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Abstract. In this work, several inequalities of Popoviciu type for h-MN-convex functions

are proved, where M and N are denote to Arithmetic, Geometric and Harmonic means and
h is a non-negative superadditive or subadditive function.

1. Introduction

The class of h-convex functions, which generalizes convex, s-convex (denoted by K2
s , [4]),

Godunova-Levin functions (denoted by Q(I), [7]) and P -functions (denoted by P (I), [15]), was
introduced by Varošanec in [18]. Namely, the h-convex function is defined as a non-negative
function f : I → R which satisfies

f (tα+ (1− t)β) ≤ h (t) f (α) + h (1− t) f (β) ,

where h is a non-negative function, t ∈ (0, 1) ⊆ J and x, y ∈ I, where I and J are real intervals
such that (0, 1) ⊆ J . Accordingly, some properties of h-convex functions were discussed in the
same work of Varošanec. The famous references about these classes are [5] ,[8] and [10].

In this work, I and J are two intervals subset of (0,∞) (unless we specified) such that
(0, 1) ⊆ J and [a, b] ⊆ I, where 0 < a < b. Define the function M : [0, 1] → [a, b] given by
M (t) = M (t; a, b); where by M (t; a, b) we mean one of the following functions:

(1) At (a, b) := (1− t) a+ tb; The generalized Arithmetic Mean.

(2) Gt (a, b) = a1−tbt; The generalized Geometric Mean.

(3) Ht (a, b) := ab
ta+(1−t)b = 1

At( 1
a , 1b )

; The generalized Harmonic Mean.

Note that M (0; a, b) = a and M (1; a, b) = b. Clearly, for t = 1
2 , the means A 1

2
, G 1

2
and H 1

2
,

respectively; represents the midpoint of the At, Gt and Ht, respectively.
Also, we note that the above means are related with celebrated inequality

Ht (a, b) ≤ Gt (a, b) ≤ At (a, b) , ∀ t ∈ [0, 1].

Using fruitful structures of R as a vector space, Anderson et al. in [2] defined midconvex
functions with respect to a another mathematical means, by replacing a given mean, such as
G 1

2
and H 1

2
; instead of the arithmetic mean A 1

2
. Recently, Alomari [1] generalized Anderson

et al. work by extendng the classes of MN-convexity to be such as:

Definition 1. Let h : J → (0,∞) be a positive function. Let f : I → (0,∞) be any function.
Let M : [0, 1] → [a, b] and N : (0,∞) → (0,∞) be any two Mean functions. We say f is
h-MN-convex (-concave) or that f belongs to the class MN (h, I) (MN (h, I)) if

f (M (t;x, y)) ≤ (≥) N (h(t); f(x), f(y)) ,(1.1)
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2 M.W. ALOMARI

for all x, y ∈ I and t ∈ [0, 1].

Obviously, if M (t;x, y) = At (x, y) = N (t;x, y), then Definition 1 reduces to the original
concept of h-convexity. Also, if we assume f is continuous, h(t) = t and t = 1

2 in (1.1), then
the Definition 1 reduces to the Anderson et al. definition in [2].

In the same work [1], the author extended the classes Q(I), P (I) and K2
s by replacing the

arithmetic mean by another given one, as follows:

(1) Let s ∈ (0, 1], a function f : I → (0,∞) is MtNt-s-convex function or that f belongs to
the class K2

s (I; Mt,Nt) if for all x, y ∈ I and t ∈ [0, 1] we have

f (M (t;x, y)) ≤ N (ts; f(x), f(y)) .(1.2)

(2) We say that f : I → (0,∞) is an Extended Godunova-Levin function or that f belongs
to the class Q (I; Mt,Nt) if for all x, y ∈ I and t ∈ (0, 1) we have

f (M (t;x, y)) ≤ N

(
1

t
; f(x), f(y)

)
.(1.3)

(3) We say that f : I → (0,∞) is P -MtNt-function or that f belongs to the class
P (I; Mt,Nt) if for all x, y ∈ I and t ∈ [0, 1] we have

f (M (t;x, y)) ≤ N (1; f(x), f(y)) .(1.4)

In (1.2)–(1.4), setting M (t;x, y) = At (x, y) = N (t;x, y), we then refer to the original
definitions of these classes.

Let h be a non-negative function such that h (t) ≥ t for t ∈ (0, 1). For instance hr (t) = tr,
t ∈ (0, 1) has that property. In particular, for r ≤ 1, if f is a non-negative MtNt-convex function
on I, then for x, y ∈ I, t ∈ (0, 1) we have

f (M (t;x, y)) ≤ N (t; f(x), f(y)) ≤ N (tr; f(x), f(y)) = N (h (t) ; f(x), f(y)) ,

for all r ≤ 1 and t ∈ (0, 1). So that f is h-MtNt-convex. Similarly, if the function satisfies
the property h (t) ≤ t for t ∈ (0, 1), then f is a non-negative h-MtNt-concave. In particular,
for r ≥ 1, the function hr(t) has that property for t ∈ (0, 1). So that if f is a non-negative
MtNt-concave function on I, then for x, y ∈ I, t ∈ (0, 1) we have

f (M (t;x, y)) ≥ N (t; f(x), f(y)) ≥ N (tr; f(x), f(y)) = N (h (t) ; f(x), f(y)) ,

for all r ≥ 1 and t ∈ (0, 1), which means that f is h-MtNt-concave.

After focus consideration we find that, there is neither nonnegative 1
t -MtAt-concave nor 1

t -

MtHt–convex functions, where Mt = At, Gt, Ht. The same observation holds for h (t) = tk,
k ≤ −1, t ∈ (0, 1).

To see how this holds, suppose on the contrary that there is a nonnegative function f which
is 1

t -MtAt-concave on I. Thus, for Means Mt and At, the reverse inequality of (1.3) holds for
all all x, y ∈ I and t ∈ (0, 1).

f (M (t;x, y)) ≥ 1

1− t
f (x) +

1

t
f (y) .

Since Mt (x, x) = x, so by setting x = y we have

f (x) ≥ 1

1− t
f (x) +

1

t
f (x) =

1

t (1− t)
f (x) ,

which is equivalent to write
(
t− t2 − 1

)
f (x) ≥ 0, ∀t ∈ (0, 1). But since f is non-negative we

must have t− t2−1 ≥ 0, 0 < t < 1 which is impossible and thus we got a contradiction. Hence,
we must have f (x) ≤ 0.
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In case when f is nonnegative 1
t -MtHt–convex function, then

f (M (t;x, y)) ≤ t (1− t) f (x) f (y)

tf (x) + (1− t) f (y)
,

setting x = y we have

f (x) ≤ t (1− t) f (x) ,

and this is equivalent to write (t (1− t)− 1) f (x) ≥ 0, since f is nonnegative we must have
t (1− t)−1 ≥ 0 which impossible for t ∈ (0, 1), which contradicts the nonnegativity assumption
of f . Hence, f ≤ 0.

Remark 1. There is no nonnegative 1-MtAt-concave nor 1-MtHt-convex functions, where
Mt = At, Gt, Ht. The proof is simpler than that ones given above.

According to the previous discussion, we need to extend the classesQ (I; Mt,At), Q (I; Mt,Ht),
P (I; Mt,At), and P (I; Mt,Ht), by replacing the set of values of f to be R instead of (0,∞).
Consequently, we say that a function f : I → R

(1) is 1
t -MtAt-concave, if −f ∈ Q (I; Mt,At), i.e.,

f (M (t;x, y)) ≥ 1

1− t
f (x) +

1

t
f (y) ,

for all x, y ∈ I and t ∈ (0, 1).

(2) is 1
t -MtHt-convex, if f ∈ Q (I; Mt,Ht), i.e.,

f (M (t;x, y)) ≤ t (1− t) f (x) f (y)

tf (x) + (1− t) f (y)
,

for all x, y ∈ I and t ∈ (0, 1).

(3) is 1-MtAt-concave, if −f ∈ P (I; Mt,At), i.e.,

f (M (t;x, y)) ≥ f (x) + f (y)

for all x, y ∈ I and t ∈ (0, 1).

(4) is 1-MtHt-convex, if f ∈ P (I; Mt,Ht), i.e.,

f (M (t;x, y)) ≤ f (x) f (y)

f (x) + f (y)
,

for all x, y ∈ I and t ∈ (0, 1).

In the same way, there is no 1
t -MtGt-concave function satisfies f (x) > 1. To support this

assertion, assume there exists 1
t -MtGt-concave function, so that for Means Mt and Gt, the

reverse inequality of (1.3) holds for all x, y ∈ I and t ∈ (0, 1).

f (M (t;x, y)) ≥ [f (x)]
1

1−t [f (y)]
1
t ,

since Mt (x, x) = x, by setting x = y we get

f (x) ≥ [f (x)]
1

1−t+
1
t ,

since f (x) > 1 and t ∈ (0, 1) then we must have 1
1−t + 1

t ≤ 1 which is equivalent to write

1 ≤ t (1− t) for all t ∈ (0, 1) and this is impossible, thus we have a contradiction. Hence, we
must have 0 ≤ f (x) ≤ 1.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 October 2017                   doi:10.20944/preprints201710.0174.v1

http://dx.doi.org/10.20944/preprints201710.0174.v1
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Remark 2. There is no 1-MtGt-concave function satisfies f (x) > 1. The proof is simpler
than that ones given above.

As known, it is not easy to determine whether a given function is convex or not. Because
of that, Jensen in [9] proved his famous characterization of convex functions. Simply, for a
continuous functions f defined on a real interval I, f is convex if and only if

f

(
x+ y

2

)
≤ f (x) + f (y)

2
,

for all x, y ∈ I.
In 1965, another characterization was presented by Popoviciu [16] (see also [13]), where he

proved that the following theorem.

Theorem 1. Let f : I → R be continuous. Then, f is convex if and only if

2

3

[
f

(
x+ z

2

)
+ f

(
y + z

2

)
+ f

(
x+ y

2

)]
≤ f

(
x+ y + z

3

)
+
f (x) + f (y) + f (z)

3
,(1.5)

for all x, y, z ∈ I, and the equality occurred by f(x) = x, x ∈ I.

The corresponding version of Popoviciu inequality for GtGt-convex (concave) function was
presented by Niculescu [12], where he proved that for all x, y, z ∈ I the inequality

f2
(√
xz
)
f2 (
√
yz) f2 (

√
xy) ≤ (≥)f3 ( 3

√
xyz) f (x) f (y) f (z) ,(1.6)

holds.
One of the most applicable benefits of Popoviciu’s inequality is to maximize and/or minimize

a given function (or certain real quantities) with out using derivatives, so that such type of
inequalities plays an important role in Optimizations and Approximations. Another serious
usefulness is to generalize some old famous inequalities, e.g., the Popoviciu’s inequality can be
considered as an elegant generalization of Hlawka’s inequality using convexity as a simple tool
of geometry. For any real numbers x, y, z, the Hlawka’s inequality reads:

|x|+ |y|+ |z|+ |x+ y + z| ≥ |x+ z|+ |z + y|+ |x+ y| .(1.7)

D. Smiley & M. Smiley [20] (see also [17], p. 756), interpreted Hlawka’s inequality geometrically
by saying that: “the total length over all sums of pairs from three vectors is not greater than
the perimeter of the quadrilateral defined by the three vectors.” For comprehensive history
regarding Hlawka’s inequality see the recent work of Fechner [6] and the classical monograph
of Mitrinović et al. [11].

One may count third benefit, the extended version of Popoviciu’s inequality to several vari-
ables was not possible without the help of Hlawka’s inequality, as it inspired the authors of [3]
to develop a higher dimensional analogue of Popoviciu’s inequality based on his characteriza-
tion. Interesting generalizations and counterparts of Popoviciu inequality with some ramified
consequences can be found in [14] and [19].

So that, as Popoviciu’s inequality one of the most popular generalization of Hlawka’s in-
equality, and due to its important usefulness, in this work we establish some Popoviciu type
inequalities with respect to different types of means. More preciously, for h-AN-convex functions
several inequalities of Popoviciu type are proved. In this way, we extend Hlawka’s inequality
based on the geometric structure used under an h-AN-convex mappings.
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2. Popoviciu type inequalities for h-AtNt-convex functions

In this section, we prove the corresponding version of Popoviciu inequality for the classes
h-AtNt-convex functions, where Nt = At,Gt,Ht.

First of all, we recall that, a function h : I → R is said to be

(1) additive if h (s+ t) = h (s) + h (t),
(2) subadditive if h (s+ t) ≤ h (s) + h (t),
(3) superadditive if h (s+ t) ≥ h (s) + h (t),

for all s, t ∈ I. For instance, let h : I → (0,∞) given by h (t) = tk, t > 0. Then h is

(1) additive if k = 1.
(2) subadditive if k ∈ (−∞,−1] ∪ [0, 1).
(3) superadditive if k ∈ (−1, 0) ∪ (1,∞).

We note here, in all next results and for the classes 1
t -MtAt-concave, 1

t -MtHt-convex , 1-
MtAt-concave, and 1-MtHt-convex functions, f can be defined to be f : I → R, I ⊆ (0,∞).

2.1. The case when f is h-AtAt-convex. Now, we are ready to state our first main result.

Theorem 2. Let h : I → (0,∞) be a non-negative super(sub)additive function. If f : I →
(0,∞) be an h-AtAt-convex (-concave) function, then

(2.1) f

(
x+ z

2

)
+ f

(
y + z

2

)
+ f

(
x+ y

2

)
≤ (≥)h (3/2) f

(
x+ y + z

3

)
+ h (1/2) [f (x) + f (y) + f (z)] ,

for all x, y, z ∈ I.

Proof. f is h-AtAt-convex iff the inequality

f (tα+ (1− t)β) ≤ h (t) f (α) + h (1− t) f (β) , 0 ≤ t ≤ 1,

holds for all α, β ∈ I. Assume that x ≤ y ≤ z. If y ≤ x+y+z
3 , then

x+ y + z

3
≤ x+ z

2
≤ z and

x+ y + z

3
≤ y + z

2
≤ z,

so that there exist two numbers s, t ∈ [0, 1] satisfying

x+ z

2
= s

(
x+ y + z

3

)
+ (1− s) z,

and

y + z

2
= t

(
x+ y + z

3

)
+ (1− t) z.

Summing up, we get (x+ y − 2z)
(
s+ t− 3

2

)
= 0. If x + y − 2z = 0, then x = y = z, and

Popoviciu’s inequality holds.
If s+ t = 3

2 , then since f is AtAt-convex, we have

f

(
x+ z

2

)
= f

[
s

(
x+ y + z

3

)
+ (1− s) z

]
≤ h (s) f

(
x+ y + z

3

)
+ h (1− s) f (z) ,

f

(
y + z

2

)
= f

[
t

(
x+ y + z

3

)
+ (1− t) z

]
≤ h (t) f

(
x+ y + z

3

)
+ h (1− t) f (z) ,
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and

f

(
x+ y

2

)
≤ h (1/2) [f (x) + f (y)] .

Summing up these inequalities taking into account that h is superadditive we get

f

(
x+ z

2

)
+ f

(
y + z

2

)
+ f

(
x+ y

2

)
≤ h (s) f

(
x+ y + z

3

)
+ h (1− s) f (z) + h (t) f

(
x+ y + z

3

)
+ h (1− t) f (z)

+ h (1/2) [f (x) + f (y)]

= [h (s) + h (t)] f

(
x+ y + z

3

)
+ [h (1− s) + h (1− t)] f (z) + h (1/2) [f (x) + f (y)]

≤ h (s+ t) f

(
x+ y + z

3

)
+ h (2− s− t) f (z) + h (1/2) [f (x) + f (y)]

= h (3/2) f

(
x+ y + z

3

)
+ h (1/2) f (z) + h (1/2) [f (x) + f (y)]

= h (3/2) f

(
x+ y + z

3

)
+ h (1/2) [f (x) + f (y) + f (z)] ,

as desired in (2.1). �

Remark 3. In (2.1), setting z = y, then we have

2f

(
x+ y

2

)
+ f (y) ≤ (≥)h (3/2) f

(
x+ 2y

3

)
+ h (1/2) [f (x) + 2f (y)] .

for all x, y ∈ I.

Remark 4. In (2.1), setting z = y then we get

2f

(
x+ y

2

)
+ f (y) ≤ (≥)h (3/2) f

(
x+ 2y

3

)
+ h (1/2) [f (x) + 2f (y)] ,

for all x, y ∈ I.

Corollary 1. Let h : I → (0,∞) be a non-negative super(sub)additive function. If f : I →
(0,∞) be an AtAt-convex (concave) function, then

2

3

[
f

(
x+ z

2

)
+ f

(
y + z

2

)
+ f

(
x+ y

2

)]
≤ (≥) f

(
x+ y + z

3

)
+
f (x) + f (y) + f (z)

3
,

for all x, y, z ∈ I. The equality holds when f is affine.

Example 1. (1) Let f (x) = xp, p ≥ 1 then f is AtAt-convex for all x > 0. Applying
Corollary 1, we get

2

3

[(
x+ z

2

)p

+

(
y + z

2

)p

+

(
x+ y

2

)p]
≤
(
x+ y + z

3

)p

+
xp + yp + zp

3
,

for all x, y, z > 0.
(2) Let f (x) = − log x, then f is AtAt-convex for all 0 < x < 1. Applying Corollary 1, we

get

(x+ z)
2

(y + z)
2

(x+ y)
2 ≥ 64

27
(x+ y + z)

3
(xyz) ,

for all 1 > x, y, z > 0.
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Corollary 2. If f : I → R be an 1
t -AtAt-concave function, then

3

2

[
f

(
x+ z

2

)
+ f

(
y + z

2

)
+ f

(
x+ y

2

)]
≤ (≥) f

(
x+ y + z

3

)
+ 3 [f (x) + f (y) + f (z)] ,

for all x, y, z ∈ I.

Example 2. Let f (x) = log x, then f is an 1
t -AtAt-concave for 0 < x < 1. Applying Corollary

2, we get

(x+ z)
3

(y + z)
3

(x+ y)
3 ≥ 512

9
(x+ y + z)

2
(xyz)

6
,

for all 0 < x, y, z < 1.

Corollary 3. If f : I → R be an 1-AtAt-concave function, then

f

(
x+ z

2

)
+ f

(
y + z

2

)
+ f

(
x+ y

2

)
≤ (≥) f

(
x+ y + z

3

)
+ f (x) + f (y) + f (z) ,

for all x, y, z ∈ I.

Example 3. Let f (x) = log x, which is a non-negative 1-AtAt-concave for all 0 < x < 1.
Applying Corollary 3, we get

(x+ z) (y + z) (x+ y) ≥ 8

3
(x+ y + z) (xyz) ,

for all 0 < x, y, z < 1.

Corollary 4. In Theorem 2.

(1) If h : J → (0,∞) is a nonnegative is superadditive and f : I → (0,∞) is an h-AtAt-
convex and subadditive, then

f (x+ y + z) ≤ f
(
x+ z

2

)
+ f

(
y + z

2

)
+ f

(
x+ y

2

)
≤ h (3/2) f

(
x+ y + z

3

)
+ h (1/2) [f (x) + f (y) + f (z)]

≤ h (3/2)
[
f
(x

3

)
+ f

(y
3

)
+ f

(z
3

)]
+ h (1/2) [f (x) + f (y) + f (z)] ,

for all x, y, z ∈ I. If h is nonnegative subadditive on J and f is an h-AtAt-concave and
superadditive, then the inequality is reversed.

(2) If h : J → (0,∞) is a nonnegative is superadditive and f : I → (0,∞) is an h-AtAt-
convex and superadditive, then

f

(
x+ z

2

)
+ f

(
y + z

2

)
+ f

(
x+ y

2

)
≤ h (3/2) f

(
x+ y + z

3

)
+ h (1/2) [f (x) + f (y) + f (z)]

≤ h (3/2) f

(
x+ y + z

3

)
+ h (1/2) f (x+ y + z) ,

for all x, y, z ∈ I. If h is a nonnegative is subadditive and f is an h-AtAt-concave and
subadditive, then the inequality is reversed.
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2.2. The case when f is h-AtGt-convex.

Theorem 3. Let h : I → (0,∞) be a non-negative super(sub)additive function. If f : I →
(0,∞) be an h-AtGt-convex (-concave) function, then

(2.2) f

(
x+ z

2

)
f

(
y + z

2

)
f

(
x+ y

2

)
≤ (≥)

[
f

(
x+ y + z

3

)]h(3/2)
[f (x) f (y) f (z)]

h(1/2)
,

for all x, y, z ∈ I.

Proof. f is h-AtGt-convex iff the inequality

f (tα+ (1− t)β) ≤ [f (α)]
h(t)

[f (β)]
h(1−t)

, 0 ≤ t ≤ 1

holds for all α, β ∈ I. As in the proof of Theorem 2, we have (x+ y − 2z)
(
s+ t− 3

2

)
= 0. If

x+ y − 2z = 0, then x = y = z, and Popoviciu’s inequality holds.
If s+ t = 3

2 , then since f is AtGt-convex, we have

f

(
x+ z

2

)
= f

[
s

(
x+ y + z

3

)
+ (1− s) z

]
≤
[
f

(
x+ y + z

3

)]h(s)
[f (z)]

h(1−s)

f

(
y + z

2

)
= f

[
t

(
x+ y + z

3

)
+ (1− t) z

]
≤
[
f

(
x+ y + z

3

)]h(t)
[f (z)]

h(1−t)

and

f

(
x+ y

2

)
≤ [f (x) f (y)]

h(1/2)

Multiplying these inequalities we get

f

(
x+ z

2

)
f

(
y + z

2

)
f

(
x+ y

2

)
≤
[
f

(
x+ y + z

3

)]h(s)
[f (z)]

h(1−s)

[
f

(
x+ y + z

3

)]h(t)
[f (z)]

h(1−t)
[f (x) f (y)]

h(1/2)

=

[
f

(
x+ y + z

3

)]h(s)+h(t)

[f (z)]
h(1−s)+h(1−t)

[f (x) f (y)]
h(1/2)

≤
[
f

(
x+ y + z

3

)]h(s+t)

[f (z)]
h(2−s−t)

[f (x) f (y)]
1
2

=

[
f

(
x+ y + z

3

)]h(3/2)
[f (x) f (y) f (z)]

h(1/2)
,

which proves the inequality in (2.2). �

Remark 5. In (2.2), setting z = y then we have

f2
(
x+ y

2

)
f (y) ≤ (≥)

[
f

(
x+ 2y

3

)]h(3/2) [
f (x) f2 (y)

]h(1/2)
,

for all x, y ∈ I.
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Corollary 5. If f : I → (0,∞) be an AtGt-convex function, then

f2
(
x+ z

2

)
f2
(
y + z

2

)
f2
(
x+ y

2

)
≤ f3

(
x+ y + z

3

)
f (x) f (y) f (z) ,

for all x, y, z ∈ I. The equality occurred for f (x) = ex, x > 0.

Example 4. f (x) = cosh (x), x ∈ R is AtGt-convex function. Applying Corollary 5 we get

cosh2

(
x+ z

2

)
cosh2

(
y + z

2

)
cosh2

(
x+ y

2

)
≤ cosh3

(
x+ y + z

3

)
cosh (x) cosh (y) cosh (z)

Corollary 6. If f : I → (0,∞) be an 1
t -AtGt-concave function, then

f3
(
x+ z

2

)
f3
(
y + z

2

)
f3
(
x+ y

2

)
≥ f2

(
x+ y + z

3

)
f6 (x) f6 (y) f6 (z) ,

for all x, y, z ∈ I.

Example 5. f (x) = arcsin (x), is 1
t -AtGt-concave for x ∈ [0, 1]. Applying Corollary 6 we get

arcsin3

(
x+ z

2

)
arcsin3

(
y + z

2

)
arcsin3

(
x+ y

2

)
≥ arcsin2

(
x+ y + z

3

)
arcsin6 (x) arcsin6 (y) arcsin6 (z) ,

for all 0 ≤ x, y, z ≤ 1.

Corollary 7. If f : I → (0,∞) be an 1-AtGt-concave function, then

f

(
x+ z

2

)
f

(
y + z

2

)
f

(
x+ y

2

)
≤ (≥)f

(
x+ y + z

3

)
f (x) f (y) f (z) ,

for all x, y, z ∈ I.

Example 6. Let f (x) = arcsin (x), is 1-AtGt-concave for x ∈ [0, 1]. Applying Corollary 7 we
get

arcsin

(
x+ z

2

)
arcsin

(
y + z

2

)
arcsin

(
x+ y

2

)
≥ arcsin

(
x+ y + z

3

)
arcsin (x) arcsin (y) arcsin (z) ,

for all 0 ≤ x, y, z ≤ 1.

Corollary 8. In Theorem 3.

(1) If f : I → (0,∞) is an h-AtGt-convex and submultiplicative,

f

(
(x+ z) (y + z) (x+ y)

8

)
≤ f

(
x+ z

2

)
f

(
y + z

2

)
f

(
x+ y

2

)
≤
[
f

(
x+ y + z

3

)]h(3/2)
[f (x) f (y) f (z)]

h(1/2)
,

for all x, y, z ∈ I. If f is an h-AtGt-concave and supermultiplicative, then the inequality
is reversed.
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(2) If f : I → (0,∞) is an h-AtGt-convex and supermultiplicative, then

f

(
x+ z

2

)
f

(
y + z

2

)
f

(
x+ y

2

)
≤
[
f

(
x+ y + z

3

)]h(3/2)
[f (x) f (y) f (z)]

h(1/2)

≤
[
f

(
x+ y + z

3

)]h(3/2)
[f (xyz)]

h(1/2)
,

for all x, y, z ∈ I. If f is an h-AtAt-concave and submultiplicative, then the inequality
is reversed.

Corollary 9. In Theorem 3.

(1) If f : I → (0,∞) is an h-AtGt-convex and superadditive,[
f
(x

2

)
+ f

(z
2

)] [
f
(y

2

)
+ f

(z
2

)] [
f
(x

2

)
+ f

(y
2

)]
≤ f

(
x+ z

2

)
f

(
y + z

2

)
f

(
x+ y

2

)
≤
[
f

(
x+ y + z

3

)]h(3/2)
[f (x) f (y) f (z)]

h(1/2)
,

for all x, y, z ∈ I. If f is an h-AtGt-concave and subadditive, then the inequality is
reversed.

(2) If f : I → (0,∞) is an h-AtGt-convex and subadditive, then

f

(
x+ z

2

)
f

(
y + z

2

)
f

(
x+ y

2

)
≤
[
f

(
x+ y + z

3

)]h(3/2)
[f (x) f (y) f (z)]

h(1/2)

≤
[
f
(x

3

)
+ f

(y
3

)
+ f

(z
3

)]h(3/2)
[f (x) f (y) f (z)]

h(1/2)
,

for all x, y, z ∈ I. If f is an h-AtGt-concave and submultiplicative, then the inequality
is reversed.

2.3. The case when f is h-AtHt-convex.

Theorem 4. Let h : I → (0,∞) be a non-negative super(sub)additive function. If f : I →
(0,∞) is an h-AtHt-concave (-convex), then

1

f
(
x+z
2

) +
1

f
(
y+z
2

) +
1

f
(
x+y
2

)
≤ (≥)h (1/2)

[
1

f (y)
+

1

f (x)
+

1

f (z)

]
+

h (3/2)

f
(
x+y+z

3

) ,(2.3)

for all x, y, z ∈ I.

Proof. f is h-AtHt-convex iff the inequality

f (tα+ (1− t)β) ≤ f (α) f (β)

h (1− t) f (α) + h (t) f (β)
, 0 ≤ t ≤ 1
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holds for all α, β ∈ I. As in the proof of Theorem 2, we have (x+ y − 2z)
(
s+ t− 3

2

)
= 0. If

x+ y − 2z = 0, then x = y = z, and Popoviciu’s inequality holds.
If s+ t = 3

2 , then since f is AtHt-concave, we have

f

(
x+ z

2

)
= f

[
s

(
x+ y + z

3

)
+ (1− s) z

]
≥

f
(
x+y+z

3

)
f (z)

h (1− s) f
(
x+y+z

3

)
+ h (s) f (z)

,

and this equivalent to write

1

f
(
x+z
2

) ≤ h (1− s) f
(
x+y+z

3

)
+ h (s) f (z)

f
(
x+y+z

3

)
f (z)

,(2.4)

similarly,

f

(
y + z

2

)
= f

[
t

(
x+ y + z

3

)
+ (1− t) z

]
≥

f
(
x+y+z

3

)
f (z)

h (1− t) f
(
x+y+z

3

)
+ h (t) f (z)

,

which equivalent to write

1

f
(
y+z
2

) ≤ h (1− t) f
(
x+y+z

3

)
+ h (t) f (z)

f
(
x+y+z

3

)
f (z)

,(2.5)

and

f

(
x+ y

2

)
≥ f (x) f (y)

h (1/2) (f (x) + f (y))

⇐⇒ 1

f
(
x+y
2

) ≤ h (1/2) (f (x) + f (y))

f (x) f (y)
,(2.6)

Summing the inequalities (2.4)–(2.6), we get

1

f
(
x+z
2

) +
1

f
(
y+z
2

) +
1

f
(
x+y
2

)
≤
h (1− s) f

(
x+y+z

3

)
+ h (s) f (z)

f
(
x+y+z

3

)
f (z)

+
h (1− t) f

(
x+y+z

3

)
+ h (t) f (z)

f
(
x+y+z

3

)
f (z)

+
h (1/2) (f (x) + f (y))

f (x) f (y)

=
[h (1− s) + h (1− t)] f

(
x+y+z

3

)
+ [h (s) + h (t)] f (z)

f
(
x+y+z

3

)
f (z)

+
h (1/2) (f (x) + f (y))

f (x) f (y)

≤
h (2− s− t) f

(
x+y+z

3

)
+ h (s+ t) f (z)

f
(
x+y+z

3

)
f (z)

+
h (1/2) (f (x) + f (y))

f (x) f (y)

=
h (1/2) f

(
x+y+z

3

)
+ h (3/2) f (z)

f
(
x+y+z

3

)
f (z)

+
h (1/2) (f (x) + f (y))

f (x) f (y)

= h (1/2)

[
1

f (y)
+

1

f (x)
+

1

f (z)

]
+

h (3/2)

f
(
x+y+z

3

) ,
which proves the inequality in (2.3). �
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Remark 6. In (2.3), setting z = y, then we have

2

f
(
x+y
2

) +
1

f
(
y+z
2

) ≤ (≥)h (1/2)

[
2

f (y)
+

1

f (x)

]
+

h (3/2)

f
(
x+2y

3

) ,
for all x, y ∈ I.

Corollary 10. If f : I → (0,∞) is an AtHt-concave (convex), then

2

3

[
1

f
(
x+z
2

) +
1

f
(
y+z
2

) +
1

f
(
x+y
2

)] ≤ (≥)
1

3

[
1

f (y)
+

1

f (x)
+

1

f (z)

]
+

1

f
(
x+y+z

3

) ,
for all x, y, z ∈ I. The equality holds with f (x) = 1

x , x > 0.

Example 7. Let f (x) = xp, p ≥ 1. Then AtHt-concave for x ≥ 1. Applying Corollary 10, we
get

2

3

[(
x+ z

2

)−p

+

(
y + z

2

)−p

+

(
x+ y

2

)−p
]
≤ x−p + y−p + z−p

3
+

(
x+ y + z

3

)−p

for all x, y, z ≥ 1.

Corollary 11. If f : I → (0,∞) is an 1
t -AtHt-convex, then

3

2

[
1

f
(
x+z
2

) +
1

f
(
y+z
2

) +
1

f
(
x+y
2

)] ≤ 3

[
1

f (y)
+

1

f (x)
+

1

f (z)

]
+

1

f
(
x+y+z

3

) ,
for all x, y, z ∈ I.

Example 8. Let f (x) = − log (x), x 	 1. Then, f is 1
t -AtHt-convex for x 	 1. Applying

Corollary 11, we get

3

2

[
1

log
(
x+z
2

) +
1

log
(
y+z
2

) +
1

log
(
x+y
2

)] ≤ 3

(
1

log x
+

1

log y
+

1

log z

)
+ log (xyz)

1
3 ,

for all x, y, z 	 1.

Corollary 12. If f : I → (0,∞) is an 1-AtHt-convex, then

1

f
(
x+z
2

) +
1

f
(
y+z
2

) +
1

f
(
x+y
2

) ≤ [ 1

f (y)
+

1

f (x)
+

1

f (z)

]
+

1

f
(
x+y+z

3

) ,
for all x, y, z ∈ I.

Example 9. Let f (x) = − log (x), x 	 1. Then, f is 1-AtHt-convex on x 	 1. Applying
Corollary 11, we get

1

log
(
x+z
2

) +
1

log
(
y+z
2

) +
1

log
(
x+y
2

) ≤ 1

log x
+

1

log y
+

1

log z
+ log (xyz)

1
3 ,

for all x, y, z 	 1.

3. Popoviciu inequalities for h-GtNt-convex functions

In this section, we prove the corresponding version of Popoviciu inequality for the classes
h-GtNt-convex functions, where Nt = At,Gt,Ht.
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3.1. The case when f is h-GtAt-convex.

Theorem 5. Let h : I → (0,∞) be a non-negative super(sub)additive function. If f : I →
(0,∞) is h-GtAt-convex (-concave) function, then

(3.1) f
(√
xz
)

+ f (
√
yz) + f (

√
xy)

≤ (≥)h (3/2) f ( 3
√
xyz) + h (1/2) [f (x) + f (y) + f (z)] ,

for all x, y, z ∈ I.

Proof. f is h-GtAt-convex iff the inequality

f
(
αtβ1−t

)
≤ h (t) f (α) + h (1− t) f (β) , 0 ≤ t ≤ 1

holds for all α, β ∈ I. Assume that x ≤ y ≤ z. If y ≤ (xyz)
1/3

, then

(xyz)
1/3 ≤ (xz)

1/2 ≤ z and (xyz)
1/3 ≤ (yz)

1/2 ≤ z,
so that there exist two numbers s, t ∈ [0, 1] satisfying

(xz)
1/2

= (xyz)
s/3

z1−s

and

(yz)
1/2

= (xyz)
t/3

z1−t

Multiplying the above equations, we get

(xyz)
1/2

z1/2 = (xyz)
(s+t)/3

z2−(s+t)

or

(xyz)
(s+t)

3 − 1
2 z2−(s+t)− 1

2 = 1.

If xyz2 = 1, then x = y = z, and Popoviciu’s inequality holds.
If s+ t = 3

2 , then since f is GtAt-convex, we have

f
(√
xz
)

= f
[
(xyz)

s/3
z1−s

]
≤ h (s) [f ( 3

√
xyz)] + h (1− s) [f (z)]

f (
√
yz) = f

[
(xyz)

t/3
z1−t

]
≤ h (t) [f ( 3

√
xyz)] + h (1− t) [f (z)]

f (
√
xy) ≤ h

(
1

2

)
[f (x) + f (y)]

Summing up these inequalities, we get

f
(√
xz
)

+ f (
√
yz) + f (

√
xy)

≤ h (s) f ( 3
√
xyz) + h (1− s) f (z) + h (t) f ( 3

√
xyz) + h (1− t) f (z)

+ h (1/2) [f (x) + f (y)]

= [h (s) + h (t)] f ( 3
√
xyz) + [h (1− s) + h (1− t)] f (z) + h (1/2) [f (x) + f (y)]

≤ h (s+ t) f ( 3
√
xyz) + h (2− s− t) f (z) + h (1/2) [f (x) + f (y)]

= h (3/2) f ( 3
√
xyz) + h (1/2) f (z) + h (1/2) [f (x) + f (y)]

= h (3/2) f ( 3
√
xyz) + h (1/2) [f (x) + f (y) + f (z)] ,

which proves the inequality (3.1). �

Remark 7. In (3.1), setting z = y we get

2f (
√
xy) + f (y) ≤ (≥)h (3/2) f

(
3
√
xy2
)

+ h (1/2) [f (x) + 2f (y)] ,

for all x, y ∈ I.
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Corollary 13. If f : I → (0,∞) is GtAt-convex function, then

2

3

[
f
(√
xz
)

+ f (
√
yz) + f (

√
xy)
]
≤ f ( 3

√
xyz) +

f (x) + f (y) + f (z)

3
,

for all x, y, z ∈ I. The equality holds with f (x) = log (x), x > 1.

Example 10. Let f (x) = cosh (x), x > 0. Then, f is GtAt-convex on (0,∞). Applying
Corollary 31 we get

2

3

[
cosh

(√
xz
)

+ cosh (
√
yz) + cosh (

√
xy)
]
≤ cosh ( 3

√
xyz) +

cosh (x) + cosh (y) + cosh (z)

3
,

for all x, y, z > 0.

Corollary 14. If f : I → (0,∞) is 1
t -GtAt-concave function, then

3

2

[
f
(√
xz
)

+ f (
√
yz) + f (

√
xy)
]
≥ f ( 3

√
xyz) + 3 (f (x) + f (y) + f (z))

for all x, y, z ∈ I.

Example 11. Let f (x) = −x2, x > 0. Then, f is 1
t -GtAt-concave on (0,∞). Applying

Corollary 14 we get

3

2
(xz + yz + xy) ≤ ( 3

√
xyz)

2
+ 3

(
x2 + y2 + z2

)
for all x, y, z > 0.

Corollary 15. If f : I → (0,∞) is 1-GtAt-concave function, then

f
(√
xz
)

+ f (
√
yz) + f (

√
xy) ≥ f ( 3

√
xyz) + f (x) + f (y) + f (z) ,

for all x, y, z ∈ I.

Example 12. Let f (x) = −x2, x > 0. Then, f is 1-GtAt-convex on (0,∞). Applying
Corollary 15 we get

xz + yz + xy ≤ ( 3
√
xyz)

2
+ x2 + y2 + z2

for all x, y, z > 0.

Corollary 16. In Theorem 5.

(1) If f : I → (0,∞) is an h-GtAt-convex and superadditive,

f
(√
xz
)

+ f (
√
yz) + f (

√
xy)

≤ h (3/2) f ( 3
√
xyz) + h (1/2) [f (x) + f (y) + f (z)]

≤ h (3/2) f ( 3
√
xyz) + h (1/2) f (x+ y + z) ,

for all x, y, z ∈ I. If f is an h-GtAt-concave and subadditive, then the inequality is
reversed.

(2) If f : I → (0,∞) is an h-GtAt-convex and subadditive, then

f
(√
xz +

√
yz +

√
xy
)
≤ f

(√
xz
)

+ f (
√
yz) + f (

√
xy)

≤ h (3/2) f ( 3
√
xyz) + h (1/2) [f (x) + f (y) + f (z)] ,

for all x, y, z ∈ I. If f is an h-GtAt-concave and superadditive, then the inequality is
reversed.
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Example 13. Let f (x) = cosh (x), which is GtAt-convex and superadditive on (0,∞). Apply-
ing Corollary 16 we get

2

3

[
cosh

(√
xz
)

+ cosh (
√
yz) + cosh (

√
xy)
]

≤ cosh ( 3
√
xyz) +

cosh (x) + cosh (y) + cosh (z)

3

≤ cosh ( 3
√
xyz) +

1

3
cosh (x+ y + z) ,

for all x, y, z > 0.

3.2. The case when f is h-GtGt-convex.

Theorem 6. Let h : I → (0,∞) be a non-negative super(sub)additive function. If f : I →
(0,∞) is h-GtGt-convex (-concave) function, then

f
(√
xz
)
f (
√
yz) f (

√
xy) ≤ (≥) [f ( 3

√
xyz)]

h(3/2)
[f (x) f (y) f (z)]

h(1/2)
,(3.2)

for all x, y, z ∈ I.

Proof. f is h-GtGt-convex iff the inequality

f
(
αtβ1−t

)
≤ [f (α)]

h(t)
[f (β)]

h(1−t)
, 0 ≤ t ≤ 1

holds for all α, β ∈ I. As in the proof of Theorem 5, if xyz2 = 1, then x = y = z, and
Popoviciu’s inequality holds.

If s+ t = 3
2 , then since f is GtGt-convex, we have

f
(√
xz
)

= f
[
(xyz)

s/3
z1−s

]
≤ [f ( 3

√
xyz)]

h(s)
[f (z)]

h(1−s)
,

f (
√
yz) = f

[
(xyz)

t/3
z1−t

]
≤ [f ( 3

√
xyz)]

h(t)
[f (z)]

h(1−t)
,

f (
√
xy) ≤ h

(
1

2

)
[f (x) + f (y)] .

Multiplying these inequalities we get

f
(√
xz
)
f (
√
yz) f (

√
xy)

≤ [f ( 3
√
xyz)]

h(s)
[f (z)]

h(1−s)
[f ( 3
√
xyz)]

h(t)
[f (z)]

h(1−t)
[f (x) f (y)]

h(1/2)

= [f ( 3
√
xyz)]

h(s)+h(t)
[f (z)]

h(1−s)+h(1−t)
[f (x) f (y)]

h(1/2)

≤ [f ( 3
√
xyz)]

h(s+t)
[f (z)]

h(2−s−t)
[f (x) f (y)]

h(1/2)

= [f ( 3
√
xyz)]

h(3/2)
[f (z)]

h(1/2)
[f (x) f (y)]

h(1/2)

= [f ( 3
√
xyz)]

h(3/2)
[f (x) f (y) f (z)]

h(1/2)
,

which proves the inequality in (3.2). �

Remark 8. In (3.2), setting z = y we get

f2 (
√
xy) f (y) ≤ (≥)

[
f
(

3
√
xy2
)]h(3/2) [

f (x) f2 (y)
]h(1/2)

,

for all x, y ∈ I.

Corollary 17. If f : I → (0,∞) is GtGt-convex (concave) function, then

f2
(√
xz
)
f2 (
√
yz) f2 (

√
xy) ≤ (≥)f3 ( 3

√
xyz) f (x) f (y) f (z) ,

for all x, y, z ∈ I. The equality holds with f (x) = ex, x > 0.
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Example 14. Let f (x) = cosh (x), which is GtGt-convex on (0,∞). Applying Corollary 17
we get

cosh2
(√
xz
)

cosh2 (
√
yz) cosh2 (

√
xy) ≤ f3 ( 3

√
xyz) cosh (x) cosh (y) cosh (z) ,

for all x, y, z > 0.

Corollary 18. If f : I → (0,∞) is 1
t -GtGt-concave function, then

f3
(√
xz
)
f3 (
√
yz) f3 (

√
xy) ≥ f2 ( 3

√
xyz) f6 (x) f6 (y) f6 (z) ,

for all x, y, z ∈ I.

Example 15. Let f (x) = exp (−x) which is 1
t -GtGt-concave on (0,∞). Applying Corollary

18 we get

√
xz +

√
yz +

√
xy ≤ 2

3
3
√
xyz + 2x+ 2y + 2z,

for all x, y, z > 0.

Corollary 19. If f : I → (0,∞) is 1-GtGt-concave function, then

f
(√
xz
)
f (
√
yz) f (

√
xy) ≤ f ( 3

√
xyz) f (x) f (y) f (z) ,

for all x, y, z ∈ I.

Example 16. Let f (x) = exp (−x), which is 1-GtGt-concave on (0,∞). Applying Corollary
19 we get

√
xz +

√
yz +

√
xy ≤ 3

√
xyz + x+ y + z,

for all x, y, z > 0.

Corollary 20. In Theorem 6.

(1) If f : I → (0,∞) is an h-GtGt-convex and supermultiplicative,

f
(√
xz
)
f (
√
yz) f (

√
xy) ≤ [f ( 3

√
xyz)]

h(3/2)
[f (x) f (y) f (z)]

h(1/2)

≤ [f ( 3
√
xyz)]

h(3/2)
[f (xyz)]

h(1/2)
,

for all x, y, z ∈ I.
(2) If f : I → (0,∞) is an h-GtGt-convex and submultiplicative, then

f (xzy) ≤ f
(√
xz
)
f (
√
yz) f (

√
xy)

≤ [f ( 3
√
xyz)]

h(3/2)
[f (x) f (y) f (z)]

h(1/2)

≤
[
f
(

3
√
x
)
f ( 3
√
y) f

(
3
√
z
)]h(3/2)

[f (x) f (y) f (z)]
h(1/2)

,

for all x, y, z ∈ I.

Example 17. Let f (x) = cosh (x), which is GtGt-convex and supermultiplicative on [1,∞).
Applying Corollary 20 we get

cosh2
(√
xz
)

cosh2 (
√
yz) cosh2 (

√
xy) ≤ cosh3 ( 3

√
xyz) cosh (x) cosh (y) cosh (z)

≤ cosh3 ( 3
√
xyz) cosh (xyz)

for all x, y, z ≥ 1.
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POPOVICIU’S TYPE INEQUALITIES 17

3.3. The case when f is h-GtHt-convex.

Theorem 7. Let h : I → (0,∞) be a non-negative super(sub)additive function. If f : I →
(0,∞) is h-GtHt-concave (-convex) function, then

1

f (
√
xz)

+
1

f
(√
yz
) +

1

f
(√
xy
)

≤ (≥)h

(
1

2

)[
1

f (x)
+

1

f (y)
+

1

f (z)

]
+

h (3/2)

f
(

3
√
xyz

) ,(3.3)

for all x, y, z ∈ I.

Proof. f is h-GtHt-convex iff the inequality

f
(
αtβ1−t

)
≤ f (α) f (β)

h (1− t) f (α) + h (t) f (β)
, 0 ≤ t ≤ 1

holds for all α, β ∈ I. As in the proof of Theorem 5, if xyz2 = 1, then x = y = z, and
Popoviciu’s inequality holds.

If s+ t = 3
2 , then since f is GtHt-concave, we have

f
(√
xz
)

= f
[
(xyz)

s/3
z1−s

]
≥

f
(

3
√
xyz

)
f (z)

h (1− s) f
(

3
√
xyz

)
+ h (s) f (z)

and this equivalent to write

1

f (
√
xz)
≤
h (1− s) f

(
3
√
xyz

)
+ h (s) f (z)

f
(

3
√
xyz

)
f (z)

,(3.4)

similarly,

f (
√
yz) = f

[
(xyz)

t/3
z1−t

]
≥

f
(

3
√
xyz

)
f (z)

h (1− t) f
(

3
√
xyz

)
+ h (t) f (z)

which equivalent to write

1

f
(√
yz
) ≤ h (1− t) f

(
3
√
xyz

)
+ h (t) f (z)

f
(

3
√
xyz

)
f (z)

,(3.5)

and

f (
√
xy) ≥ f (x) f (y)

h (1/2) (f (x) + f (y))

⇐⇒ 1

f
(√
xy
) ≤ h (1/2) (f (x) + f (y))

f (x) f (y)
.(3.6)
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18 M.W. ALOMARI

Summing the inequalities (3.4)–(3.6), we get

1

f (
√
xz)

+
1

f
(√
yz
) +

1

f
(√
xy
)

≤
h (1− s) f

(
3
√
xyz

)
+ h (s) f (z)

f
(

3
√
xyz

)
f (z)

+
h (1− t) f

(
3
√
xyz

)
+ h (t) f (z)

f
(

3
√
xyz

)
f (z)

+
h (1/2) (f (x) + f (y))

f (x) f (y)

=
[h (1− s) + h (1− t)] f

(
3
√
xyz

)
+ [h (s) + h (t)] f (z)

f
(

3
√
xyz

)
f (z)

+
h (1/2) (f (x) + f (y))

f (x) f (y)

≤
h (2− s− t) f

(
3
√
xyz

)
+ h (s+ t) f (z)

f
(

3
√
xyz

)
f (z)

+
h (1/2) (f (x) + f (y))

f (x) f (y)

≤
h (1/2) f

(
3
√
xyz

)
+ h (3/2) f (z)

f
(

3
√
xyz

)
f (z)

+
h (1/2) (f (x) + f (y))

f (x) f (y)

= h

(
1

2

)[
1

f (x)
+

1

f (y)
+

1

f (z)

]
+

h (3/2)

f
(

3
√
xyz

) ,
which proves the inequality in (3.3). �

Remark 9. In (3.3), setting z = y then we get

2

f
(√
xy
) +

1

f (y)
≤ (≥)h

(
1

2

)[
1

f (x)
+

2

f (y)

]
+

h (3/2)

f
(

3
√
xy2
) ,

for all x, y ∈ I.

Corollary 21. If f : I → (0,∞) is GtHt-concave (convex) function, then

2

3

[
1

f (
√
xz)

+
1

f
(√
yz
) +

1

f
(√
xy
)] ≤ (≥)

1

3

[
1

f (x)
+

1

f (y)
+

1

f (z)

]
+

1

f
(

3
√
xyz

) ,
for all x, y, z ∈ I. The equality holds with f (x) = 1

log(x) , x � 1.

Example 18. Let f (x) = cosh (x), then f is GtHt-concave for all x ≥ 1. Applying Corollary
21, then we get

2

3

[
1

cosh (
√
xz)

+
1

cosh
(√
yz
) +

1

cosh
(√
xy
)]

≤ 1

3

[
1

cosh (x)
+

1

cosh (y)
+

1

cosh (z)

]
+

1

cosh
(

3
√
xyz

) ,
for all x, y, z ≥ 1.

Corollary 22. If f : I → (0,∞) is 1
t -GtHt-convex function, then

3

2

[
1

f (
√
xz)

+
1

f
(√
yz
) +

1

f
(√
xy
)] ≥ 3

[
1

f (x)
+

1

f (y)
+

1

f (z)

]
+

1

f
(

3
√
xyz

) ,
for all x, y, z ∈ I.
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Example 19. Let f (x) = − log (x), then f is 1
t -GtHt-convex for all x > 1. Applying Corollary

22, then we get

3

2

[
1

log (
√
xz)

+
1

log
(√
yz
) +

1

log
(√
xy
)] ≤ 3

[
1

log (x)
+

1

log (y)
+

1

log (z)

]
+

1

log
(

3
√
xyz

) ,
for all x, y, z > 1.

Corollary 23. If f : I → (0,∞) is 1-GtHt-convex function, then

1

f (
√
xz)

+
1

f
(√
yz
) +

1

f
(√
xy
) ≥ [ 1

f (x)
+

1

f (y)
+

1

f (z)

]
+

1

f
(

3
√
xyz

) ,
for all x, y, z ∈ I.

Example 20. Let f (x) = − log (x), then f is 1-GtHt-convex for all x > 1. Applying Corollary
23, then we get

1

log (
√
xz)

+
1

log
(√
yz
) +

1

log
(√
xy
) ≤ [ 1

log (x)
+

1

log (y)
+

1

log (z)

]
+

1

log
(

3
√
xyz

) ,
for all x, y, z > 1.

4. Popoviciu inequalities for h-HtNt-convex functions

In this section, we prove the corresponding version of Popoviciu inequality for the classes
h-HtNt-convex functions, where Nt = At,Gt,Ht.

4.1. The case when f is h-HtAt-convex.

Theorem 8. Let h : I → (0,∞) be a non-negative super(sub)additive. If f : I → (0,∞) is
h-HtAt-convex (concave) function, then

f

(
2xz

x+ z

)
+ f

(
2yz

y + z

)
+ f

(
2xy

x+ y

)
≤ (≥)h (3/2) f

(
3xyz

xy + yz + xz

)
+ h (1/2) [f (x) + f (y) + f (z)] ,(4.1)

for all x, y, z ∈ I.

Proof. f is h-HtAt-convex iff the inequality

f

(
αβ

tα+ (1− t)β

)
≤ h (1− t) f (α) + h (t) f (β) , 0 ≤ t ≤ 1,

holds for all α, β ∈ I. Assume that x ≤ y ≤ z. If y ≤ 3xyz
xy+yz+xz , then

3xyz

xy + yz + xz
≤ 2xz

x+ z
≤ z and

3xyz

xy + yz + xz
≤ 2yz

y + z
≤ z,

so that there exist two numbers s, t ∈ [0, 1] satisfying

2xz

x+ z
=

3xyz
xy+yz+xz · z

s 3xyz
xy+yz+xz + (1− s) z

,

and

2yz

y + z
=

3xyz
xy+yz+xz · z

t 3xyz
xy+yz+xz + (1− t) z

.
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For simplicity set, u = 3xyz
xy+yz+xz , summing the reciprocal of the previous two equations

x+ z

2xz
+
y + z

2yz
=

(s+ t) 3xyz
xy+yz+xz + (2− s− t) z

3xyz
xy+yz+xz · z

=
3 (s+ t)u+ (2− s− t) z

3u · z
.

Simplifying the above equation and reverse it back to the original form (taking the reciprocal
again), we get

u

u+ z
=

u

2 (s+ t)u+ 2
3 (2− s− t) z

,

since y, x, z > 0, this yields that x = y = z and thus Popoviciu’s inequality holds, or s+ t = 1
2

and in this case since f is HtAt-convex, we have

f

(
2xz

x+ z

)
= f

(
3xyz

xy+yz+xz · z
s 3xyz
xy+yz+xz + (1− s) z

)
≤ h (s) f (z) + h (1− s) f

(
3xyz

xy + yz + xz

)
,

f

(
2yz

y + z

)
= f

(
3xyz

xy+yz+xz · z
t 3xyz
xy+yz+xz + (1− t) z

)
≤ h (t) f (z) + h (1− t) f

(
3xyz

xy + yz + xz

)
,

f

(
2xy

x+ y

)
≤ h (1/2) [f (x) + f (y)] .

Summing up these inequalities we get

f

(
2xz

x+ z

)
+ f

(
2yz

y + z

)
+ f

(
2xy

x+ y

)
≤ [h (s) + h (t)] f (z) + [h (1− s) + h (1− t)] f

(
3xyz

xy + yz + xz

)
+ h (1/2) [f (x) + f (y)]

≤ h (s+ t) f (z) + h (2− s− t) f
(

3xyz

xy + yz + xz

)
+ h (1/2) [f (x) + f (y)]

= h (3/2) f

(
3xyz

xy + yz + xz

)
+ h (1/2) [f (x) + f (y) + f (z)] ,

which proves the inequality in (4.1). �

Remark 10. In (4.1), setting z = y then we get

2f

(
2xy

x+ y

)
+ f (y) ≤ (≥)h (3/2) f

(
3xy

2x+ y

)
+ h (1/2) [f (x) + 2f (y)] ,

for all x, y ∈ I.

Corollary 24. If f : I → (0,∞) is HtAt-convex (concave) function, then

2

3

[
f

(
2xz

x+ z

)
+ f

(
2yz

y + z

)
+ f

(
2xy

x+ y

)]
≤ (≥) f

(
3xyz

xy + yz + xz

)
+
f (x) + f (y) + f (z)

3
,

for all x, y, z ∈ I. The equality holds with f (x) = 1
x , x > 0.
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Example 21. Let f (x) = arctan (x), then f is HtAt-convex on (0,∞). Applying Corollary
24, then we get

2

3

[
arctan

(
2xz

x+ z

)
+ arctan

(
2yz

y + z

)
+ arctan

(
2xy

x+ y

)]
≤ arctan

(
3xyz

xy + yz + xz

)
+

arctan (x) + arctan (y) + arctan (z)

3
,

Corollary 25. If f : I → (0,∞) is 1
t -HtAt-concave function, then

3

2

[
f

(
2xz

x+ z

)
+ f

(
2yz

y + z

)
+ f

(
2xy

x+ y

)]
≥ f

(
3xyz

xy + yz + xz

)
+3 [f (x) + f (y) + f (z)] ,

for all x, y, z ∈ I.

Example 22. Let f (x) = −x2, then f is 1
t -HtAt-concave on x > 0. Applying Corollary 25,

then we get(
xz

x+ z

)2

+

(
yz

y + z

)2

+

(
xy

x+ y

)2

≤ 3

2

(
xyz

xy + yz + xz

)2

+
1

18

(
x2 + y2 + z2

)
,

for all x, y, z < 0.

Corollary 26. If f : I → (0,∞) is 1-HtAt-concave function, then

f

(
2xz

x+ z

)
+ f

(
2yz

y + z

)
+ f

(
2xy

x+ y

)
≥ f

(
3xyz

xy + yz + xz

)
+ [f (x) + f (y) + f (z)] ,

for all x, y, z ∈ I.

Example 23. Let f (x) = −x2, then f is 1-HtAt-concave on (0,∞). Applying Corollary 26,
then we get(

xz

x+ z

)2

+

(
yz

y + z

)2

+

(
xy

x+ y

)2

≤ 9

4

[
x2 + y2 + z2

9
+

(
xyz

xy + yz + xz

)2
]
,

for all x, y, z < 0.

Corollary 27. In Theorem 8.

(1) If f : I → (0,∞) is an h-HtAt-convex and superadditive, then

2

[
f

(
xz

x+ z

)
+ f

(
yz

y + z

)
+ f

(
xy

x+ y

)]
≤ f

(
2xz

x+ z

)
+ f

(
2yz

y + z

)
+ f

(
2xy

x+ y

)
≤ h (3/2) f

(
3xyz

xy + yz + xz

)
+ h (1/2) [f (x) + f (y) + f (z)]

≤ h (3/2) f

(
3xyz

xy + yz + xz

)
+ h (1/2) f (x+ y + z) ,

for all x, y, z ∈ I. If f is an h-HtAt-concave and subadditive, then the inequality is
reversed.
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(2) If f : I → (0,∞) is an h-HtAt-convex and subadditive, then

f

(
2xz

x+ z
+

2yz

y + z
+

2xy

x+ y

)
≤ f

(
2xz

x+ z

)
+ f

(
2yz

y + z

)
+ f

(
2xy

x+ y

)
≤ h (3/2) f

(
3xyz

xy + yz + xz

)
+ h (1/2) [f (x) + f (y) + f (z)]

≤ 3h (3/2) f

(
xyz

xy + yz + xz

)
+ h (1/2) [f (x) + f (y) + f (z)] ,

for all x, y, z ∈ I. If f is an h-HtAt-concave and superadditive, then the inequality is
reversed.

4.2. The case when f is h-HtGt-convex.

Theorem 9. Let h : I → (0,∞) be a non-negative super(sub)additive. If f : I → (0,∞) is
h-HtGt-convex (-concave) function, then

f

(
2xz

x+ z

)
+ f

(
2yz

y + z

)
+ f

(
2xy

x+ y

)
≤ (≥)

[
f

(
3xyz

xy + yz + xz

)]h(3/2)
[f (x) f (y) f (z)]

h(1/2)
,(4.2)

for all x, y, z ∈ I.

Proof. f is h-HtGt-convex iff the inequality

f

(
αβ

tα+ (1− t)β

)
≤ [f (α)]

h(1−t)
[f (β)]

h(t)
, 0 ≤ t ≤ 1.

holds for all α, β ∈ I. As in the proof of Theorem 8, if x = y = z, then the inequality holds. If
s+ t = 1

2 since f is HtGt-convex, we have

f

(
2xz

x+ z

)
= f

(
3xyz

xy+yz+xz · z
s 3xyz
xy+yz+xz + (1− s) z

)
≤ [f (z)]

h(s)

[
f

(
3xyz

xy + yz + xz

)]h(1−s)

,

f

(
2yz

y + z

)
= f

(
3xyz

xy+yz+xz · z
t 3xyz
xy+yz+xz + (1− t) z

)
≤ [f (z)]

h(t)

[
f

(
3xyz

xy + yz + xz

)]h(1−t)

,

f

(
2xy

x+ y

)
≤ [f (x) f (y)]

h(1/2)
.
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Multiplying these inequalities we get

f

(
2xz

x+ z

)
f

(
2yz

y + z

)
f

(
2xy

x+ y

)
≤ [f (z)]

h(s)

[
f

(
3xyz

xy + yz + xz

)]h(1−s)

[f (z)]
h(t)

[
f

(
3xyz

xy + yz + xz

)]h(1−t)

[f (x) f (y)]
h(1/2)

≤ [f (z)]
h(s)+h(t)

[
f

(
3xyz

xy + yz + xz

)]h(1−s)+h(1−t)

[f (x) f (y)]
h(1/2)

≤ [f (z)]
h(s+t)

[
f

(
3xyz

xy + yz + xz

)]h(2−s−t)

[f (x) f (y)]
h(1/2)

= [f (z)]
h(1/2)

[
f

(
3xyz

xy + yz + xz

)]h(3/2)
[f (x) f (y)]

h(1/2)

=

[
f

(
3xyz

xy + yz + xz

)]h(3/2)
[f (x) f (y) f (z)]

h(1/2)
,

which proves the inequality in (4.2). �

Remark 11. In (4.2), setting z = y we get that

2f

(
2xy

x+ y

)
f (y) ≤ (≥)

[
f

(
3xy

2x+ y

)]h(3/2) [
f (x) f2 (y)

]h(1/2)
,

for all x, y ∈ I.

Corollary 28. If f : I → (0,∞) is HtGt-convex (concave) function, then

f

(
2xz

x+ z

)
f

(
2yz

y + z

)
f

(
2xy

x+ y

)
≤ (≥)

[
f

(
3xyz

xy + yz + xz

)]3/2
[f (x) f (y) f (z)]

1/2
,

for all x, y, z ∈ I. The equality holds with f (x) = e
1
x , x > 0.

Example 24. Let f (x) = exp (x), x > 0. Then, f is HtGt-convex on (0,∞). Applying
Corollary 28 we get

4xz

x+ z
+

4yz

y + z
+

4xy

x+ y
≤ 9xyz

xy + yz + xz
+ xyz,

for all x, y, z > 0.

Corollary 29. If f : I → (0,∞) is 1
t -HtGt-concave, then

f

(
2xz

x+ z

)
f

(
2yz

y + z

)
f

(
2xy

x+ y

)
≥
[
f

(
3xyz

xy + yz + xz

)]2/3
[f (x) f (y) f (z)]

2
,

for all x, y, z ∈ I.

Example 25. Let f (x) = exp (−x), x > 0. Then, f is 1
t -HtGt-concave on (0,∞). Applying

Corollary 29 we get
xz

x+ z
+

yz

y + z
+

xy

x+ y
≤ xyz

xy + yz + xz
+ xyz,
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for all x, y, z > 0.

Corollary 30. If f : I → (0,∞) is 1-HtGt-concave function, then

f

(
2xz

x+ z

)
f

(
2yz

y + z

)
f

(
2xy

x+ y

)
≥ f

(
3xyz

xy + yz + xz

)
f (x) f (y) f (z) ,

for all x, y, z ∈ I.

Example 26. Let f (x) = exp (−x), x > 0. Then, f is 1-HtGt-concave on (0,∞). Applying
Corollary 30 we get

2xz

x+ z
+

2yz

y + z
+

2xy

x+ y
≤ 3xyz

xy + yz + xz
+ x+ y + z

for all x, y, z > 0.

Corollary 31. In Theorem 9.

(1) If f : I → (0,∞) is an h-HtGt-convex and superadditive, then

2

[
f

(
xz

x+ z

)
+ f

(
yz

y + z

)
+ f

(
xy

x+ y

)]
≤ f

(
2xz

x+ z

)
+ f

(
2yz

y + z

)
+ f

(
2xy

x+ y

)
≤
[
f

(
3xyz

xy + yz + xz

)]h(3/2)
[f (x) f (y) f (z)]

h(1/2)
,

for all x, y, z ∈ I. If f is an h-HtGt-concave and subadditive, then the inequality is
reversed.

(2) If f : I → (0,∞) is an h-HtGt-convex and subadditive, then

f

(
2xz

x+ z
+

2yz

y + z
+

2xy

x+ y

)
≤ f

(
2xz

x+ z

)
+ f

(
2yz

y + z

)
+ f

(
2xy

x+ y

)
≤
[
f

(
3xyz

xy + yz + xz

)]h(3/2)
[f (x) f (y) f (z)]

h(1/2)

≤
[
3f

(
xyz

xy + yz + xz

)]h(3/2)
[f (x) f (y) f (z)]

h(1/2)
,

for all x, y, z ∈ I. If f is an h-HtGt-concave and superadditive, then the inequality is
reversed.

4.3. The case when f is h-HtHt-convex.

Theorem 10. Let h : I → (0,∞) be a non-negative super(sub)additive. If f : I → (0,∞) is
h-HtHt-concave (-convex) function, then

1

f
(

2xz
x+z

) +
1

f
(

2yz
y+z

) +
1

f
(

2xy
x+y

)
≤ (≥)h

(
1

2

)[
1

f (x)
+

1

f (y)
+

1

f (z)

]
+

h (3/2)

f
(

3xyz
xy+yz+xz

) ,(4.3)
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for all x, y, z ∈ I.

Proof. f is HtHt-convex iff the inequality

f

(
αβ

tα+ (1− t)β

)
≤ f (α) f (β)

h (t) f (α) + h (1− t) f (β)
, 0 ≤ t ≤ 1

holds for all α, β ∈ I. As in the proof of Theorem 8, if x = y = z, then the inequality holds. If
s+ t = 1

2 since f is HtHt-concave, we have

f

(
2xz

x+ z

)
= f

(
3xyz

xy+yz+xz · z
s 3xyz
xy+yz+xz + (1− s) z

)
≥

f
(

3xyz
xy+yz+xz

)
· f (z)

h (s) f
(

3xyz
xy+yz+xz

)
+ h (1− s) f (z)

,

f

(
2yz

y + z

)
= f

(
3xyz

xy+yz+xz · z
t 3xyz
xy+yz+xz + (1− t) z

)
≥

f
(

3xyz
xy+yz+xz

)
· f (z)

h (t) f
(

3xyz
xy+yz+xz

)
+ h (1− t) f (z)

,

f

(
2xy

x+ y

)
≥ f (x) f (y)

h (1/2) [f (x) + f (y)]
,

Therefore, by summing the reciprocal of the above inequalities we get

1

f
(

2xz
x+z

) +
1

f
(

2yz
y+z

) +
1

f
(

2xy
x+y

)
≤
h (s) f

(
3xyz

xy+yz+xz

)
+ h (1− s) f (z) + h (t) f

(
3xyz

xy+yz+xz

)
+ h (1− t) f (z)

f
(

3xyz
xy+yz+xz

)
· f (z)

+
h (1/2) [f (x) + f (y)]

f (x) f (y)

≤
[h (s) + h (s)] f

(
3xyz

xy+yz+xz

)
+ [h (1− s) + h (1− t)] f (z)

f
(

3xyz
xy+yz+xz

)
· f (z)

+
h (1/2) [f (x) + f (y)]

f (x) f (y)

≤
h (s+ t) f

(
3xyz

xy+yz+xz

)
+ h (2− s− t) f (z)

f
(

3xyz
xy+yz+xz

)
· f (z)

+
h (1/2) [f (x) + f (y)]

f (x) f (y)

=
h (1/2) f

(
3xyz

xy+yz+xz

)
+ h (3/2) f (z)

f
(

3xyz
xy+yz+xz

)
· f (z)

+
h (1/2) [f (x) + f (y)]

f (x) f (y)

=
h (1/2) f

(
3xyz

xy+yz+xz

)
+ h (3/2) f (z)

f
(

3xyz
xy+yz+xz

)
· f (z)

+
h (1/2) [f (x) + f (y)]

f (x) f (y)

= h

(
1

2

)[
1

f (x)
+

1

f (y)
+

1

f (z)

]
+

h (3/2)

f
(

3xyz
xy+yz+xz

) ,
which proves the inequality in (4.3). �
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Remark 12. In (4.3), setting z = y then we get

2

f
(

2xy
x+y

) +
1

f (y)
≤ (≥)h

(
1

2

)[
1

f (x)
+

2

f (y)

]
+

h (3/2)

f
(

3xy
2x+y

) ,
for all x, y, z ∈ I.

Corollary 32. If f : I → (0,∞) is HtHt-concave (convex) function, then

2

3

 1

f
(

2xz
x+z

) +
1

f
(

2yz
y+z

) +
1

f
(

2xy
x+y

)


≤ (≥)
1

3

[
1

f (x)
+

1

f (y)
+

1

f (z)

]
+

1

f
(

3xyz
xy+yz+xz

) ,
for all x, y, z ∈ I. The equality holds with f (x) = x, x > 1.

Example 27. Let f (x) = arctan (x), x > 0. Then f is HtHt-concave on (0,∞). Applying
Corollary 32, then we get

2

3

 1

arctan
(

2xz
x+z

) +
1

arctan
(

2yz
y+z

) +
1

arctan
(

2xy
x+y

)


≤ 1

3

[
1

arctan (x)
+

1

arctan (y)
+

1

arctan (z)

]
+

1

arctan
(

3xyz
xy+yz+xz

) ,
for all x, y, z > 0.

Corollary 33. If f : I → (0,∞) is 1
t -HtHt-convex function, then

3

2

 1

f
(

2xz
x+z

) +
1

f
(

2yz
y+z

) +
1

f
(

2xy
x+y

)


≥ 3

[
1

f (x)
+

1

f (y)
+

1

f (z)

]
+

1

f
(

3xyz
xy+yz+xz

) ,
for all x, y, z ∈ I.

Example 28. Let f (x) = − log (x), x > 1. Then f is 1
t -HtHt-convex on (0,∞). Applying

Corollary 33, then we get

3

2

 1

log
(

2xz
x+z

) +
1

log
(

2yz
y+z

) +
1

log
(

2xy
x+y

)


≤ 3

[
1

log (x)
+

1

log (y)
+

1

log (z)

]
+

1

log
(

3xyz
xy+yz+xz

) ,
for all x, y, z > 0.
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Corollary 34. If f : I → (0,∞) is 1-HtHt-convex function, then

1

f
(

2xz
x+z

) +
1

f
(

2yz
y+z

) +
1

f
(

2xy
x+y

)
≥
[

1

f (x)
+

1

f (y)
+

1

f (z)

]
+

1

f
(

3xyz
xy+yz+xz

) ,
for all x, y, z ∈ I.

Example 29. Let f (x) = − log (x), x > 0. Then f is 1-HtHt-convex on (0,∞). Applying
Corollary 34, then we get

1

log
(

2xz
x+z

) +
1

log
(

2yz
y+z

) +
1

log
(

2xy
x+y

)
≤
[

1

log (x)
+

1

log (y)
+

1

log (z)

]
+

1

log
(

3xyz
xy+yz+xz

) ,
for all x, y, z > 0.
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[19] P.M. Vasić and L.R. Stanković, Some inequalities for convex functions, Math. Balkanica, 6 (1976), 281–288.

[20] R. Whitty, A generalised Hlawka inequality by D. Smiley & M. Smiley, Theorem of The day, availiable at:
http://www.theoremoftheday.org/Analysis/Hlawka/TotDHlawka.pdf

Department of Mathematics, Faculty of Science and Information Technology, Irbid National

University, 2600 Irbid 21110, Jordan.
E-mail address: mwomath@gmail.com

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 October 2017                   doi:10.20944/preprints201710.0174.v1

http://www.theoremoftheday.org/Analysis/Hlawka/TotDHlawka.pdf
http://dx.doi.org/10.20944/preprints201710.0174.v1

	1. Introduction
	2. Popoviciu type inequalities for h-AtNt-convex functions
	2.1. The case when f is h-AtAt-convex
	2.2. The case when f is h-AtGt-convex
	2.3. The case when f is h-AtHt-convex

	3. Popoviciu inequalities for h-GtNt-convex functions
	3.1. The case when f is h-GtAt-convex
	3.2. The case when f is h-GtGt-convex
	3.3. The case when f is h-GtHt-convex

	4. Popoviciu inequalities for h-HtNt-convex functions
	4.1. The case when f is h-HtAt-convex
	4.2. The case when f is h-HtGt-convex
	4.3. The case when f is h-HtHt-convex

	References

