

1 Article

2

A Semi-Pilot Photocatalytic Rotating Reactor (RFR) 3 with Supported TiO₂ /Ag Catalysts for Water 4 Treatment

5 **Carlos Montalvo¹, Claudia Aguilar ^{1,*}, Roberto Alcocer¹, Miguel Ramirez¹**6 ¹ Department of Chemical Sciences, Universidad Autónoma del Carmen, Calle 56 No. 4, Avenida Concordia,
7 CP 24180, Ciudad del Carmen, Campeche, México.8 * Correspondence: alejandra175@hotmail.com9 **Abstract:** A four stage semi-pilot scale RFR reactor with ceramic disks as support for TiO₂ modified
10 with silver particles was developed for the removal of organic pollutants. The design presented in
11 this article is an adaptation of the rotating biological reactors (RBR) and its coupling with the
12 modified catalyst provides additional advantages to designs where a catalyst in suspension is used.
13 The optimal parameter of rotation was 54 rpm and the submerged surface of the disks offer a total
14 contact area of 387 M². The modified solid showed a decrease in the value of its bandgap compared
15 to commercial titanium. The system has a semi-automatic operation with a maximum reaction time
16 of 50 h. Photo-activity tests show high conversion rates at low concentrations. The results conform
17 to the Langmuir heterogeneous catalysis model.18 **Keywords:** rotating photocatalytic reactor; TiO₂ /Ag catalysts; water treatment

19

20

1. Introduction

21 Advanced oxidation processes (AOP) are widely used for water decontamination. Such
22 processes rely on the photocatalysis principle, that is, the generation and use of the hydroxyl radical
23 (·OH) in the presence of UV light with an adequate intensity. The photocatalytic process can reduce
24 the initial organic matter to CO₂, H₂O and mineral salts. This technology has proved its efficiency for
25 the complete elimination of different organic molecules. The basic principles have been widely
26 reported in the literature [1-3]. However, one of the processes that decreases the efficiency of the
27 photocatalytic process is the recombination of charges since it generates neutral centers. To prevent
28 this, the reaction medium can be added with an element such as oxygen, which sequesters the
29 electron from the valence band or metallic nanoparticles.30 Photocatalysis is an efficient treatment of drug degradation [4], as well as chlorinated organic
31 compounds, nitrogenous compounds, aromatic hydrocarbons such as trichlorethylene, chloroform,
32 chlorophenols. [5] The emergence of so-called "emerging pollutants" (drugs, pesticides, Personal
33 hygiene products) creates an additional problem due to the scarce information available on its effects
34 on the environment or its interference with biological processes [6].35 This work shows water treatment with photocatalytic processes and their coupling to the RFR
36 (Rotating Photocatalytic Reactor). This type of reactor manages to reduce some of the main challenges
37 of the photocatalysis, such as the use of the catalyst in suspension. Its design is part of the biological
38 contactors and can be used as a hybrid reactor. The treatment capacity of this design is 50 L, so it can
39 be considered a viable option to treat small volumes of industrial water.40

1.1 The rotating photocatalytic reactor (RFR)

41 There are important factors to consider when designing a photocatalytic reactor. The need to use
42 a solid catalyst complicates the process by adding another phase to the system. In this type of reactors,
43 it becomes evident that, besides making the contact between the reagents and the catalyst (high
44 catalyst surface area per unit volume of the reactor) efficient, a high exposure of the catalyst to the

45 radiation (optimal distribution of light inside the equipment) is required. A photo-reactor of rotating
46 disks, considered a novel photo-reactive system and suitable for large scale applications, is a good
47 example of a system that uses the supported photocatalyst and can operate with sunlight or UV light
48 in a continuous system. RFR arise as an adaptation of rotating biological reactors (RBR), while
49 retaining the following advantages:

50 A) Low energy consumption
51 B) Simplicity of operation and maintenance
52 C) Minimization of space and volume required
53 D) Simplicity in assembly

54 One of the first works to explore the benefits of these designs was done by Dionysios et al. [7].
55 The research shows that the initial increase in reaction velocity with respect to the angular velocity
56 of the disk is attributed to the time available per rotation. The rate of decomposition of 4-
57 chlorobenzoic acid showed Langmuir-Hinshelwood kinetics. The results obtained suggest the
58 absence of significant mass transfer limitations at angular velocities greater than 6 rpm.

59 For inactivation of bacteria *Escherichia coli* [8]; the use of this type of reactor showed its best
60 behavior after varying parameters such as the speed of rotation of the disks, the intensity of radiation
61 and the number of disks. There are few current references and developments for RFR. Recent
62 developments are concentrated in few papers published in recent years, Zhan et al. [9] combined a
63 system of titanium oxide nanotubes in a rotary disk reactor (RDPR) performing degradation tests
64 with rhodamine B. The conversion rates were greater than 90% after a three-hour reaction. While
65 these works only show the coupling of different forms and modification of the catalysts in a photo-
66 catalytic system, the contributions made by these have led to improvement and a better
67 understanding of the photocatalytic phenomena.

68 Nan Lin et al. [10] designed a photo-catalytic rotary disks reactor (MLRDR). The catalyst was
69 immobilized on the disks by multilayers. The main contributions of this work are focused on the
70 influence of the number of layers and the volumetric flow velocity. Nan Lin concluded that the
71 efficiency of the reactor relies completely on these parameter. The diameter of the disks used in this
72 design was 12 cm.

73 Cheng Yang et al. [11] developed a study based on a well-developed photocatalytic fuel cell
74 equipped with dual rotating disks for wastewater treatment. The innovation in this new device was
75 the use of a hemoglobin on graphite cathode for in situ hydrogen peroxide (H_2O_2) generation. This
76 design uses the invalid excited electron from the photoanode and enhances the overall performance
77 of Rhodamine B degradation compared with the cells using the cathode without Hb. Compared to
78 traditional photocatalytic reactors, this photocatalytic fuel cell shows greater better utilization
79 efficiency of incident light and a higher degradation performance of organic pollutants.

80 Recently Li et al. [12] developed a system of rotary disks for post-treatment of water in the textile
81 industry. The main contributions of this work is in the structure of the disks since they exhibit a high
82 surface and an efficient use of UV light. The operating conditions of the disks were 20 rpm and the
83 initial capacity of the reactor was 120 mL.

84 Fang Li et al. [13], showed other advances in the development of the PRD reactor (Photocatalytic
85 rotating disks) by adding H_2O_2 to increase the mineralization of the orange methyl dye. The main
86 contribution of this design is an improved capacity of treatment of 5 L.

87 1.2 Modification of catalysts

88 Photocatalysis has been proved to be an efficient process for the removal of different organic
89 molecules, but a major drawback is the “recombination of charges” since it decreases the efficiency
90 of the process. In this scenario, the doping of catalysts is an efficient way to achieve deposition of
91 metallic ions in the surface of the catalyst to change its electrical properties and increase its efficiency
92 for photocatalytic processes. TiO_2 is an excellent support because its structure consists of small
93 particles of nano-metric size with a large surface area in which metallic silver can be deposited to

94 avoid the recombination process. It also allows the availability of photo-generated holes for the
95 reaction [14]. The deposition of Ag in TiO₂ confers anti-bacterial capacity, making it an efficient
96 material for virus inactivation in water treatment [15]. Likewise the wavelength of catalysts modified
97 with nano-metallic particles can be extended to visible light [16-17]. The effect of silver-doped
98 titanium irradiated with UV light improves photocatalytic activity and improves separation of the
99 electron-hole pair [18].

100 2. Materials and methods

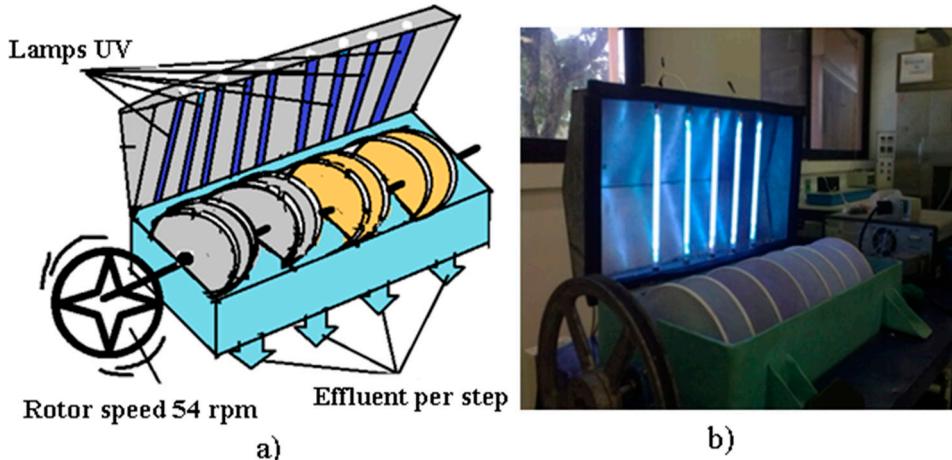
101 2.1. Synthesis and coupling of the catalyst TiO₂ / Ag to the RFR

102 For the photo-deposition process, AgNO₃ precursor salts were used. The mass used was
103 estimated based on a weight / weight ratio. Initially the solution containing the catalyst remained for
104 one hour in the dark phase, then it irradiated by four 365 nm lamps for 2 h with the addition of
105 nitrogen (80 cm³ / min). Water is removed by vacuum filtration, the material is dried at a temperature
106 of 100 °C and calcined at 550 °C. The particle size was homogenized and impregnated in wet ceramic
107 disks with a ratio of 2 g / M². The area covered by the discs was 3.5185 M² representing a contact area
108 of 387 M² / gr available for the reaction. Finally the impregnated disks were calcined at a temperature
109 of 550 °C.

110 2.2 Characterization of the catalyst

111 The surface morphological analysis by secondary electrons and chemical analysis by energy
112 dispersive spectroscopy (EDS) was performed in a Dual Beam Scanning Electron Microscope (FIB /
113 SEM) FEI-Helios Nanolab 600 from the National Laboratory of Nanosciences and Nanotechnology
114 Research (LINAN). XRD analyses were performed with a Rigaku, SMART LAB model using a copper
115 tube as the X-ray source. The estimation of the band gap value (E_g) was performed by UV
116 spectroscopy using a Shimadzu UV-2450 equipment, provided with the ISR-2200 Integrating Sphere
117 Attachment.

118 2.3 Photoactivity tests


119 The photoactivity tests were performed with solutions of acetaminophen at different
120 concentrations. For analysis of reaction kinetics samples were taken at different time intervals which
121 were filtered with a Millipore GV membrane (pore diameter 0.22 μm). The final solution was
122 analyzed using High Performance Liquid Chromatography (HPLC) on an Agilent 1100 Series
123 equipment with the following specifications: Column Zorbax ODS 4.6 x 150 mm, 5 μm; flow
124 conditions: 1 mL / min, Detector: UV-vis at 242 nm; Mobile phase: water-methanol (50/50).

125 3. Results

126 3.1 Characteristics of RFR

127 The configuration and dimension of RFRs provides a high area of contact between the solid and
128 aqueous phase; in this system the catalyst is supported on ceramic disks. The contact between disks
129 and aqueous phase form thin films of water on the disks; one phase is in contact with water and the
130 other with air; the water adhering to the disk comes into contact with both the oxygen in the
131 atmosphere and with the ultraviolet light or natural light that is irradiated by the lamps. In this
132 design, 40% of the disks area is submerged.

133 The main characteristics of the Rotary Photocatalytic Reactors (RFR) are described in Table 1 and
134 Table 2. The RFR is provided with a storage tank with a capacity of 50 L that are periodically supplied
135 to the reaction system and has a control of the speed of rotation. Its operation allows to maintain
136 conditions continuously and its design allows to take samples of the progress of the reaction in each
137 of the stages without stopping the operation of the system. An RFR scheme is shown in Figure 1.

138
139
140
141

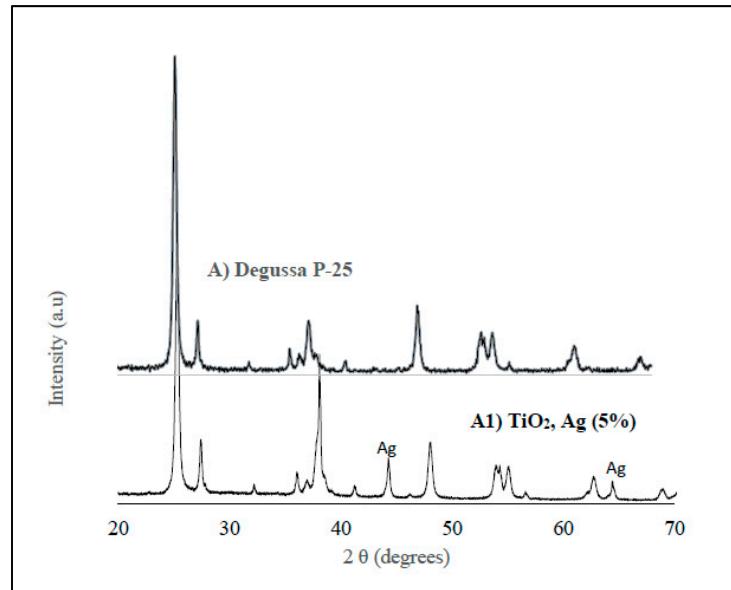
Figure 1. a) Schematic of the operation of the RFR adapted with UV lamps of $\lambda = 254$ nm, rotation speed= 54 rpm, the RFR has eight disks impregnated with TiO_2 -Ag catalyst. b) Image of RFR in operation

142

Table 1. RFR design features

Characteristics of the disks	
Number of stages	4
Number of disks for stage	2
Material	ceramic
Diameter	0.24 m
Thickness	0.006 m
Area per stage	0.09047808 cm^2
Total area	0.36191232 cm^2

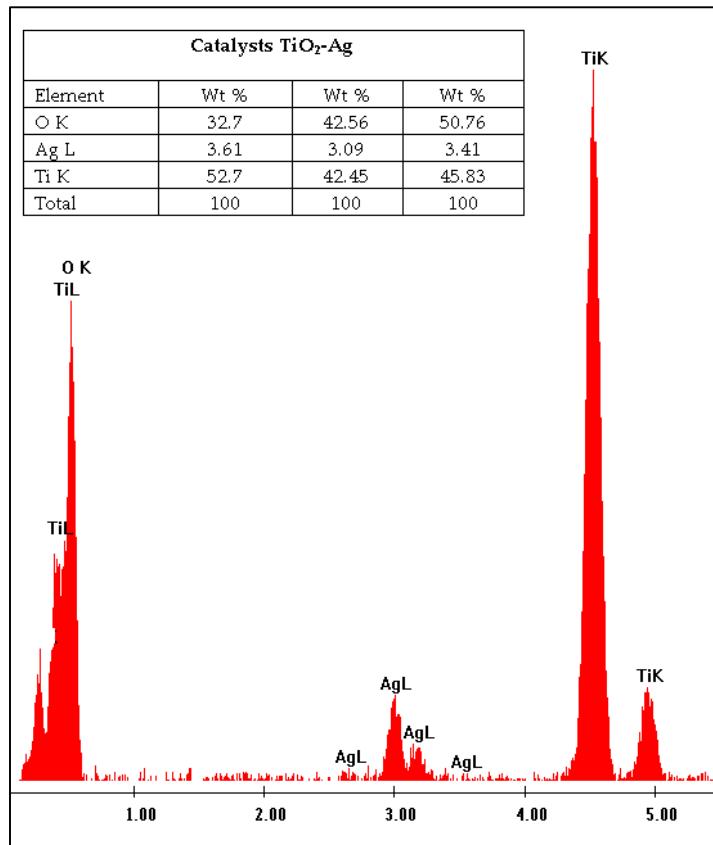
143


Table 2. RFR reactor operating characteristics

Parameter	Characteristics
Structure	Semi-cylindrical cover of stainless steel
Number of lamps	6 UV lamps (254 nm) oriented perpendicular to the reactor
Disks	Assembled on one axis (stainless steel, diameter: 0.25 inches, length = 70cm)
Volume (L)	3 L for each stage
Catalyst	TiO_2 doped with silver (5%)
Optimum rotation speed	54 rpm

144
145
146
147
148
149
150

3.1 Characterization of the catalyst (XRD, EDS and Diffuse reflectance)

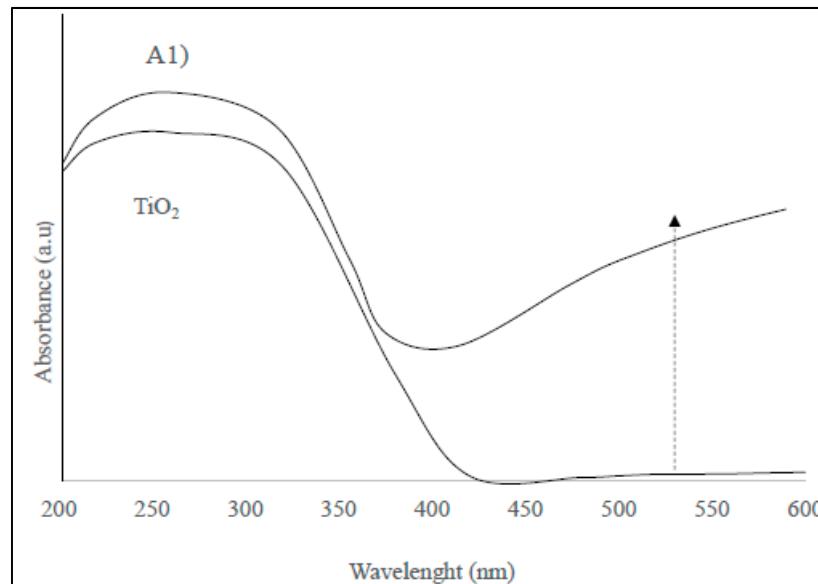

The diffractogram of the catalyst is shown in figure 2. Differences are observed with respect to the titanium oxide without doping (Degussa P-25), intensities in $2\theta = 45, 65$ corresponding to metallic silver. There is no significant variation of the percentages of anatase with respect to the P-25. There are evident peaks that show the presence of silver indicating the distribution of the particles in the catalyst. The results are consistent with other studies where [19] defined peaks for Ag / TiO_2 have been determined in 38.2, 44.4 and 64.5.

151

152 **Figure 2.** X-ray diffraction pattern of the silver nanoparticle-modified catalyst (A1) compared to the
 153 commercial catalyst (A). Different intensities are shown to the commercial catalyst that are attributed
 154 to the metallic silver.

155 Elemental analysis of the catalyst (figure 3) was performed using energy dispersion
 156 spectroscopy (EDS). During the calcination, the dispersed ions of Ag⁺ gradually migrate to the TiO₂
 157 surface and are deposited by improving the photocatalytic activity [20].

158


159 **Figure 3.** Elemental analysis of catalyst showing fractions of titanium, oxygen and silver metal. The
 160 results of three measurements made on the catalyst are shown. The average weight of the metallic
 161 silver deposited is 3.3%, the theoretical percentage was 5%.

162 Figure 4 shows the changes in the properties of the titanium surface by the presence of silver
 163 nanoparticles. There is an increase in the absorption due to resonance of plasmons in the surface
 164 between 500 and 600 nm. The efficiency of the catalysts with nano-silver particles can modify the
 165 levels of fermi energy which is displaced near the bottom of the conduction band causing the
 166 accumulation of electrons to influence the band of uptake of plasmons [21]. This can improve the
 167 photocatalytic activity of the material in the visible region. For the band gap calculation the function
 168 of the Kubelka Munk was transformed by interpreting the diffuse reflectance spectrum. The
 169 wavelength data is converted to frequency by the relation:

170
$$\nu = \frac{c}{\lambda_g} \quad (1).$$

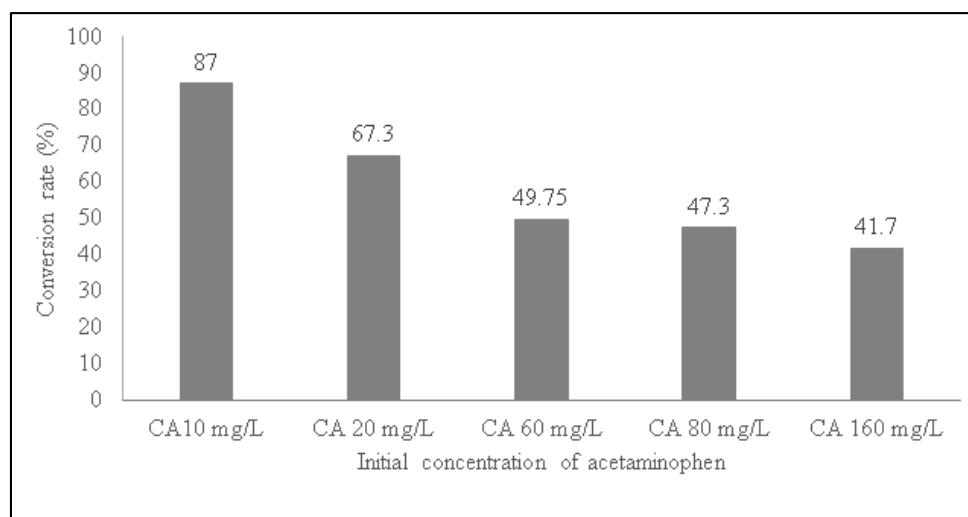
171 $(Abs * h\nu)^{\frac{1}{2}}$ is plotted as a function of $h\nu$ and a line is extrapolated to the X axis, which generates
 172 the estimated value of the band gap.

173
$$E_g = \frac{hc}{\lambda_g} = \frac{h(\nu\lambda_g)}{\lambda_g} = h\nu \quad (2)$$

174

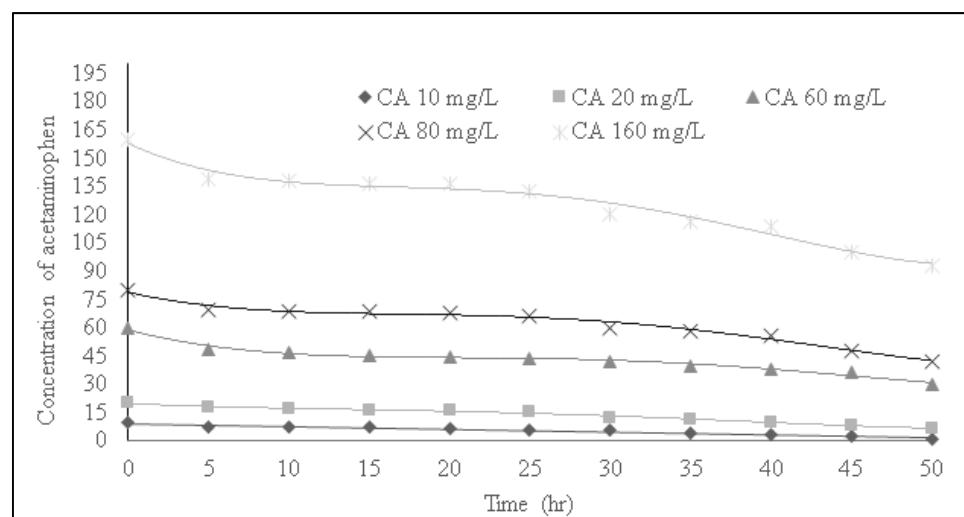
175 **Figure 4.** Comparison of the diffuse reflectance spectrum of the commercial catalyst TiO_2 with the
 176 catalyst modified with nano-silver particles. The absorption of the material (A1) in the visible light
 177 range is shown around 500 nm

178 *3.2 Kinetics of the reaction*


179 The optimum rotation speed was 54 rpm. The conversion factor of acetaminophen (30 mg / L) to
 180 these conditions was 73% achieved by raising the contact between the aqueous and solid phases,
 181 The efficiency of the system was determined by the acetaminophen photo-activity tests at
 182 concentrations of 20-160 mg / L with the purpose of knowing the effect of the concentration of the
 183 substrate on the rate of degradation. Thus, in all tests samples were taken to determine the degree of
 184 progress of the reaction. The samples were filtered and analyzed by Agilent 1100 Series High
 185 Performance Liquid Chromatography (HPLC) Column: Zorbax ODS 4.6 x 150 mm, 5 μm , flow
 186 conditions: 1 mL / min Detector: UV-vis at 242 nm, Mobile phase: 50/50 water-methanol. The results
 187 were also evaluated by UV-vis spectroscopy using an Agilent Cary 60.

188 The percentage of removal was calculated with the relation:

189


190 Where: CTF = is the final concentration determined by liquid chromatography and C_0 = initial
191 concentration.

192 Figure 5 shows the conversion rates obtained by varying the reactant concentration, rotational
193 speed of the discs and the amount of light received.

194

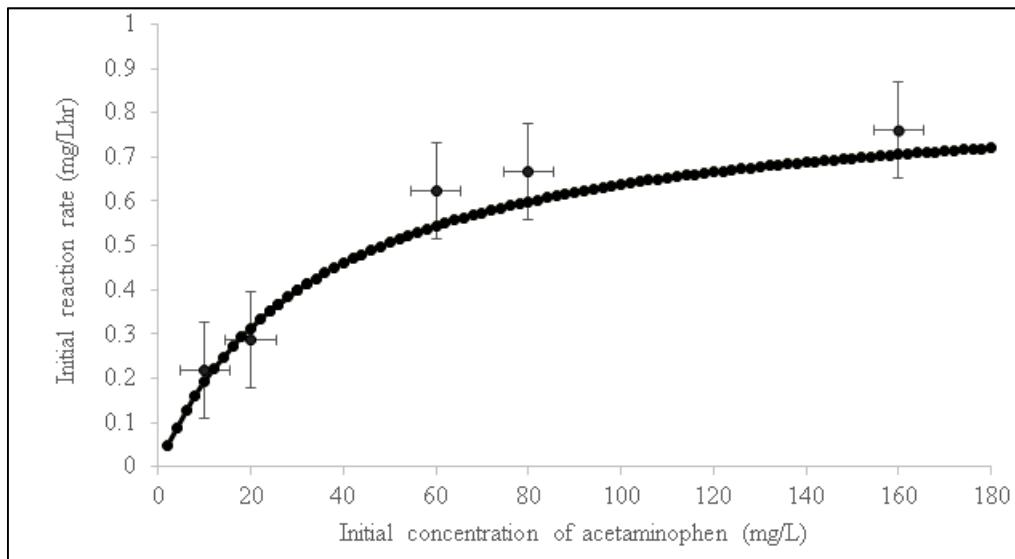
195 **Figure 5.** Percentages of conversion of the degradation of acetaminophen to different concentrations
196 (catalyst mass = 1gr / L, rotational speed = 54 rpm, radiation of λ = 254 nm, number of lamps = 6,
197 reaction volume= 12 L, Maximum reaction time = 50 hr)

198

199 **Figure 6.** Profile of the degradation of acetaminophen followed by HPLC (catalyst mass = 1gr / L,
200 rotational speed = 54 rpm, radiation of λ = 254 nm, number of lamps = 6, reaction volume= 12 L,
201 Maximum reaction time = 50 hr)

202 The initial concentration is of paramount importance in the photocatalytic reactions since there
203 is a high dependence of the concentration on reactions analyzed under the behavior of the first order
204 kinetics [22]. The experimental data were analyzed under the concept of LH equation for
205 heterogeneous catalysis checking the effect of the initial concentration on the reaction rate; (equation
206 3,4)

207


$$-r_{AC} = -\frac{dC_{AC}}{dt} = \frac{K_1 C_{AC}}{1 + K_2 C_{AC}} \quad (3)$$

208

$$-r_{AC} = \frac{0.024715 C_{AC}}{1 + 0.02878 C_{AC}} \quad (4)$$

209

210 The values of the kinetic constants $K_1 = 0.0247157 \text{ (min)}^{-1}$ and $K_2 = 0.02878 \text{ (mg/L)}^{-1}$ were obtained by nonlinear regression using the Levengerd Marquart algorithm. The 211 experimental data was fitted to the LH catalytic model as shown in Figure 7.

212

213 **Figure 6.** Heterogeneous LH catalysis model applied to the degradation of acetaminophen in an RFR
214 reactor. The solid line represents the model and the points represent experimental data (catalyst mass
215 = 1gr / L, rotational speed = 54 rpm, radiation of $\lambda = 254 \text{ nm}$, number of lamps = 6, reaction volume= 216
12 L, Maximum reaction time = 50 hours)

217

5. Conclusions

218 In this article, a current development is shown for the design of the photocatalytic reactors with
219 the use of a supporting catalyst modified with silver nano-particles. The method of preparation of
220 the modified catalyst proved to be efficient after silver nanoparticles were added to their surface. A
221 major advantage was the reduction of the bandwidth of the catalyst which may be potentially used
222 with visible light.. The conversion rates can be as high as 87% in a maximum time of 50 h. Currently,
223 there are no similar developments on the semi-pilot scale which incorporate automated processes.

224 Another advantage is the volume to be treated. Working volumes can be up to 40 L and can be
225 operated continuously or by batch. The contact area provided by the four stage semi-pilot scale RFR
226 reactor surpasses current reactors and it is adaptable to small spaces. The results obtained place it as
227 a feasible option if implemented on a larger scale.

228 The influence of nano-silver catalyst particles on microbial activity, the use of visible light and
229 the inclusion of controlled dosing of H_2O_2 to reduce hydraulic residence times will be objects of study
230 in the future.

231 **Acknowledgments:** To the National Council of Science and Technology of Mexico (CONACYT) for the financing
232 of project 169404.

233 **Author Contributions:** Montalvo C., designed the reactor as well as the coupling with modified catalysts,
234 Aguilar C., synthesized the catalysts and Alcocer R., performed the photoactivity tests. Ramírez M., collaborated
235 in the writing of the manuscript

236 **Conflicts of interest:** the authors declare no conflicts of interest

237 **References**

- 238 1. Lacombe, S.; Keller, N. Photocatalysis: fundamentals and applications in JEP 2011. *Environ. Sci. Pollut. Res.* 2012, 19, 3651–3654..
- 239 2. Kazuya, N.; Fujishima, A. TiO₂ photocatalysis: Design and applications. *J. Photochem. Photobiol. C: Photochemistry Reviews.* 2012, 13, 169–189
- 240 3. Maeda, K. Photocatalytic water splitting using semiconductor particles: his tory and recent developments, *J. Photochem. Photobiol. C.* 2011, 12, 237–268.
- 241 4. Yang, L.; Yu, L.; Ray, M. Photocatalytic oxidation of paracetamol: dominant reactants, intermediates, and reaction mechanisms. *Environ. Sci. Technol.* 2009, 43 (2), 460–465.
- 242 5. Bolog, N.; Ismail, A.F.; Salim, M.R.; Matsuura, T. Review of the effects of emerging contaminants in wastewater and options for their removal. *Desalination* 2009, 239, 229–246.
- 243 6. Migowska, N.; Caban M.; Stepnowski, P.; Kumirska, J. Simultaneous analysis of non-steroidal anti-inflammatories drugs and estrogenic hormones in water and wastewater samples using gas chromatography mass spectrometry and gas chromatography with electron capture detection. *Science of the Total Environment.* 2012, 441, 77–88
- 244 7. Dionysiou, D.T.; Suidan, M.; Baudin, I.; Lainé, J.M. Oxidation of organic contaminants in a rotating disk photocatalytic reactor: reaction kinetics in the liquid phase and the role of mass transfer based on the dimensionless Damköhler number. *Applied Catalysis B: Environmental.* 2002, 38, 1–16.
- 245 8. Hincapié, J.M.; Marín, J.M.; Ríos, L. A.; Restrepo G. Evaluación de la degradación de *E. coli* empleando un fotorreactor de discos rotatorios. *Revista Ingeniería e Investigación.* 2007, 27, 65–69.
- 246 9. Zhang, A.; Zhou, M.; Han L.; Zhou, Q. The combining of rotating disk photocatalytic reactor and TiO₂ nanotube arrays for the environmental pollutants removal. *Journal of Hazardous Materials.* 2011, 186, 1374–1383.
- 247 10. Lin, C. N.; Chang, C. Y.; Huang, H. J.; Tsai, D. P.; Wu, N. L. Photocatalytic degradation of methyl orange by a multi layer rotating disk reactor. *Environmental Science and Pollution Research.* 2012, 19, 3743–3750
- 248 11. Chen, Y.; Yi, H.; Diwen, Y.; Ye, Y.; Tiantian, T.; Yaling, W.; Jinping J. A highly efficient dual rotating disk photocatalytic fuel cell with wedged surface TiO₂ nanopore anode and hemoglobin cathode. *Catalysts* 2016, 6, 2–12.
- 249 12. Li, K.; Zhang, H.; He, Y.; Tang, T.; Ying, D.; Wang, Y.; Sun, T.; Jia, J. Novel wedge structured rotating disk photocatalytic reactor for post treatment of actual textile wastewater. *Chemical Engineering Journal.* 2015, 268, 10–20.
- 250 13. Fang, L.; Wai, S.; Haibao, H.; Jiantao, L.; Leung, Y.C. A photocatalytic rotating disc reactor with TiO₂ nanowire arrays deposited for industrial wastewater treatment. *Molecules* 2017, 22, 2–13
- 251 14. Hinstho, N.; Petrik, L.; Nechaev, A.; Titinchi, S.; Ndungu, P. Photocatalytic activity of titanium dioxide carbon nanotube composites modified with silver and palladium nanoparticles. *Applied Catalysis B: Environmental.* 2014, 156, 273–283.
- 252 15. Hong, W.W.; Hsiao, C.L.; Chien, H.K.; Yue, L.C.; Yun, C.Y. Synthesis and photocatalysis of mesoporous anatase TiO₂ powders incorporated Ag nanoparticles *J. Phys. Chem. Solids.* 2008, 69, 633–636
- 253 16. Jacob, M.; Levanon, H.; Kamat, P.V. Charge Distribution between UV-Irradiated TiO₂ and Gold Nanoparticles: Determination of Shift in the Fermi Level. *Nanoletters* 2003, 3, 353–358
- 254 17. László, A.; Körösi, L.; Papp, S.; Ménesi, J.; Illés, E.; Zöllmer, V.; Richardt, A.; Dékány, I. Photocatalytic activity of silver-modified titanium dioxide at solid–liquid and solid–gas interfaces. *Colloids and Surfaces A: Physicochem. Eng. Aspects.* 2008, 319, 136–142.
- 255 18. Liga, M.V.; Bryant, E.L.; Colvin, V.L.; Li, Q. Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment. *Wat. Res.* 2011, 45, 535–544
- 256 19. Serry, M.K.; Reenamole, G.; Floris, P.; Pillai, S.C. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. *J Photochem Photobiol A: Chem.* 2007, 189: 258–263
- 257 20. Liiev, V.; Tomova, D.; Bilyarska, L.; Eliyas, A.; Petrov, L. (2006) Photocatalytic properties of TiO₂ modified with platinum and silver nanoparticles in the degradation of oxalic acid in aqueous solution *Applied Catalysis B: Environmental.* 2006, 63, 266–271.
- 258 21. Tran, H.; Scott, J.; Chiang, K.; Amal, A. Clarifying the role of silver deposits on titania for the photocatalytic mineralization of organic compounds. *Journal of photochemistry and Photobiology A: Chemistry.* 2006, 183, 41–52.

290 22. Aguilar, C.; Montalvo, C.; Ceron, J.; Moctezuma, E. Photocatalytic degradation of acetaminophen. *Int. J.*
291 *Environ. Res.* 2011, 5(4), 1071-1078