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POPOVICIU’S TYPE INEQUALITIES FOR h-MN-CONVEX FUNCTIONS

MOHAMMAD W. ALOMARI

ABSTRACT. In this work, several inequalities of Popoviciu type for h-MN-convex functions
are proved, where M and N are denote to Arithmetic, Geometric and Harmonic means and
h is a non-negative superadditive or subadditive function.

1. INTRODUCTION

The class of h-convex functions, which generalizes convex, s-convex (denoted by K2, [4]),
Godunova-Levin functions (denoted by Q(I), [7]) and P-functions (denoted by P(I), [15]), was
introduced by Varosanec in [18]. Namely, the h-convex function is defined as a non-negative
function f : I — R which satisfies

flat+ (@ =1)B) <h(t)f(a)+h(1-1)f(B),
where h is a non-negative function, ¢t € (0,1) C J and =,y € I, where I and J are real intervals
such that (0,1) C J. Accordingly, some properties of h-convex functions were discussed in the
same work of Varosanec. The famous references about these classes are [5] ,[8] and [10].

In this work, I and J are two intervals subset of (0,00) (unless we specified) such that
(0,1) € J and [a,b] C I, where 0 < a < b. Define the function M : [0,1] — [a,b] given by
M (t) = M (t; a,b); where by M (¢; a,b) we mean one of the following functions:

(1) A¢(a,b):=(1—1t)a+th; The generalized Arithmetic Mean.

(2) Gy (a,b) = a'~tb; The generalized Geometric Mean.
(3) H:(a,b) = ta+(“1b_t)b = At(li,%); The generalized Harmonic Mean.

Note that M (0;a,b) = a and M (1;a,b) = b. Clearly, for t = 1, the means Ay, Gy and Hy,
respectively; represents the midpoint of the Ay, G; and Hy, respectively.
Also, we note that the above means are related with celebrated inequality

Ht (aab)SGt (aab)SAt(avb)7 Vie [0»1]

Using fruitful structures of R as a vector space, Anderson et al.in [2] defined midconvex
functions with respect to a another mathematical means, by replacing a given mean, such as
G 1 and H 15 instead of the arithmetic mean A 1 Recently, Alomari [1] generalized Anderson
et al. work by extendng the classes of MN-convexity to be such as:

Definition 1. Let h: J — (0,00) be a positive function. Let f : I — (0,00) be any function.
Let M : [0,1] = [a,b] and N : (0,00) — (0,00) be any two Mean functions. We say f is
h-MN-convez (-concave) or that f belongs to the class MN (h,I) (MN (h, 1)) if

(1.1) fM(t2,y)) < (Z)N(h(t); f(2), f(y)),
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forallz,y € I and t € [0,1].

Obviously, if M (¢;z,y) = A (z,y) = N(¢;z,y), then Definition 1 reduces to the original
concept of h-convexity. Also, if we assume f is continuous, h(t) =t and ¢ = % in (1.1), then
the Definition 1 reduces to the Anderson et al. definition in [2].

In the same work [1], the author extended the classes Q(I), P(I) and K2 by replacing the
arithmetic mean by another given one, as follows:

(1) Let s € (0,1], a function f : I — (0,00) is MyN¢-s-convex function or that f belongs to
the class K2 (I; Mg, Ny) if for all z,y € I and t € [0, 1] we have

(1.2) F (Mt 2,y)) <N (@), f(y) -

(2) We say that f: I — (0,00) is an Extended Godunova-Levin function or that f belongs
to the class @ (I; My, Ny) if for all z,y € T and t € (0,1) we have

(1) P <N (Fr@). ).

(3) We say that f : I — (0,00) is P-M;N;-function or that f belongs to the class
P (I; M, Ny) if for all z,y € T and ¢ € [0,1] we have

(1.4) fM(tz,y) <N f(2), f(y) .-
In (1.2)—(1.4), setting M (¢;z,y) = A¢ (z,y) = N(¢;2,y), we then refer to the original
definitions of these classes.
Let h be a non-negative function such that h (t) > ¢ for t € (0,1). For instance h, (t) = t",

t € (0,1) has that property. In particular, for r < 1, if f is a non-negative M;N;-convex function
on I, then for z,y € I, t € (0,1) we have

JM (& 2,y)) < NG f(2), f(y) < NE; f(2), f(y) = N(h(t); (), (),

for all r < 1 and t € (0,1). So that f is h-MN¢-convex. Similarly, if the function satisfies
the property h (t) <t for t € (0,1), then f is a non-negative h-M;N-concave. In particular,
for r > 1, the function h,(t) has that property for ¢ € (0,1). So that if f is a non-negative
M;N;-concave function on I, then for z,y € I, t € (0,1) we have

FM(t2,y) =2 N (G f(2), f(y) 2 N@5 f(2), f(y) = N(h (@) ; f(2), (),

for all » > 1 and t € (0,1), which means that f is h-M;N;-concave.

After focus consideration we find that, there is neither nonnegative %—MtAt—concave nor %
MH—convex functions, where M; = A;, Gy, H;. The same observation holds for h(t) = tk,
kE<-1,t€(0,1).

To see how this holds, suppose on the contrary that there is a nonnegative function f which
is %—MtAt—concave on I. Thus, for Means M; and A, the reverse inequality of (1.3) holds for

all all z,y € I and t € (0,1).

FO (2,)) > () + 17 ()

Since M; (z,x) = x, so by setting x = y we have

1 1 1
f(z) > mf(x) + zf(x) = mf(x)a

which is equivalent to write (t -2 - 1) f(z) >0, Vvt e (0,1). But since f is non-negative we
must have t —t2 —1 > 0, 0 < t < 1 which is impossible and thus we got a contradiction. Hence,
we must have f (z) <0.
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In case when f is nonnegative %—Mtchonvex function, then

< P00 @ W)
FGED) = e =07 o)

setting x = y we have

fle) <t(1=1) f (),

and this is equivalent to write (¢(1 —¢) — 1) f () > 0, since f is nonnegative we must have
t (1 —t)—1 > 0 which impossible for ¢ € (0, 1), which contradicts the nonnegativity assumption
of f. Hence, f <0.

Remark 1. There is no nonnegative 1-MyA¢-concave nor 1-MiHg-convex functions, where
M; = Ay, Gy, Hy. The proof is simpler than that ones given above.

According to the previous discussion, we need to extend the classes @ (I; My, Ay), @ (I; My, Hy),
P (I; My, Ay), and P (I; My, Hy), by replacing the set of values of f to be R instead of (0, 00).
Consequently, we say that a function f: I — R

(1) is %—MtAt—concave, if —f €@ (I; My, Ay), ie.,
1 1
fM(tz,y)) =2 mf(m) + Zf(y)v
for all z,y € I and ¢ € (0,1).

(2) is $-MyHg-convex, if f € Q (I; My, Hy), i.e.,

< 1005 @) F )
PO < S G 0 T

for all x,y € I and t € (0,1).

(3) is 1-M¢Ay-concave, if —f € P (I; My, Ay), ie.,

fM(t2,y) > f(x)+ f(y)
for all z,y € I and ¢ € (0,1).

(4) is 1-MH-convex, if f € P (I; My, Hy), i.e.,

J(M(t;z,y)) <

for all z,y € I and ¢ € (0,1).

In the same way, there is no $+-M;Gy-concave function satisfies f (z) > 1. To support this
assertion, assume there exists %—Mth—concave function, so that for Means M; and Gy, the
reverse inequality of (1.3) holds for all z,y € I and ¢ € (0,1).

F(M (Ba,y) = [f (@) [f ()7,

since My (x,x) = x, by setting = y we get
1

fl@)>[f (@)=,

since f(z) > 1 and ¢t € (0,1) then we must have = + + < 1 which is equivalent to write

1<t(l—t)forallte (0,1) and this is impossible, thus we have a contradiction. Hence, we
must have 0 < f (z) < 1.
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Remark 2. There is no 1-M;G¢-concave function satisfies f (x) > 1. The proof is simpler
than that ones given above.

As known, it is not easy to determine whether a given function is convex or not. Because
of that, Jensen in [9] proved his famous characterization of convex functions. Simply, for a
continuous functions f defined on a real interval I, f is convex if and only if

f(w;ry> < f(w);rf(y)’

for all z,y € I.
In 1965, another characterization was presented by Popoviciu [16] (see also [13]), where he
proved that the following theorem.

Theorem 1. Let f: I — R be continuous. Then, f is convex if and only if

(L5) 2[f<$+~2>+f<y+z>+f(w;y>}Sf(x+y+z)+f<x>+f<y>+f<z>

3 2 2 3 3 ’
for all x,y,z € I, and the equality occurred by f(x) =z, x € I.

The corresponding version of Popoviciu inequality for G¢G¢-convex (concave) function was
presented by Niculescu [12], where he proved that for all x,y, z € I the inequality

(1.6) £ (Vaz) 2 (Vz) 2 (Vay) < (2)F (Yayz) f(2) f(y) f(2),

holds.

One of the most applicable benefits of Popoviciu’s inequality is to maximize and/or minimize
a given function (or certain real quantities) with out using derivatives, so that such type of
inequalities plays an important role in Optimizations and Approximations. Another serious
usefulness is to generalize some old famous inequalities, e.g., the Popoviciu’s inequality can be
considered as an elegant generalization of Hlawka’s inequality using convexity as a simple tool
of geometry. For any real numbers x,y, z, the Hlawka’s inequality reads:

(1.7) lz| + |yl + |zl + |z +y+z| >z +2+|z+y|+]x+yl|.

D. Smiley & M. Smiley [20] (see also [17], p. 756), interpreted Hlawka’s inequality geometrically
by saying that: “the total length over all sums of pairs from three vectors is not greater than
the perimeter of the quadrilateral defined by the three vectors.” For comprehensive history
regarding Hlawka’s inequality see the recent work of Fechner [6] and the classical monograph
of Mitrinovié et al. [11].

One may count third benefit, the extended version of Popoviciu’s inequality to several vari-
ables was not possible without the help of Hlawka’s inequality, as it inspired the authors of [3]
to develop a higher dimensional analogue of Popoviciu’s inequality based on his characteriza-
tion. Interesting generalizations and counterparts of Popoviciu inequality with some ramified
consequences can be found in [14] and [19].

So that, as Popoviciu’s inequality one of the most popular generalization of Hlawka’s in-
equality, and due to its important usefulness, in this work we establish some Popoviciu type
inequalities with respect to different types of means. More preciously, for h-AN-convex functions
several inequalities of Popoviciu type are proved. In this way, we extend Hlawka’s inequality
based on the geometric structure used under an h-AN-convex mappings.
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2. POPOVICIU TYPE INEQUALITIES FOR h-A{N{-CONVEX FUNCTIONS
In this section, we prove the corresponding version of Popoviciu inequality for the classes
h-A¢N¢-convex functions, where Ny = Ay, Gy, Hy.
First of all, we recall that, a function h : I — R is said to be
(1) additive if h (s +1t) = h(s) + h(t),
(2) subadditive if h (s +t) < h(s) + h(t),
(3) superadditive if h (s +t) > h(s) + h(t),
for all s,t € I. For instance, let h: I — (0,00) given by h (t) = t*, ¢t > 0. Then h is
(1) additive if k = 1.
(2) subadditive if k € (—o0, —=1] U [0, 1).
(3) superadditive if k € (—1,0) U (1, 00).
We note here, in all next results and for the classes %—MtAt—concave, %—Mth—convex , 1-
M;As-concave, and 1-MH¢-convex functions, f can be defined to be f: I — R, I C (0,00).

2.1. The case when f is h-A;A¢-convex. Now, we are ready to state our first main result.

Theorem 2. Let h : I — (0,00) be a non-negative super(sub)additive function. If f : I —
(0,00) be an h-A;Ai-convex (-concave) function, then

e o(57) o () ()
r+y+z

< @nE2 £ (T ) 42 @+ £+ G,

forall x,y,z € I.
Proof. fis h-AyAi-convex iff the inequality

holds for all a, 5 € I. Assume that x <y < z. Ify < %, then

x—&—g—l—z < x;—z < 2 and x—&—g—l—z < y—;—z <2

so that there exist two numbers s,t € [0, 1] satisfying

T+ z r+y+z
= 1—
5 s( 3 >—|—( s) 2,
and
y;Z :t<x+g+z>+(l—t)z.

Summing up, we get (z +y — 22) (s+t— %) =0. fz+y—22=0, then z =y = z, and
Popoviciu’s inequality holds.
Ifs+t= %, then since f is A;A¢-convex, we have

P55 ) = o () s a9 <nr () wna- o),

P2 = () 0 ne] snor () wna- a0,
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and

(55Y) <@+ £l

Summing up these inequalities taking into account that h is superadditive we get

(5571 (55) v (3)
<o) £ () n-s) £+
TR/ @)+ F ()

=)+ 0O (D) £ -9+ B0 () R/ @) + 1)

$+g+z)+h(1—t)f(z)

r+y—+z
3

<h<s+t>f( )+h<2—s—t>f(z>+h<1/2>[f<x>+f<y>]

h(3/2)f<

$+§+Z> +h(1/2) f(2) +h(1/2)[f () + | (y)]

r+y+z

—h(e/2) 7 ( )21 @)+ 1)+ 1G]
as desired in (2.1). O
Remark 3. In (2.1), setting z =y, then we have

27 (52) + 1) < @ney s (S5

)+ n Y @)+ 2 )]
forallx,y € 1.
Remark 4. In (2.1), setting z =y then we get

21 (52) + £ < )ne/ (

) (/D @)+ 21 )]

forallx,y € 1.

Corollary 1. Let h : I — (0,00) be a non-negative super(sub)additive function. If f : 1 —
(0,00) be an AyA-convex (concave) function, then

2 x+z y+z T+y z+y+z f@)+flw+f(z)
U (57) oo () oo ()] s o (e« i
for all x,y,z € I. The equality holds when f is affine.

Example 1. (1) Let f(x) = 2P, p > 1 then f is A¢A¢-convex for all x > 0. Applying
Corollary 1, we get

2| (x+=z p+ y+z p+ z+y\’ < z+y+z p+xp+yp+zp,
3 2 2 2 3 3
for all x,y,z > 0.

(2) Let f () = —logx, then f is AtA¢-conver for all 0 < x < 1. Applying Corollary 1, we
get

(o427 2 (049 > 02 (o +y + 2 (a92),

forall1 > x,y,z > 0.
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Corollary 2. If f: I — R be an %—AtAt-concave function, then

) (130020

S(Z)f(

rT+y+z

PEE) 3@+ £ )+ G

forall x,y,z € I.

Example 2. Let f () = logx, then f is an %—AtAt—concave for0 <z < 1. Applying Corollary
2, we get

512
(r+2)° (g +2) (@ +9)° > = (@ +y+2)" (292)°,
forall0 < z,y,z < 1.

Corollary 3. If f: I — R be an 1-A;A¢-concave function, then

F(5) 1 (50) () < e () rr@ s 1 0,

forall x,y,z € I.

Example 3. Let f (z) = logx, which is a non-negative 1-A;A¢-concave for all 0 < x < 1.
Applying Corollary 3, we get

(o4 2) (y+2) (2 ) 2 5 (o 2) (),

forall0 < z,y,z < 1.

Corollary 4. In Theorem 2.
(1) If h - J — (0,00) is a nonnegative is superadditive and f : I — (0,00) is an h-AgAq-
convex and subadditive, then

f(a:+y+z)§f(x;rz>+f(y;z>+f<$;y)

<n/2 1 (D) L h @ @)+ 1)+ £ G

<hn@32)|f(5)+1(5)+/(5)] +r2 @+ F@+1 ).

for all x,y,z € 1. If h is nonnegative subadditive on J and f is an h-AiA¢-concave and
superadditive, then the inequality is reversed.

(2) If h - J — (0,00) is a nonnegative is superadditive and f : I — (0,00) is an h-AAy-
convex and superadditive, then

() o () ()
<n /21 (T h )1 @)+ 1)+ £ G

<h/2 1 (T h @ by,

for all x,y,z € 1. If h is a nonnegative is subadditive and f is an h-AyA¢-concave and
subadditive, then the inequality is reversed.
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2.2. The case when f is h-A;G¢-convex.

Theorem 3. Let h : I — (0,00) be a non-negative super(sub)additive function. If f : 1 —
(0,00) be an h-AyGi-convex (-concave) function, then

e r(7) () ()

<o ()] vwmswseres,

forall x,y,z € I.
Proof. fis h-A;G¢-convex iff the inequality
flat1=0p) <[f @@, 0<t<i

holds for all o, 8 € I. As in the proof of Theorem 2, we have (v +y — 22) (s +t— %) =0. If
x4y — 2z =0, then x = y = 2z, and Popoviciu’s inequality holds.
Ifs+t= %, then since f is A;G¢-convex, we have

P(55) = () v < [ ()] e

(7)o (P ) rand < s (W)]hu) [f ()"0

F(5) <@ rwre?

and

Multiplying these inequalities we get
T+ z Y+ z x+y
(7)) (%)

<[ (=) e [ ()] e swre

- T4yt 1 h(s)+h(t)
= (s

@O (@) 1 ()"

N

IA

- z p 1 h(s+t) o ey
()] rere e

o I\ 7RG/ >
~ ()] r@rwsere,

which proves the inequality in (2.2). O

Remark 5. In (2.2), setting z = y then we have

PE) rws | (5 Qy)]h(w [F ) £ )]

2 3
forallz,yel.
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Corollary 5. If f : I — (0,00) be an A;G¢-convex function, then
T+ z +z T+ T+y+z
P2 PSR A (S ) <P () r@f ) ),
2 2 2 3
for all z,y,z € I. The equality occurred for f (x) =e*, x > 0.

Example 4. f(z) = cosh(x), x € R is A;G¢-convex function. Applying Corollary 5 we get

cosh? <x—|—z) cosh? (W) cosh? <x—|—y>
2 2 2

< cosh? (T) cosh () cosh (y) cosh (2)

Corollary 6. If f: I — (0,00) be an %—Ath—concave function, then
T+ z +z T+ rT+y+z
7 <2> 7 <y2> 7 (j’) > f? (f;j) 1o (@) £ ) £°(2).
forall x,y,z € I.

Example 5. f(z) = arcsin (), is 1-A;G¢-concave for z € [0,1]. Applying Corollary 6 we get

.afr+tz .3 (Y+2 .3 fT+Y
arcsin T arcsin T arcsin T

T+y+z

> arcsin®
3

> arcsin® (z) arcsin® () arcsin® (2),

forall0 < z,y,z <1.

Corollary 7. If f : I — (0,00) be an 1-A;Gy-concave function, then
F(52) () () < e (B s@ s w s,

forall x,y,z € 1.

Example 6. Let f (x) = arcsin (z), is 1-AyGi-concave for x € [0,1]. Applying Corollary 7 we
get

. T+ z . y+z . r+y
arcsin T arcsin T arcsin T

> arcsin <x+y+z

3 ) arcsin (x) arcsin (y) arcsin (z) ,
forall0 < z,y,z <1.

Corollary 8. In Theorem 3.
(1) If f : T — (0,00) is an h-AtGg-conver and submultiplicative,

f<(m+z)(y—;—z)(x+y)> <f<x;rz)f<y;z>f<m;ry>
< (W)Y(Sm £ @) £ ) ] P,

forallx,y,z € I. If f is an h-AyGy-concave and supermultiplicative, then the inequality
1s reversed.
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(2) If f : T — (0,00) is an h-A;Gg-conver and supermultiplicative, then
T+ z Y+ z r+vy
() ) ()
h(3/2)
()] v@rwreres

< {f <W)]h(g/2) [f (ayz)]h /D)

3

for all x,y,z € I. If f is an h-AiA¢-concave and submultiplicative, then the inequality
is reversed.

Corollary 9. In Theorem 3.
(1) If f: I — (0,00) is an h-A{G¢-convex and superadditive,

GBI B G E) sG]
<r(7) () ()

: [f (W”)Y% F (@) f () £ 072

3

for all x,y,z € I. If f is an h-AyG¢-concave and subadditive, then the inequality is
reversed.
(2) If f: I — (0,00) is an h-A{Gg-convex and subadditive, then

() ) ()

< {f <~T+;/+Z>]h(3/2) @) ) f "2

<P GO v,

forall x,y,z € I. If f is an h-AyG¢-concave and submultiplicative, then the inequality
is reversed.

2.3. The case when f is h-AjHi-convex.

Theorem 4. Let h : I — (0,00) be a non-negative super(sub)additive function. If f : 1 —
(0,00) is an h-A¢Hy-concave (-convex), then

1 1 1
FER) TR I
RS U B ACTE
(22) = BTG @ el T ey

forall x,y,z € I.

Proof. fis h-AHi-convex iff the inequality

f(a) F(B)

flta+(1-1t)p) < h(1—t) f(a)+h(t)f(B)

0<t<1
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holds for all a, 8 € I. As in the proof of Theorem 2, we have (z +y — 22) (s +t— %) =0. If
x4y —2z=0, then x =y = z, and Popoviciu’s inequality holds.
Ifs+t= %, then since f is AjH¢-concave, we have

()= () ra-ae] h<1—s>ff(;”+++—;)f+(zfz<s>f<z>’

and this equivalent to write

_h(=) S (FHE) ()] ()
F(52) " F(=52) 1) ’

(2.4)

similarly,

f<ygz) :f[t<x+g+z)+“‘“4 - h(l—t)ff(%—;)fffj(t)f(@’

which equivalent to write

1 h(1—1t) f (B2 +h(t) f(2)

2 C5 T ===y TS
and
Tty @) f ()
f( 2 )Zh(l/Q)(f(w)Jrf(y))
1R/ (f@) +fly
20 TIEn ST Jwiw
Summing the inequalities (2.4)—(2.6), we get
1 1
ICOREICSRNIED
_hU =) F () 1 h() F(2)  h(L=O)f (ZH2) 4 h(0) £ (2)
- F2) f(2) F%2) f(2)
M2 @)+ )
F@F )

[h(1—s)+h(Q =t f (ZFF) +[h(s) +h (D) f ()
F(52) 1)

LB/ (@) + 1 ()
f@)f W)
s () AR+ () | h(1/2) (@) + f )
= F(2HE2) £ (2) f @) f(y)
_ RO (FRE) 0 G3/2) 1 G) | h(1/2) (f (@) + ()
f () f(2) f(2) f(y)
=h(1/2) LIS SR T h(3/2)

RN ICRNICIRNTC
which proves the inequality in (2.3). O
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Remark 6. In (2.3), setting z =y, then we have
2 1
=) 1(59)

< (2)h{/2) [f?y) T

forallxz,y e 1.

Corollary 10. If f : I — (0,00) is an AHy-concave (convex), then

2L - (>)1[1+1+1}+ :
317 T rmE) T rEm | T s iw T Tw T re) T ey

for all x,y,z € I. The equality holds with f (z) =, x > 0.

x’

Example 7. Let f (z) = aP, p > 1. Then A{Hi-concave for x > 1. Applying Corollary 10, we

get
T+ z _p+ y+z _p+ AN Sx_p—i—y"’—i—z"’_i_ r+y+z\ "
2 2 2 3 3

forall x,y,z > 1.

2

3

Corollary 11. If f : I — (0,00) is an %—Ath—COTL’UEZL’, then

! + ! + ! }+
F@ " f@) " F)] ()

3[ U SR
2 (52) (55 F(5Y)

for all z,y,z € I.

o

Example 8. Let f(z) = —log(z),  Z 1. Then, f is +-AHy-convez for = Z 1. Applying
Corollary 11, we get

3 + 1 4 1 <3< L + ! + )—i—lo (xz)%
2 [log (5] g (52) g (79| = ogw " Tomy " logz) TS

forall x,y,z = 1.

Corollary 12. If f: I — (0,00) is an 1-AyHy-convez, then
1 " n 1 < { 1 n 1 n 1 } n 1
FEE) ) (=) " U f@) o fR)] ()

forall x,y,z € I.

Example 9. Let f(z) = —log(x), x = 1. Then, f is 1-A{H¢-convex on x = 1. Applying
Corollary 11, we get
1 n 1 + 1 < 1 + 1 +
log (*3%)  log (%5%) log(*5*) ~ logz  logy logz

wl—

+log (zy2)*

for all z,y,z 2 1.

3. POPOVICIU INEQUALITIES FOR h-G{N;-CONVEX FUNCTIONS

In this section, we prove the corresponding version of Popoviciu inequality for the classes
h-G¢N;-convex functions, where Ny = A, Gy, H;.
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3.1. The case when f is h-G{A{-convex.

Theorem 5. Let h : I — (0,00) be a non-negative super(sub)additive function. If f : I —
(0,00) is h-GyAg-convex (-concave) function, then
(3.1) f(V2) + f (Vy2) + [ (Vay)

< (2)h3/2) f (Vryz) + h(1/2) [f (2) + f (y) + f (2)],
forallz,y,z € 1.
Proof. f is h-GyAg-convex iff the inequality

FB ) <h®F (@) +h(L-0f(B), 0<t<l
holds for all o, 3 € I. Assume that z <y < z. If y < (zy2)"/?, then
(myz)1/3 < (anz)l/2 < z and (xyz)1/3 < (y2)'? < 2,

so that there exist two numbers s,t € [0, 1] satisfying

(22)"% = (ay2)""* 57
and

(y2)'/? = (ay=)"? 211
Multiplying the above equations, we get

)1/2 S1/2 )(s+t)/3 22— (s+1)

(zyz = (zyz

or (s41)
(zyz) =
If zyz%2 =1, then = y = 2, and Popoviciu’s inequality holds.
Ifs+t= %, then since f is GyAg-convex, we have
I (Vaz) = [(@y=)" 2] <0 (s) 1 (Y3020 + b (1= ) [f (2)]
F(E) = f [(o92)* 27| < h @) 1 (S350 +h (1= 1) [f (2)]

rvam <n(3) 1@+ 1)

Summing up these inequalities, we get

1 (Va2) + £ (V5P + £ (/&)

< h(s) £ (YTGZ) + h(1—8) f (=) + h () £ (TGZ) + h (1~ ) £ (2)
+h(1/2)[f (z) + f (y)]
[h(s)+h @) f (Vzyz) +[h(1=s) +h (A =1)] f(z) +h(1/2)[f (x) + f(y)]
his+1t)f(ryz) +h(2—s—1) f(2) +h(1/2)[f (z)+ [ (y)]
h(3/2) f (Vwyz) + h(1/2) f (2) + L (1/2) [f (x) + [ (y)]
=h3/2) f (Yryz) + h(1/2)[f (x) + [ (v) + [ (2)],

which proves the inequality (3.1). O

T3 2=

(VAN

Remark 7. In (3.1), setting z =y we get

2/ (Vo) + [ () < (2)h(3/2) 1 (Vay?) + h (1/2) [f (@) +2f ()],

forallz,yel.
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Corollary 13. If f: I — (0,00) is GyA¢-convex function, then

217 (V) + £ (IR + 1 (Vi) < (e + LT AT G)

for all x,y,z € I. The equality holds with f (x) =log(x), = > 1.

Example 10. Let f(x) = cosh(z), x > 0. Then, f is GyA¢-convex on (0,00). Applying
Corollary 31 we get

% [cosh (/&) + cosh (v/5) + cosh (7)) < cosh (/777) + cosh (z) + coslg (y) + cosh (z),

for all x,y,z > 0.

Corollary 14. If f : I — (0,00) is +-G¢A¢-concave function, then

S (D + T V)] 2 T (YR 3 (T (@) + 1 )+ F ()

forall z,y,z € I.

Example 11. Let f(z) = —2%, © > 0. Then, f is %—GtAt—concave on (0,00). Applying
Corollary 14 we get

3
§(xz+yz+:l:y)S(W)2+3(a:2+y2+z2)

for all z,y,z > 0.
Corollary 15. If f : I — (0,00) is 1-GyA¢-concave function, then

f(Vaz) + f(Vyz) + f(Vay) = f(Yayz) + (@) + f ) + f(2),
forall z,y,z € 1.
Example 12. Let f(x) = —22, © > 0. Then, f is 1-GiAi-convez on (0,00). Applying
Corollary 15 we get
vz +yz+xy < (Yryz)® +a? +y? + 22
for all z,y,z > 0.

Corollary 16. In Theorem 5.
(1) If f: I — (0,00) is an h-GyA¢-convex and superadditive,

f(Vaz) + f (V) + £ (Vay)
<h(3/2) f (Veyz) + h(1/2) [f () + £ (y) + [ (2)]
<h@/2) f(Vryz) +h(1/2) [z +y+2),

for all x,y,z € I. If f is an h-GyA¢-concave and subadditive, then the inequality is

reversed.
(2) If f : T — (0,00) is an h-GiA¢-conver and subadditive, then

f(Vaz+Vyz + Vay) < f (Vaz) + f(Vyz) + | (Vay)
<h(3/2) f (Vryz) + h(1/2) [f (2) + f (y) + [ (2)],

for all z,y,z € I. If f is an h-GiA¢-concave and superadditive, then the inequality is
reversed.
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Example 13. Let f (x) = cosh (z), which is GyA¢-convex and superadditive on (0,00). Apply-
ing Corollary 16 we get

2 cosh (vzz) + cosh (y/yz) + cosh (y/zy)]

[
3
< cosh ({/zyz) + cosh () + COS}; (y) + cosh (2)

1
< cosh (Yzyz) + 3 cosh (z +y +2),

for all x,y,z > 0.
3.2. The case when f is h-G{G¢-convex.

Theorem 6. Let h : I — (0,00) be a non-negative super(sub)additive function. If f : I —
(0,00) is h-G¢Gy-convez: (-concave) function, then

(32)  f(Ve2) f(VIE) f(Vag) < (2) [f (GaR)" P (f (@) f ) £ ()",
forall z,y,z € 1.
Proof. f is h-G¢Gy-convex iff the inequality

Fa B <[f (@D [F ", o<i<1

holds for all o, 3 € I. As in the proof of Theorem 5, if zyz? = 1, then z = y = 2, and
Popoviciu’s inequality holds.
Ifs+t= 3 , then since f is GyG¢-convex, we have

f (\/‘a) = f [(:vyz)s/3 Zl—s} < [f (W)]h(s) [f (Z)]h(l_s) 7
£ ) = £ [(w) 2] < [ (o)™ 1 GO,
Fam < (3) U@+ 76l

Multiplying these inequalities we get

! (Vaz) £ (Viz) | (/)
< [f (g™ [f @IV (g [ 10 1 (@) f )"

) [
= [ ()" O [f () [ (@) f @)
< [F )" O 1 T f @) £ )"
= [ (a2 [F VP Uf (@) f )"
= [F (a2 [ (@) £ () £ (2"
which proves the inequality in (3.2). O

Remark 8. In (3.2), setting z =y we get

v fw < @) [ (Vo)) 1@ 2 w)
forallx,y e 1.
Corollary 17. If f: I — (0,00) is GyGs-convex (concave) function, then

2 (Vaz) 2 (Vyz) 2 (Vay) < () (Yayz) | @) f ) £ (2),
for all z,y,z € I. The equality holds with f (x) =e", x > 0.


http://dx.doi.org/10.20944/preprints201710.0174.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 October 2017 d0i:10.20944/preprints201710.0174.v1

16 M.W. ALOMARI

Example 14. Let f (x) = cosh (z), which is GyG¢-conver on (0,00). Applying Corollary 17
we get

cosh? (Vzz) cosh? (/yz) cosh? (y/zy) < f* (¢/xyz) cosh (z) cosh (y) cosh (2),
for all x,y,z > 0.
Corollary 18. If f : I — (0,00) is %—Gth—concave function, then
2 (Vz) 12 (Vz) 12 (V) = 12 () £ (2) £° (y) £ (=)
forall x,y,z € I.

Example 15. Let f () = exp (—x) which is %—Gth—concave on (0,00). Applying Corollary
18 we get

VIZ + Yz + /7Y < §W+2z+2y+227
for all z,y,z > 0.
Corollary 19. If f : I — (0,00) is 1-G(Gy-concave function, then
f(Vaz) f(Vy2) f(Vay) < f(Yayz) | o) fy) f(z),
forall x,y,z € I.

Example 16. Let f (z) = exp (—z), which is 1-GyGg-concave on (0,00). Applying Corollary
19 we get

Vaz +yz + oy < Yayz +a +y + 2,
for all x,y,z > 0.
Corollary 20. In Theorem 6.
(1) If f: I — (0,00) is an h-GyGy-conver and supermultiplicative,
f (Va2) £ (Viz) £ (V) < [ ()" [ () f ) £ (21"
< [ ()" 2 [ (ay2)"

forall x,y,z € I.
(2) If f : I — (0,00) is an h-G;Gy-conver and submultiplicative, then

f(w2y) < f (V2) f (V) f (/)
< 1F Yz [f (@) £ () f ()"0
< [f (V=) F () ()" 1f @) f ) £ &0
for all z,y,z € I.

Example 17. Let f (x) = cosh (z), which is G;G¢-conver and supermultiplicative on [1,00).
Applying Corollary 20 we get

cosh? (v/22) cosh® (y/yz) cosh® (\/zy) < cosh® ({/zyz) cosh (z) cosh (y) cosh (z)
< cosh® (/zyz) cosh (zyz)

forall x,y,z > 1.
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3.3. The case when f is h-G{H-convex.

Theorem 7. Let h : I — (0,00) be a non-negative super(sub)additive function. If f : I —
(0,00) is h-G¢H¢-concave (-convex) function, then

1 1 1
T T 1)
V[ 1 1 1 h(3/2)
(3.3) < (Z)h(z‘) [f(af) IO ICINNAC5)

forall x,y,z € I.

Proof. f is h-G¢H¢-convex iff the inequality

_ f (@) f(B)
fafp'™) < ,  0<t<1
R S IIOETICHC)
holds for all o, 3 € I. As in the proof of Theorem 5, if zyz? = 1, then x = y = 2, and
Popoviciu’s inequality holds.
Ifs+t= %, then since f is G¢H¢-concave, we have

BN VS f(¥zyz) f (2)
f (VE2) = f [(oy2) Ph<1_s>f(\s/x—w)+h<s>f<z>

and this equivalent to write

L _ b= (y35R) +h(9) f ()

(3:4) Ao F(/72) 1 () ’

similarly,

— puz)3 1t f(\li/x_yz)f(z)
PR =1 @] 2 e s e e

which equivalent to write

(3.5) ! <h(1—t)f(W)+’;(t)f(z)

F(Voz) ~ F(Veyz) | (2

)

and

[ W)
T 2 iy (7 (o)

(
1 _h(2)(f (@)
f(Vzy) ~ f(@)f(y)

f )
()

_l’_
+

(3.6) —

d0i:10.20944/preprints201710.0174.v1
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Summing the inequalities (3.4)—(3.6), we get
1 1 1
Fv IR )
RO =97 (YIE) +h) £ ) RO S () Th (05 ()

- I (¢7yz) f(2) I (/7yz) [ (2)
LA (@) + f )
f(z) f(y)
_[h(A—s)+h(1 8] f (y7y2) +[h(s) +h(B)] f (2)
[ (yzy2) f (2)
L PA2) (f @) + f ()
f() f(y)
_hC=s =0 (YEyE) +h(s+6) [ () LA (@) + f )
= f (¢/797) f (2) f () f(y)
_h(/2) F(Yyz) +h(3/2) [ (2) LA (@) + f ()
= F (¢792) f (2) f (@) f(y)

VL L 1] he
‘h(2>{ F) " (y)+f(z)]+f(€/x_y2)’
which proves the inequality in (3.3).

Remark 9. In (3.3), setting z =y then we get

—2 +L<(>)h<l)[ 1 + 2 ]+ (3/2)
P Fw T T @ T FW T ()
forallx,y € 1.
Corollary 21. If f: I — (0,00) is GyHg-concave (convex) function, then

+

g 1 n 1 n 1 < (>)1 [ 1 n 1 1 } n 1
3\ fWez)  f(vwz)  f(yry) |~ T3 Lf@)  f)  fR)] 0 f(gEyz)
for all z,y,z € I. The equality holds with f (x) = @, zz 1.

Example 18. Let f () = cosh (z), then f is GiHy-concave for all x > 1. Applying Corollary
21, then we get

2 1 1 1
3 lcosh (Vxz) + cosh (/y2) + cosh (\/:z:_y)]
< 1 { 1 n 1 n 1 } n 1
~ 3 |cosh(x) cosh(y) cosh(z) cosh (yzyz)’

for all xz,y,z > 1.
Corollary 22. If f: I — (0,00) is %-Gth-convex function, then

+ + +

§ 1 n 1 1 >3{ 1 1 1 }—k 1
2| f(Vez) " f(vwE) fvaw) | T @) F) T Fe)] T f(vawE)

forall x,y,z € 1.
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Example 19. Let f (z) = —log (z), then f is %—Gth-conveI for allz > 1. Applying Corollary
22, then we get

3 1 1 1 1 1 1 1
2 |log (vaz) | log (VZz) " log (\/@)] =9 Log () " log(y) " log (2)} - log ({/7yz)’
forall x,y,z > 1.
Corollary 23. If f: I — (0,00) is 1-GyHg-convex function, then
1 1 1 1 1 1 1
v T T e et el e

forall x,y,z € I.

Example 20. Let f (x) = —log (z), then f is 1-G¢Hi-convez for all x > 1. Applying Corollary
23, then we get

1+1+1<{1+1+1}+1
log (vzz)  log (vyz) log(yvay) ~ llog(z) log(y) log(z)| log(yzyz)’

forall x,y,z > 1.

4. POPOVICIU INEQUALITIES FOR h-H{N{-CONVEX FUNCTIONS

In this section, we prove the corresponding version of Popoviciu inequality for the classes
h-H¢N¢-convex functions, where Ny = Ay, Gy, Hy.

4.1. The case when f is h-H;A-convex.

Theorem 8. Let h : I — (0,00) be a non-negative super(sub)additive. If f : I — (0,00) is
h-HyA¢-convex (concave) function, then

() () ()
(41) < @B (Y n DU @+ )+ F G,

forall x,y,z € 1.

Yy +yz+xz

Proof. f is h-H{Ai-convex iff the inequality

af
f(ta+(1—t)5>Sh(l—t)f(aHh(t)f(ﬁ), 0<t<l,

holds for all a, 5 € I. Assume that x <y < z. Ify < %, then

3xyz < 2xz 3xyz < 2yz
Ty +yz+xrz  T+2z Ty +yz+xz  Yy-+=z

<z

— 9

so that there exist two numbers s,t € [0, 1] satisfying

3zyz .
2rz Tytytaz ©
- 3zyz . )
Ttz szy+yz+acz + (1 8) z
and
3zyz .
Qyz _ TYy+yz+xz

Ytz b (1)
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3ryz

TR summing the reciprocal of the previous two equations

For simplicity set, u =

x+z+y+z_ (3+t)%+(2*3*02 3(s+t)u+(2—s—1t)z

3zyz . - j
zy+yz+xz 2 3u-z

2wz 2yz

Simplifying the above equation and reverse it back to the original form (taking the reciprocal
again), we get

u u

ut+z  2(s+thu+Z(2—s—t)z

since y, z, z > 0, this yields that © = y = z and thus Popoviciu’s inequality holds, or s + ¢ = %
and in this case since f is HyAg-convex, we have

3zyz .
f<2m>=f<5 ot Z>Sh(8)f(2)+h(1—s)f<3xyz),

r+z zy+yz+zz+(1is) l'y+y2+1'2
3ryz
2y2 TY+Yyz+rz "z < 3£CyZ >
— < h(t 2)+h(l—t — s
() 1 (s < rorena-os (G

(L) <nalr @+ 1

Summing up these inequalities we get

2xz 2yz 2xy
1(355) 0 (745) (555)

< [h(8)+h(t)]f(z)+[h(1—5)+h(1—t)]f(

3xyz
Ty +yz +x2

) R @)+ f )]

) R @)+ F )]

3xyz
<h t h(2—s—t _
ShHn -0 (2
3xyz

) eh )l @)+ 1)+ G,

—ne2)f
which proves the inequality in (4.1). a

Remark 10. In (4.1), setting z = y then we get

3xy
2 +y

2f( 2oy ) F P < (Z)h(3/2)f<

r+y

) R (L2) 1 (@) + 2 (9)],

forallx,y € 1.

Corollary 24. If f: I — (0,00) is HA¢-convex (concave) function, then

2 2xz 2yz 2zy
U)o () ()

S(Z)f<

I

sy L4/ 0450
Ty +yz+xz 3

or all x,y,z € I. The equality holds with f (z) =%, x > 0.
[ Y Y @
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Example 21. Let f (z) = arctan (x), then f is HiA¢-convex on (0,00). Applying Corollary
2/, then we get

2 2xz 2yz 2xy
— |arctan { —— | + arctan | —— | + arctan | ——
3 T+ z y+z x4y

3xyz arctan (x) + arctan (y) + arctan (z)
xy +yz + 2 3 ’

< arctan (

Corollary 25. If f: I — (0,00) is 1-H;A¢-concave function, then

()1 (22) s ()] () s

forall x,y,z € I.

Example 22. Let f (x) = —22, then f is %—HtAt-concave on x > 0. Applying Corollary 25,
then we get

zz \° Yz 2 xy > 3 TYZ 21
P N L Lo 2 2
(m—i—z) +<y+z) +<x+y) _2<xy—|—yz+xz> +18(m Tty +Z)’

for all x,y,z < 0.

Corollary 26. If f: I — (0,00) is 1-HyAy-concave function, then

P2 e r (2 ) s () 2 (522 )+ @+ T+ 0,

forallx,y,z € I.

Example 23. Let f (x) = —a2, then f is 1-HyA¢-concave on (0,00). Applying Corollary 26,

then we get
%+ y2 + 22 i TYz 2
9 xy+yz+ 12 ’

zz \2 2 \? x 2 9
(55:) +(75) +(555) =
T+ z y+z r+y 4

for all x,y,z < 0.

Corollary 27. In Theorem 8.
(1) If f : I — (0,00) is an h-HyAq-convex and superadditive, then

Tz Yz Ty
2[f(x+z)+f(y+z)+f(x+y)]
<2xz <2yz)+f(2xy>
T+ z Y+ z x+y

)
< 3ryz > +h(1/2)[f (@) + f (y) + f (2)]
21 (e

Ty +yz +xz2

3xyz

2) f )+h<1/2>f<z+y+z>,

Y+ Yz +x2

for all z,y,z € I. If f is an h-H{At-concave and subadditive, then the inequality is
reversed.
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(2) If f: I — (0,00) is an h-HyAy-conver and subadditive, then

<2:1:z 2yz 2:cy>
+ +
r+z Yy+z T+Yy

2xz 2yz 2zy
Sf(x+2)+f(y+2>+f<w+y)

<hG/2 1 () /D @)+ F )+ £ )
<o) 7 () a2 @+ £ )+ G,

for all x,y,z € I. If f is an h-HyA-concave and superadditive, then the inequality is
reversed.

4.2. The case when f is h-H;G;-convex.

Theorem 9. Let h : I — (0,00) be a non-negative super(sub)additive. If f : I — (0,00) is
h-H;G-convez: (-concave) function, then

2xz 2yz 2xy
1(755) - F) 0 (55)

*2) SQ)P<_EEK_)rmeMfwquW”,

Yy + Yz +x2

forall x,y,z € I.

Proof. f is h-HyGg-convex iff the inequality

_aB PRLICES h(t)
f(ta+(1_t)5)§[f()} e,  o0<t<l

holds for all o, 8 € I. As in the proof of Theorem 8, if x = y = z, then the inequality holds. If
s+t= % since f is HyG¢-convex, we have

2xz ) g ( ﬁ% -z )Z> <l (z)]h(s) [f ( 3xyz )}h(l—s)’

_ dwyz +(1-s Ty +yz +xz

( 8zy+yz+wz
3xyz —
1(54) - Tyt 0 |1 (G HM1Q
y+z t%—}-(l—ﬂz Ty +yz + 2 ’
( 2

w)svmf@WWW

IN

8
+
<
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Multiplying these inequalities we get

2xz 2yz 2zy
1(755)G5) ()

sw@w@@(mﬁﬁfﬂmﬂﬂkguuwm@(mﬁﬁfﬂmﬂMkﬂﬂ@f@me

h(1—s)+h(1—t)
<P () 1 @) £ (]P0

h(s+t) 3yz HEemy h1/2)
< [f(2)] * {f (W)} [f (z) f ()] 1z

—rer e [ (2 T @ swre

(e r@rmseres,

which proves the inequality in (4.2). O
Remark 11. In (4.2), setting z =y we get that

(2 10= @ [1(Z] " e s,

forallx,y e 1.
Corollary 28. If f : I — (0,00) is HyGy-convez (concave) function, then

2xz 2yz 2xy
() () ()

<o [1 (=2 N vorwrere.
7

xY + Yz +x2

for all x,y,z € I. The equality holds with f (x) = er, x> 0.
Example 24. Let f(x) = exp(z), * > 0. Then, f is HiG¢-convex on (0,00). Applying
Corollary 28 we get
dxz dyz 4x Iryz
+ Y + Y < Y
r+z yYy+z xT+y Yy + Yz +x2

Yz,
for all x,y,z > 0.
Corollary 29. If f: 1 — (0,00) is +-H;G¢-concave, then

2xz 2yz 2xy
1(755) () 555)

zp(3”3ﬂmumwwwww,

xy +yz +xz

forall z,y,z € I.

Example 25. Let f (z) = exp(—x), > 0. Then, f is %—Hth—concave on (0,00). Applying
Corollary 29 we get
Tz Yz Ty TYZz

+ + < TYZz,
r+z yYy+z xT+UY xY + Yz +x2
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for all x,y,z > 0.
Corollary 30. If f : I — (0,00) is 1-H{G¢-concave function, then

2xz 2yz 2xy
1(755) ) (55)

e LG LA

Y + Yz +x2

forall x,y,z € 1.

Example 26. Let f(z) = exp(—z), > 0. Then, f is 1-H;G¢-concave on (0,00). Applying
Corollary 30 we get

2xz 2yz 2zy < 3xyz

+ + tr+y+z
r+z yYy+z T+y xy+yz+txz Y

for all x,y,z > 0.

Corollary 31. In Theorem 9.
(1) If f: T — (0,00) is an h-HyG¢-convex and superadditive, then

Tz Yz Ty
Q[f(w+2>+f<y+2>+f<x+yﬂ

2xz 2yz 2xy
<0 (555) 1 (5%55) + (5%5)

Sp(wfﬁimﬂmmwmwwwuww%

for all z,y,z € I. If f is an h-H{Gt-concave and subadditive, then the inequality is
reversed.
(2) If f : I — (0,00) is an h-HyGy-conver and subadditive, then

2xz 2yz 2x
f( L y)
r+z Yy+z T+Y

2xz 2yz 2xy
§f<w+2>+f<y+»2)+f<w+y>

<G vwrmsere

TYZ
< Y

[”Qw+w+mﬂmmwuwww@WW%

for all z,y,z € I. If f is an h-HyG¢-concave and superadditive, then the inequality is
reversed.

4.3. The case when f is h-HH-convex.

Theorem 10. Let h : I — (0,00) be a non-negative super(sub)additive. If f : I — (0,00) is
h-HHg-concave (-convex) function, then

1 n 1 n 1
() 1() ()

1 1 1 1 h(3/2)
(4.3) < (Z)h<2> [f(l‘)+f(y)+f(z):|+f(acyizgj-xz),
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forall x,y,z € I.
Proof. f is HiHy-convex iff the inequality

a8 f(0) ()
f<ta+(1—t)ﬁ) SR @)+ h(—D7B)

holds for all a,, 8 € I. As in the proof of Theorem 8, if x = y = z, then the inequality holds. If
s+t= % since f is HyH¢-concave, we have

9 3zyz .z
f< Tz > _y Tytyztaz
Ttz §—STYE__ 4 (1 —§)z

Ty+yz+zxz

0<t<1

7 () @)
hs)f (522 ) +h(1—9)f ()

%

zy+yz+zxz

y+z termires T 0=02) " h@) 7 (5252) +h(1 -0 f ()

2ey f (@) f W)
f<x+y> Z R @ + T )]

Therefore, by summing the reciprocal of the above inequalities we get

1 + 1 + 1
fla) r(E) s(3)
() S () +h (=) F()+h () f (5225 ) +h (1= 1) £ (2)

S Ty+yz+rz Ty+yz+xz
f(m8he) 1)
(1/2)[f(:v) 10
G
)+h(s)] (myfﬁim) h1=9)+h (=011 G) b2 @)+ £ )
g +
fass) 1) F@) 1)
Mt () +hC=s 01 E) ha/) (@) + s )
- f (ﬁﬁ) f(2) f (@) f(y)
/21 (xyi’éiixz)+h3/2> @) h(/2)[f @)+ f @)
= +
f (s - £ ( f(@) f(y)
0 S () +h BT nay) () + )
f(xyizgim> (2) f@) fy)
1 1 h(3/2)
()[f(x) 7w f<z>]+f(wg§gim)’

which proves the inequality in (4.3). O

d0i:10.20944/preprints201710.0174.v1
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Remark 12. In (4.3), setting z = y then we get

: ! N1, 2 ], kG2
f(fﬂw)+f(y)§(2)h(§> {f(x)Jrf(y)}-l-f(%%),

forall z,y,z € 1.

Corollary 32. If f: I — (0,00) is HH¢-concave (convex) function, then

211 + :
<3|t R }
- =3 f( ) f(y f(z wyif}zj‘wz),

for all z,y,z € I. The equality holds with f (x) =z, x > 1.

Example 27. Let f(z) = arctan (z), x > 0. Then f is HH¢-concave on (0,00). Applying
Corollary 32, then we get

2 1 1 1
3 2wz * 2yz * 2zy
arctan ( +z> arctan (y+z> arctan (w+y>
1 1 1 1 1
~ 3 |arctan ()  arctan(y)  arctan(z) arctan( 3zyz )’
ry+yz+xz
for all x,y,z > 0.
Corollary 33. If f : I — (0,00) is %—Hth—conve:c function, then
3 1 1 1
2 2zz * 2yz * 2zy
() 1) s(3)
>3 { 1 n 1 n 1 } n 1
R EICRNITANIC) iy —"
Ty+yz+rz

forallz,y,z € 1.

Example 28. Let f(x) = —log(z), x > 1. Then f is $-HH¢-convez on (0,00). Applying
Corollary 33, then we get

3 1 1 1
5 2zz ™ 2yz + 2x
log <x+z) log (y%) log (ﬁ)
3 [ 1 n 1 n 1 ] + 1
log (@) " Tog () g ()] g (e’

for all x,y,z > 0.
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Corollary 34. If f: I — (0,00) is 1-H;H;-convez function, then
1 1 1

EIEINED
1

> 1 1 1
|t 7w ) ey

rzy+yz+xz

forall x,y,z € I.

Example 29. Let f(z) = —log(x), x > 0. Then f is 1-H Hy-convex on (0,00). Applying
Corollary 34, then we get

1 1 1
+ +
os (372) 1w (322)  1ox (3)
< [ 1 n 1 " 1 } n 1
~ |log (117) log (y) log (Z) log <%) ’
for all x,y,z > 0.
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