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ABSTRACT 

Assuming the geometry of nature is Riemannian with four dimensions, the classical Maxwell equations are shown to be a derivable 

consequence of a single equation that couples the Maxwell tensor to the Riemann-Christoffel curvature tensor. This geometrization 

of the Maxwell tensor extends the interpretation of the classical Maxwell equations, for example, giving physical quantities such as 

charge density a geometric definition. Including a conserved energy-momentum tensor, the entirety of classical electromagnetism 

is shown to be a derivable consequence of the theory. The coupling of the Riemann-Christoffel curvature tensor to the Maxwell 

tensor also leads naturally to the emergence of gravity which is consistent with Einstein’s equation of General Relativity augmented 

by a term that can mimic the properties of dark matter and/or dark energy in the context of General Relativity. In summary, the 

proposed geometrization of the Maxwell tensor puts both electromagnetic and gravitational phenomena on an equal footing, with 

both being tied to the curvature of space-time. Using specific solutions to the proposed theory, the unification brought to 

electromagnetic and gravitational phenomena as well as the relationship of those solutions with the corresponding solutions of the 

classical Maxwell and Einstein field equations are examined.  

Keywords: Maxwell’s equations; General Relativity; unification; dark matter; dark energy; electromagnetic radiation; gravitational 
radiation; antimatter; antigravity; quantization; superluminal transport  
 

1.  INTRODUCTION 

Electromagnetic and gravitational fields have long range interactions characterized by speed of light propagation; similarities that 

suggest these fields should be coupled together at the classical physics level. Although this coupling or unification is a well-worn 

problem with many potential solutions having been proposed, it is fair to say that there is still no generally accepted classical field 

theory that can explain both electromagnetism and gravitation in a coupled or unified framework.[ i]  Today, the existence of 

electromagnetic and gravitational fields are generally understood to be distinct and independent with electromagnetic fields 

described by Maxwell’s equations and gravitational fields described by Einstein’s equation of General Relativity.  The purpose of 
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this manuscript is to assess a recently proposed field equation that geometricizes the Maxwell tensor and leads to a geometricized 

version of Maxwell’s equations from which gravity then emerges. 

Assuming the geometry of nature is Riemannian with four dimensions, the classical Maxwell equations will be shown to be a 

derivable consequence of,[ii] 

 ;F a Rλµν κ λκµν= , (1) 

where Fµν  is the Maxwell tensor, Rλκµν  is the Riemann-Christoffel (R-C) curvature tensor, and aλ  is a four-vector related to 

the familiar vector potential Aµ  of classical electromagnetism. Including the conserved energy-momentum tensor for matter and 

electromagnetic fields, 

 
;

1 0
4mu u F F g F Fµ ν µ νλ µν ρσ

λ ρσ
ν

ρ + − = 
 

,  (2) 

where uλ  is the four-velocity, mρ is the scalar mass density, and gµν  is the metric tensor, all the equations of classical 

electromagnetism will be shown to be a consequence of the equations (1) and (2). Notably, only equation (1) which couples the 

derivatives of the Maxwell tensor to the R-C tensor through the vector field aλ  is new; equation (2), the conserved energy-

momentum for matter and electromagnetic fields is already a well-established foundational equation of classical physics. 

Beyond the succinct framework for the classical Maxwell equations provided by equation (1), its coupling of the R-C 

tensor to the  Maxwell tensor introduces gravitational effects into any solution of (1) and (2). While the emerging 

gravitational fields due to this coupling are not identical to those predicted by Einstein’s equation of General Relativity, 

they are, as will be shown, consistent with Einstein’s equation of General Relativity augmented by a term that can mimic 

the properties of dark matter and/or dark energy.  

The goal of this manuscript is to show through an axiomatic development that the continuous field theory based on equations (1) 

and (2) covers classical electromagnetism and the emergence of gravitational phenomena in a unified manner with both tied to the 

curvature of space-time. Throughout the manuscript, geometric units will be used with a metric tensor having signature [+, +, +, -] 

in which spatial indices run from 1 to 3 and 4 is the time index. The notation within uses commas before tensor indices to indicate 

ordinary derivatives and semicolons before tensor indices to indicate covariant derivatives. For the definitions of the R-C curvature 

tensor and the Ricci tensor, the conventions used by Weinberg[iii] are followed.  
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2. CONSEQUENCES OF THE FIELD EQUATIONS (1) AND (2) 

Here I give a short derivation of the classical equations of electromagnetism in the framework of the proposed theory. The point in 

going through this purely formal development is to show that the classical equations of electromagnetism are derivative only to 

equations (1) and (2) and the algebraic properties of the R-C tensor.  After developing the classical equations of electromagnetism 

from equations (1) and (2), I  go on to describe the emergence of gravity that is forced by them. 

2.1  The equations of electromagnetism  

Maxwell’s homogeneous equation and gauge invariance 

To begin, I demonstrate that equation (1) forces both the antisymmetry of Fµν  and the vanishing of its anti-symmetrized 

derivative, i.e., [ , ] 0F µν κ = . The antisymmetry of Fµν  follows from equation (1) and the algebraic property of the R-C tensor, 

 R Rλκµν λκνµ= − . (3) 

Contracting (3) with aλ and using equation (1) gives, 

 ; ;a R a R F F F Fλ λ
λκµν λκνµ µν κ νµ κ µν νµ= − → = − → = −  , (4) 

thus, establishing the antisymmetry of Fµν .  Next, I derive Maxwell’s homogeneous equation using the algebraic property of the 

R-C tensor, 

 0R R Rλκµν λµνκ λνκµ+ + = . (5) 

Contracting (5) with aλ  and again using equation (1) gives, 

 
; ; ;

, , ,

0
0

0

F F F
a R a R a R or

F F F

µν κ νκ µ κµ ν
λ λ λ

λκµν λµνκ λνκµ

µν κ νκ µ κµ ν

+ + =
+ + = → 
 + + =

  (6) 

thus, establishing Maxwell’s homogeneous equation.  The switch from the covariant to ordinary derivatives of Fµν  in (6) is 

justified by the antisymmetry of Fµν .   

Having established the antisymmetry of Fµν  and the vanishing of its anti-symmetrized derivative, which is just a statement of 

Maxwell’s homogeneous equation (6), the converse of Poincaré’s lemma establishes that Fµν  can itself be expressed as the anti-

symmetrized derivative of a vector function, i.e., 
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 , ,F A Aµν ν µ µ ν= −  , (7) 

where Aµ  is the classical electromagnetic vector potential. Because Fµν can be expressed as the anti-symmetrized derivative of 

the vector potential Aµ , its value will be unaffected by a gauge transformation in which a gradient field is added  to Aµ , 

 A Aµ µ µϕ→ + ∂  . (8) 

Maxwell’s inhomogeneous equation and the definitions of charge density and four-velocity 

Next, Maxwell’s inhomogeneous equation and the definitions of charge density cρ  and four-velocity uλ  are derived using 

equation (1). Contracting the µ  and κ  indices in equation (1) gives, 

 ;F a R a Rµν λ µν λ ν
µ λµ λ= = − , (9) 

where R ν
λ  is the Ricci tensor.  To establish the connection between equation (9) and Maxwell’s inhomogeneous equation, I use 

the following identity, 

 
WW W W
W W


 

 


  , (10) 

which is valid for any non-null four-vector W  . With the aid of (10), any W   satisfying 0W W    can be recast as a current 

density, i.e., the product of a scalar density   and a four-velocity u , 

 W u   , (11) 

where the scalar density is defined as,  

 W W   , (12) 

and the four-velocity as, 

 
Wu
W W










 . (13) 

Equation (13) leads to different normalizations for subluminal and superluminal four-velocities, 

 
1 For subluminal four-velocities  
1  For superluminal four-velocities

u u 

 
  (14) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 September 2022                   doi:10.20944/preprints201711.0022.v6

https://doi.org/10.20944/preprints201711.0022.v6


 5 of 38 
 

 

where subluminal velocities corresponding to time-like W   ( 0W W    ), and superluminal velocities corresponding to 

space-like W   ( 0W W    ).   

Using the definitions given in (12) and (13), and identifying W   with a Rλ ν
λ  in equation (9)  gives, 

 ca R u  
    (15) 

where the charge density c  is defined by, 

 c a R a R  
    , (16) 

and the four-velocity u  by, 

 
a Ru

a R a R

 
 

  
 

  . (17) 

 

Using these definitions for charge density and four-velocity, equations (9) and (15) can then be combined to give Maxwell’s 

inhomogeneous equation, 

 ; cF uµν ν
µ ρ= − .  (18) 

Equations (16) and (17) emphasize the underlying geometric character of the theory of  electromagnetism being proposed here.  

Both the charge density c and the four-velocity field u  are defined by the metric tensor g  which determines the Ricci 

tensor R 
 , and the four-vector a .  In the development leading up to Maxwell’s inhomogeneous equation (18), I have not 

imposed the usual restriction that the four-velocity uλ be limited to being subluminal. I have dropped this requirement because I 

am attempting to develop a theory that flows axiomatically from equations (1) and  (2) and there is nothing a priori that requires 

that a Rλ ν
λ be time-like.   

While the forgoing development leads to Maxwell’s inhomogeneous equation in its familiar form (18), it goes further than the usual 

classical interpretation in that the charge density c  and the four-velocity u are both tied to the value of the Ricci tensor through 

(16) and (17), respectively.  This geometrization of  c  and u  hints at the emergence of gravity in the proposed theory and 
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is reminiscent of classical General Relativity’s geometric interpretation of the mass density m  in terms of the curvature scalar 

R . 

The conservation of charge 

Next, I derive the conservation of charge. Returning to the antisymmetry of Fµν  which was established in equations (3) and (4), 

it follows that, 

 ; ; 0F µν
µ ν ≡ , (19) 

which is an identity for all antisymmetric tensors. Comparing (19) to Maxwell’s inhomogeneous equation (18) then gives, 

 ( ); ; ;
0= − =cF uµν ν

µ ν ν
ρ , (20) 

thus, establishing the conservation of charge,  

 ( )
;

0cu
ν

ν
ρ =  . (21) 

The Lorentz force law and the conservation of mass 

Having already established Maxwell’s homogeneous equation (6) and Maxwell’s inhomogeneous equation (18) as a consequence 

of equation (1), here I establish that the Lorentz force law and the conservation of mass equation are both  a consequence of the 

conserved energy-momentum tensor, equation (2).  To see this, distribute the covariant derivative in (2), 

 ( ) ; ; ; ;;

1 0
2m mu u u u F F F F g F Fν µ µ ν µλ ν µλ ν µν ρσ

ν λ ν ν λ ρσ νν
ρ ρ+ + + − = . (22) 

With some substitutions and rearrangements using Maxwell’s homogeneous equation (6) and inhomogeneous equation (18), 

equation (22) can be re written as, 

 ( ) ;;
0m m cu u u u F uν µ µ ν µ λ

ν λν
ρ ρ ρ+ − = . (23) 

Contracting (23) with uµ , the 2nd and 3rd terms on the LHS are zeroed due to the normalization of uµ   (14) and the antisymmetry 

of Fµν  (4), respectively, leaving,  

 ( )
;

0muν

ν
ρ =  , (24) 

thus, establishing the conservation of mass equation. Using (24) to zero out the conservation of mass term in (23) then leaves the 

Lorentz force law, 
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 m c
Du F u
D

µ
µ λ
λρ ρ

τ
=  , (25) 

where ;
Du u u
D

µ
µ ν
ντ

≡ . 

Relationship of aλ  to the classical electromagnetic vector potential Aλ  

The vector field aλ and equation (1) are the only truly new pieces of physics that have been introduced in the forgoing 

development.  In some respects aλ plays a role similar to the vector potential Aλ of classical electromagnetism, and if fact the 

two are closely related to each other.  To see this, take the covariant derivative of both sides of (7) giving, 

 ; ; ; ; ;F A Aµν κ ν µ κ µ ν κ= −  . (26) 

Now compare (26) to equation (1) rewritten as, 

 ; ; ; ; ;F a R a aλ
µν κ λκµν κ µ ν κ ν µ= = − +  , (27) 

where the RHS of (27) follows from the commutation property of covariant derivatives. Equating the RHS’s of equations (26) and 

(27) gives,  

 ; ; ; ; ; ; ; ;a a A Aκ ν µ κ µ ν ν µ κ µ ν κ− = − , (28) 

establishing a connection between aλ  and Aλ in the theory of electromagnetism being proposed here.  

In summary, the theory of electromagnetism based on equations (1) and (2) in no way changes the traditional equations of classical 

electromagnetism although their derivations are very different.  In the theory being proposed here, Maxwell’s equations are 

derivative only to equation (1).  Then using Maxwell’s equations and the conserved energy-momentum tensor (2), the Lorentz 

force law and the conservation of mass are derived. Although the equations of electromagnetism derived correspond one-to-one 

with the classical equations of electromagnetism, adopting equation (1) as the starting point does introduce conceptual changes to 

electromagnetic theory that go beyond the classical interpretations. Notably, the charge density cρ  is no longer an externally 

inserted field as it is in the classical physics picture, but instead is determined by aλ  and the Ricci tensor. The same comment 

applies to the four-velocity uµ which describes the motion of both the mass density mρ  and charge density cρ . These 

dependencies intermingle electromagnetic and gravitational phenomena in a fundamentally new way.  In subsequent sections, the 
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consequences of equations (1) and (2) will be developed further using specific solutions to show that electromagnetic and 

gravitational phenomena are effectively described in a unified manner and put on an equal footing, with both being tied to nonzero 

space-time curvatures.  

2.2  A theory of gravitation 

The preceding discussion established that the equations of classical electromagnetism follow directly from equations (1) and (2).  

With the R-C tensor coupled to the Maxwell tensor as it is in equation (1), some form of gravitation can be expected to emerge. 

The question that naturally arises is this: Will this emergent gravity be equivalent to Einstein’s General Relativity, 

 8G Tµν µνπ= − ,  (29) 

where 
1
2

G R g Rµν µν µν≡ −  is the Einstein tensor?  

As will be shown using the specific example of a spherically symmetric, non-rotating, charged particle, the Reissner-Nordström 

metric is an exact solution of equations (1) and (2), thus establishing that the emergent gravity in the proposed theory and classical 

General Relativity (29) support the same gravitational metric field solutions, at least in the case of spherical symmetry.  However, 

one must go further to determine if Einstein’s field equations are a derivable consequence of (1) and (2). Here I investigate this 

issue starting with the conserved energy-momentum tensor given in equation (2) and note an immediate consequence of Gµν  and 

T µν  being both symmetric and independently conserved (independently conserved because the Bianchi identity gives ; 0Gµν
ν =  

and  equation (2) gives ; 0T 
  ) is that for any constant α , one can define a tensor field µνΛ  by, 

 G Tµν µν µναΛ ≡ − . (30) 

With this definition, µνΛ is constrained to be both symmetric,  

 µν νµΛ = Λ ,  (31) 

and conserved, 

 ; 0µν
νΛ =  . (32) 

The value of the constant α  in (30) is completely arbitrary and without physical significance because µνΛ as defined can absorb 

any change in α  such that (30) remains satisfied.  Taking advantage of this arbitrariness and setting the value of the constant 

8α π= −  then gives with a slight rearrangement of (30), 
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 8G Tµν µν µνπ= − + Λ  , (33)        

which is recognized as Einstein’s equation of General Relativity (29) augmented on its RHS by the term µνΛ .  From the 

perspective of classical General Relativity, µνΛ  mimics the properties of the energy-momentum tensor for dark matter and/or dark 

energy, viz., it is a conserved and symmetric tensor field, it is a source of gravitational fields in addition to energy-momentum tensor 

T µν for normal matter and normal energy, and it has no interaction signature beyond the gravitational fields it sources.   

It is important to recognize that (33) is a trivial result with no physical significance in the proposed theory based on equations (1) 

and (2).  This follows because any solution of the equations (1) and (2) must necessarily be a solution of (33) for some choice 

µνΛ .  In fact, the validity of (33) rests only on the existence of a conserved energy-momentum tensor and the properties of the 

R-C tensor, and so will be true in any physical theory that has a conserved energy-momentum tensor.   However, the interesting 

point in the context of the proposed theory is that the value of µνΛ  can be calculated from solutions to (1) and (2) without  

postulating the existence of dark matter and/or energy. This feature will be investigated further in subsequent sections in which 

specific solutions to equations (1) and (2) will be developed. 

In the view being put forth here, gravitation emerges as a manifestation of the geometricized theory of electromagnetism based on 

equations (1) and (2), i.e., a theory of gravitation is self-contained within equations (1) and (2).  Specifically, it is the coupling 

of the derivatives of the Maxwell tensor to the R-C tensor in (1) that brings gravitation into the picture.  Importantly, the 

gravitational theory that emerges does not obey the classical General Relativity field equations (29), although any solution of 

equations (1) and (2) must necessarily be a solution of equation (33) for some choice of µνΛ . While viewing gravitation as a 

manifestation of electromagnetism and vice versa is not new [iv, v, vi, vii, viii], the specific approach being followed here with equation 

(1) is new. 

 

3. MATHEMATICAL STRUCTURE OF THE FIELD EQUATIONS 

3.1  Symmetries of equations (1) and (2) 

Listed in Table I are the continuous field variables that the theory based on equations (1) and (2) solves for. Also included in Table 

I are the charge density c  and the four-velocity field u  that are defined for any solution in terms of g  and aλ as given 

by (16) and (17), respectively. 
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Table I.  Dynamic fields 

Field Description 

gµν Metric tensor 

Fµν Maxwell tensor 

ρm Mass density scalar field 

aλ Four-vector coupling electromagnetism to gravitation 

ρc Charge density scalar field 

uλ Four-velocity vector field 

 

Three important global symmetries of equations (1) and (2) that are shared by all their solutions are reviewed here.   The first 

of these global symmetries corresponds to charge-conjugation,  

 

c c

m m

u u
a a

F F
g g

λ λ

λ λ

µν µν

µν µν

ρ ρ
ρ ρ

   
   

−   
   −   →
   
   

−   
   
   

 , (34) 

the second corresponds to a matter-antimatter transformation as will be discussed in section 5.4, 

 

c c

m m

u u
a a

F F
g g

λ λ

λ λ

µν µν

µν µν

ρ ρ
ρ ρ

   −
   

−   
   −   →
   
   
   
   
   

 , (35) 

and the third to the product of the first two,  
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c c

m m

u u
a a

F F
g g

λ λ

λ λ

µν µν

µν µν

ρ ρ
ρ ρ

   −
   
   
   
   →
   
   

−   
   
   

 . (36) 

All three transformations leave equations (1) and (2) unchanged.  Adding the identity transformation to these symmetries forms 

the Klein-4 group, with the product of any two of the symmetries (34) through (36) giving the remaining symmetry.  

Note that among the fields of the theory, only gµν  and mρ  are unchanged by all the symmetry transformations, a fact that will 

be useful in section 5.6 for defining boundary conditions that lead to quantized mass, charge, and angular momentum of particle-

like solutions as well as for the treatment of antimatter.  Finally, in addition to the proposed theory’s general covariance and global 

symmetries (34) through (36), it also exhibits the electromagnetic gauge covariance of classical electromagnetism as detailed in 

equations (7) and (8).   

3.3  Do solutions exist to equation (1)? 

Equation (1) represents a mixed system of first order partial differential equations for Fµν  and illustrates one of the mathematical 

complexities of equations (1) and (2) that must be dealt with when attempting to find solutions.[ix]  Specifically, mixed systems 

of first order partial differential equations must satisfy integrability conditions if solutions are to exist.[x]  Although there are several 

ways of stating what these integrability conditions are, perhaps the simplest is given by, 

 ; ; ; ; kF F F R F Rσ σ
µν κ λ µν λ κ µσ ν λ σν µκλ− = − −  , (37) 

which can be derived using the commutation relations for covariant derivatives. Using (1) to substitute for ;Fµν κ  in (37) gives, 

 ( ) ( )
; ; kk

a R a R F R F Rρ ρ σ σ
ρκµν ρλµν µσ ν λ σν µκλλ

− = − −  , (38) 

which can be interpreted as conditions that are automatically satisfied by any solution consisting of expressions for gµν , aλ  and 

Fµν  that satisfy (1).  With (38) as integrability conditions that must be satisfied by any solution of (1), the question that naturally 

arises is this: Are these integrability conditions so restrictive that perhaps no solution to the proposed theory exists?  Although this 

view could be construed as making the proposed field theory uninteresting because perhaps no solutions exist, it will be shown that 

solutions that are consistent with known solutions of the classical Maxwell and Einstein Field Equations (M&EFEs) can be found. 
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Additionally, equation (38), which is linear in Fµν  is often useful in developing solutions to equations (1) and (2), an approach 

that will be used in the solution to be found in section 4.1. Finally, to further elucidate questions regarding solutions of the proposed 

theory, an outline showing how the field equations can be solved numerically is given in the appendix where an analysis is presented 

of equations  (1) and (2) in terms of a Cauchy initial value problem. 

 

4.  SOLUTIONS TO EQUATIONS (1) AND (2) 

In this section three solutions to equations (1) and (2) are presented.  The first solution is spherically symmetric, representing the 

electric and gravitational fields of a non-rotating, charged particle.  The second solution is radiative with two distinct sub solutions, 

one with electromagnetic radiation in the presence of gravitational radiation and the other with standalone gravitational radiation.  

The third solution has a maximally symmetric 3-dimensional subspace, for example, representing an isotropic and homogenous 

universe.  The purpose in developing these solutions is twofold: First, to provide a comparison of solutions to equations (1) and 

(2) with those corresponding to the classical M&EFEs, and second to demonstrate that the solutions to equations (1) and (2) go 

further than the classical M&EFEs by uniting electromagnetic and gravitational phenomena. 

4.1  Spherically symmetric solution 

Here a solution representing a non-rotating, spherically symmetric charged mass is investigated. It is demonstrated that the Reissner-

Nordström metric with an appropriate choice for the fields , , , cF a uλ λ
µν ρ  and mρ  satisfies equations (1) and (2).  

Although the presentation in this section is purely formal, it is included here for several reasons. First, if the theory could not describe 

the asymptotic electric and gravitational fields of a charged particle it would be of no interest on physical grounds. Second, as 

already discussed, equation (1) requires the solution of a mixed system of first order partial differential equations, a system that 

may be so restrictive that no solutions exist, and so an outline of at least one methodology to a solution is warranted.  

To proceed, I draw on a solution for a spherically symmetric charged particle that was previously derived.[xi]  Starting with the 

Reissner-Nordström metric[xii], 

 

2

2

2

2 2

2

2

1 0 0 0
21

0 0 0
0 0 Sin ( ) 0

20 0 0 1

q m
r r

r
r

q m
r r

gµν

θ

 
 
 + −
 
 
 
 
 
 − − +
 

= , (39) 
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and the Ricci tensor that follows from it, 

 
2

4

0 0 0
0 0 0
0 0 1 0
0 0

1

0 1

1
qR
r

ν
λ

 
 
 
 −

 

−
=



 , (40) 

I investigate a trial solution for aλ , 

 ( )10,0,0,a cλ = , (41) 

where 1c  is a yet to be determined constant.  Using (41), cρ can be determined from (16) as, 

 
2 2

15

( 2 )
c

q q r r m
c

r
ρ

+ −
= ± , (42) 

and uλ from (17) as, 

 1
2

1

0,0,0,
( 2 )

cru
cq r r m

λ
 
 = ±
 + − 

. (43) 

The next step is to satisfy (1) by solving for Fµν .  Rather than tackle this head on by directly trying to find a solution to the mixed 

system of first order partial differential equations that is (1), I instead solve the integrability equations (38) which are linear in 

Fµν  for Fµν .  Proceeding in this manner I find that all the integrability equations are satisfied for Fµν  given by, 

 

2

13

2

13

( )0 0 00
0 0 0 0 0

0 0 0 0 0
0 ( ) 0 0 0

r

r

r

r

mr q cB B E r
B B E

B B E
E E E mr q c

r

F

φ θ

φ θ

θ φ

θ φ

µν

−
−

−
−

−

 
  
  
  = =   
    − − −
−

   
 

. (44) 

By direct substitution it is easily verified that Fµν  as given in (44) is a solution of  (1).[ xiii ]  Choosing the value of the 

undetermined constant 1 /c q m= ±  then gives an electric field which agrees with the Coulomb field of a point charge to leading 

order in 1/ r .  Finally, the remaining unknown field, the scalar mass density mρ  is found using  the conserved energy-

momentum tensor (2).  Substituting the known fields into (2) and then solving for mρ  gives, 
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4 2 2

2 6

( 2 )
m

q q mr r
m r

ρ − +
= . (45) 

To summarize, the following expressions for , , , , cg F a uλ λ
µν µν ρ  and mρ  are an exact solution to equations (1) and (2):   
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 
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 

+ 
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− +
=

 

+




−

= 


=

         (46) 

In (46), the multiplicative parameter s in the solutions for uλ , aλ and Fµν   takes on the values ±1 and corresponds to the 

global matter-to-antimatter symmetry transformation (35) which will be further discussed in section 5.4. Except for the possibility 

of both matter and antimatter solutions, the physical interpretation of solution (46) is almost identical to that of the classical 

M&EFEs, i.e., a non-rotating, spherically symmetric particle having charge q  and mass m .  The metric tensor which is 

identical to the Reissner-Nordström metric establishes that the new theory and Einstein’s General Relativity predict the same 

gravitational fields. However, solution (46) does differ from the classical picture in several ways.  For example, the mass and 
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charge are not localized, with both mρ  and cρ  having a spatial extent with wings that fall off as 41/ r . Also, the radial electric 

field, 

 
3 2

2 3 2

/ /1r
q q m q q mE
r r r r

 
= − = − 

 
 , (47) 

which agrees with the Coulomb field 2/q r  to leading order in 1/ r  does have a higher order term. This next term in the radial 

electric field depends on both the charge and mass of the particle. Taking an electron as an example, its electric field as given by 

(47) would be,  

 
15

2 2

2.82 101 1e e e
r

q r q x mE
r r r r

−  = − ≈ −  
   

 , (48) 

where 2 /e e er q m=  is recognized as the classical radius of an electron (~2.82x10-15 m). Although the correction term to the 

Coulomb field is small, being only ~53 ppm at a Bohr radius, it may have interesting consequences in various situations because it 

depends on both the charge and the mass of the particle. 

The gravitational field predicted by the solution investigated here agrees with the corresponding solution to Einstein’s General 

Relativity (29), with both described by the Reissner-Nordström metric.  However, it is important to note that the classical General 

Relativity field equations (29) are not satisfied using the energy-momentum tensor, 

 
1
4mT u u F F g F Fµν µ ν µ ν λ µν ρσ

λ ρσρ= + −  , (49) 

when evaluated using the solution given in (46).  However, Einstein’s equation of General Relativity augmented by the µνΛ term 

on its RHS in equation (33) is trivially satisfied.   For completeness, the values of ,G Tµν µν  and µνΛ  that go with solution 

(46) are given here: 
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8G Tµν µν µνπ









 
 
 
 
 
 



Λ = +

  (50) 

In the context of classical General Relativity (29),  the interpretation of µνΛ  is that of the energy-momentum tensor for dark 

matter and/or dark energy, which serves as a source term for gravitational fields in addition to T µν .  However, in the context of 

the proposed theory, µνΛ  depends only on the existence of normal matter and normal energy and is a consequence of equations 

(1) and (2), again emphasizing that theory of gravitation emerging from (1) and (2) differs from that of classical General Relativity 

as given by (29).    

4.2  Radiative solutions in the weak field limit 

Electromagnetic radiation 

Working in the weak field limit, I derive expressions for a propagating electromagnetic plane wave in terms of the vector field aλ  

and the metric tensor gµν . This example establishes a fundamental relationship between electromagnetic and gravitational radiation 

imposed by equation (1), predicting that both are manifestations of wave propagation of the underlying metric gµν .  To begin, 

consider an electromagnetic plane wave having frequency ω , propagating in the +z-direction and polarized in the x-direction. The 

Maxwell tensor for this field is given by, 
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0 0 0
0 0 0

y x

i t z

y

x

B E

F e
B
E

ω
µν

−

− 
 
 =
 
 
− 

  (51) 

where xE  and yB  are the constant field amplitudes of the electromagnetic wave. Next, assume a near-Minkowski weak field 

metric given by, 

 

( )

1

i t zg h e

h

ω
µν µν µν

µν

η −= +



  (52) 

where [1,1,1, 1]diagµνη = − , hµν  are complex constants, and the vector field aλ  is assumed to be constant and given by, 

 ( )1 2 3 4, , ,a a a a aλ =  . (53) 

I proceed by substituting for Fµν  from (51), for gµν  from (52), and for aλ  from (53) into (1), and then only retain terms to 

first order in the fields hµν  and Fµν , both of which are assumed to be small and of the same order.[xiv]  Doing this leads to a set 

of 8 independent linear equations for the 16 unknown constants: hµν , aλ , xE  and yB .  Solving these 8 independent 

equations gives 8 field components xE , yB , 13h , 22h , 23h , 34h  , 2a   and 3a in terms of 8 free constants 1a , 4a , 11h , 

12h , 14h , 24h , 33h , and 44h :         
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h h
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h h h h
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ω
µν µνη −
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 − + 
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 , (55) 

and 
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 1 1 4 412

11

, , ,ha a a a a
h

λ  
=  
 

 . (56) 

This solution illustrates several ways in which the new theory departs from the classical physics view of electromagnetic 

radiation. Of most significance, the undulations in the electromagnetic field are due to undulations in the underlying 

metric field gµν  given in (55).  This result also underscores that the existence of electromagnetic radiation is forbid-

den in strictly flat space-time. An interesting aspect of this solution is that while electromagnetic radiation necessitates 

the presence of an underlying gravitational radiation field, the underlying gravitational radiation is not completely de-

fined by the electromagnetic radiation. The supporting gravitational radiation has 6 undetermined constants

( )11 12 14 24 33 44, , , , ,h h h h h h  with the only restriction being 1hµν   and 11 0h ≠  as required by (54).  Further in-

sight into the physical content of the metric (55) is evident after making the infinitesimal coordinate transformation 

from 'x xµ µ→  given by, 
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      −        → =       +          
 +
 

 , (57) 

and only retaining terms to first order in the h’s. Doing this, the metric (55) is transformed to,  

 ( )

11 12

12 11

0 0
0 0

'
0 0 0 0
0 0 0 0

i t z

h h
h h

g e ω
µν µνη −

 
 − = +
 
 
 

 , (58) 

while 'xE  and 'yB , the transformed electric and magnetic field amplitudes, respectively, are identical to xE and yB given in 

(54).  Note, only the 11h and 12h  components of the metric (58) have an absolute physical significance and 22 11h h= −  which 

makes the gravitational plane wave solution (58) identical to the gravitational plane wave solution of the classical Einstein field 

equations.[xv], [xvi]   
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Gravitational radiation 

The forgoing analysis demonstrated the necessity of having an underlying gravitational wave to support the presence of 

an electromagnetic wave, but the converse is not true and gravitational radiation can exist independent of electromag-

netic radiation. The following analysis demonstrates this by solving for the structure of gravitational radiation in the 

absence of electromagnetic radiation. Following the same weak field formalism for the unknown fields hµν  given in 

(52), but this time zeroing out xE  and yB  in (51), leads to the following solutions for gµν  and aλ ,  

 ( )
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2
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33 44
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 
 = + + − − − 
 + − 
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  (59) 

and, 

 1 1 4 411

12

, , ,ha a a a a
h

λ  
= − 
 

 . (60) 

Both gµν  given by (59) and aλ  given by (60) are modified from their solutions in the presence of an electromagnetic wave 

as given by (55) and (56), respectively.  Performing a transformation to the same primed coordinate system as given in (57), 

here gives the metric field,  

 ( )

11 12
2

12
12

11

0 0

0 0
'
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i t z

h h
hh

g eh ω
µν µνη −

 
 
 
 = +
 
 
 
 

 , (61) 

illustrating again that only the 11h  and 12h  components have an absolute physical significance. Of particular note is the change 

in the value of the 22h  component depending on whether the gravitational wave supports an electromagnetic wave as in (58) or 

is standalone as in (61).  
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In this section, equation (1) has been shown to have a weak field electromagnetic plane wave solution identical to that of the 

classical Maxwell equations.  Additionally, the gravitational radiation solution that underpins this electromagnetic plane wave is 

identical to the weak field gravitational wave solution of classical General Relativity.  The solutions of equation (1) are again seen 

to be consistent with those of the classical M&EFEs but to go further by providing an underlying unification between 

electromagnetic and gravitational phenomena. 

4.3 Solution with a maximally symmetric 3-dimensional subspace 

Next, I consider the time-dependent Friedmann–Lemaître–Robertson–Walker (FLRW) metric,  

  

( )

( )
( ) ( )

2

2

2 2

2 2 2

0 0 0
1

0 0 0
0 0 Sin 0
0 0 0 1

s

s

s

R t
kr

g R t r
R t r

µν

θ

 
 
− 

 =
 
 
 − 

  (62) 

where k equals +1, 0 or -1 depending on whether the spatial curvature is positive, zero or negative, respectively, and ( )sR t  is a 

time-dependent scale factor.  Just as in the case of General Relativity where the FLRW metric is a cosmological solution 

representing a homogeneous and isotropic universe it is the same for equation (1) with an appropriate choice for the time 

development of ( )sR t .  To derive the time dependence of ( )sR t , I note the 3-dimensional spatial subspace of (62) is maximally 

symmetric and so any tensor fields that inhabit that subspace must also be maximally symmetric.[xvii]   Specifically, this restricts 

the form of aµ  to be, 

 ( )( )40,0,0,a a tµ = , (63) 

and forces the antisymmetric Maxwell tensor to vanish, 

 0Fµν =  . (64) 

Because Fµν  vanishes so must  ;Fµν κ , 

 ; 0Fµν κ =  , (65) 

which on substitution in (1) forces,  

 0a Rλ λκµν = .  (66) 
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This in turn forces, 

 0a Rλ ν
λ = , (67) 

which gives 0cρ =  by equation (16).  Substituting aµ  given by (63), and the FLRW metric given by (62) into (66) then 

leads to the following set of equations to be satisfied, 
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−
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 

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

−


=


=

  (68) 

with all other components of (66) not listed in (68) being trivially satisfied, i.e., 0 0=  .   The nontrivial components given in 

equations (68) are all satisfied if, 

 
2

2

( ) 0sd R t
dt

= ,  (69) 

or,  

 0( )s s sR t R v t= +  , (70) 

where 0sR  is the scale factor at time t=0, and sv  is its constant rate of change.   

Summarizing, the predictions of the new theory for a homogeneous and isotropic solution are: 

1. It must be charge neutral, 0cρ = . 

2. The scale factor ( )sR t  changes linearly with time.  

3. The spatial curvature of the solution can be positive, negative or 0. 

The second prediction above regarding the time dependence of the scale factor differs from the predictions of the Friedmann models 

of General Relativity and again emphasizes that the theory of gravitation emerging from equations (1) and (2) differs from that 

described by the General Relativity.  In fact, equation (70) for the time rate of change of the scale factor ( )sR t  as determined 

here depends only on equation (1), the geometricized version of Maxwell’s equations. 
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5. DISCUSSION 

5.1   The classical Maxwell’s field equations from Fµν ;κ = aλRλκμν  

As developed within, equation (1) leads directly to the classical Maxwell equations.  In fact, equation (1) was empirically chosen 

to reproduce the classical Maxwell equations under the assumption that the geometry of nature is Riemannian with four dimensions. 

Going further, equation (1) extends the interpretation of the classical Maxwell equations in that both the charge density cρ  and 

the four-velocity uλ are defined in terms of the Ricci tensor and the vector field aλ  as given by  (16) and (17), respectively.  

In this sense, the fields cρ and uλ are not fundamental, but rather are determined from the other fields listed in Table I.  Finally, 

the vector field aλ , which is not familiar to classical physics and here serves to couple the Maxwell tensor to the R-C tensor is 

directly relatable to the familiar vector potential Aλ  of classical electromagnetism through  equation (28). 

It is an unusual circumstance that equation (1), the geometricized version of Maxwell’s equations contains both the four-vector 

aλ  and the R-C tensor explicitly, while the classical Maxwell equations which are derivative to (1) contain neither,   

 

, , ,
;

;

       Eq. (1)                     Classical Maxwell Eqs. 

0
    

c

F F F
F a R

F u
µν κ νκ µ κµ νλ

µν νµν κ λκµν
µ ρ

→

+ + =
= →  = −

  (71) 

This circumstance conspires to give the classical Maxwell equations the appearance of being valid in flat space-time and motivates 

their classical interpretation in terms of a conserved charge density source term cρ  having its motion described by the four-

velocity field uλ , both of which are classically assumed to exist in flat space-time. However, in the view of the geometricized 

theory based on equation (1), the conserved charge density cρ and the four-velocity uλ cannot exist in flat space-time. Thus, the 

classical Maxwell equations and their interpretation in flat space-time are at best an approximation to the geometricized Maxwell 

equations that are derivative to equation (1). 

5.2  Dark matter and dark energy 

With General Relativity as the foundation of observational gravitational physics today, dark matter and dark energy have been 

postulated to exist because of the many galactic and cosmological scale observations that cannot be understood using General 

Relativity with normal matter and normal energy alone. For example, some of the large-scale gravitational features of galaxies and 

galactic clusters dating back to Zwicky’s observations in the 1930’s have been explained using dark matter[xviii], and the acceleration 
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of the universe discovered in the 1990’s explained using dark energy[xix]. Another example of modifications made to the original 

General Relativity field equations (29) to satisfy a perceived need was the cosmological constant term gµνλ  that Einstein added 

to their RHS, 

 8G T gµν µν µνπ λ= − + . (72) 

This was done to enable a static universe solution, but then subsequently dropped after expansion was discovered. Today this term 

is again in vogue as a possible descriptor of dark energy.  

One of the vexing problems facing dark matter and dark energy-based explanations of various observational phenomena today is an 

ongoing inability to directly detect them. However, equations (1) and (2) offer the prospect that dark matter and dark energy effects 

can be explained in terms of normal matter and normal energy alone, i.e., the µνΛ  term in (33) which represents the energy-

momentum tensor of dark matter and/or dark energy in the context of General Relativity is provided with a mechanism for directly 

calculating its structure using equations (1) and (2) with only normal matter and normal energy.  The already investigated 

spherically symmetric particle-like solution (46) is one example that outlines such a direct calculation of µνΛ . With questions 

today regarding the validity of classical General Relativity beyond the confines of our own solar system[xx] and the inability to 

directly detect dark matter and dark energy, the possible interpretation of the µνΛ  term in (33) using only normal matter and 

normal energy is an enticing feature of equations (1) and (2) .  However, it must be acknowledged that one of the challenging 

tasks facing the theory based on equations (1) and (2), and one well beyond the analysis presented in this manuscript, is that of 

finding additional solutions that could be interpreted as agreeing with the rapidly developing observational understanding of galactic 

and cosmological structures.  

 5.3  The unification of gravitational and electromagnetic radiation 

One of the successes of equation (1) is the existence of  solutions describing both electromagnetic and gravitational radiation, 

with both phenomena being unified as undulations of the underlying metric field gµν . Because both gravitational and 

electromagnetic radiation are due to undulations of the metric field gµν , their speed of propagation is predicted to be identical. 

This prediction has recently been refined experimentally with observations made during the binary neutron star merger in NGC 

4993, 130 million light years from Earth.[

xxiii

xxi]  The nearly simultaneous detection, within 2 seconds of each other, of gravity 

waves[xxii] and a burst of gamma rays[ ] from this event experimentally constrain the propagation speed of electromagnetic and 

gravitational radiation to be the same to better than 1 part in 1015. 
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5.4  The emergence of antimatter and its behavior in electromagnetic and gravitational fields 

One of the unique features of equations (1) and (2) is that the properties of antimatter emerge naturally in their solutions.  

Traditionally, these properties emerge in quantum mechanical treatments but here emerge in the context of a classical continuous 

field theory due to the global symmetry (35) of equations (1) and (2); every matter containing solution has a corresponding 

antimatter solution generated by the symmetry transformation (35).   This is evident in the spherically symmetric, particle-like 

solution (46) where the multiplicative factor s  in the expressions for Fµν , aλ  and uλ  is defined by, 

 
1 for matter
1 for antimatter

s
+

= −
  (73) 

and accounts for the matter-antimatter symmetry expressed in (35). The physical interpretation of the 1s = −  solution is that it 

represents a particle having the same mass but opposite charge and four-velocity to that of the 1s = +  solution. This is equivalent 

to the view that a particle’s antiparticle is the particle moving backwards through time.[xxiv]   Said another way, the time-like 

component of the four-velocity is positive for matter and negative for antimatter, 

 4 0 for matter
0 for antimatter

u
>
<

  (74) 

With these definitions for the four-velocity of matter and antimatter, charged mass density can annihilate similarly charged anti-

mass density and satisfy both the local conservation of charge (20) and local conservation of mass (24).  Additionally, such 

annihilation reactions must conserve energy by (2). 

Building on the distinction between matter and antimatter, their behavior in external electromagnetic and gravitational fields in the 

context of equations (1) and (2) is briefly reviewed here.  As already mentioned, antimatter can be viewed as matter moving 

backwards through time. To see this more rigorously consider the four-velocity associated with a fixed quantity of charge and mass 

density, 

 
dxu
d

λ
λ

τ
=  . (75) 

Under the matter-antimatter transformation (35), u uλ λ→− , or equivalently d dτ τ→ − . This motivates the follow-

ing expression for the four-velocity in terms of the coordinate time in locally inertial coordinate systems,   
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1
vdx dxu s s

d dt

λ λ
λ γ γ

τ
 

= = =  
 



 , (76) 

where s  is the matter-antimatter parameter defined in (73), v


 is the ordinary 3-space velocity of the charge and mass density, 

and 
2

1/ 1 vγ = −


.  Equation (76) establishes that corresponding matter and antimatter solutions travel in opposite time 

directions relative to each other, and equation (35), the matter-antimatter transformation requires cρ does not change sign under 

such transformations.  To see that these solution characteristics are consistent with the usual view in which antiparticles have the 

opposite charge of their corresponding particles, I use (76) to illustrate the behavior of a charged matter and antimatter density in 

an external electromagnetic field.  Consider a region with an externally defined electromagnetic field,  

 

0
0

0
0

z y x

z x y

y x z

x zy

B B E
B B E

F
B B E
E EE

µν

− 
 − =  −
  − − −

 (77) 

in a locally inertial coordinate system. Starting with the Lorentz force law (25), and then expanding and rearranging slightly leads 

to the following development, 

 

0
0

0
0

p c

p c

p c

z

z y x x

z x y y

y x z z

c

y

p

x

B B E s v
B

Du F u
D

dus F u
dt

s vds
dt s

E

E v Bvd s
dt v

B E s v
B B v

E s

E

E s
E

µ
µ λ
λ

µ
µ λ
λ

ρ ρ
τ

ρ γ ρ

γρ γ ρ
γ

γ

γ
γ
γ
γ

ρ ρ
γ

−  
  −  


=

↓

=

↓

 
= 

 

   + ×
=

 −
     

↓

    ⋅   



  



   (78) 

which on the last line above ends up at the conventional form of the Lorentz force law except for the extra factor of s  on the RHS. 

This factor of s  gives the product csρ  the appearance that antimatter charge density has the opposite sign of matter charge 

density when interacting with an external electromagnetic field.   

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 September 2022                   doi:10.20944/preprints201711.0022.v6

https://doi.org/10.20944/preprints201711.0022.v6


 26 of 38 
 

 

Next, I investigate the behavior of antimatter in an external gravitational field. There is no question about the gravitational fields 

generated by matter and antimatter, they are identical under the matter-antimatter symmetry (35), as gµν  is unchanged by that 

transformation.  To understand whether antimatter is attracted or repelled by an external gravitational field, I again go to the 

Lorentz force law (25) but this time assume there is no electromagnetic field present, just a gravitational field given by a 

Schwarzschild metric generated by a central mass 0m >  that is composed of either matter or antimatter.  I explicitly call out 

0m >  because I am endeavoring to develop a physical theory that flows axiomatically from (1) and (2), and at this point in the 

development there is nothing to preclude the existence of negative mass density 0mρ < , a consideration I will return to in section 

5.5.  Placing a test particle having mass testm  composed of either matter or antimatter a distance r  from the center of the 

gravitational field and assuming the test particle is initially at rest, the trajectory of the test particle is that of a geodesic given by the 

following development,  

 

2
2 2

4 4 2
44

0

21

00
2 010

00

test
Dum
D

dus u u
dt

m m mr
r r r

d d ss s u u u u s
dt dt m

rt

µ

µ
µ ν ρ
νρ

µ ν ρ µ
νρ

τ

γ

θ
γ γ

φ

=

↓

= −Γ

↓

    −                      = −Γ ≈ −Γ = − = −        −                  

  (79) 

where 1s = ±  references whether the test particle is composed of matter or antimatter as defined by (73).  In the last line of 

(79), I have approximated the RHS using the initial at rest value of the test particle’s four-velocity ( )0,0,0, / 1 2 /u s m rµ = − , 

and additionally used the fact that the only nonzero 44
µΓ  in a Schwarzschild metric is 1 2

44
21 /m m r
r

 Γ = − 
 

.  Simplifying 

the LHS of the last line in (79) by noting that initially 1γ =  then gives, 

 
2

2 2

d r m
dt r

≈ − , (80) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 September 2022                   doi:10.20944/preprints201711.0022.v6

https://doi.org/10.20944/preprints201711.0022.v6


 27 of 38 
 

 

which is independent of s , and so demonstrates that the proposed theory predicts both matter and antimatter test particles will be 

attracted by the source of the gravitational field, and this regardless of whether the source of the gravitational field is matter or 

antimatter. The result that the test particle is attracted toward the source of the gravitational field is also independent of whether the 

test particle’s mass, testm , is positive or negative, this because the geodesic trajectory (80) is independent of testm .  

5.5  Possibility of negative mass solutions and antigravity 

As already noted, there appears to be nothing in equations (1) and (2) that precludes the possibility of negative mass density 

0mρ < .  The existence of negative mass density is equivalent to the existence of antigravity because negative mass density 

generates gravitational fields that are repulsive, viz., equation (80) with 0m < .  However, logical inconsistencies are introduced 

if negative mass density were to exist. As just shown, equation (80) with 0m >  predicts a test particle at some distance from the 

origin will feel an attractive gravitational force regardless of whether the test particle is comprised of matter or antimatter and 

regardless of whether its mass is positive or negative.  Now consider equation (80) with the central mass 0m < .  Using the same 

argument as in the previous section, the test particle in this case will feel a repulsive gravitational force regardless of whether it is 

comprised of matter or antimatter and regardless of whether its mass is positive or negative. These two situations directly contradict 

each other. For example, in the first case the negative mass test particle is gravitationally attracted toward the positive mass particle 

located at the origin, but in the second case the positive mass test particle is gravitationally repelled by the negative mass particle 

located at the origin. This contradiction makes equations (1) and (2) logically inconsistent if negative mass density were to exist.  

The only way to avoid this logical contradiction is to require that mass density be non-negative always. This condition that mass 

density mρ  be non-negative always is also consistent with the global symmetry transformations (34) through (36) where it was 

noted that the field mρ  does not change sign under any of the symmetry transformations.   

It is interesting to note that the existence of negative mass in the context of classical General Relativity has been extensively 

studied[

xxvii xxviii

xxv], [xxvi] and invoked, particularly when trying to find stable particle-like solutions using the conventional Einstein field 

equations.[ ], [ ], [xxix]  However, in the context of the present theory the existence of negative mass density leads to a logical 

contradiction that can only be resolved by requiring mass density be non-negative always, i.e., 0mρ ≥ .   

 

5.6  Conjecture for quantizing the charge and mass of particle-like solutions 

Consider particle-like solutions such as (46). Because the mass density and charge density are specified as part of the solution of 

equations (1) and (2), a self-consistency condition exists for physically allowed solutions that provides a mechanism for quantizing 
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the charge and mass of such solutions.  For example, for solution (46) to be self-consistent, the particle’s total charge q  and 

total mass m , both parameters of the Reissner-Nordström metric, must agree with the spatially integrated charge and mass density, 

respectively.  For the charge, this amounts to requiring the asymptotic value of the electric field be consistent with the spatially 

integrated charge density,   

 2 4 3
14lim c spr

r F u d x qρ γ
→∞

= =∫  , (81) 

where q  is the total charge of the particle and given by the asymptotic value of 2
14r F  per the solution given in (46), and spγ  

is the determinant of the spatial metric defined by,[xxx]  

 4 4

44

i j
sp i j i j

g g
g

g
γ = − , (82) 

where i and j run over the spatial dimensions 1, 2 and 3.  An analogous quantizing boundary condition for the mass of the particle 

is arrived at by requiring the asymptotic value of its gravitational field be consistent with the spatially integrated mass density of 

the solution, 

 4 3441lim
2 m spr

gr u d x mρ γ
→∞

+
= =∫ .  (83) 

The reason for the absolute value of 4u  in the mass boundary condition (83) but not in the charge boundary condition (81) are 

the global symmetries (34) through (36) exhibited by the theory’s equations (1) and (2), and the requirement that the boundary 

conditions exhibit those same symmetries.  The conjecture being put forth here is that boundary conditions (81) and (83) represent 

self-consistency constraints on the charge and the mass, respectively, that any particle-like solution to equations (1) and (2) must 

satisfy if the solutions are to be physically realizable.   

For the spherically symmetric solution investigated in (46), the RHS of both (81) and (83) diverge leaving no hope for satisfying 

these quantization/boundary conditions.  The upshot of this observation is that while (46) represents a mathematical solution that 

describes the gravitational and electrical fields of a particle-like solution that formally satisfies the equations (1) and (2), (46) 

cannot represent a physically allowed solution.  The possibility of finding solutions that satisfy both equations (1) and (2), and 

the charge and mass boundary conditions (81) and (83) remains an open question at this point.  However, interesting possibilities 

exist beyond the spherically symmetric solution based on the Reissner-Nordström metric investigated within.  For example, the 

modified Reissner-Nordström and modified Kerr-Newman metrics developed by S.M. Blinder[xxxi] give finite values for the RHS 

of both (81) and (83).  Finally, when considering metrics that include nonzero angular momentum, as for example would be 
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required for particles having an intrinsic magnetic field, the same approach used here to quantize the particle’s mass and charge 

could be used to quantize its angular momentum. Traditionally the quantization of mass, charge and angular momentum are 

introduced in quantum mechanical treatments but here are conjectured within the framework of a classical continuous field-theoretic 

description of nature and are another example of how the proposed theory differs from the classical M&EFEs. 

5.7  Possibility of superluminal transport if aλRλν is space-like 

Having chosen the form of equations (1) and (2), all subsequent results presented in this manuscript have been mathematically 

derivative to them. As an example, after the definitions of the charge density cρ and the four-velocity uλ were developed in 

equations (16) and (17), respectively, Maxwell’s inhomogeneous equation (18) was shown to follow from equation (1). 

Noteworthy in the definition for cρ is that in addition to its motion being described in terms of subluminal transport, the 

development naturally includes the case of superluminal transport.  Because I am attempting to develop the theory that flows 

axiomatically from equations (1) and (2), and because there is nothing a priori that precludes the possibility of superluminal 

transport, I have carried it as a possibility, although one that must be regarded as speculative at this point because the specific 

solutions investigated within have not exhibited it.  Although not pursued here further, the possibility of superluminal transport in 

the context of a classical field theory may be an interesting and timely avenue of investigation as recent research has suggested the 

possible existence of nonlocal correlations stronger than those predicted by quantum theory.[xxxii] 

 

6.  CONCLUSION 

The choice of the equations (1) and (2) was empirically driven by the desire to preserve as much as possible the physics embodied 

in the classical theory of electromagnetism, while providing that theory with a geometric foundation under the assumption that 

nature is Riemannian with four dimensions. Using the four-vector field aλ  that is related to the familiar vector potential Aλ  of 

classical electromagnetism, equation (1) which couples the Maxwell tensor to the Riemann-Christoffel curvature tensor was shown 

to  reproduce the classical Maxwell equations in their entirety.  Next, the interpretation of the Maxwell equations based on 

equation (1) was shown to go further than the classical interpretation of them in that the charge density cρ and the four-velocity 

uλ  were given a geometric underpinning with both dependent on the Rici Tensor. It is this geometric underpinning that ties 

electromagnetism to gravitation.  Although the gravity emerging form (1) and (2) is different than that described by General 

Relativity, it is consistent with Einstein’s field equations of General Relativity augmented by a symmetric and conserved tensor 

field, i.e., a field exhibiting the properties of an energy-momentum tensor for dark matter and/or dark energy.  However, in the 
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context of equations (1) and (2), and in contrast to that in General Relativity, this augmenting field is determined by conventional 

matter and energy.  

Using specific solutions to the theory based on equations (1) and (2), the unification brought to electromagnetic and gravitational 

phenomena as well as the relation of these solutions to those of the classical M&EFEs was emphasized throughout. Also discussed 

were unique features/interpretations of the theory based on equations (1) and (2) that set it apart from the classical M&EFEs. 

These distinguishing features include the emergence of antimatter and its behavior in electromagnetic and gravitational fields, the 

emergence of dark matter and dark energy mimicking terms in the context of General Relativity, an underlying relationship between 

electromagnetic and gravitational radiation, and the impossibility of negative mass solutions that would generate repulsive 

gravitational fields or antigravity. Although not yet based on specific solutions to the proposed theory, a method for quantizing the 

charge, mass, and angular momentum of particle-like solutions, as well as the possibility of superluminal transport when a Rλ ν
λ

is space-like were conjectured. 

The genesis of the work presented here was reported in a preliminary form in references [ii]. The same coupling between the 

Maxwell tensor and the R-C tensor given in equation (1) was first reported there, although in a somewhat modified form. The 

discussion of systems of first order partial differential equations and the existence of solutions to such systems was also given in 

reference [ii] but is included here to keep the mathematical description of the proposed theory self-contained. New to this manuscript 

is the discussion of the global symmetries of equations (1) and (2), and based on those global symmetries the interpretation of the 

particle-like solution has been advanced, as has the discussion of boundary conditions.  The discussion of Einstein’s equation of 

General Relativity augmented by a term that can mimic the properties of dark matter and/or dark energy is also new to this 

manuscript, as is the discussion of the solution based on the FLRW metric. The present manuscript also corrects an error in the weak 

field analysis of reference [ii], leading to an expanded discussion of electromagnetic radiation and its underlying gravitational 

radiation. The discussion of the impossibility of both negative mass solutions and antigravity is new. The speculation on 

superluminal transport if a Rλ ν
λ is space-like is also new. Finally, the appendix containing the analysis of the Cauchy initial value 

problem as it relates to the theory’s equations (1) and (2) is new and included to replace an incorrect discussion of the logical 

consistency of the fundamental field equations that was given in reference [ii]. 
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8. APPENDIX - The Cauchy problem applied to the fundamental field equations 

One of the unusual features of equations (1) and (2) is the lack of any explicit derivatives of the vector field aλ , a situation which 

raises questions about the time dependent development of aλ .  To further elucidate this and other questions regarding solutions 

of equations (1) and (2), and to outline how they can be solved numerically, they are here analyzed in terms of a Cauchy initial 

value problem.  

Given initial conditions for the fields in Table I at all spatial locations, a procedure is outlined that propagates those fields in time. 

To begin, assume , , , ,c mg F uλ
µν µν ρ ρ  and 

g
t
µν∂
∂

 are known at all spatial coordinates at some initial coordinate time 0t . 

Note that the initial value of field aλ  is not required, rather it will be solved for using equation (1) as described below.  Also 

note that in addition to gµν  the initial values of 
g

t
µν∂
∂

must be specified because the fundamental field equations are second order 

in the time derivatives of gµν , a situation analogous to classical General Relativity.  The goal of the Cauchy method as it applies 

here is to start with specified initial conditions for , , , ,c mg F uλ
µν µν ρ ρ  and 

g
t
µν∂
∂

 at 0t , and then using the equations (1) 

and (2) solve for , , , , ,m cF ua R
t t t t

λ
µνλ

λκµν
ρ ρ∂ ∂ ∂∂

∂ ∂ ∂ ∂
 and 

2

2

g
t
µν∂

∂
 at 0t .   Armed with these values at 0t , it is straight 

forward to propagate the fields , , , ,c mg F uλ
µν µν ρ ρ  and 

g
t
µν∂
∂

 from their initial conditions at 0t  to 0t dt+  and then 

solve for , , , , ,m cF ua R
t t t t

λ
µνλ

λκµν
ρ ρ∂ ∂ ∂∂

∂ ∂ ∂ ∂
 and 

2

2

g
t
µν∂

∂
 at 0t dt+  using the same procedure that was used to find them 

at 0t .  Repeating this procedure, values for the fundamental fields of the theory can then be found at all times. One additional 

requirement on the field values specified by initial conditions is that they must be self-consistent with the equations (1) and (2), 

i.e., the specified initial conditions must be consistent with a solution existing to equations (1) and (2). 

In what follows, Greek indices ( , , ,µ ν κ  …) take on the usual space-time coordinates 1-4 but Latin indices ( , , ,i j k  …) are 

restricted to spatial coordinates, 1-3 only. Since the values of gµν  and 
g

t
µν∂
∂

are known at all spatial coordinates at time 0t , the 
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values of 
2

,i i j

g g
x x x
µν µν∂ ∂

∂ ∂ ∂
 and 

2

i

g
x t

µν∂
∂ ∂

can be calculated at all spatial coordinates at time 0t .  This leaves the ten quantities 

2

2

g
t
µν∂

∂
as the only second derivatives of gµν  not known at 0t . To find the values of 

2

2

g
t
µν∂

∂
at 0t  proceed as follows. First 

find the values of the six 
2

2
ijg

t
∂

∂
at 0t  using a subset of equations from (1), the subset containing only those equations having 

spatial derivatives of Fµν  on the LHS and at most one time-index in each occurrence of the R-C tensor on the RHS.  These 

equations will be used to solve for the values of aλ  at time 0t . In all there are 12 such equations out of the 24 that comprise (1), 

as listed here:  

 

12;1 112

13;1 113

23;1 123

12;2 212

13;2 213

23;2 223

12;3 312

13;3 313

23;3 323

12;4 24;1 41;2 412

13;4 34;1 41;3 413

23;4 34;2 42;3 423

F a R

F a R

F a R

F a R

F a R

F a R

F a R

F a R

F a R

F F F a R

F F F a R

F F F a R

λ
λ

λ
λ

λ
λ

λ
λ

λ
λ

λ
λ

λ
λ

λ
λ

λ
λ

λ
λ

λ
λ

λ
λ

=

=

=

=

=

=

=

=

=

= − − =

= − − =

= − − =

  (84) 

The last three equations in (84) use (6), Maxwell’s homogeneous equation to express the time derivative of a Maxwell tensor 

component on the LHS as the sum of the spatial derivatives of two Maxwell tensor components.  The importance of having only 

spatial derivatives of the Maxwell tensor components on the LHS of (84) is that they are all known quantities at time 0t , i.e., since 

all  the Fµν  are known at time 0t , all i

F
x
µν∂

∂
 and ;iFµν  can be calculated at time 0t .   Equally important is that the RHS 

of the 12 equations that comprise (84) contain at most a single time index in each occurrence of their R-C tensor and so are also 
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known at time 0t .  To see that this is so I examine the general form of the R-C tensor in a locally inertial coordinate system where 

all first derivatives of gµν vanish, i.e.,  

 
2 2 2 21

2
g g g gR

x x x x x x x x
µλ µκ νλ κν

λκµν ν κ ν λ µ κ µ λ

 ∂ ∂ ∂ ∂
= − − +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 . (85) 

Note, having at most a single time index on the RHS of (85) means that the R-C tensor is made up entirely of terms from 
2

i j

g
x x

µν∂

∂ ∂
 

and 
2

i

g
x t

µν∂

∂ ∂
, all of which are known at time 0t .  Examining the set of equations (84), there are 12 equations for 4 unknowns, 

the unknowns being the components of aλ .   These 12 equations can be solved for aλ  at time 0t  provided the initial 

conditions were chosen self-consistently with equations (1) and (2), i.e., chosen such that a solution to the field equations is indeed 

possible. 

Knowing the value of aλ at time 0t , I now proceed to determine the R-C tensor components with two time indices at time 0t . 

Going back to the 24 equations that comprise the set of equations (1), here I collect the subset of those equations in which the LHS 

is known at time 0t , i.e., contains only spatial derivatives of the Maxwell tensor, and the RHS has an R-C tensor component that 

contains two time indices: 

 

14;1 114

24;1 124

34;1 134

14;2 214

24;2 224

34;2 234

14;3 314

24;3 324

34;3 334

F a R

F a R

F a R

F a R

F a R

F a R

F a R

F a R

F a R

λ
λ

λ
λ

λ
λ

λ
λ

λ
λ

λ
λ

λ
λ

λ
λ

λ
λ

=

=

=

=

=

=

=

=

=

  (86) 

Each of the equations in (86) contains only one unknown, the R-C component having two time indices.  In total, there are six such 

independent R-C tensor components:  
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1414

1424

1434

2424

2434

3434

R
R
R
R
R
R

  (87) 

so the system of nine equations (86) can be algebraically solved for the six unknown R-C components at time 0t .  With 

this I now know the value of all components of the R-C tensor at time 0t . From the 0t values of the R-C tensor compo-

nents listed in (87), the values of the six unknown 
2

2
ijg

t
∂

∂
at 0t  can be found.  

There are three remaining equations from the set of equations (1) that have not yet been addressed: 

 
14;4 414

24;4 424

34;4 434

F a R

F a R

F a R

λ
λ

λ
λ

λ
λ

=

=

=

  (88) 

These are the equations for which the temporal derivatives of the Maxwell tensor components are not yet known. Because all values 

of the R-C tensor and aλ  are now known at 0t , these three remaining time-differentiated components of the Maxwell tensor can 

now be solved for directly using (88), giving complete knowledge of 
F

t
µν∂
∂

 at time 0t . 

If the values of the four 
2

4
2

g
t
µ∂

∂
could be calculated then all

2

2

g
t
µν∂

∂
would be known and all 

g
t
µν∂
∂

could be propagated from 0t  

to 0t dt+ .  Just as is the case with classical General Relativity, the four 
2

4
2

g
t
µ∂

∂
can be determined from the four coordinate 

conditions that are fixed by the choice of coordinate system.[ xxxiv ]  Recapping, at 
0t  the following quantities are now known: 

, , , ,c mg F uλ
µν µν ρ ρ  and 

g
t
µν∂
∂

are defined by initial conditions; 
2

, ,
g

a R
x x

µνλ
λκµνκ λ

∂
∂ ∂

, and 
F
x
µν
λ

∂
∂

are then solved for using 

those initial conditions, the fundamental field equations, and the four coordinate conditions that are fixed by the choice of coordinate 
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system.  Still needed to propagate the initial conditions in time from 0t  to 0t dt+  are , mu
t t

µ ρ∂∂
∂ ∂

and c

t
ρ∂
∂

. Using the 

Lorentz force law (25), the following development, 

 

;

4
;4 ;

4
4 ;

m c

m c

i
m m i c

i
m m i c

Du u F
D

u u u F

u u u u u F

u u u u u u F
t

µ
λ µ

λ

µ ν λ µ
ν λ

µ µ λ µ
λ

µ
µ σ µ λ µ

σ λ

ρ ρ
τ

ρ ρ

ρ ρ ρ

ρ ρ ρ

=

↓

=

↓

= − +

↓

 ∂
+ Γ = − + ∂ 

  (89) 

shows on the last line above that 
u
t

µ∂
∂

can be solved for at 0t  in terms of knowns at 0t . Next, using the conservation of mass 

equation (24) and knowing 
u
t

µ∂
∂

at 0t , the following development, 

 

( )

( ) ( )

( )

;

4

;4 ;

4 4
;4 ;

0m

i
m m i

im
m m i

u

u u

u u u
t

ν

ν
ρ

ρ ρ

ρ ρ ρ

=

↓

= −

↓
∂

= − −
∂

  (90) 

shows on the last line above that m

t
ρ∂
∂

 can be solved for at 0t  in terms of knowns at 0t . Following an analogous development 

for cρ  using the charge conservation equation (20), c

t
ρ∂
∂

can be solved for at 0t  in terms of knowns at 0t .  With these, the 

values of , , , , ,m cF ua R
t t t t

λ
µνλ

λκµν
ρ ρ∂ ∂ ∂∂

∂ ∂ ∂ ∂
 and 

2

2

g
t
µν∂

∂
 are all known at 0t  and can be used to propagate the initial 

conditions  , , , ,c mg F uλ
µν µν ρ ρ  and 

g
t
µν∂
∂

 at 0t  to time 0t dt+ .  Iterating the process, the values of the fundamental 

fields can be determined at all times. 
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