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ABSTRACT

Assuming the geometry of nature is Riemannian with four dimensions, the classical Maxwell equations are shown to be a derivable
consequence of a single equation that couples the Maxwell tensor to the Riemann-Christoffel curvature tensor. This geometrization
of the Maxwell tensor extends the interpretation of the classical Maxwell equations, for example, giving physical quantities such as
charge density a geometric definition. Including a conserved energy-momentum tensor, the entirety of classical electromagnetism
is shown to be a derivable consequence of the theory. The coupling of the Riemann-Christoffel curvature tensor to the Maxwell
tensor also leads naturally to the emergence of gravity which is consistent with Einstein’s equation of General Relativity augmented
by a term that can mimic the properties of dark matter and/or dark energy in the context of General Relativity. In summary, the
proposed geometrization of the Maxwell tensor puts both electromagnetic and gravitational phenomena on an equal footing, with
both being tied to the curvature of space-time. Using specific solutions to the proposed theory, the unification brought to
electromagnetic and gravitational phenomena as well as the relationship of those solutions with the corresponding solutions of the

classical Maxwell and Einstein field equations are examined.

Keywords: Maxwell’s equations; General Relativity; unification; dark matter; dark energy; electromagnetic radiation; gravitational
radiation; antimatter; antigravity; quantization; superluminal transport

1. INTRODUCTION

Electromagnetic and gravitational fields have long range interactions characterized by speed of light propagation; similarities that
suggest these fields should be coupled together at the classical physics level. Although this coupling or unification is a well-worn
problem with many potential solutions having been proposed, it is fair to say that there is still no generally accepted classical field
theory that can explain both electromagnetism and gravitation in a coupled or unified framework.[!l Today, the existence of
electromagnetic and gravitational fields are generally understood to be distinct and independent with electromagnetic fields

described by Maxwell’s equations and gravitational fields described by Einstein’s equation of General Relativity. The purpose of
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this manuscript is to assess a recently proposed field equation that geometricizes the Maxwell tensor and leads to a geometricized
version of Maxwell’s equations from which gravity then emerges.
Assuming the geometry of nature is Riemannian with four dimensions, the classical Maxwell equations will be shown to be a

derivable consequence of,[il

uvik Akuv ! (1)

where Fﬂv is the Maxwell tensor, R, is the Riemann-Christoffel (R-C) curvature tensor, and a’ isafour-vector related to

Kuv
the familiar vector potential A# of classical electromagnetism. Including the conserved energy-momentum tensor for matter and

electromagnetic fields,

(,OmUyUV+Fﬂ/1FM _%g/wFpanaj =0, 2

where U” s the four-velocity, p, is the scalar mass density, and ¢ is the metric tensor, all the equations of classical
uv

electromagnetism will be shown to be a consequence of the equations (1) and (2). Notably, only equation (1) which couples the
derivatives of the Maxwell tensor to the R-C tensor through the vector field a’ is new; equation (2), the conserved energy-
momentum for matter and electromagnetic fields is already a well-established foundational equation of classical physics.

Beyond the succinct framework for the classical Maxwell equations provided by equation (1), its coupling of the R-C
tensor to the Maxwell tensor introduces gravitational effects into any solution of (1) and (2). While the emerging
gravitational fields due to this coupling are not identical to those predicted by Einstein’s equation of General Relativity,
they are, as will be shown, consistent with Einstein’s equation of General Relativity augmented by a term that can mimic

the properties of dark matter and/or dark energy.

The goal of this manuscript is to show through an axiomatic development that the continuous field theory based on equations (1)
and (2) covers classical electromagnetism and the emergence of gravitational phenomena in a unified manner with both tied to the
curvature of space-time. Throughout the manuscript, geometric units will be used with a metric tensor having signature [+, +, +, -]
in which spatial indices run from 1 to 3 and 4 is the time index. The notation within uses commas before tensor indices to indicate
ordinary derivatives and semicolons before tensor indices to indicate covariant derivatives. For the definitions of the R-C curvature

tensor and the Ricci tensor, the conventions used by Weinbergliil are followed.
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2. CONSEQUENCES OF THE FIELD EQUATIONS (1) AND (2)

Here | give a short derivation of the classical equations of electromagnetism in the framework of the proposed theory. The point in
going through this purely formal development is to show that the classical equations of electromagnetism are derivative only to
equations (1) and (2) and the algebraic properties of the R-C tensor.  After developing the classical equations of electromagnetism
from equations (1) and (2),1 go on to describe the emergence of gravity that is forced by them.

2.1 The equations of electromagnetism

Maxwell’s homogeneous equation and gauge invariance

To begin, | demonstrate that equation (1) forces both the antisymmetry of Fﬂv and the vanishing of its anti-symmetrized

derivative, i.e., F

v ] = 0. The antisymmetry of Fﬂv follows from equation (1) and the algebraic property of the R-C tensor,

R

Akuv = _lev,u ' (3)

Contracting (3) with a*and using equation (1) gives,

a’R,,, =-a'R,,, = Fo.=-F.. — F,=-F,, (4)

AKuv Akvu VUK uv 7

thus, establishing the antisymmetry of Fﬂv. Next, | derive Maxwell’s homogeneous equation using the algebraic property of the

R-C tensor,

=0. (5)

Contracting (5) with a’* and again using equation (1) gives,

HVK VK 1 KLV
y A A
a‘R,, +a‘R,, +a'R,, =0 — or (6)
FWK+FVW + FKM =0

thus, establishing Maxwell’s homogeneous equation. The switch from the covariant to ordinary derivatives of Fﬂv in (6) is
justified by the antisymmetry of FW .
Having established the antisymmetry of FW and the vanishing of its anti-symmetrized derivative, which is just a statement of

Maxwell’s homogeneous equation (6), the converse of Poincaré’s lemma establishes that FW can itself be expressed as the anti-

symmetrized derivative of a vector function, i.e.,
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F,uv = A\/,,u - A,u,v ! (7)

where Aﬂ is the classical electromagnetic vector potential. Because FW can be expressed as the anti-symmetrized derivative of
the vector potential Aﬂ , its value will be unaffected by a gauge transformation in which a gradient field is added to Aﬂ ,
AH — Aﬂ +8ygo . (8)

Maxwell’s inhomogeneous equation and the definitions of charge density and four-velocity

Next, Maxwell’s inhomogeneous equation and the definitions of charge density o, and four-velocity u”* are derived using

equation (1). Contractingthe 4 and x indices in equation (1) gives,

Fﬂv;ﬂ — aﬂ. R/Iuﬂv — _al Rlv , (9)

where R," isthe Riccitensor. To establish the connection between equation (9) and Maxwell’s inhomogeneous equation, I use

the following identity,

W#
\/ (10)
, /|vv W,
which is valid for any non-null four-vector W* . With the aid of (10),any W satisfying W ”Wu = 0 can be recast as a current

density, i.e., the product of a scalar density p and a four-velocity U’

WH" =pu" , (11)
where the scalar density is defined as,
p=+ |VV ”Wp| , (12)
and the four-velocity as,
ut = W—u : (13)
+ W,

Equation (13) leads to different normalizations for subluminal and superluminal four-velocities,

—1 For subluminal four-velocities
uu, —{ (14)

~ |+1  For superluminal four-velocities
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where subluminal velocities corresponding to time-like W* ( W“W# <0 ), and superluminal velocities corresponding to
space-like W* ( W'W, >0 ).
Using the definitions given in (12) and (13), and identifying W" with a’IRﬂ" in equation (9) gives,

a‘R,” = p.u” (15)

where the charge density p, is defined by,

p.=+[a'R"aR,| . (16)

and the four-velocity u” by,

17

Using these definitions for charge density and four-velocity, equations (9) and (15) can then be combined to give Maxwell’s

inhomogeneous equation,

F —pu”. (18)

Equations (16) and (17) emphasize the underlying geometric character of the theory of electromagnetism being proposed here.

Both the charge density p.and the four-velocity field u” are defined by the metric tensor 9, which determines the Ricci

tensor R,”, and the four-vector a‘. Inthe development leading up to Maxwell’s inhomogeneous equation (18), | have not

imposed the usual restriction that the four-velocity u” be limited to being subluminal. | have dropped this requirement because |

am attempting to develop a theory that flows axiomatically from equations (1) and (2) and there is nothing a priori that requires
that a* R," be time-like.
While the forgoing development leads to Maxwell’s inhomogeneous equation in its familiar form (18), it goes further than the usual

classical interpretation in that the charge density p. and the four-velocity u” are both tied to the value of the Ricci tensor through

(16) and (17), respectively. This geometrization of p, and u” hints at the emergence of gravity in the proposed theory and
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is reminiscent of classical General Relativity’s geometric interpretation of the mass density o, in terms of the curvature scalar
R.
The conservation of charge

Next, | derive the conservation of charge. Returning to the antisymmetry of FW which was established in equations (3) and (4),

it follows that,

Fe =0, (19)

SV

which is an identity for all antisymmetric tensors. Comparing (19) to Maxwell’s inhomogeneous equation (18) then gives,

Fﬂv;ﬂ:v = —(pcuv);v =0, (20)

thus, establishing the conservation of charge,

(pat), =0 @

The Lorentz force law and the conservation of mass
Having already established Maxwell’s homogeneous equation (6) and Maxwell’s inhomogeneous equation (18) as a consequence
of equation (1), here I establish that the Lorentz force law and the conservation of mass equation are both a consequence of the

conserved energy-momentum tensor, equation (2). To see this, distribute the covariant derivative in (2),

(pmuv);v U+ p Ut U+ FHEY, +FYRY —%g”va"Fm;v =0. (22)

With some substitutions and rearrangements using Maxwell’s homogeneous equation (6) and inhomogeneous equation (18),

equation (22) can be re written as,

(pmuv);vu”+pmu”;vuv—ch”lu‘ =0, (23)
Contracting (23) with u,, the 2" and 3" terms on the LHS are zeroed due to the normalization of u, (14) and the antisymmetry
of FW (4), respectively, leaving,

(pou7), =0, (24)

thus, establishing the conservation of mass equation. Using (24) to zero out the conservation of mass term in (23) then leaves the

Lorentz force law,
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Du“

=p,F* u*, (25)

where =u”._u

Relationship of a* to the classical electromagnetic vector potential A’
The vector field a* and equation (1) are the only truly new pieces of physics that have been introduced in the forgoing

development. In some respects a’ plays a role similar to the vector potential A* of classical electromagnetism, and if fact the

two are closely related to each other. To see this, take the covariant derivative of both sides of (7) giving,

F/.IV;K = A/;,u;lr - Ay;v;lc ) (26)

Now compare (26) to equation (1) rewritten as,

Fo.=a'R, . =-a_,. +a... . (27)

where the RHS of (27) follows from the commutation property of covariant derivatives. Equating the RHS’s of equations (26) and

(27) gives,

ak;v:y - ak;,u:v = A/;ﬂ;lr - A,u:v;K ! (28)

establishing a connection between a’ and A'inthe theory of electromagnetism being proposed here.

In summary, the theory of electromagnetism based on equations (1) and (2) in no way changes the traditional equations of classical
electromagnetism although their derivations are very different. In the theory being proposed here, Maxwell’s equations are
derivative only to equation (1). Then using Maxwell’s equations and the conserved energy-momentum tensor (2), the Lorentz
force law and the conservation of mass are derived. Although the equations of electromagnetism derived correspond one-to-one

with the classical equations of electromagnetism, adopting equation (1) as the starting point does introduce conceptual changes to
electromagnetic theory that go beyond the classical interpretations. Notably, the charge density o, is no longer an externally
inserted field as it is in the classical physics picture, but instead is determined by a” and the Ricci tensor. The same comment
applies to the four-velocity U“ which describes the motion of both the mass density P, and charge density p_ . These

dependencies intermingle electromagnetic and gravitational phenomena in a fundamentally new way. In subsequent sections, the
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consequences of equations (1) and (2) will be developed further using specific solutions to show that electromagnetic and
gravitational phenomena are effectively described in a unified manner and put on an equal footing, with both being tied to nonzero
space-time curvatures.

2.2 Atheory of gravitation
The preceding discussion established that the equations of classical electromagnetism follow directly from equations (1) and (2).
With the R-C tensor coupled to the Maxwell tensor as it is in equation (1), some form of gravitation can be expected to emerge.

The question that naturally arises is this: Will this emergent gravity be equivalent to Einstein’s General Relativity,

G =87 T, (29)

1
where G*" =R*" —Eg‘“’R is the Einstein tensor?

As will be shown using the specific example of a spherically symmetric, non-rotating, charged particle, the Reissner-Nordstrom
metric is an exact solution of equations (1) and (2), thus establishing that the emergent gravity in the proposed theory and classical
General Relativity (29) support the same gravitational metric field solutions, at least in the case of spherical symmetry. However,

one must go further to determine if Einstein’s field equations are a derivable consequence of (1) and (2). Here | investigate this
issue starting with the conserved energy-momentum tensor given in equation (2) and note an immediate consequence of G** and

T*" being both symmetric and independently conserved (independently conserved because the Bianchi identity gives G*., =0
and equation (2) gives T"”, =0) is that for any constant « , one can define a tensor field A*" by,
A =G —aT? . (30)

With this definition, A*" is constrained to be both symmetric,

A" =A™ (31)

and conserved,

A% =0 . (32)

The value of the constant ¢ in (30) is completely arbitrary and without physical significance because A“" as defined can absorb
any change in a such that (30) remains satisfied. Taking advantage of this arbitrariness and setting the value of the constant

a =—87 then gives with a slight rearrangement of (30),
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G" ==8zT" +A" | (33)

which is recognized as Einstein’s equation of General Relativity (29) augmented on its RHS by the term A*’. From the

perspective of classical General Relativity, A“" mimics the properties of the energy-momentum tensor for dark matter and/or dark

energy, viz., it is a conserved and symmetric tensor field, it is a source of gravitational fields in addition to energy-momentum tensor

T for normal matter and normal energy, and it has no interaction signature beyond the gravitational fields it sources.

It is important to recognize that (33) is a trivial result with no physical significance in the proposed theory based on equations (1)

and (2). This follows because any solution of the equations (1) and (2) must necessarily be a solution of (33) for some choice

A" . In fact, the validity of (33) rests only on the existence of a conserved energy-momentum tensor and the properties of the

R-C tensor, and so will be true in any physical theory that has a conserved energy-momentum tensor. ~ However, the interesting

point in the context of the proposed theory is that the value of A*" can be calculated from solutions to (1) and (2) without

postulating the existence of dark matter and/or energy. This feature will be investigated further in subsequent sections in which
specific solutions to equations (1) and (2) will be developed.

In the view being put forth here, gravitation emerges as a manifestation of the geometricized theory of electromagnetism based on
equations (1) and (2), i.e., a theory of gravitation is self-contained within equations (1) and (2). Specifically, it is the coupling
of the derivatives of the Maxwell tensor to the R-C tensor in (1) that brings gravitation into the picture. Importantly, the

gravitational theory that emerges does not obey the classical General Relativity field equations (29), although any solution of

equations (1) and (2) must necessarily be a solution of equation (33) for some choice of A" While viewing gravitation as a

manifestation of electromagnetism and vice versa is not new [v: v Vi Vit viill ‘the gpecific approach being followed here with equation

(1) is new.

3. MATHEMATICAL STRUCTURE OF THE FIELD EQUATIONS
3.1 Symmetries of equations (1) and (2)
Listed in Table I are the continuous field variables that the theory based on equations (1) and (2) solves for. Also included in Table
I are the charge density p. and the four-velocity field u’ that are defined for any solution in terms of 9, and a’as given

by (16) and (17), respectively.
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Table I. Dynamic fields

Field Description
Quv Metric tensor
Fuv Maxwell tensor
Pm Mass density scalar field
at Four-vector coupling electromagnetism to gravitation
e Charge density scalar field
ut Four-velocity vector field

Three important global symmetries of equations (1) and (2) that are shared by all their solutions are reviewed here.  The first

of these global symmetries corresponds to charge-conjugation,

u* u*
a* -a*
uv v
F - F , (34)
gyv g,uv
P —£
Pm Pm

u* —u*

a* —a*

Fov || —F

g - g , (35)
uv uv

P 2

Pm Pm

and the third to the product of the first two,
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u’ —u*

a* a*

F//v F uv

g - g . (36)
uv uv

P — P

Pm Pm

All three transformations leave equations (1) and (2) unchanged. Adding the identity transformation to these symmetries forms

the Klein-4 group, with the product of any two of the symmetries (34) through (36) giving the remaining symmetry.

Note that among the fields of the theory, only 9, and o, are unchanged by all the symmetry transformations, a fact that will

be useful in section 5.6 for defining boundary conditions that lead to quantized mass, charge, and angular momentum of particle-
like solutions as well as for the treatment of antimatter. Finally, in addition to the proposed theory’s general covariance and global
symmetries (34) through (36), it also exhibits the electromagnetic gauge covariance of classical electromagnetism as detailed in
equations (7) and (8).

3.3 Do solutions exist to equation (1)?

Equation (1) represents a mixed system of first order partial differential equations for FW and illustrates one of the mathematical

complexities of equations (1) and (2) that must be dealt with when attempting to find solutions.[™d  Specifically, mixed systems
of first order partial differential equations must satisfy integrability conditions if solutions are to exist.’  Although there are several

ways of stating what these integrability conditions are, perhaps the simplest is given by,

F

VKA -

F -F, R°,,—F R’

uvi Ak = Uo vkA ov HEA

, (37)

which can be derived using the commutation relations for covariant derivatives. Using (1) to substitute for F#V;K in (37) gives,

(ap Rouv ) i (ap Ry )

K = _FﬂaRGvkl - FO'VRO-,UK}L J (38)

A

which can be interpreted as conditions that are automatically satisfied by any solution consisting of expressions for g, a and

Fp that satisfy (1). With (38) as integrability conditions that must be satisfied by any solution of (1), the question that naturally

14

arises is this: Are these integrability conditions so restrictive that perhaps no solution to the proposed theory exists?  Although this
view could be construed as making the proposed field theory uninteresting because perhaps no solutions exist, it will be shown that

solutions that are consistent with known solutions of the classical Maxwell and Einstein Field Equations (M&EFES) can be found.
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Additionally, equation (38), which is linear in FW is often useful in developing solutions to equations (1) and (2), an approach

that will be used in the solution to be found in section 4.1. Finally, to further elucidate questions regarding solutions of the proposed
theory, an outline showing how the field equations can be solved numerically is given in the appendix where an analysis is presented

of equations (1) and (2) interms of a Cauchy initial value problem.

4. SOLUTIONS TO EQUATIONS (1) AND (2)

In this section three solutions to equations (1) and (2) are presented. The first solution is spherically symmetric, representing the
electric and gravitational fields of a non-rotating, charged particle. The second solution is radiative with two distinct sub solutions,
one with electromagnetic radiation in the presence of gravitational radiation and the other with standalone gravitational radiation.
The third solution has a maximally symmetric 3-dimensional subspace, for example, representing an isotropic and homogenous
universe. The purpose in developing these solutions is twofold: First, to provide a comparison of solutions to equations (1) and
(2) with those corresponding to the classical M&EFEs, and second to demonstrate that the solutions to equations (1) and (2) go
further than the classical M&EFEs by uniting electromagnetic and gravitational phenomena.
4.1 Spherically symmetric solution

Here a solution representing a non-rotating, spherically symmetric charged mass is investigated. It is demonstrated that the Reissner-

Nordstrom metric with an appropriate choice for the fields F , a*,u*, p. and p. satisfies equations (1) and (2).

Although the presentation in this section is purely formal, it is included here for several reasons. First, if the theory could not describe
the asymptotic electric and gravitational fields of a charged particle it would be of no interest on physical grounds. Second, as
already discussed, equation (1) requires the solution of a mixed system of first order partial differential equations, a system that
may be so restrictive that no solutions exist, and so an outline of at least one methodology to a solution is warranted.

To proceed, | draw on a solution for a spherically symmetric charged particle that was previously derived.>!  Starting with the

Reissner-Nordstrom metricti,

1 — 0 0 0
1+q—2——m
r r
O, = 0 re 0 0 , (39)
0 0 r?Sin*(6) 0
2
0 0 o - 4,z2m
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and the Ricci tensor that follows from it,

1 0 0 O
Ry G0 -1 00 o)
7 r'lo 0 -1 0]
0 0 0 1
| investigate a trial solution for at,
a* =(0,0,0,c,), (41)
where C, isa yet to be determined constant. Using (41), o, can be determined from (16) as,
q°\/q% +r(r—2m)
pe== z e, (42)
and U’ from (17) as,
r
v = 4 (43)

0,0,0,+ — |.
\/qz +r(r—2m) |C1|

The next step is to satisfy (1) by solving for F/w . Rather than tackle this head on by directly trying to find a solution to the mixed

system of first order partial differential equations that is (1), | instead solve the integrability equations (38) which are linear in

F, for Fﬂv. Proceeding in this manner | find that all the integrability equations are satisfied for FW given by,

u
0 00 (mr_qz)
0 B¢ -B, E P G
E o -B, 0 B E | 0 00 0 a
“ 1B, -B, 0 E, | 0 0 0 0 ' (44)
-EL -E, -E, O —g2
" 0 ¢ _(mrr—sq)cl 00 0

By direct substitution it is easily verified that F,, as given in (44) is a solution of (1).¥i1 Choosing the value of the
undetermined constant C, = £( /'m then gives an electric field which agrees with the Coulomb field of a point charge to leading
order in 1/T. Finally, the remaining unknown field, the scalar mass density o is found using the conserved energy-

momentum tensor (2). Substituting the known fields into (2) and then solving for o, gives,
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q*(q®

2mr+r)

Pm =

m?r®

(45)

To summarize, the following expressions for 9,0 FW, a*,u?, p. and P, are an exact solution to equations (1) and (2):

q 9°/m
oo
0
0
0

21 -0 0 0
1——m+q—2
r r
g = 0 r2 0 0
uv
0 0 r*Sin*(0) 0
0 0 0 —{ - 2m, q—zJ
r
0 B -B E 0 00
. |8 0 B E| 0 00
“|'B, -B, 0 E, | 0 00
-E, -E, -E, 0 3
S —%+qr/3m 0 0
u*=s|0,0,0, ! -
1—2—m+q—2
r r
at = s(o,o,o,ﬂj
m
2
¢’ 1_2:n+r2
Pe=— 4
m r
2
4 1—2—m+q—2)
o =4 rr
m m2 r4

In (46), the multiplicative parameter S in the solutions for u*, a*and FW

(46)

takes on the values +1 and corresponds to the

global matter-to-antimatter symmetry transformation (35) which will be further discussed in section 5.4. Except for the possibility

of both matter and antimatter solutions, the physical interpretation of solution (46) is almost identical to that of the classical

M&EFEs, i.e., a non-rotating, spherically symmetric particle having charge ¢ and mass m.

The metric tensor which is

identical to the Reissner-Nordstrém metric establishes that the new theory and Einstein’s General Relativity predict the same

gravitational fields. However, solution (46) does differ from the classical picture in several ways.

For example, the mass and
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charge are not localized, with both o, and p_ having a spatial extent with wings that fall off as 1/r*. Also, the radial electric

field,

q 9°/m q q°/m
Er:r_z_ ré :r_z(l_ ro)’ “n

which agrees with the Coulomb field ¢/ r’ to leading order in 1/r does have a higher order term. This next term in the radial

electric field depends on both the charge and mass of the particle. Taking an electron as an example, its electric field as given by
(47) would be,

-15
3 ZQ_(l_Qqu_;(l_w] | (48)

e
r? r) r r

where 1, = qe2 /'m, is recognized as the classical radius of an electron (~2.82x10% m). Although the correction term to the

Coulomb field is small, being only ~53 ppm at a Bohr radius, it may have interesting consequences in various situations because it
depends on both the charge and the mass of the particle.

The gravitational field predicted by the solution investigated here agrees with the corresponding solution to Einstein’s General
Relativity (29), with both described by the Reissner-Nordstrém metric. However, it is important to note that the classical General

Relativity field equations (29) are not satisfied using the energy-momentum tensor,

T’”:pmu”uV+F”AFM—%g”VF"”F : (49)

po

when evaluated using the solution given in (46). However, Einstein’s equation of General Relativity augmented by the A*" term

on its RHS in equation (33) is trivially satisfied. ~ For completeness, the values of G*”, T*" and A" that go with solution

(46) are given here:
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2(g®+r(=2m+r
a°(d r( )) 0 0
2
0 -4 0 0
r
G = 2 o2
0 o e 0
r
qZ
0 0 0 -
r*(g*+r(-2m+r))

2(q?—mr)’ (g +r(—2m+r

Sl o

. q* (o —mr)’ 0 0 (50)
T _ 2m?r®
2(q? —mr)’ csc?(0
0 0 q’(q 2)8 C) .
2m°r
0 0 0 30° +m*g’r® +2q°r (-3m+r)
2m2r4(q2+r(—2m+r))

A" =G* +82TH
In the context of classical General Relativity (29), the interpretation of A" is that of the energy-momentum tensor for dark
matter and/or dark energy, which serves as a source term for gravitational fields in addition to T*". However, in the context of

the proposed theory, A" depends only on the existence of normal matter and normal energy and is a consequence of equations
(1) and (2), again emphasizing that theory of gravitation emerging from (1) and (2) differs from that of classical General Relativity
as given by (29).

4.2 Radiative solutions in the weak field limit

Electromagnetic radiation
Working in the weak field limit, I derive expressions for a propagating electromagnetic plane wave in terms of the vector field a*

and the metric tensor 9, - This example establishes a fundamental relationship between electromagnetic and gravitational radiation

imposed by equation (1), predicting that both are manifestations of wave propagation of the underlying metric 9, - To begin,

consider an electromagnetic plane wave having frequency @, propagating in the +z-direction and polarized in the x-direction. The

Maxwell tensor for this field is given by,
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0 0 -B, E

Fo = P (51)
B, 0 0 0
-E, 0 O 0

where E, and By are the constant field amplitudes of the electromagnetic wave. Next, assume a near-Minkowski weak field

metric given by,
gyv = 77,1\/ + hyveiwaiz)

|h (52)

<1

where 77, =diag[1,1,1,—1], h, are complex constants, and the vector field a”* is assumed to be constant and given by,

a’ :(al,az,a3,a4) . (53)

| proceed by substituting for Fﬂv from (51), for 9, from (52), and for a* from (53) into (1), and then only retain terms to

first order in the fields hyv and F/,zv , both of which are assumed to be small and of the same order.X™  Doing this leads to a set

of 8 independent linear equations for the 16 unknown constants: h a*, E, and By. Solving these 8 independent

uv ! X

2

equations gives 8 field components E,, B/, h,, hy,, hy, h,, a® and a®in terms of 8 free constants a', a*, hy,,

h,, h,, h,, hy,and h,,:

2,ph2
£ =i the)
2h, , (54)
B, =E,
hu hlZ _h14 h14
h12 _hu _h24 h24
— 1 io(t-z)
gyv - 77,uv + _hl4 _h24 h33 —E(h33 + h44) € ’ (55)
1
h14 h24 _E(hss + h44) h44

and

d0i:10.20944/preprints201711.0022.v6
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a’ =[a1, al%, a’, a“} . (56)

This solution illustrates several ways in which the new theory departs from the classical physics view of electromagnetic

radiation. Of most significance, the undulations in the electromagnetic field are due to undulations in the underlying

metric field g, givenin (55). This result also underscores that the existence of electromagnetic radiation is forbid-

den in strictly flat space-time. An interesting aspect of this solution is that while electromagnetic radiation necessitates
the presence of an underlying gravitational radiation field, the underlying gravitational radiation is not completely de-

fined by the electromagnetic radiation. The supporting gravitational radiation has 6 undetermined constants

(hy, hy,, hy, hyy, g, hy,) with the only restriction being |hyv <1 and h, #0 as required by (54). Further in-

sight into the physical content of the metric (55) is evident after making the infinitesimal coordinate transformation

from x* — x'* given by,

x——h,e
)
X X _Lh io(t-2)
y| |y [T e
, - " = . , (57)
z+—h, e
t t, 33
i ot
t+—h,, e
2a) 44

h, h, 00
! h12 _hn 00 io(t-2)
= + e , 58
Gw=Mw* o 0 0 0 (58)
0 0 00

while E', and B‘y, the transformed electric and magnetic field amplitudes, respectively, are identical to E, and By given in

(54). Note,onlythe hand h, components of the metric (58) have an absolute physical significance and h,, =—h, which

makes the gravitational plane wave solution (58) identical to the gravitational plane wave solution of the classical Einstein field

equations.P Dl
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Gravitational radiation
The forgoing analysis demonstrated the necessity of having an underlying gravitational wave to support the presence of
an electromagnetic wave, but the converse is not true and gravitational radiation can exist independent of electromag-

netic radiation. The following analysis demonstrates this by solving for the structure of gravitational radiation in the

absence of electromagnetic radiation. Following the same weak field formalism for the unknown fields h, given in

T . . . . y
(52), but this time zeroing out E, and B, in (51), leads to the following solutions for g, and a”,

hn hlZ _hl4 h14
2
hlZ T]ll_z _h24 h24
1
_ io(t-2)
Qv =T+ h,+h,, (€ (59)
— —h h __338 4
hl4 24 33 2
h..+h
hl4 h24 _% h44
and,
a‘:(al,—al%,a“,a“] . (60)
2

Both 9., given by (59) and a’ given by (60) are modified from their solutions in the presence of an electromagnetic wave

as given by (55) and (56), respectively. Performing a transformation to the same primed coordinate system as given in (57),

here gives the metric field,

h, h, 00
Mo o|
g',,v :77/“/_’_ 2 hll elw(I—Z) , (61)
0 0 00
0 0O 00

illustrating again that only the h11 and h12 components have an absolute physical significance. Of particular note is the change

in the value of the h22 component depending on whether the gravitational wave supports an electromagnetic wave as in (58) or

is standalone as in (61).

d0i:10.20944/preprints201711.0022.v6
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In this section, equation (1) has been shown to have a weak field electromagnetic plane wave solution identical to that of the
classical Maxwell equations.  Additionally, the gravitational radiation solution that underpins this electromagnetic plane wave is
identical to the weak field gravitational wave solution of classical General Relativity. The solutions of equation (1) are again seen
to be consistent with those of the classical M&EFEs but to go further by providing an underlying unification between
electromagnetic and gravitational phenomena.

4.3 Solution with a maximally symmetric 3-dimensional subspace

Next, | consider the time-dependent Friedmann—Lemaitre—Robertson-Walker (FLRW) metric,

R (tz 0 0 0
1-kr
9,= 0 R*(t)r? 0 0 (62)
0 0 R(t)r’Sin*(9) 0
0 0 0 -1

where k equals +1, 0 or -1 depending on whether the spatial curvature is positive, zero or negative, respectively, and R, (t) isa

time-dependent scale factor. Just as in the case of General Relativity where the FLRW metric is a cosmological solution

representing a homogeneous and isotropic universe it is the same for equation (1) with an appropriate choice for the time
development of R, (t). Toderive the time dependence of R, (t), I note the 3-dimensional spatial subspace of (62) is maximally

symmetric and so any tensor fields that inhabit that subspace must also be maximally symmetric.P¥il  Specifically, this restricts

the form of a2“ to be,

a” =(0,0,0,a*(t)), (63)

and forces the antisymmetric Maxwell tensor to vanish,

F.,=0. (64)
Because F, vanishessomust F .,
e =0 (65)
which on substitution in (1) forces,
a’R, =0. (66)
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This in turn forces,

a’R,” =0, (67)

which gives p, = 0 by equation (16). Substituting a“ given by (63), and the FLRW metric given by (62) into (66) then

leads to the following set of equations to be satisfied,

2 (ORyy, = 2 (t)[ RO 4R, (t)j

-1 dt?

a* (O)Runs :a4<t>( R, () RO (t)j 0 (68)

a* (t)Ry, =a‘ (1) ( 2R (1) sin2(9) Rt (t)] 0

with all other components of (66) not listed in (68) being trivially satisfied, i.e, 0=0 .  The nontrivial components given in

equations (68) are all satisfied if,

d2R.(t)
g5 o, 69
e (69)
or,
R(t)=R,+Vv.t , (70)

where R_, is the scale factor at time t=0, and V, is its constant rate of change.

Summarizing, the predictions of the new theory for a homogeneous and isotropic solution are:

1. It must be charge neutral, o =0.

2. Thescale factor R (t) changes linearly with time.

3. The spatial curvature of the solution can be positive, negative or 0.

The second prediction above regarding the time dependence of the scale factor differs from the predictions of the Friedmann models

of General Relativity and again emphasizes that the theory of gravitation emerging from equations (1) and (2) differs from that

described by the General Relativity. In fact, equation (70) for the time rate of change of the scale factor R, (t) as determined

here depends only on equation (1), the geometricized version of Maxwell’s equations.
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5. DISCUSSION

5.1 The classical Maxwell’s field equations from Fuy ;= @*Rsuv
As developed within, equation (1) leads directly to the classical Maxwell equations. In fact, equation (1) was empirically chosen

to reproduce the classical Maxwell equations under the assumption that the geometry of nature is Riemannian with four dimensions.
Going further, equation (1) extends the interpretation of the classical Maxwell equations in that both the charge density o, and

the four-velocity u” are defined in terms of the Ricci tensor and the vector field a* as given by (16) and (17), respectively.

In this sense, the fields o, and u” are not fundamental, but rather are determined from the other fields listed in Table I. ~ Finally,

the vector field a”*, which is not familiar to classical physics and here serves to couple the Maxwell tensor to the R-C tensor is

directly relatable to the familiar vector potential A" of classical electromagnetism through  equation (28).

It is an unusual circumstance that equation (1), the geometricized version of Maxwell’s equations contains both the four-vector

a* and the R-C tensor explicitly, while the classical Maxwell equations which are derivative to (1) contain neither,
Eq. (1) — Classical Maxwell Egs.
(71)
F,.+F..,+F,, =0
Al Uv,K VK, U Ku,v
F/IV;K =a Rlxyv - F® —_pu”
M IOC

This circumstance conspires to give the classical Maxwell equations the appearance of being valid in flat space-time and motivates

their classical interpretation in terms of a conserved charge density source term . having its motion described by the four-

velocity field u”, both of which are classically assumed to exist in flat space-time. However, in the view of the geometricized
theory based on equation (1), the conserved charge density o, and the four-velocity u” cannot exist in flat space-time. Thus, the

classical Maxwell equations and their interpretation in flat space-time are at best an approximation to the geometricized Maxwell
equations that are derivative to equation (1).

5.2 Dark matter and dark energy
With General Relativity as the foundation of observational gravitational physics today, dark matter and dark energy have been
postulated to exist because of the many galactic and cosmological scale observations that cannot be understood using General
Relativity with normal matter and normal energy alone. For example, some of the large-scale gravitational features of galaxies and

galactic clusters dating back to Zwicky’s observations in the 1930’s have been explained using dark matter™iil, and the acceleration
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of the universe discovered in the 1990’s explained using dark energy™l. Another example of modifications made to the original

General Relativity field equations (29) to satisfy a perceived need was the cosmological constant term A 9., that Einstein added

to their RHS,

G, =-8zT,+19,,- (72)

This was done to enable a static universe solution, but then subsequently dropped after expansion was discovered. Today this term
is again in vogue as a possible descriptor of dark energy.
One of the vexing problems facing dark matter and dark energy-based explanations of various observational phenomena today is an

ongoing inability to directly detect them. However, equations (1) and (2) offer the prospect that dark matter and dark energy effects

can be explained in terms of normal matter and normal energy alone, i.e., the A*" term in (33) which represents the energy-

momentum tensor of dark matter and/or dark energy in the context of General Relativity is provided with a mechanism for directly

calculating its structure using equations (1) and (2) with only normal matter and normal energy. The already investigated

spherically symmetric particle-like solution (46) is one example that outlines such a direct calculation of A*". With questions

today regarding the validity of classical General Relativity beyond the confines of our own solar systeml™ and the inability to

directly detect dark matter and dark energy, the possible interpretation of the A** term in (33) using only normal matter and
normal energy is an enticing feature of equations (1) and (2). However, it must be acknowledged that one of the challenging
tasks facing the theory based on equations (1) and (2), and one well beyond the analysis presented in this manuscript, is that of
finding additional solutions that could be interpreted as agreeing with the rapidly developing observational understanding of galactic
and cosmological structures.

5.3 The unification of gravitational and electromagnetic radiation

One of the successes of equation (1) is the existence of solutions describing both electromagnetic and gravitational radiation,

with both phenomena being unified as undulations of the underlying metric field g, . Because both gravitational and

electromagnetic radiation are due to undulations of the metric field 0, their speed of propagation is predicted to be identical.

This prediction has recently been refined experimentally with observations made during the binary neutron star merger in NGC
4993, 130 million light years from Earth.*1  The nearly simultaneous detection, within 2 seconds of each other, of gravity
wavesP™il and a burst of gamma raysP™il from this event experimentally constrain the propagation speed of electromagnetic and

gravitational radiation to be the same to better than 1 part in 10%5,
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5.4 The emergence of antimatter and its behavior in electromagnetic and gravitational fields
One of the unique features of equations (1) and (2) is that the properties of antimatter emerge naturally in their solutions.
Traditionally, these properties emerge in quantum mechanical treatments but here emerge in the context of a classical continuous
field theory due to the global symmetry (35) of equations (1) and (2); every matter containing solution has a corresponding

antimatter solution generated by the symmetry transformation (35).  This is evident in the spherically symmetric, particle-like

A

solution (46) where the multiplicative factor S in the expressions for Fﬂv, a* and U* is defined by,

+1 for matter
- _ (73)
—1 for antimatter

and accounts for the matter-antimatter symmetry expressed in (35). The physical interpretation of the S =—1 solution is that it
represents a particle having the same mass but opposite charge and four-velocity to that of the S =-+1 solution. This is equivalent
to the view that a particle’s antiparticle is the particle moving backwards through time.’*¥  Said another way, the time-like
component of the four-velocity is positive for matter and negative for antimatter,

(74)

Sk 0 for matter
< 0 for antimatter

With these definitions for the four-velocity of matter and antimatter, charged mass density can annihilate similarly charged anti-
mass density and satisfy both the local conservation of charge (20) and local conservation of mass (24). Additionally, such
annihilation reactions must conserve energy by (2).

Building on the distinction between matter and antimatter, their behavior in external electromagnetic and gravitational fields in the
context of equations (1) and (2) is briefly reviewed here. As already mentioned, antimatter can be viewed as matter moving
backwards through time. To see this more rigorously consider the four-velocity associated with a fixed quantity of charge and mass
density,

dx*
ut =

e (75)

Under the matter-antimatter transformation (35), u* ——u”, or equivalently dz — —dz. This motivates the follow-

ing expression for the four-velocity in terms of the coordinate time in locally inertial coordinate systems,
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dx*  dx?t v
ul:—:S — =S , 76
dr " dt 7[1} 7o)

where s is the matter-antimatter parameter defined in (73), Vv isthe ordinary 3-space velocity of the charge and mass density,

[ -2
and }/21/ 1-v . Equation (76) establishes that corresponding matter and antimatter solutions travel in opposite time
directions relative to each other, and equation (35), the matter-antimatter transformation requires 0, does not change sign under

such transformations. To see that these solution characteristics are consistent with the usual view in which antiparticles have the
opposite charge of their corresponding particles, 1 use (76) to illustrate the behavior of a charged matter and antimatter density in
an external electromagnetic field. Consider a region with an externally defined electromagnetic field,

0 B, -B, E

z y X
- _|B o B E an
“~\'B, -B, 0 E
-E, -E, -E, 0

in a locally inertial coordinate system. Starting with the Lorentz force law (25), and then expanding and rearranging slightly leads

to the following development,

Du#

A
pp DT :pc Fﬂlu
\
du” 2
Py ST 4 =p. F*u
\
0 B, -B, E \(syy,
S d S}/V B -B, 0 B, E,|syy,
P 70t sy )T B, -B, 0 E sy
E, E, E 0] sy
\2
d (), (EvixB
Pp 77 =30 - — 78

which on the last line above ends up at the conventional form of the Lorentz force law except for the extra factor of s on the RHS.
This factor of s gives the product Sp, the appearance that antimatter charge density has the opposite sign of matter charge

density when interacting with an external electromagnetic field.
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Next, | investigate the behavior of antimatter in an external gravitational field. There is no question about the gravitational fields

generated by matter and antimatter, they are identical under the matter-antimatter symmetry (35), as 9, is unchanged by that

transformation. To understand whether antimatter is attracted or repelled by an external gravitational field, | again go to the
Lorentz force law (25) but this time assume there is no electromagnetic field present, just a gravitational field given by a
Schwarzschild metric generated by a central mass m >0 that is composed of either matter or antimatter. | explicitly call out

m>0 because | am endeavoring to develop a physical theory that flows axiomatically from (1) and (2), and at this point in the

development there is nothing to preclude the existence of negative mass density p_ < 0, a consideration | will return to in section

5.5. Placing a test particle having mass M, composed of either matter or antimatter a distance I from the center of the

gravitational field and assuming the test particle is initially at rest, the trajectory of the test particle is that of a geodesic given by the

following development,

Du*
test D =0
T
d
)7
s;/d(l;t =-T* u'u” (79)
!
r (1_"2ﬂ1)J§} 2 Jﬁ;
d 0 rr r
SyE S}/a :_F”vpuvupz_rﬂmuﬂ'u“:_ 0 ;2 = O
f 0 1-<m 0
0 r 0

where S =1 references whether the test particle is composed of matter or antimatter as defined by (73). In the last line of

(79), I have approximated the RHS using the initial at rest value of the test particle’s four-velocity U* = (0, 0,0,s/v1-2m/r ) ,

.- u . . A 1 _ 2m / 2 . e -
and additionally used the fact that the only nonzero I'*,, ina Schwarzschild metricis I, = 1—T r*. Simplifying

the LHS of the last line in (79) by noting that initially » =1 then gives,

d?r m
_2 y

(80)

o

~—+
N

-
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which is independent of s, and so demonstrates that the proposed theory predicts both matter and antimatter test particles will be
attracted by the source of the gravitational field, and this regardless of whether the source of the gravitational field is matter or

antimatter. The result that the test particle is attracted toward the source of the gravitational field is also independent of whether the

test particle’s mass, M., is positive or negative, this because the geodesic trajectory (80) is independent of m

test ! test

5.5 Possibility of negative mass solutions and antigravity

As already noted, there appears to be nothing in equations (1) and (2) that precludes the possibility of negative mass density

P < 0. The existence of negative mass density is equivalent to the existence of antigravity because negative mass density

generates gravitational fields that are repulsive, viz., equation (80) with m<0. However, logical inconsistencies are introduced
if negative mass density were to exist. As just shown, equation (80) with m>0 predicts a test particle at some distance from the
origin will feel an attractive gravitational force regardless of whether the test particle is comprised of matter or antimatter and
regardless of whether its mass is positive or negative. Now consider equation (80) with the central mass m<0. Using the same
argument as in the previous section, the test particle in this case will feel a repulsive gravitational force regardless of whether it is
comprised of matter or antimatter and regardless of whether its mass is positive or negative. These two situations directly contradict
each other. For example, in the first case the negative mass test particle is gravitationally attracted toward the positive mass particle
located at the origin, but in the second case the positive mass test particle is gravitationally repelled by the negative mass particle
located at the origin. This contradiction makes equations (1) and (2) logically inconsistent if negative mass density were to exist.

The only way to avoid this logical contradiction is to require that mass density be non-negative always. This condition that mass

density p.. be non-negative always is also consistent with the global symmetry transformations (34) through (36) where it was

noted that the field o does not change sign under any of the symmetry transformations.

It is interesting to note that the existence of negative mass in the context of classical General Relativity has been extensively
studied™}: DVl and invoked, particularly when trying to find stable particle-like solutions using the conventional Einstein field

equations.Pviil Doviill Dxix] - However, in the context of the present theory the existence of negative mass density leads to a logical

contradiction that can only be resolved by requiring mass density be non-negative always, i.e., p,, >0.

5.6 Conjecture for quantizing the charge and mass of particle-like solutions
Consider particle-like solutions such as (46). Because the mass density and charge density are specified as part of the solution of

equations (1) and (2), a self-consistency condition exists for physically allowed solutions that provides a mechanism for quantizing
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the charge and mass of such solutions. For example, for solution (46) to be self-consistent, the particle’s total charge ¢ and
total mass m, both parameters of the Reissner-Nordstroém metric, must agree with the spatially integrated charge and mass density,
respectively. For the charge, this amounts to requiring the asymptotic value of the electric field be consistent with the spatially

integrated charge density,

!Eg I‘ZF14:J.pCU4\/Ed3X:q , (81)

where (] is the total charge of the particle and given by the asymptotic value of r? F,, per the solution given in (46), and Vs

is the determinant of the spatial metric defined by,

9is 9;
yspij:gij_ g J41 (82)
44

where i and j run over the spatial dimensions 1, 2 and 3. An analogous quantizing boundary condition for the mass of the particle
is arrived at by requiring the asymptotic value of its gravitational field be consistent with the spatially integrated mass density of

the solution,

lim I’H%szm u4| Ve dX=m . (83)

r—ow

The reason for the absolute value of U” in the mass boundary condition (83) but not in the charge boundary condition (81) are

the global symmetries (34) through (36) exhibited by the theory’s equations (1) and (2), and the requirement that the boundary
conditions exhibit those same symmetries. The conjecture being put forth here is that boundary conditions (81) and (83) represent
self-consistency constraints on the charge and the mass, respectively, that any particle-like solution to equations (1) and (2) must
satisfy if the solutions are to be physically realizable.

For the spherically symmetric solution investigated in (46), the RHS of both (81) and (83) diverge leaving no hope for satisfying
these quantization/boundary conditions. The upshot of this observation is that while (46) represents a mathematical solution that
describes the gravitational and electrical fields of a particle-like solution that formally satisfies the equations (1) and (2), (46)
cannot represent a physically allowed solution. The possibility of finding solutions that satisfy both equations (1) and (2), and
the charge and mass boundary conditions (81) and (83) remains an open question at this point. However, interesting possibilities
exist beyond the spherically symmetric solution based on the Reissner-Nordstrém metric investigated within. For example, the
modified Reissner-Nordstrom and modified Kerr-Newman metrics developed by S.M. Blinder™x1 give finite values for the RHS

of both (81) and (83). Finally, when considering metrics that include nonzero angular momentum, as for example would be
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required for particles having an intrinsic magnetic field, the same approach used here to quantize the particle’s mass and charge
could be used to quantize its angular momentum. Traditionally the quantization of mass, charge and angular momentum are
introduced in quantum mechanical treatments but here are conjectured within the framework of a classical continuous field-theoretic
description of nature and are another example of how the proposed theory differs from the classical M&EFEs.

5.7 Possibility of superluminal transport if a’R;" is space-like

Having chosen the form of equations (1) and (2), all subsequent results presented in this manuscript have been mathematically
derivative to them. As an example, after the definitions of the charge density o, and the four-velocity u” were developed in
equations (16) and (17), respectively, Maxwell’s inhomogeneous equation (18) was shown to follow from equation (1).
Noteworthy in the definition for p, is that in addition to its motion being described in terms of subluminal transport, the
development naturally includes the case of superluminal transport. Because | am attempting to develop the theory that flows
axiomatically from equations (1) and (2), and because there is nothing a priori that precludes the possibility of superluminal
transport, | have carried it as a possibility, although one that must be regarded as speculative at this point because the specific
solutions investigated within have not exhibited it.  Although not pursued here further, the possibility of superluminal transport in

the context of a classical field theory may be an interesting and timely avenue of investigation as recent research has suggested the

possible existence of nonlocal correlations stronger than those predicted by quantum theory. [l

6. CONCLUSION

The choice of the equations (1) and (2) was empirically driven by the desire to preserve as much as possible the physics embodied

in the classical theory of electromagnetism, while providing that theory with a geometric foundation under the assumption that

nature is Riemannian with four dimensions. Using the four-vector field a’ thatis related to the familiar vector potential A" of

classical electromagnetism, equation (1) which couples the Maxwell tensor to the Riemann-Christoffel curvature tensor was shown

to reproduce the classical Maxwell equations in their entirety. Next, the interpretation of the Maxwell equations based on

equation (1) was shown to go further than the classical interpretation of them in that the charge density o, and the four-velocity

u* were given a geometric underpinning with both dependent on the Rici Tensor. It is this geometric underpinning that ties

electromagnetism to gravitation. Although the gravity emerging form (1) and (2) is different than that described by General
Relativity, it is consistent with Einstein’s field equations of General Relativity augmented by a symmetric and conserved tensor

field, i.e., a field exhibiting the properties of an energy-momentum tensor for dark matter and/or dark energy. However, in the
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context of equations (1) and (2), and in contrast to that in General Relativity, this augmenting field is determined by conventional
matter and energy.

Using specific solutions to the theory based on equations (1) and (2), the unification brought to electromagnetic and gravitational
phenomena as well as the relation of these solutions to those of the classical M&EFEs was emphasized throughout. Also discussed
were unique features/interpretations of the theory based on equations (1) and (2) that set it apart from the classical M&EFEs.
These distinguishing features include the emergence of antimatter and its behavior in electromagnetic and gravitational fields, the
emergence of dark matter and dark energy mimicking terms in the context of General Relativity, an underlying relationship between
electromagnetic and gravitational radiation, and the impossibility of negative mass solutions that would generate repulsive

gravitational fields or antigravity. Although not yet based on specific solutions to the proposed theory, a method for quantizing the
charge, mass, and angular momentum of particle-like solutions, as well as the possibility of superluminal transport when a* R,”

is space-like were conjectured.

The genesis of the work presented here was reported in a preliminary form in references [ii]. The same coupling between the
Maxwell tensor and the R-C tensor given in equation (1) was first reported there, although in a somewhat modified form. The
discussion of systems of first order partial differential equations and the existence of solutions to such systems was also given in
reference [ii] but is included here to keep the mathematical description of the proposed theory self-contained. New to this manuscript
is the discussion of the global symmetries of equations (1) and (2), and based on those global symmetries the interpretation of the
particle-like solution has been advanced, as has the discussion of boundary conditions. The discussion of Einstein’s equation of
General Relativity augmented by a term that can mimic the properties of dark matter and/or dark energy is also new to this
manuscript, as is the discussion of the solution based on the FLRW metric. The present manuscript also corrects an error in the weak
field analysis of reference [ii], leading to an expanded discussion of electromagnetic radiation and its underlying gravitational

radiation. The discussion of the impossibility of both negative mass solutions and antigravity is new. The speculation on
superluminal transport if a’ R," is space-like is also new. Finally, the appendix containing the analysis of the Cauchy initial value

problem as it relates to the theory’s equations (1) and (2) is new and included to replace an incorrect discussion of the logical

consistency of the fundamental field equations that was given in reference [ii].
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8. APPENDIX - The Cauchy problem applied to the fundamental field equations

One of the unusual features of equations (1) and (2) is the lack of any explicit derivatives of the vector field a*, asituation which

raises questions about the time dependent development of a*. To further elucidate this and other questions regarding solutions

of equations (1) and (2), and to outline how they can be solved numerically, they are here analyzed in terms of a Cauchy initial
value problem.

Given initial conditions for the fields in Table I at all spatial locations, a procedure is outlined that propagates those fields in time.

gyv

To begin, assume 9, Fw, u’, Pey P, and are known at all spatial coordinates at some initial coordinate time 1t .

Note that the initial value of field a” is not required, rather it will be solved for using equation (1) as described below. Also

MV

note that in addition to 9., the initial values of must be specified because the fundamental field equations are second order

in the time derivatives of g2 situation analogous to classical General Relativity. The goal of the Cauchy method as it applies

gyv

here is to start with specified initial conditions for 9, wa ut, Per P and at 1, and then using the equations (1)

62

ot ot?

oF,, ou* op, op,
et oot oot

and (2) solve for a*, R at ;. Armed with these values at 1, it is straight

9

forward to propagate the fields 9 Fo u’, Pey Py and from their initial conditions at t, to t,+ dt and then

2
O U Opy P 0 OO

mvtoot et oot et ot?

solve for a*, R

at t,+ dt using the same procedure that was used to find them

at 1,. Repeating this procedure, values for the fundamental fields of the theory can then be found at all times. One additional

requirement on the field values specified by initial conditions is that they must be self-consistent with the equations (1) and (2),
i.e., the specified initial conditions must be consistent with a solution existing to equations (1) and (2).

In what follows, Greek indices ( z, v, x, ...) take on the usual space-time coordinates 1-4 but Latin indices (i, J,k, ...)are

gyv

restricted to spatial coordinates, 1-3 only. Since the values of 9, and are known at all spatial coordinates at time {;, the
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g, 0°g ’
values of —4- ——** and —~% can be calculated at all spatial coordinates at time t,. This leaves the ten quantities
1 i i p 0 q
ox'  ox'ox! ox'ot
2 2 g
2’”’ as the only second derivatives of g, not known at t,. To find the values of £ at t, proceed as follows. First
" ot’

2
find the values of the six ?gz” at 1, using a subset of equations from (1), the subset containing only those equations having

spatial derivatives of Fﬂv on the LHS and at most one time-index in each occurrence of the R-C tensor on the RHS. These

equations will be used to solve for the values of a* attime t, . Inall there are 12 such equations out of the 24 that comprise (1),

as listed here:

FlZ:l a R/‘tllZ
I:13;1 ai Rlll3
F23;l al RMZS
F12;2 al RlZlZ
Fl3:2 a'l R1213
F23 2 a/l R/1223 (84)
F12;3 a/l Rl312
F13:3 al RlBlS
F23;3 - ai Ri323

2

F12;4 = _F24;1 - F41;2 =a R;,412
2

F13;4 = _F34;1 - I:41;3 =a R/1413

_ Al
F23;4 - _F34;2 - I:42;3 =a R/1423

The last three equations in (84) use (6), Maxwell’s homogeneous equation to express the time derivative of a Maxwell tensor

component on the LHS as the sum of the spatial derivatives of two Maxwell tensor components. The importance of having only

spatial derivatives of the Maxwell tensor components on the LHS of (84) is that they are all known quantities at time t;, i.e., since

oF
all the F, areknown attime t;, all 6”: and F, ; canbe calculated at time t,.  Equally important is that the RHS
X ;

of the 12 equations that comprise (84) contain at most a single time index in each occurrence of their R-C tensor and so are also
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known attime t,. To see that this is so | examine the general form of the R-C tensor in a locally inertial coordinate system where

all first derivatives of g, vanish, i.e.,

ol oxYoxE OXVOX: ox“ox*  ox“ox”

62 82 2 2
1 gy/l _ g,ui( _ a gvﬁ. + a gKV (85)

2

Note, having at most a single time index on the RHS of (85) means that the R-C tensor is made up entirely of terms from 5 i(;wj
X OX

2

and 5 'gtv , all of which are known at time {,. Examining the set of equations (84), there are 12 equations for 4 unknowns,
X

the unknowns being the components of a*. These 12 equations can be solved for a’ at time t, provided the initial

conditions were chosen self-consistently with equations (1) and (2), i.e., chosen such that a solution to the field equations is indeed

possible.

Knowing the value of a’at time t,, 1 now proceed to determine the R-C tensor components with two time indices at time t;.
Going back to the 24 equations that comprise the set of equations (1), here I collect the subset of those equations in which the LHS
is known at time 1, i.e., contains only spatial derivatives of the Maxwell tensor, and the RHS has an R-C tensor component that
contains two time indices:

I:14;1 =a’ Riiia
Fosa = a* R4
I:34;1 =a* Riia
F14;2 =a R4
Fon =2'R,,0 (86)
I:34;2 =a R
F14;3 =a’ Riau
Foss = a* R;32

2
I:34;3 =a R,1334

Each of the equations in (86) contains only one unknown, the R-C component having two time indices. In total, there are six such

independent R-C tensor components:
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Rl414

R1424
R1434

R2424

R

(87)

2434

R3434
so the system of nine equations (86) can be algebraically solved for the six unknown R-C components at time t,. With

this I now know the value of all components of the R-C tensor at time t,. From the t; values of the R-C tensor compo-

2
ij
2

nents listed in (87), the values of the six unknown at t, can be found.

There are three remaining equations from the set of equations (1) that have not yet been addressed:
A
I:14;4 =a R/1414

l:24;4 =a’ R/1424 (88)

!
l:34;4 =a'R;

These are the equations for which the temporal derivatives of the Maxwell tensor components are not yet known. Because all values

of the R-C tensorand @ are now known at t, . these three remaining time-differentiated components of the Maxwell tensor can

F,u v

now be solved for directly using (88), giving complete knowledge of attime t;.

2 2
g
If the values of the four 8’[:4 could be calculated then all atzﬂv would be known and all 2 could be propagated from t
2
to t,+dt. Justasis the case with classical General Relativity, the four at2#4 can be determined from the four coordinate

conditions that are fixed by the choice of coordinate system.[xvl Recapping. at t = the following quantities are now known:

2

0°g,
. 1 R ’ d o
oxrox? | e &G T

MV

are defined by initial conditions; a’ , are then solved for using

g,uv’ F,uv’ ul'p(:’pm and

those initial conditions, the fundamental field equations, and the four coordinate conditions that are fixed by the choice of coordinate

d0i:10.20944/preprints201711.0022.v6
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U
ou , OPn and % . Using the
ot ot

system.  Still needed to propagate the initial conditions in time from t, to t,+dt are

Lorentz force law (25), the following development,

Du“

= pcuﬂFy/I
J

pmuy;vuv = pculF#l
\

= _pmu#;il“Ii +pcuﬂFy/1

(89)

pmuﬂ;4u
J
ou”
pm( ot +F”4JUGJU4 = — Pl +p U F,

u
can be solved for at t; interms of knowns at t;. Next, using the conservation of mass

shows on the last line above that

)i
at 1,, the following development,

equation (24) and knowing
(ou7), =0
2

(90)

can be solved for at t; interms of knowns at t;. Following an analogous development

shows on the last line above that

Pe can be solved for at t;, in terms of knowns at t;. With these, the

for o, using the charge conservation equation (20),

2
are all known at t; and can be used to propagate the initial

oF g 0
values of a*,R,_ ,—*, o , %P , P and gz”v
oot ot ot ot t

g,uv

at t, totime t;+dt. Iterating the process, the values of the fundamental

conditions g,,,F,,.,u* p, p, and

fields can be determined at all times.
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