Preprint
Article

A Remote Sensing Approach to Subsidence and Vegetation Degradation in a Reclaimed Mine Area

Altmetrics

Downloads

834

Views

798

Comments

3

A peer-reviewed article of this preprint also exists.

Submitted:

02 November 2017

Posted:

02 November 2017

You are already at the latest version

Alerts
Abstract
Mining for resources extraction may lead to several geological and associated environmental changes due to ground movements, collision with mining cavities and deformation of aquifers. Geological changes may continue in a reclaimed mine area, and the deformed aquifers may entail a breakdown of substrates and an increase in ground water tables, which may cause surface area inundation. Consequently, a reclaimed mine area may experience surface area collapse, i.e. subsidence, and degradation of vegetation health. Thus, monitoring short-term landscape dynamics in a reclaimed mine area may provide important information on the long-term geological and environmental impacts of mining activities. We studied landscape dynamics in Kirchheller Heide, Germany, which experienced extensive soil movement due to longwall mining without stowing, using Landsat imageries between 2013 and 2016. A Random Forest image classification technique was applied to analyse land-use and land-cover dynamics and the growth of wetland areas was assessed using a Spectral Mixture Analysis (SMA). We also analyzed the changes in vegetation health using a Normalized Difference Vegetation Index (NDVI). We observed a 19.9% growth of wetland area within the four years with 87.2% of growth in the coverage of two major waterbodies in the reclaimed mine area. NDVI values indicate that 66.5% of the vegetation of the study area was degraded due to changes in ground water tables and surface flooding. Our results inform environmental management and mining reclamation authorities about the subsidence spots and priority mitigation areas from land surface and vegetation degradation in Kirchheller Heide.
Keywords: 
Subject: Environmental and Earth Sciences  -   Environmental Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated