds but could be minutes	Garrett, 1967; Jarvis 1967; Van Vleet and Williams 1983; Babak et al. 2000; Alpert et al. 2015; Cox et al. 2016
<i>Within the Monolayer</i>	Mixing interactions among competing surfactants	2D solids may enhance condensability of 2D liquids etc.	Adamson 1960; Davies and Rideal 1963; Babak et al. 2000; Dutcher et al. 2010 and 2012
	Crowding within the compressed planar system	Sites with gels, organisms... white cap-style area partition?	Liss, 1975; Erickson 1993; Hardy 1997; Callaghan et al. 2008; Cunliffe et al. 2011; Wurl et al. 2011
	Temperature effects on surface thermochemistry	Observed to be small, but Van't Hoff isochore should be implemented	Ward and Tordai, 1952; Davies and Rideal 1963; Graham and Phillips 1979
	Salt effects at 35 psu (or higher inside pack ice)	Most studies from food-pharma labs so low ionic strength	Christodoulou and Rosano 1968; Graham and Phillips 1979; Parra-Barraza et al. 2005
	pH (acid base reactions)	Bulk surface seawater 8.1... but the (aqueous) electrical near field?	Christodoulou and Rosano 1968; Van Vleet and Williams 1983; Kanicky and Shah 2002; Parra-Barraza et al. 2005
<i>Multilayering-Multiplexing</i>	Substrata, collapse, rings, stacks, balls, wrapping, hysteresis	Likely common with divalent cations below, gels at interface	Adamson 1960; Graham and Phillips 1979; Chin et al. 1998; Babak et al. 2000; Burrows et al. 2016
<i>White caps and Foam</i>	Organic accumulation, storage, ejection, losses to atmospheric aerosol	This reservoir and its throughput are difficult to quantify	Blanchard 1964; Lewis and Schwartz 2004; Selligri et al. 2006; Callaghan et al. 2012; Modini et al. 2013
<i>Interactions with the Free Atmosphere</i>	Oxidation states, redox	Bulk gas oxidants, dicarboxylic acids, reduced iron	Zhuang et al. 1992; Meskhidze et al. 2005; Petters and Petters 2016; Rossignol et al. 2016
	Macromolecular to organic cycling back to the sea	SOA and POA return to the microlayer in only days, carbon with them	Appears never to have been considered

828

829 The required research could be organized geographically via “surfactome” principles drawn
 830 from Tables 3 and 4. Refinements would lead down to the ecological province level and to
 831 coastlines. Automated sensors and their respective platforms should definitely play into the mix of
 832 techniques. Many groups have demonstrated that centimeter scale waves or conversely, the slicks

833 left behind by damping, are detectable en masse by robotic instruments whether shipboard or
834 airborne, and also from space [8,9,19,64]. In this regard, a particularly intriguing suggestion has
835 recently been conveyed to us by one of our coauthors (DS). Remotely sensed white cap
836 distributions and residence times have been used to estimate the variable air entrapment caused
837 by open ocean wave breaking events. Data on the entrained volumes feed into bubble plume
838 energetics calculations. Tank experiments suggest, however, that surfactant identities in ambient
839 foam impose a large mode of uncertainty [28,151,158]. From our perspective this sequence can
840 easily be inverted –it may be that a spread in white cap results conceals information on the
841 chemical and biological geography of marine films.

842 Some of the uncertainties characterized in Table 5 loop back on the individual analyst or
843 his/her community, defining/creating new projects –this is another positive spin that we can give to
844 complexities of the situation. For example, proteins and lipids comprise a poorly understood
845 portion of the total DOC at any given location (Table 3). Marine colloids ultimately become
846 optically active carbon carriers [75,134-136], and they happen to form dominantly from the
847 remaining (fresh) macromolecular mass –the 20% or so of cell spillage which dissolves as
848 polysaccharide. Colloidal chemistry fuels the gel phase. Gel particles are buoyant and therefore
849 advect vertically into a dead end at the microlayer. There they occupy an undetermined fraction of
850 the local area as a pseudo-polymeric phase (Table 5). If our proteins and lipids adsorb to the
851 chained sugars, we have identified a surfactant velocity (pathway) additional to the expected
852 bubble sweep [37,141].

853 Further instances can readily be cited –dust iron input in Table 5 as a type of redox chemistry
854 which has not been closely accounted here, or perhaps inputs by very short lived bulk gas radicals
855 [76,155]. Photoreduction in mineral aerosol coatings can solubilize trace metals during long range
856 atmospheric transport [155,156], but organic ligands determine the eventual point of equilibrium
857 as well as persistence. One of us (NM) is now conducting laboratory dust iron research into the
858 strength of far upper ocean chelation. That which sets in quickly as mineral particles enter the sea
859 turns out to be crucial to reoxidation rates and bioavailability. But shouldn't solid aerosol particles
860 acquire a thick wrapper of (surfactant) organics as they punch through the ubiquitous global
861 microlayer? Strong multidentate ligands must be numbered among the macromolecules
862 considered here [110] and the process of monolayer penetration-aquisition appears not to have
863 been considered by iron cycle specialists. We've remarked elsewhere that our pelagic
864 biomacromolecules have close cousins, generated and processed in a very similar manner inside of
865 sea ice. A significant fraction of this organic mass will be surface active at the bulk solid boundary
866 of brine channels, with the potential to alter the average freezing point [128-130].

867

868 11. Summary and Discussion

869

870 Principles of surfactant chemistry operating in the Gibbs plane have been applied to the
871 global ocean-atmosphere interface, through a combination of ecodynamic, nutrient-carbon cycle
872 and organic (surfactant) chemistry modeling. Surface tension increments comprising a tangential
873 pressure field within the marine film modulate –bulk trace gas transfer, salt spray and momentum
874 fluxes plus both sensible and latent heat flow (Sections 1 through 4, Table 1). All this takes place at
875 the planetary scale, with attendant influences on coupled ocean-atmosphere climate. We seek to
876 organize the physical chemistry involved and search for regional patterns which may underlie the
877 influences. Hence it has been asked whether tension and its difference quantity termed the
878 “surface pressure” (π) can be adequately and usefully mapped. We work from both historical
879 and modern understanding of the fundamental marine organic, interfacial and physico-chemical
880 issues involved (Sections 3 through 6), supplementing with state of the art biogeochemical systems
881 modeling. The potential has been assessed for assigning specific biogeographies to
882 macromolecular surfactants and their tension properties. Both tabled and plotted results show that
883 the answer to our several fundamental π questions lies in the affirmative –given the contemporary
884 community knowledge base this can definitely be accomplished (Sections 5 through 8, Tables 3
885 and 4 then figures). Efficacy of the computed tensions was evaluated by comparison with a
886 leading indicator, the range of two dimensional pressures spanning reported effects on (Sections 4

887 and 9) -regional piston velocities, bubble film breakage, sea spray number, centimeter scale
888 (capillary) wave damping and finally the drag coefficient. Results are tentative but tantalizing. The
889 potential for regional to basin scale effects on the several geophysical transport modes cannot be
890 excluded (Section 9).

891 Along the way we have called upon standard (surface chemistry) text materials as well as
892 long standing literature to define (Gibbsian) planar phase states within the film (Section 3),
893 community knowledge of the detailed macromolecular composition for marine dissolved organics
894 with special emphasis on functionalities and amphiphilicities (Section 5), classic chemical
895 oceanographic surfactant research providing a recommended and tractable proxy or surrogate set
896 (Section 6), global ecodynamic systems modeling performed at several levels yielding similar,
897 self-reinforcing distributions (Section 7), numerous marine (2D or surface) pressure-area diagrams
898 reproduced in order to establish credibility (Section 8), and finally global maps demonstrating that
899 tension gradients driven by the macromolecular organics should be real and detectable (Section 9).
900 We conclude with an enumeration for the large number of uncertainties involved, alongside an
901 attempt to turn at least some of these to our advantage –the unknowns can and should motivate
902 further research (Section 10).

903 In a fascinating historical analysis, Cox and company [46] have recently and vividly recreated
904 nineteenth century wave calming experiments, conducted fortuitously (accidentally) using
905 petroleum liquids and fish oil. The former substances (hydrocarbons) simply gather and bead at
906 the ocean interface having little effect, while the latter are 2D gases (elastic [36]). The authors
907 perform an heuristic but theoretically grounded analysis of breaker suppression at the kilometer
908 scale. Their claim is that this occurs through the cascade of effects outlined in Section 2,
909 propagating from the atmospheric turbulent field into and through upper ocean eddy spectra. Cox
910 and company conclude by citing geoengineering and Gaian ramifications of their investigation.
911 For example, there would seem to be the potential for control of extreme storm events. Global
912 wind systems are also mentioned prominently. Our novel addition to such arguments would run
913 as follows; it may be possible to decompose and re-synthesize organic and physical chemistry
914 issues underlying the surfactant wave effects. We track phytoplanktonic and generalized detritus
915 from regional food webs through individual biomacromolecular (organofunctional) identities into
916 the Gibbs phase plane, where critical and quantitative comments can be made regarding interfacial
917 energetics. It seems plausible to submit, as do Cox and colleagues, that enhanced knowledge of
918 surfactant and biopolymer chemistry could lead to enhanced control over either local or global
919 wind-wave-current-aerosol systems. Our work thus reinforces a prospect recurring over many
920 decades: There may well exist closely inter-related, basin scale biological feedbacks onto a long list
921 of planetary transfer types -gas, salt, heat, momentum, carbon, radiation and water vapor fluxes
922 [2,18,20,22,46,83,159]. All this is previewed here offline but in fact it has become possible only
923 given contemporary, state of the art modeling and mapping techniques. We believe this is all the
924 more reason to attempt a full integration, for understanding of the shifting, flux-filtering 2D
925 equilibria at play. The time for Earth System Modeling of the phase plane may well be at hand.

926 Our research actually distills to an almost ludicrously simple parameterization for the planar
927 Equation of State (EOS), but we have nevertheless been so bold as to wrap it around the entire
928 planetary microlayer. This of course implies there will be many inadequacies (Section 10 and Table
929 5), but it also means the fundamental strategy is easy to test. Textbook expositions of the EOS
930 concept naturally begin from bulk aqueous media, making connections from forces to 2D density
931 and then on to chemistry. There is a tendency to emphasize ideal, Van der Waals and then virial
932 approaches [5,38,130]. Surfactant specialists have experimented with such systems regularly over
933 the decades, whether from the standpoint of pure physics, chemical engineering or extrapolation
934 to the environment [5,36,77,94,95,103]. On occasion and especially within the aerosol community,
935 dynamic and statistical computational methods are applied to this type of problem [143,144,160].
936 Our appendix approach is almost purely empirical, but we fully expect it to lead back in these
937 rigorous directions. A guess is that our “power Langmuir” equation, or something close to it, must
938 be derivable from first principles; similar forms have been found to represent low kinetic reaction
939 molecularities on catalytic surfaces. We propose computational experiments at the level of our
940 Tables 3 and 4 surfactomes, as a potential starting point. Interested researchers could test the

941 various molecular modeling tools for application at microscopic to provincial scales. Meanwhile,
942 first order concepts from the current development could be incorporated into our own
943 OCEANFILMS package, which is already running in global systems mode [30-32]. It is now the
944 mainstay of our effort to simulate primary marine organic emissions, since it can represent detrital
945 macromolecules adsorbed to breaking bubbles. The fit should be a convenient one. O-FILMS is
946 based on a traditional Langmuir isotherm for the chemically resolved mass excess. All that is
947 suggested here is an extension to a surface pressure with exponents.

948
949 **Acknowledgments:** The authors thank several U.S. Department of Energy Earth System Modeling
950 programs for support –ACME, HILAT and Feedbacks/Benchmarking.

951
952 **Author Contributions:** SE functions as the primary and corresponding author -SB, PCS, NJ, MM,
953 SW, and WW are currently working together in various capacities as the DOE marine
954 biogeochemistry modeling team to implement primary organic aerosol sources from the
955 OCEANFILMS parameterization -EH, NJ, CD and MJ provided polar marine systems simulation
956 knowledge and expertise -YL, RL, OO and OW acted as consultants on details of the marine organic
957 chemistry -MB, LVR and IS offered insights into large scale momentum transfer issues -DS and LR
958 assisted in particular with sections involving coastal and wave driven bubble surfactant chemistry
959 –FH and OO focus on validation of the marine organic chemistry simulations.

960
961 **Conflicts of Interest:** The authors declare no conflict of interest.

962
963 **Potential Referees:** J. Bacmeister (NCAR), A. Callaghan (Imperial College), G. Deane (SIO), H.
964 Eicken (IARC), S. Ghan (PNNL), W. Large (NCAR), X. Liu (U. Wyoming), L. Miller (UBC), A. Ragu
965 (SIO), P. Rasch (PNNL), G. Underwood (Essex)

966
967 **Appendix: Theory and Equations**

968
969 Properties of a physicochemical bulk-to-bulk interface are often sufficiently unique that it is
970 useful to imagine a separate phase residing there in microscopic form [36,69,71,161]. To the extent
971 that we succeed in a global mapping exercise for this abstraction, a hypothetical but distinctive new
972 material is added to the usual geochemical suite, for consideration by Earth System
973 Models/modelers. As expected, thermodynamic and/or geochemical properties are characterized
974 by various low dimensionality equations of state [38,143,162]. But forces leading to contraction or
975 expansion comprise, in the abstract planar medium, a complex interplay of Van der Waals
976 interactions plus hydrogen bonding and electrostatics. Since we emphasize the monolayer, there
977 are necessarily intimate and immediate interactions with three dimensional material sources on
978 either side of the partition. The situation is ripe and well delineated for molecular modeling,
979 whether through dynamic or statistical methods [144,162-164]. Marine examples have been
980 provided recently during the Deepwater Horizon episode. Dispersants were tested both at the
981 well-head petroleum injection site and further along the Gulf Coast. The international energy
982 industry had strong motivation to assist in assessing the possible chemical engineering fixes
983 [165-167]

984 Surface tension is just the energy required to create more of the ultra-thin interface locally.
985 Equivalently, it is the force per unit length exerted to do so. The value for pure seawater is about
986 72 mJ/m² or mN/m without allowing for slight variations due to temperature and salinity
987 [19,47,71,168,169]. Oceanographic state variables can be set aside for our purposes, because their
988 effects are small and we will be able to focus on deltas (differences). While physically fundamental,
989 the tension value itself is subsumed as a baseline. Forces which must be opposed to generate new
990 area include the chemical bond making-breaking and Coulombics mentioned above. Repulsions,
991 whether from head groups penetrating the bulk liquid or hydrophobic tails extending into the
992 atmosphere above, will provide a boost to surface formation so that they lower the tension. By
993 contrast, Van der Waals attractions tend to rein in the process. By and large we can side step the
994 detailed terms and balances here, since whether in the laboratory or at sea empirical data serve our

995 mapping purposes quite well. But this situation is only temporary. Deeper understanding will at
 996 some point be required. For the moment, we recommend as a reference for the above issues a
 997 classic textbook. Davies and Rideal [38] is especially clear on the subject because it appeared just as
 998 the chemical engineering importance to interfacial eddies was recognized. Several follow-on works
 999 are shorter but equally instructive [50,78]. Analogous bubble surfactant issues are handled nicely
 1000 in Clift and Grace [86]. The aerosol community faces similar challenges, and there are close
 1001 relationships with Szyskowski curves [34,69,70].

1002 Microlayer thermochemical logic has already been reviewed in the global context by Elliott,
 1003 Ogunro and colleagues [33,37], so that their basic results can now be strongly condensed. Free
 1004 energy change must be accounted per the First and Second Laws, but an additional term is
 1005 inserted due to contributions from area formation. Simplifications are readily identified even in the
 1006 earliest equations. The conceptual Gibbs plane has no volume, and we are free to think of
 1007 temperature as a local constant. Gibbs-Duhem style integration followed by application of the
 1008 product rule defines a molar area quantity, and further establishes the connection with chemical
 1009 potential. The μ must match across our column of phases bulk and otherwise, plus they are always
 1010 proportional to log concentration at equilibrium, so that:

$$1011 \quad dG = -Sdt + Vdp + \sigma dA + \sum_i \mu_i dn_i \quad (general) \quad (1)$$

$$1012 \quad dG^{Surface} = \sigma dA + \sum_i \mu_i dn_i^{Surface}; G^{Surface} = \sigma A + \sum_i \mu_i n_i^{Surface} \quad (2)$$

$$1013 \quad dG^{Surface} = \sigma dA + Ad\sigma + \sum_i n_i^{Surface} d\mu_i + \sum_i \mu_i dn_i^{Surface} \quad (3)$$

$$1014 \quad Ad\sigma = -\sum_i n_i^{Surface} d\mu_i; n_i^{Surface}/A = \Gamma_i; A_i = \Gamma_i^{-1} \quad (4)$$

$$1015 \quad \mu_i^{Surface} = \mu_i^l = \mu_i^g \quad (phase\ inclusive,\ and\ now\ to\ a\ system\ of\ one\ i\ ...) \quad (5)$$

$$1016 \quad d\sigma = -\Gamma d\mu; d\mu = RT d\ln C; \partial\sigma/\partial C = -\Gamma RT/C \quad (6)$$

$$1017 \quad \sigma = \sigma^* + -const. C; \pi = \sigma^* - \sigma; \pi = const. C; \partial\sigma/\partial C = -const.; \pi = \Gamma RT \quad (7)$$

1018 Here all symbols have their usual thermochemical meaning plus the tension is σ , A represents total
 1019 area of the system under study, i carried through most of the development is one member from
 1020 among a set of environmental chemical components (some populating the interface), and molar
 1021 coverage is Γ . This latter quantity is sometimes also referred to as the surface “excess”, since from
 1022 a laboratory perspective it merely exists over and above storage in the bulk. Note that for practical
 1023 purposes in actual computations, we deal with specific coverage or area carried not in moles but
 1024 rather mass expressed as total milligrams.

1025 Chemical potential equivalency enters at an intermediate step in our condensed treatment. In
 1026 the interest of clarity, we quickly focus on a single surface active organic inhabiting the plane.
 1027 Super-subscript combinations can thus be obviated. As the reader will recall from the main text,
 1028 summations only return to a total of two (surrogates). The earliest and simplest of all surfactant
 1029 behavior isotherms is that of Gibbs, included in several forms [36,38,71]. The asterisk indicates
 1030 pure water tension. Plus in this location we formally define 2D pressure and take the (admittedly
 1031 but conventionally) strong step of linearizing its variation. A precise parallel to the ideal gas law is
 1032 revealed. Many groups have explored Van der Waals and virial type improvements to this
 1033 situation, whether in the general physicochemical or marine realms (see e.g. [5,94]. There will later
 1034 be ample opportunity for statistical mechanical and molecular dynamic approaches to be applied.
 1035 For purposes of preliminary assessment, however, we avail ourselves of a strictly empirical
 1036 approach.

1037 Since in the current work we deal, of necessity, with phases nested inside of phases (a
 1038 thermochemical Russian Doll could be held in mind), it is important to issue a reminder at this
 1039 stage. To the current level in our appendix arguments, the terms liquid-gas or symbols l-g have
 1040 retained familiar textbook meanings. They have referred to the usual bulk materials –here
 1041 seawater and the atmosphere in some regional geophysical scenario. But now we rapidly
 1042 transition to, and zoom in upon, chemical activity confined to the Gibbs wrapper. The term “solid”
 1043 takes on a new significance and does not point, for example, to bulk sea or cloud ice. Rather we
 1044 discuss those analog surfactant phase changes which allow comparison with the surface-chemical
 1045

1046

1047 oceanographic literature. Further remarks on s-l-g are prefaced directly as two dimensional or 2D
 1048 whenever possible. But a careful reader must remain sensitive to the recursive nature of our
 1049 language. This awkwardness is a small price to pay for introduction of a new planetary scale
 1050 phase.

1051 The two dimensional ideal (gas) law is most useful as a device for demonstrating that the
 1052 planar thermochemistry artifice is robust. Perfect behavior among surfactants is rarely observed,
 1053 and normally only at excess values so low that they are not relevant here [36,170]. But it becomes
 1054 clear that the interfacial, microscopic forces listed operate in some proportion to coverage and
 1055 concentration. This is of course a classic equation of state situation, with Newtonian interactions
 1056 responding to densities. They will exert their geophysical influence, whether at the local scale or
 1057 across regions, where gradients develop –by contrast, a uniform 2D pressure field would not be of
 1058 interest. A commonly encountered and convenient differential form is that of the elastic modulus ε
 1059 [7,17,19,38]. This is just an increment in π ratioed to fractional area change, so that overall units are
 1060 unaffected. As a point of reference, it can be shown for the ideal (2D) gas that pressure and
 1061 elasticity are equal [18].

1062

$$\varepsilon = -\partial\pi/\partial\ln A (= -\partial\pi/(\partial A/A)) = \partial\pi/\partial\ln\Gamma; \text{recall that ideally } \pi = \Gamma RT \quad (8)$$

1063

$$\ln\Gamma = \ln(\pi/RT); \text{isothermal so } d\ln\Gamma = d\ln(\pi/RT) = d\pi/\pi; \text{hence } \varepsilon = \pi \quad (9)$$

1064

1065 Note the sign flips involved –they reinforce the fact that $\pi \propto (1/A)$ under extreme dilute
 1066 circumstances. But perfection requires linearity on the tension, and assumptions rapidly break
 1067 down with increasing chemical intensity and complexity. Still, understanding the ideal analog is
 1068 part of our strategy since actual 2D gases plus (Gibbs plane) liquids/solids forming from or around
 1069 them can all exhibit much higher elasticities [18]. Ultimately this is our means for distinguishing
 1070 the surface phases, and for comparing with ambient results [2-7,63]. We follow the definitions
 1071 provided in Frew primarily [18].

1072

1073 To progress further, we must now think in traditional terms working from surface adsorption
 1074 isotherms. Usually these are couched by the chemist as expressions of excess for a given bulk
 1075 concentration. We attempt to extend the basic concepts to more general surface properties.
 1076 Although planar equations of state are available, we will be unable to escape making an intimate
 1077 but parameterized connection with the massive, neighboring bulk ocean. We have already
 1078 mentioned the fundamental Gibbs isothermal results, but they are inherently incremental.
 1079 Langmuir derived the most expedient early form [30,35-37] working from dynamic surface
 1080 encounters –but homogenous configurations and siting had to be assumed. The BET form
 1081 superimposes multilayers but we will not move so far in the current work. Although our group
 1082 has relied in the past on the classic Langmuir for organic aerosol emission computations, surface
 1083 homogeneity will not suffice here. Unsurprisingly, imperfection becomes the crux when we
 1084 consider an entire global film. Our hope is to capture regionally distinctive interactions among the
 1085 variety of marine biomacromolecules, if only empirically and through the lens of surrogates.
 1086 Subtleties which enter as a function of mixed layer organic concentration will include –changes in
 1087 hydrogen bonding density along the interface, nonlinear Van der Waals contact in the monolayer,
 1088 tail or polymer reconfiguration as area tightens, ring formation, bundling, stacking etc.

1089

1090 Empirical isotherm versions are not only acceptable to the surface chemistry community –
 1091 they serve as essential tools [36,72]. Utility is the watchword. An oft-cited example is the basic yet
 1092 eminently flexible relationship of Freundlich [171], which he himself applied in a diversity of
 1093 situations. The form $\theta = a(C)^b$ was a mainstay in twentieth century catalysis studies. Normally a
 1094 Freundlich is used to represent fractional mass coverage, but we generalize here to an “operative”
 1095 set up which remains entirely notional. Our goal is to represent the influence of mixed bulk
 1096 organic concentrations upon either of the quantities surfactant excess or 2D pressure. The two
 1097 must be juggled and balanced in order to reproduce literature π -A analyses. The very natural
 1098 Langmuir saturation feature can be rolled in ad hoc, and so we propose the functions

1099

$$\theta_i^t = (K_i^t C_i)^{n_i^t} / \left(1 + \sum_j (K_j^t C_j)^{n_j^t} \right); K_j^t = 1/C_j^t \text{ (reference)} \quad (10)$$

1100 $\Gamma_i = \theta_i^{\Gamma}(\mathbf{C})\Gamma_{i,max}; \pi_i = \theta_i^{\pi}(\mathbf{C})\pi_{i,max}; \Gamma = \sum_i \Gamma_i$ likewise π (11)

1101

1102 where θ is merely a weighting for the various Γ or π since it is purely operational, t signifies a
 1103 process "type" here limited to the excess or tension, reference concentrations converted into
 1104 equilibrium constants are specific to half maxima, and a bold quantity signifies an algebraic vector
 1105 of surrogates (the proxy-tuple). The sole restriction on exponents n is that they should be positive
 1106 values –integers are not required, or rather $n=1/m$ is acceptable [171]. The reader will see that $n < 1$
 1107 flattens a profile while $n > 1$ sharpens, and we exploit this tradeoff to deal simultaneously with the
 1108 extremes of 2D phase behaviors (elasticity in Graham and Phillips [95] versus rapid collapse in
 1109 Christodoulou and Rosano [94])

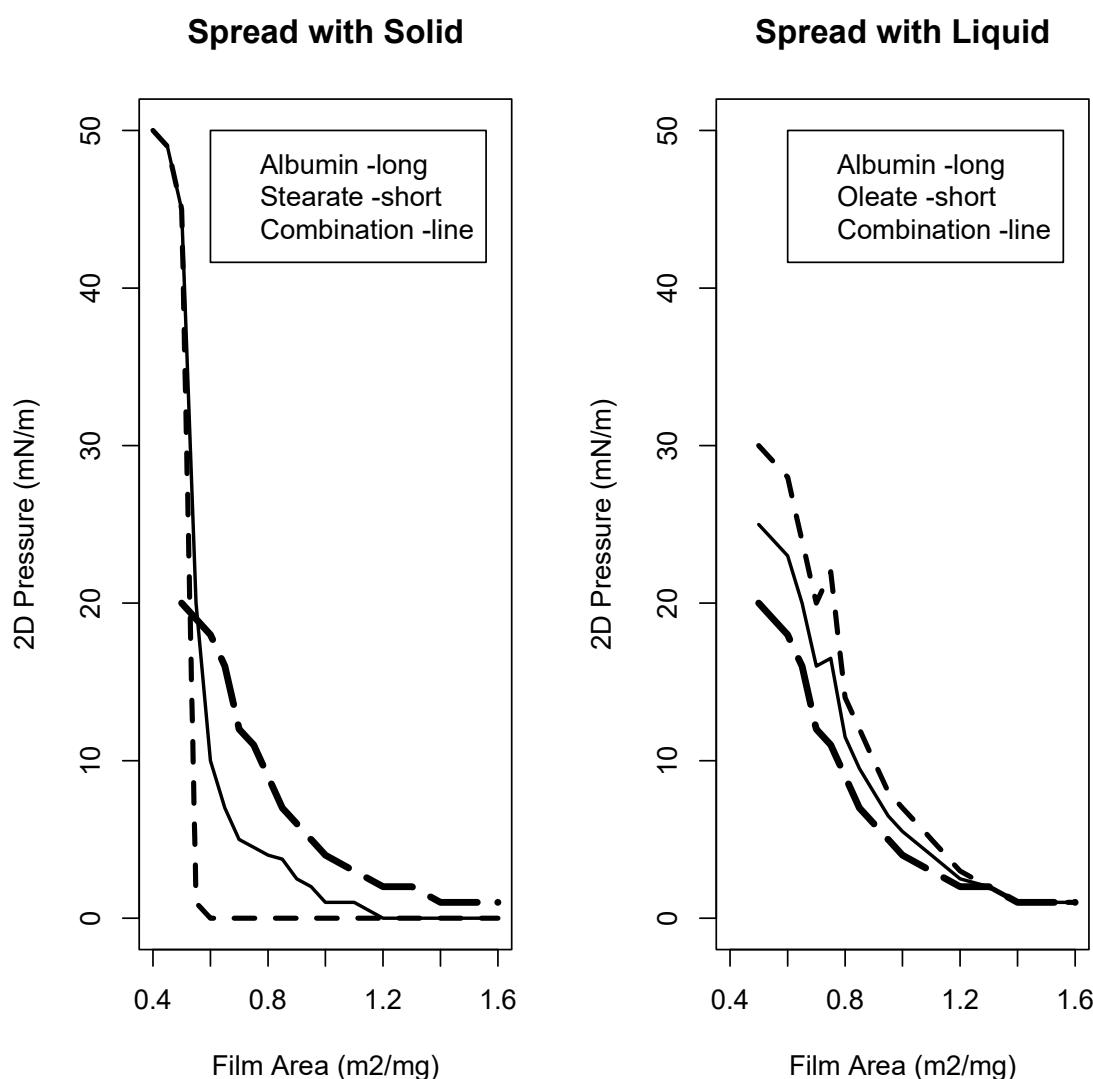
1110 The combination of equations finally presented here is what we refer to for obvious reasons
 1111 as a "power Langmuir". The attempt is unify and begin to comprehend bulk solute control over
 1112 multiple surface properties of the global ocean. It must be strongly stated that the relationships
 1113 have not been derived in any fundamental physicochemical way –although close analogs can be
 1114 for certain circumstances such as the pure, uniform adsorption competition [172]. The intent is to
 1115 offer a reasonable hybrid, providing Earth System Models with both adjustable and appropriate
 1116 asymptotic surfactant behaviors (low and high individual or collective concentrations). The reader
 1117 may wish to perform the thought experiments of conceptually zeroing and raising the \mathbf{C} .
 1118 Laboratory source data are returned with the exception of proteinaceous bunching and hysteresis.
 1119 As additional approximations, all effects are decoupled from one another then treated linearly and
 1120 additively.

1121 For the moment, the exclusive justification we offer for this result is that it works –surface
 1122 chemical behaviors are adequately represented for either laboratory proxy or real oceanographic
 1123 situations. To test and demonstrate this proposition, a small offline package was constructed in the
 1124 R statistical code suite. We quickly explored combinations of, and relationships between, mass
 1125 normalized areas for pure compounds and mixtures, their surface pressures and the elastic moduli
 1126 implied. Values for property maxima and for reference (half-saturation) concentrations were taken
 1127 from Graham and Phillips [95] for the protein surrogate albumin, and from Christodoulou and
 1128 Rosano [94] in the case of lipidic stearic acid. Exponents were adjusted to fit laboratory plots in the
 1129 literature. In some cases in order to match the extreme 2D solid wall encountered by nonbranching
 1130 fatty acids, the choices had to be relatively large single digit integers. But bear in mind that all is
 1131 empirical and the chemistry well documented.

1132

1133 **Table A1.** Parameter settings drawn from the general physical chemical surfactant literature to
 1134 describe interfacial behaviors of our proxy compounds. While the full range of biomacromolecular
 1135 references for Table 2 or [33,37] has been consulted, we settle upon the following as best startup
 1136 information sources: Albumin data are taken exclusively from Graham and Phillips [95], plus
 1137 stearic acid from Christodoulou and Rosano [94]. Both appear to be very high quality early
 1138 experimental studies and parameters are discussed in a clear manner. CR do not actually quote
 1139 bulk liquid concentrations, but they have been estimated from Ter Minassian-Saraga [173] and
 1140 Brzozowska et al. [174]. Values are inserted into the appendix equations to generate for example –
 1141 the π - A plots shown in Figure A1, π - ϵ as in the main text tables and any global maps presented.

1142


Surrogate	Reference concentrations		Maxima		Exponents	
	1/2 max, all μM carbon		$(\Gamma \text{ mg/m}^2, \pi \text{ as mN/m})$		Values for n	
	Excess	2D Pressure	Excess	2D Pressure	Excess	2D Pressure
Protein (Albumin)	10	30	2	20	0.5	1
Lipid (Stearate)	0.5	2	2.5	50	1	8

1143

1144

1145 The matrix of values adopted is listed in Table A1. Sample results are then provided for
 1146 inspection in the appendix figure, for which two new references are needed to establish equilibria
 1147 via kinetic arguments [173,174]. We performed synthetic, computational film compression
 1148 experiments by assuming that in hypothetical neighboring seawater, a reference bulk
 1149 concentration set is established immediately relative to the surfactant chemistry. It is then carried
 1150 along beneath our abstract paddle-in-a-trough. The reader should compare this image with the
 1151 very similar but classical (chemical-oceanographic) laboratory version in Jarvis et al. [63] in order
 1152 to be build confidence in our method. It will also be instructive to draw parallels with an
 1153 assortment of π -A diagrams from the heyday of marine surfactant studies several decades ago
 1154 [2-5]. Tests could readily be performed upon alternate proxy selections. Oleic acid is shown as a
 1155 sample 2D gaseous (elastic) lipid. Its (mainly) aliphatic molecular tail contains electron rich double
 1156 bonds which reduce cohesion and so augment surface expansion [38].

1157

1158

1159

1160 **Figure A1.** Comparison of film pressure versus area isotherms as calculated using the appendix
 1161 (power Langmuir) equations of state for A.) the main proxy compounds adopted here along with a
 1162 sample mixture containing 3% fatty acid as judged by carbon atom solute concentration, B.) oleic
 1163 acid substituted for stearic acid. The potential for loss of 2D condensed behaviors is clear. "Long"
 1164 and "short" refer to the dashed curves.

1165

1166 We have previously simulated the full spectrum of marine biomacromolecules in a
1167 semi-dynamic (global) manner, in research providing organic aerosol source distributions based
1168 on a standard Langmuir ([30-33] and Table 2). More recently, the three crucial cell-fresh families
1169 protein, polysaccharide and lipid have been introduced with complete chemistry-transport into
1170 the ocean of an upcoming, variable mesh Earth System Model (Department of Energy ACME). The
1171 final equations developed here can be viewed as a light-weight parameterization for surface
1172 tension which is easily tested in any coupled simulation of ocean-atmosphere interaction.
1173 Systems-modeling for chemical effects on the many biogeochemical and physical fluxes involved
1174 is therefore only a small step away.

1175 We eventually envision incorporation of our appendix material into the OCEANFILMS
1176 package, which is already improving simulations of sea spray organic aerosol distributions at the
1177 global scale [31]. Its current and highly idealized approach to adsorption must clearly be enhanced
1178 to acknowledge 2D s-l-g phase distinctions. The “power” Langmuir approach could serve as a
1179 natural starting point. In fact our collected main text tables and figures show that initial tests could
1180 be limited to a single species. At most latitudes over the ocean surface, the steep solid films
1181 deriving from 2D lipid condensation will be of interest in just a few regions (e.g. peripheral seas).
1182 The fatty acid proxy may actually deliver its greatest value as a means of validation. Proteins
1183 appear to be responsible for defining tension patterns over most of the sea-air interface [18]. In the
1184 several simulations of surfactant behavior presented thus far ([33,37] and this piece), open water
1185 lipid levels have been at their highest during polar blooms. It may be that the influence of 2D
1186 solids is limited to the high latitude regime.

1187 All values for π and ϵ were constructed for insertion into the main text tables by direct
1188 application of the tailored R code, configured as in Table A1. The two dimensional phase states we
1189 venture to identify are based mainly on the interpretations in Frew [18], with some additional
1190 reliance on Barger and Means [5]. Once confirmed, the final surface pressure equation set was
1191 lifted whole from R and imposed on Ogunro et al. [33] model netcdf output in an offline mode, in
1192 order to generate the global plots. Any further manipulations were conducted in the NOAA Ferret
1193 graphics system. Modulus ϵ was computed numerically in R over total area increments of 1% (per
1194 unit mass). All programs developed during our tension mapping effort are available from the first
1195 author on request, though it should be clear that the ideas we ultimately put forward are quite
1196 streamlined -results should be readily reproducible from one brief class of expressions having a
1197 familiar, surface chemical saturation form.

1198 In the interest of maintaining clarity and in order to build momentum, we have historically
1199 treated all physicochemical media whether in the laboratory or at sea as though they are somehow
1200 fixed at STP for an unspecified water type. Most of the data available to us for making preliminary
1201 marine surfactant estimates were collected at around room temperature -from mild conditions in
1202 or above the real ocean [3,6-9,16-18,48,49,83,85], or else in some comfortable laboratory setting
1203 [18,28,50,54,88,94]. Many of the experiments we tap for data were originally driven by research
1204 needs in the pharmaceutical and food chemical industries [37,142,149,175]. They were thus almost
1205 universally conducted at relatively low ionic strength.

1206 In some cases distilled or deionized water may constitute an adequate approximation to the
1207 real world systems involved. This is particularly true for global model investigations still in their
1208 infancy. But there may soon be a need for more detailed study. Only in a few instances have
1209 oceanographic temperatures [95] and aquatic chemical pH ranges [77] been explored
1210 systematically. Indications are that the approximations we propose are adequate as a first cut, but
1211 further laboratory research is definitely called for. Salt strengths vary randomly throughout the
1212 source literature from ionic strength zero to one. Temperature, acidity and ion chemical effects
1213 seem to be weak and manageable, but surprises should be expected. We definitely anticipate the
1214 need for both experimental and molecular modeling studies arrayed along the axes of these most
1215 basic aqueous chemical state variables [110].

1216 **References**

1217 1. Jarvis, N. Adsorption of surface-active material at the sea-air interface. *Limnol. Oceanogr.* **1967**, 12,
1218 213-221.

1219 2. Liss, P. Chemistry of the sea surface microlayer. In *Chemical Oceanography Vol. II*; Riley, J.; Skirrow, G.
1220 Eds.; Academic Press: New York, USA, 1975.

1221 3. Barger, W.; Daniel, W.; Garrett, W. Surface chemical properties of banded sea slicks. *Deep-Sea Research*
1222 1974, 21, 83-89.

1223 4. Barger, W.; Garrett, W. Surface active organic material in air over the Mediterranean and the Eastern
1224 Equatorial Pacific. *J. Geophys. Res.* 1976, 81, 3151-3163.

1225 5. Barger, W.; Means, J. Clues to the structure of marine organic material from the study of physical
1226 properties of surface films. In *Marine and Estuarine Geochemistry*; Sigleo, A.; Haitori, A. Eds.; Lewis
1227 Publishers: Chelsea MI USA, 1985.

1228 6. Goldman, J.; Dennett, M.; Frew, N. Surfactant effects on air-sea exchange under turbulent conditions.
1229 *Deep-Sea Res.* 1988, 35, 1953-1970.

1230 7. Ermakov, S.; Salashin S.; Panchenko, A. Film slicks on the sea surface and some mechanisms of their
1231 formation. *Dyn. Atmos. Oceans* 1992, 16, 279-304.

1232 8. Peltzer, R.; Griffin, O.; Barger, W.; Kaiser, J. High resolution measurement of surface active film
1233 redistribution in ship wakes. *J. Geophys. Res.* 1992, 97, 5231-5252.

1234 9. Wei, Y.; Wu, J. In situ measurements of surface tension wave damping and wind properties modified by
1235 natural films. *J. Geophys. Res.* 1992, 97, 5307-5313.

1236 10. Riley, W.; Skirrow, G. *Chemical Oceanography Vol. I and II*, Academic Press: New York, USA, 1975.

1237 11. Herr, F.; Williams, J. Role of surfactant films on the interfacial properties of the sea surface; Office of
1238 Naval Research: London, UK, 1986.

1239 12. Liss, P.; Duce, R. *The Sea Surface and Global Change*; Cambridge University Press: Cambridge UK, 1997.

1240 13. Jones, I.; Toba, Y. *Wind Stress over the Ocean*; Cambridge University Press: Cambridge UK, 2001.

1241 14. Lewis, E., Schwartz, S. 2004. *Sea Salt Aerosol Production*; American Geophysical Union, Washington DC
1242 USA, 2004.

1243 15. Gade, M.; Huhnerfuss, H.; Korenowski, G. *Marine Surface Films*; Springer, Berlin, 2006.

1244 16. Frew, N.; Nelson, R. Isolation of marine microlayer film surfactants for ex situ study of their physical and
1245 chemical properties. *J. Geophys. Res.* 1992, 97, 5281-5290.

1246 17. Bock, E.; Frew, N.; Static and dynamic response of natural ocean surface films to compression and
1247 dilation: Laboratory and field observations. *J. Geophys. Res.* 1993, 98, 14599-14617.

1248 18. Frew, N. The role of organic films in air-sea gas exchange. In *The Sea Surface and Global Change*; Liss, P.;
1249 Duce, R. Eds.; Cambridge University Press: Cambridge UK, 1997.

1250 19. Frew, N.; Nelson, R.; Johnson, C. Correlation studies of mass spectral patterns and elasticity of sea-slick
1251 materials. In *Marine Surface Films*; Gade, M.; Huhnerfuss, H.; Korenowski, G. Eds.; Springer: Berlin, 2006.

1252 20. Asher, W. The sea-surface microlayer and its effect on global air-sea gas transfer. In *The Sea Surface and
1253 Global Change*; Liss, P.; Duce, R. Eds.; Cambridge University Press: Cambridge UK, 1997.

1254 21. Tsai, W.; Liu, K. An assessment of the effect of sea surface surfactant on atmosphere-ocean CO₂ flux. *J.
1255 Geophys. Res.* 2003, 108, doi:10.1029/2000JC000740.

1256 22. Ito, A.; Kawamiya, M. Potential impact of ocean ecosystem changes due to global warming on marine
1257 organic aerosols. *Global Biogeochem. Cycles* 2010, 24, doi:10.1029/2009GB0035.

1258 23. Vignati, E.; Facchini, M.; Scannel, C.; Ceburnis, D.; Sciare, J.; Kanakidou, M.; Dentener, F.; O'Dowd, C.
1259 Global scale emission and distribution of sea-spray aerosol: Sea-salt and organic enrichment. *Atmos.
1260 Environ.* 2010, 44, 610-677.

1261 24. Meskhidze, N.; Xu, J.; Gantt, B.; Nenes, A.; Ghan, S.; Liu, X.; Easter, R.; Zaveri, R. Global distribution and
1262 climate forcing of marine organic aerosol: 1. Model improvements and evaluation. *Atmos. Chem. Phys.*
1263 2011, 11, 11689-11705.

1264 25. Detwiler, A.; Blanchard, D. Aging and bursting bubbles in trace-contaminated water. *Chem. Eng. Sci.*
1265 1978, 33, 9-13.

1266 26. Gagosian, R.; Zafiriou O.; Peltzer, E.; Alford, J. Lipids in aerosols from the tropical North Pacific:
1267 Temporal variability. *J. Geophys. Res.* 1982, 87, 11133-11144.

1268 27. O'Dowd, C.; Facchini, M.; Cavalli, F.; Ceburnis, D.; Mircea, M.; Decesari, S.; Fuzzi, S.; Putaud, J.;
1269 Biogenically driven organic contribution to marine aerosol. *Nature* 2004, 431, 676-681.

1270 28. Modini, R.; Russell, L.; Deane, G.; Stokes, M. Effect of soluble surfactant on bubble persistence and
1271 bubble produced aerosol particles. *J. Geophys. Res.* 2013, 118, doi:10.1002/jgrd.50186.

1272 29. Alpert, P.; Kilthau, W.; Bothe, D.; Radway, J.; Aller, J.; Knopf, D. The influence of marine microbial
1273 activities on aerosol production: A laboratory mesocosm study. *J. Geophys. Res.* **2015**, *120*,
1274 doi:10.1002/2015JG023469.

1275 30. Burrows, S.; Ogunro, O.; Frossard, A.; Russell, L.; Rasch, P.; Elliott, S. A physically based framework for
1276 modeling the organic fractionation of sea spray aerosol from bubble film Langmuir equilibria. *Atmos.*
1277 *Chem. Phys.* **2014**, *14*, 13601-13629.

1278 31. Burrows, S.; Gobrogge, E.; Fu, L.; Link, K.; Elliott, S.; Rasch, P.; Wang, H.; Walker, R. OCEANFILMS-2:
1279 Representing co-adsorption of marine surfactants and soluble polysaccharides improves simulation of
1280 marine aerosol chemistry. *Geophys. Res. Lett.* **2016**, *2016GL069070*.

1281 32. McCoy, D.; Burrows, S.; Wood, R.; Grosvenor, D.; Elliott, S.; Ma, P.; Rasch, P.; Hartmann, D. Natural
1282 aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo. *Science Advances* **2015**,
1283 10.1126/sciadv/1500157.

1284 33. Ogunro, O.; Burrows, S.; Elliott, S.; Frossard, A.; Hoffman, F.; Letscher, R.; Moore, J.; Russell, L.; Wang,
1285 S.; Wingenter, O. Global distribution and surface activity of macromolecules in offline simulations of
1286 marine organic chemistry. *Biogeochemistry* **2015**, DOI 1007/s10533-015-0136-x.

1287 34. Szyskowski, B. Experimentelle Studien über kapillare Eigenschaften der wässrigen Lösungen von
1288 Fettsäuren. *Zeitschrift für Physikalische Chemie* **1908**, *64*, 385–414.

1289 35. Langmuir, I. The constitution and fundamental properties of solids and liquids II. Liquids. *J. Am. Soc.*
1290 **1917**, *39*, 1848-1906.

1291 36. Adamson, A. *Physical Chemistry of Surfaces*; Interscience: Easton PA, USA, 1960.

1292 37. Elliott, S.; Burrows, S.; Deal, C.; Liu, X.; Long, M.; Ogunro, O.; Russell, L.; Wingenter, O. Prospects for
1293 simulating macromolecular surfactant chemistry at the ocean-atmosphere boundary. *Environ. Res. Lett.*
1294 **2014**, *9*, 064012.

1295 38. Davies, J.; Rideal, E. *Interfacial Phenomena*; Academic Press: London UK, 1963.

1296 39. Longhurst, A. *Ecological Geography of the Sea*; Academic Press: San Diego CA, USA, 1998.

1297 40. Longhurst, A. *Ecological Geography of the Sea*; Elsevier: San Diego CA, USA, 2007.

1298 41. Moore, J., Doney, S.; Kleypas, J.; Glover, D.; Fung, I. An intermediate complexity marine ecosystem
1299 model for the global domain. *Deep-Sea Res. II* **2002**, *49*, 403-462.

1300 42. Moore, J.; Doney, S.; Lindsay, K. Upper ocean ecosystem dynamics and iron cycling in a global three
1301 dimensional model. *Global Biogeochem. Cycles* **2004**, *18*, doi:10.1029/2004GB002220

1302 43. Letscher, R.; Moore, J.; Teng, Y.; Primeau, F. Variable C:N:P stoichiometry of dissolved organic matter in
1303 the Community Earth System Model. *Biogeosciences* **2015**, *12*, 209-221.

1304 44. Franklin, B. Of the stilling of waves by means of oils. *Philos. Trans. R. Soc. Lond. B* **1774**, *64*, 445-460.

1305 45. Wang, D.; Steiglitz, H.; Marden, J.; Tamm, L. Philadelphia's favorite son was a membrane biophysicist.
1306 *Biophys. Journal* **2013**, *104*, 287-291.

1307 46. Cox, C.; Zhang, X.; Duda, T. Suppressing breakers with polar oil films: Using an epic sea rescue to model
1308 wave energy budgets. *Geophys. Res. Lett.* **2016**, *44*, doi:10.1002/2016GL071505.

1309 47. Sverdrup, H.; Johnson, M.; Fleming, R. *The Oceans: Their Physics, Chemistry and General Biology*;
1310 Prentice-Hall: New York USA, 1942.

1311 48. Cox, C.; Munk, W. Statistics of the sea surface derived from sun glitter. *J. Mar. Res.* **1954**, *16*, 231-240.

1312 49. Blanchard, D. The electrification of the atmosphere by particles from bubbles in the sea. *Progress in*
1313 *Oceanography* **1963**, *1*, 73-202.

1314 50. Davies, J. The effects of surface films in damping eddies at a free surface of a turbulent liquid. *Proc. Roy.*
1315 *Soc. Lond.* **1966**, *A290*, 515-526.

1316 51. Jarvis, N. The effect of monomolecular films on surface temperature and convective motion at the
1317 water/air interface. *J. Coll. Sci.* **1962**, *17*, 512-522.

1318 52. Garrett, W. The influence of monomolecular surface films on the production of condensation nuclei from
1319 bubbled sea water. *J. Geophys. Res.* **1968**, *73*, 5145-5150.

1320 53. Paterson, M.; Spillane, K. Surface films and the production of sea salt aerosol. *Q.J.R. Meteorol. Soc.* **1969**, *95*,
1321 526-534.

1322 54. Hoffman, E.; Duce, R. Factors influencing the organic carbon content of marine aerosols: A laboratory
1323 study. *J. Geophys. Res.* **1976**, *81*, 3667-3670.

1324 55. Liss, P.; Slater, P. Flux of gases across the air-sea interface. *Nature* **1974**, *247*, 181-184.

1325 56. Levich, V. *Physicochemical Hydrodynamics*; Prentice Hall: Englewood Cliffs NJ, USA, 1962.

1326 57. Lucassen-Reynders, E.; Lucassen, J. Properties of capillary waves. *Adv. Colloid Interface Sci.* **1969**, *2*,
1327 347-395.

1328 58. Jenkinson, I. Oceanographic implications of non-Newtonian properties found in phytoplankton cultures.
1329 *Nature* **1986**, *323*, 435-437.

1330 59. Ermakov, S.; Zujkova, A.; Panchenko, A.; Salashin, S.; Talipova, T.; Titov, V. Surface film effects of short
1331 wind waves. *Dyn. Atmos. Oceans* **1986**, *10*, 31-50.

1332 60. Piexoto, J.; Oort, A. *Physics of Climate*; Springer: Berlin, 1992.

1333 61. Dysthe, K. On surface renewal and sea slicks. In *Marine Surface Films*; Gade, M.; Huhnerfuss, H.;
1334 Korenowski, G. Eds.; Springer: Berlin, 2006.

1335 62. Garrett, W. Organic chemical composition of the ocean surface. *Deep-Sea Research* **1967**, *14*, 221-227.

1336 63. Jarvis, N.; Garrett, W.; Scheiman, M.; Timmons, C. Surface chemical characterization of surface active
1337 material in seawater. *Limnol. Oceanogr.* **1967**, *12*, 88-96.

1338 64. Wu, J. Suppression of ripples by surfactant: Spectral effects deduced from sun glitter, wave staff and
1339 microwave measurements. *J. Phys. Oceanogr.* **1989**, *19*, 238-245.

1340 65. Mitsuyasu, H.; Bock, E. The influence of surface tension. In *Wind Stress over the Ocean*; Jones, I.; Toba, Y.
1341 Eds.; Cambridge University Press: Cambridge UK, 2001.

1342 66. Brunke, M.; Zeng, X. Anderson, S.; Uncertainties in sea surface turbulent flux algorithms and data. *J. Geophys. Res.* **2002**, *107*, doi:10.1029/2001JC000992.

1343 67. Brunke, M.; Zeng, X.; Misra, V.; Beljaars, A. Integration of a prognostic sea surface skin temperature
1344 scheme into weather and climate models. *J. Geophys. Res.* **2008**, *113*, doi:10.1029/2008JD010607.

1345 68. Lodziana, Z.; Topsoe, N.; Norskov, J. A negative surface energy for alumina. *Nature Materials* **2004**, May,
1346 289-293.

1347 69. Tuckermann, R. Surface tension of aqueous solutions of water-soluble organic and inorganic compounds.
1348 *Atmos. Environ.* **2007**, *41*, 6265-6275.

1349 70. Petters, S.; Petters, M. Surfactant effect on cloud condensation nuclei for two component internally mixed
1350 aerosols. *J. Geophys. Res.* **2016**, *121*, doi:10.1002/2015JD024090.

1351 71. Pruppacher, H.; Klett, J. *Microphysics of Clouds and Precipitation*; Reidel: Dordrecht, Netherlands, 1978.

1352 72. Adamson, A.; Gast, A. *Physical Chemistry of Surfaces*, 6th ed.; Wiley: New York, 1997.

1353 73. Wurl, O.; Holmes, D. The gelatinous nature of the sea-surface microlayer. *Mar. Chem.* **2008**, *110*, 89-97.

1354 74. Cunliffe, M.; Upstill-Goddard, R.; Murrell, J. Microbiology of aquatic surface microlayers. *FEMS Microbiol. Rev.*
1355 **2011**, *35*, 233-246.

1356 75. Wurl, O.; Miller, L.; Vagle, S. ^[L] Production and fate of transparent exopolymer particles in the ocean. *J. Geophys. Res.* **2011**, *116*, doi:10.1029/2011JC007342.

1357 76. Rossignol, S.; Tinel, L.; Bianco, A.; Passananti, M.; Donaldson, J.; George, C. Atmospheric chemistry at a fatty
1358 acid-coated air-water interface. *Science* **2016**, *353*, 699-702.

1359 77. Van Vleet, E.; Williams, P. Surface potential and film pressure measurements in seawater systems. *Limnol.
1360 Oceanogr.* **1983**, *28*, 401-414.

1361 78. Davies, J. *Turbulence Phenomena*; Academic Press: New York, USA, 1972.

1362 79. Bell, T.; De Bruyn, W.; Miller, S.; Ward, B.; Christensen, K.; Saltzman, E. Air-sea dimethylsulfide (DMS)
1363 gas transfer in the North Atlantic. *Atmos. Chem. Phys.* **2013**, *13*, 11073-11087.

1364 80. Garrett, W. Damping of capillary waves at the air-sea interface by organic surface-active material. *J. Mar.
1365 Res.* **1967**, *25*, 279-291.

1366 81. Hunter, K. Chemistry of the sea surface microlayer. In *The Sea Surface and Global Change*; Liss, P.; Duce, R.
1367 Eds.; Cambridge University Press: Cambridge UK, 1997.

1368 82. Hicks, B.; Drinkrow, R.; Grauze, G. Drag and bulk transfer coefficients associated with a shallow water
1369 surface. *Boundary Layer Met.* **1974**, *6*, 287-297.

1370 83. Deacon, E. The role of coral mucus in reducing the wind drag over coral reefs. *Boundary Layer Met.* **1979**,
1371 *17*, 517-521.

1372 84. Simpson, I.; Shaw, T.; Seager, R. Diagnosis of the seasonally and longitudinally varying midlatitude
1373 circulation response to global warming. *J. Atmos. Sci.* **2014**, *71*, 2489-2515.

1374 85. Callaghan, A.; Deane, G.; Stokes, D. Two regimes of laboratory whitecap foam decay: Bubble plume
1375 controlled and surfactant stabilized. *J. Phys. Oceanogr.* **2013**, *43*, 1114-1126.

1376 86. Clift, M.; Grace, J.; Webber, M. *Bubbles, Drops and Particles*; Dover: New York USA, 1978.

1377

1378

1379 87. Leifer, I.; Patro, R. The bubble mechanism for methane transport from the shallow sea bed to the surface:
1380 A review and sensitivity study. *Cont. Shelf Res.* **2002**, *22*, 2409-2428.

1381 88. Deane, G.; Stokes, D. Scale dependence of bubble creation mechanisms in breaking waves. *Nature* **2002**,
1382 *418*, 839-844.

1383 89. Friedlingstein, P.; Cox, P.; Betts, R.; Bopp, L.; Von Bloh, W.; Brovkin, V.; Cadule, P.; Doney, S.; Eby, M.;
1384 Fung, I. and numerous others. Carbon cycle feedback analysis: results from the C4MIP model
1385 intercomparison. *J. Climate* **2006**, *19*, 3337-3353.

1386 90. Meskhidze, N.; Xu, J.; Gantt, B.; Nenes, Y.; Ghan, S.; Liu, X.; Easter, R.; Zaveri, R. Global contribution and
1387 climate forcing of marine organic aerosol 1: Model improvements and evaluation. *Atmos. Chem. Phys.*
1388 **2011**, *11*, 11689-11705.

1389 91. Six, K.; Kloster, S.; Ilyina, T.; Archer, S.; Zhang, K.; Maier-Reimer, E. Global warming amplified by
1390 reduced sulfur fluxes as a result of ocean acidification. *Nature Climate Change* **2013**,
1391 DOI:10.1038/NCLIMATE1981.

1392 92. Edson, J.; Jampana, V.; Weller, R.; Bigorre, S.; Plueddemann, A.; Fairall, C.; Miller, S.; Mahrte, L.; Vickers,
1393 D.; Hersbach, H. On the exchange of momentum over the open ocean. *J. Phys. Oceanogr.* **2013**, *43*,
1394 1589-1610.

1395 93. Brunke, M.; Fairall, C.; Zeng, X.; Eymard, L.; Curry, J. Which bulk aerodynamic algorithms are least
1396 problematic in computing ocean surface turbulent fluxes? *J. Clim.* **2003**, *16*, 619-635.

1397 94. Christodoulou, A.; Rosano, H. Effect of pH and nature of monovalent cations on surface isotherms of C16
1398 to C22 saturated soap monolayers. *Adv. Chem.* **1968**, *84*, 210-234.

1399 95. Graham, D.; Phillips, M. Proteins at liquid interfaces II. Adsorption isotherms. *J. Coll. Int. Sci.* **1979**, *70*,
1400 415-426.

1401 96. Hansell, D.; Carlson, C.; Schlitzer, R. Net removal of major marine dissolved organic carbon fraction in
1402 the subsurface ocean. *Global Biogeochem. Cycles* **2012**, *26*, doi:10.1029/2011GB004069.

1403 97. Letscher, R.; Moore, J.; Teng, Y.; Primeau, F. Variable C:N:P stoichiometry of dissolved organic matter in
1404 the Community Earth System Model. *Biogeosciences* **2015**, *12*, 209-221.

1405 98. Kumar, M. A review of chitin and chitosan applications. *Reactive and Functional Polymers* **2000**, *46*, 1-27.

1406 99. Dittmar, T.; Kattner, G. Recalcitrant dissolved organic matter in the ocean: Major contribution of small
1407 amphiphilics. *Mar. Chem.* **2003**, *82*, 115-123.

1408 100. Tuckermann, R.; Cammenga, H. Surface tension of aqueous solutions of some atmospheric water soluble
1409 organic compounds. *Atmospheric Environment* **2004**, *38*, 6135-6138.

1410 101. Aluwihare, L.; Repeta, D.; Pantoja, S.; Johnson, C. Two chemically distinct pools of organic nitrogen
1411 accumulate in the ocean. *Science* **2005**, *308*, 1007-1010.

1412 102. Petters, M.; Kreidenweis, S. A single parameter representation of hygroscopic growth and cloud
1413 condensation nucleus activity. *Atmos. Chem. Phys.* **2007**, *7*, 1961-1971.

1414 103. Petters, S.; Petters, M. Surfactant effect on cloud condensation nuclei for two-component internally mixed
1415 aerosols. *J. Geophys. Res.* **2016**, *121*, doi:10.1002/2015JD024090.

1416 104. Parsons, T.; Takahashi, M.; Hargrave, B. *Biological Oceanographic Processes*; Elsevier: Amsterdam, 1984.

1417 105. Wakeham, S.; Lee, C.; Hedges, J.; Hernes, P.; Petersen, M. Molecular indicators of diagenetic status in
1418 marine organic matter. *Geochim. Cosmochim. Acta* **1997**, *61*, 5363-5369.

1419 106. Nagata, T.; Meon, B.; Kirchman, D. Microbial degradation of peptidoglycan in seawater. *Limnol.*
1420 *Oceanogr.* **2003**, *48*, 745-754.

1421 107. Fasham, M.; Sarmiento, J.; Slater, R.; Ducklow, H.; Williams, R. Ecosystem behavior at Bermuda Station
1422 "S" and ocean weather station "India": A general circulation model and observational analysis. *Global*
1423 *Biogeochem. Cycles* **1993**, *7*, 379-415.

1424 108. Sarmiento, J.; Slater, R.; Fasham, M.; Ducklow, H.; Toggweiler, J.; Evans, G. Seasonal three dimensional
1425 ecosystem model of nitrogen cycling in the North Atlantic euphotic zone. *Global Biogeochem. Cycles* **1993**,
1426 *7*, 415-450.

1427 109. Benner, R. Chemical composition and reactivity. In *Biogeochemistry of Dissolved Organic Matter*; Hansell,
1428 D.; Carlson, C. Eds.; Academic Press, New York, USA, 2002.

1429 110. Stumm, W.; Morgan, J. *Aquatic Chemistry*; Wiley Interscience: New York, USA, 1981.

1430 111. Malcolm, R. The uniqueness of humic substances in each of soil, stream and marine environments.
1431 *Geochim. Cosmochim. Acta* **1990**, *232*, 19-30.

1432 112. Kaiser, K.; Benner, R. Biochemical composition and size distribution of organic matter at the Pacific and
1433 Atlantic time series stations. *Mar. Chem.* **2009**, *113*, 63-77.

1434 113. Parrish, C. Dissolved and particulate marine lipid classes: A review. *Mar. Chem.* **1988**, *23*, 17-40.

1435 114. Alpers, W.; Huhnerfuss, H. The damping of ocean wave by surface films: A new look at an old problem.
1436 *J. Geophys. Res.* **1989**, *94*, 6251-6252.

1437 115. Mitsuyasu, H.; Honda, T. Wind induced growth of water waves. *J. Fluid Mech.* **1982**, *123*, 425-442.

1438 116. Platt, T.; Sathyendranath, S. Oceanic primary production: Estimation by remote sensing at local and
1439 regional scales. *Science* **1988**, *241*, 1613-1620.

1440 117. Lee, C.; Bada, J. Dissolved amino acids in the equatorial Pacific, the Sargasso Sea and Biscayne Bay.
1441 *Limnol. Oceanogr.* **1977**, *22*, 502-510.

1442 118. Chavez, F.; Ryan, J.; Lluch-Cota, S.; Niquen, M. From anchovies to sardines and back: Multidecadal
1443 change in the Pacific Ocean. *Science* **2003**, *299*, 217-221.

1444 119. Xu, L.; Cameron-Smith, P.; Russell, L.; Ghan, S.; Liu, Y.; Elliott, S.; Yang, Y.; Lou, S.; Lamjiri, M.; Manizza,
1445 M. Role of dimethyl sulfide in the ENSO cycle of the tropics. *J. Geophys. Res.* **2016**, *121*, 13527-13558.

1446 120. Lumby, J.; Folkard, A. Variation in the surface tension of seawater in situ. *Bull. Inst. Oceanogr. Monaco*
1447 **1956**, *1080*, 1-19.

1448 121. Sieburth, J.; Conover, J. Slicks associated with *Trichodesmium* blooms in the Sargasso Sea. *Nature* **1965**,
1449 *205*, 830-831.

1450 122. Garrett, W. Collection of slick forming materials from the sea surface. *Limnol. Oceanogr.* **1965**, *10*, 602-605.

1451 123. Sturdy, G.; Fischer, W. Surface tension of slick patches near kelp beds. *Nature* **1966**, *211*, 951-952.

1452 124. Frew, N.; Nelson, R. Isolation of marine microlayer film surfactants for ex-situ study of their surface
1453 physical and chemical properties. *J. Geophys. Res.* **1992**, *97*, 5281-5290.

1454 125. Elliott, S.; Maltrud, M.; Reagan, M.; Moridis, G.; Cameron-Smith, P. Marine methane cycle simulations
1455 690-698

1456 126. Large, W.; Pond, S. Open ocean flux measurements in moderate to strong winds. *J. Phys. Oceanogr.* **1981**,
1457 *11*, 324-337.

1458 127. Jones, I.; Toba, Y. *Wind Stress over the Ocean*; Cambridge University Press: Cambridge UK, 2001.

1459 128. Krembs, C.; Eicken, H.; Deming, J. 2011. Exopolymer alteration of physical properties of sea ice and
1460 implication for ice habitability and biogeochemistry in a warmer Arctic. *PNAS* **2011**, *108*, 3653-3658.

1461 129. Nada, H.; Furukawa, Y. Antifreeze proteins: Computer simulation studies of the mechanism of ice
1462 growth inhibition. *Polymer J.* **2012**, *44*, 690-698.

1463 130. Pruppacher, H.; Klett, J. *Microphysics of Clouds and Precipitation*; D. Reidel: Dordrecht The Netherlands,
1464 1978.

1465 131. Hassler, C.; Schoemann, V. The availability of organically bound Fe to model phytoplankton of the
1466 Southern Ocean. *Biogeosciences* **2009**, *6*, 2281-2296.

1467 132. Hassler, C.; Schoemann, V.; Nichols, C.; Butler, E.; Boyd, P. Saccharides enhance iron bioavailability to
1468 Southern Ocean phytoplankton. *PNAS* **2011**, *108*, 1076-1081.

1469 133. Alldredge, A.; Passow, U.; Logan, B. The abundance and significance of a class of large, transparent
1470 organic particles in the ocean. *Deep-Sea Res. I* **1993**, *40*, 1131-1140.

1471 134. Passow, U.; Alldredge, A.; Logan, B. The role of particulate carbohydrate exudates in the flocculation of
1472 diatom blooms. *Deep-Sea Res. I* **1994**, *41*, 335-357.

1473 135. Chin, W.; Orellana, M.; Verdugo, P. Spontaneous assembly of marine dissolved organic matter into
1474 polymer gels. *Nature* **1998**, *391*, 568-571.

1475 136. Wells, M. Marine colloids and trace metals. In *Biogeochemistry of Dissolved Organic Matter*; Hansell, D.;
1476 Carlson, C. Eds.; Academic Press, New York, USA, 2002.

1477 137. Verdugo, P.; Alldredge, A.; Azam, F.; Kirchman, D.; Passow, U.; Santschi, P. The oceanic gel phase: a
1478 bridge in the DOM-POM continuum. *Mar. Chem.* **2004**, *92*, 67-85.

1479 138. Kraus, E.; Turner, J. A one-dimensional model of the seasonal thermocline. *Tellus* **1967**, *19*, 98-106.

1480 139. Bowden, K. Oceanic and estuarine mixing processes. In *Chemical Oceanography Vol. II*; Riley, J.; Skirrow, G.
1481 Eds.; Academic Press: New York, USA, 1975.

1482 140. Johnson, J. The lifetime of carbonyl sulfide in the troposphere. *Geophys. Res. Lett.* **1981**, *8*, 938-940.

1483 141. Woolf, D. Bubbles and their role in gas exchange. In *The Sea Surface and Global Change*; Liss, P.; Duce, R.
1484 Eds.; Cambridge University Press: Cambridge UK, 1997.

1485 142. Babak, V.; Skotnikova, E.; Lukina, I.; Pelletier, S.; Hubert, P.; Dellach, E. Hydrophobically associating
1486 alginic derivatives: Surface tension properties of their mixed aqueous solutions with oppositely charged
1487 surfactants. *J. Coll. Int. Sci.* **2000**, 225, 505-510.

1488 143. Dutcher, C.; Wexler, A.; Clegg, S. Tensions of inorganic multicomponent aqueous electrolyte solutions
1489 and melts. *J. Phys. Chem.* **2010**, 114, 12216-12230.

1490 144. Dutcher, C.; Ge, W.; Wexler, A.; Clegg, S. Statistical mechanics of multilayer sorption; 2. Systems
1491 containing multiple solutes. *J. Phys. Chem.* **2012**, 116, 1850-1864.

1492 145. Erickson, D. A stability dependent theory for air-sea gas exchange. *J. Geophys. Res.* **1993**, 98, 8471-8488.

1493 146. Hardy, J. Biological effects of chemicals in the sea surface microlayer. In *The Sea Surface and Global Change*;
1494 Liss, P.; Duce, R. Eds.; Cambridge University Press: Cambridge UK, 1997.

1495 147. Callaghan, A.; Deane, G.; Stokes, D. Observed physical and environmental causes of scatter in white cap
1496 coverage values in a fetch-limited coastal zone. *J. Geophys. Res.* **2008**, 113, 2007JC004453.

1497 148. Ward, A.; Tordai, L. Standard entropy of adsorption. *Nature* **1946**, 158, 416-424.

1498 149. Parra-Barraza, H.; Burboa, M.; Sanchez-Vazquez, M.; Goycoolea, F.; Valdez, M. Chitosan-cholesterol and
1499 chitosan-stearic acid interactions at the air-water interface. *Biomacromolecules* **2005**, 6, 2416-2426.

1500 150. Kanicky, J.; Shah, D. Effect of degree, type and position of unsaturation on the pKa of long-chain fatty
1501 acids. *J. Coll. Int. Sci.* **2002**, 256, 201-207.

1502 151. Lewis, E.; Schwartz, S. *Sea Salt Aerosol Production*; American Geophysical Union: Washington, DC, 2004.

1503 152. Sellegrí, K.; O'Dowd, C.; Yoon, Y.; Jennings, S. Surfactants and submicron sea spray generation. *J.*
1504 *Geophys. Res.* **2006**, 111, 2005JD006658.

1505 153. Blanchard, D. Sea to air transport of surface active material. *Science* **1964**, 146, 396-397.

1506 154. Callaghan, A.; Deane, G.; Stokes, D.; Ward, B. Observed variation in the decay time of oceanic whitecap
1507 foams. *J. Geophys. Res.* **2012**, 117, 2012JC00847.

1508 155. Zhuang, G.; Yi, Z.; Duce, R.; Brown, P. Link between iron and sulphur cycles suggested by detection of
1509 Fe(II) in remote marine aerosols. *Nature* **1992**, 355, 537-539.

1510 156. Meskhidze, N.; Chameides, W.; Nenes, A. Dust and pollution: A recipe for enhanced ocean fertilization. *J.*
1511 *Geophys. Res.* **2005**, 110, 2004JD005082.

1512 157. O'Dowd, C.; Facchini, M.; Cavalli, F.; Ceburnis, D.; Mircea M.; Decesari, S.; Fuzzi, S.; Yoon, Y.; Putaud, J.
1513 Biogenically driven organic contribution to marine aerosol. *Nature* **2004**, 431, 676-680.

1514 158. Callaghan, A.; Stokes, D.; Deane, G. The effect of water temperature on air entrainment, bubble plumes
1515 and surface foam in a laboratory breaking-wave analog. *J. Geophys. Res.* **2014**, 119, 7463-7482.

1516 159. Meskhidze, N.; Nenes, A. Phytoplankton and cloudiness in the Southern Ocean. *Science* **2006**, 314,
1517 1419-1423.

1518 160. Boyer, H.; Dutcher, C. Statistical thermodynamic model for surface tension of aqueous organic acids with
1519 consideration of partial dissociation. *J. Phys. Chem.* **2016**, 120, 4368-4375.

1520 161. Singer, S. Note on an equation of state for linear macromolecules in monolayers. *J. Chem. Phys.* **1948**, 16,
1521 872-876.

1522 162. Bull, H. Determination of molecular weights of proteins in spread monolayers. *J. Biol. Chem.* **1950**, 185,
1523 27-38.

1524 163. Kirkwood, J.; Buff, F. The statistical mechanical theory of surface tension. *J. Chem. Phys.* **1949**, 17, 338-343.

1525 164. Salter, S.; Davis, H. Statistical mechanical calculations of the surface tension of fluids. *J. Chem. Phys.* **1975**,
1526 63, 3295-3307.

1527 165. Kujawinski, E.; Soule, M.; Valentine, D.; Boysen, A.; Longnecker, K.; Redmond, M. Fate of dispersants
1528 associated with the Deepwater Horizon oil spill. *Environ. Sci. Tech.* **2011**, 45, 1298-1306.

1529 166. Sarupria, S.; Debenedetti, P. Homogenous nucleation of methane hydrate in microsecond molecular
1530 dynamics simulations. *J. Phys. Chem. Lett.* **2012**, 3, 2942-2947.

1531 167. Tan, L.; Pratt, L.; Chaudhari, M. Molecular description of SPAN80 desorption from the squalane-water
1532 interface. Cornell University Archive preprint arXiv:1603.04033, 2016.

1533 168. Krummel, O. *Handbook of Oceanography*; J. Engelhorn: Stuttgart, Germany, 1911.

1534 169. Fleming, R.H.; Revelle, R. Physical processes in the ocean. In *Recent Marine Sediments*; Trask, P. Ed.;
1535 American Association of Petroleum Geologists: Tulsa, OK USA, 1939.

1536 170. Guastalla, J. Diluted films of some proteins; Determination of molecular masses. *Comptes Rendus* **1939**,
1537 208, 1078-1080.

1538 171. Freundlich, H. *Colloid and Capillary Chemistry*; Methuen and Co.: London, UK, 1926.

1539 172. Laidler, K. *Chemical Kinetics*; McGraw Hill: New York, USA, 1965.

1540 173. Ter Minassian-Saraga, L. Recent work on spread monolayers, adsorption and desorption. *J. Coll. Sci.* **1956**,
1541 *11*, 398-418.

1542 174. Brzozowska, A., Duits, M., Mugele, F. Stability of stearic acid monolayers on artificial sea water. *Coll.*
1543 *Surf.* **2012**, *407*, 38-38.

1544 175. Nilsson, L.; Bergenstahl, B. Adsorption of hydrophobically modified starch at oil-water interfaces during
1545 emulsification. *Langmuir* **2006**, *22*, 8770-8776.