Preprint
Short Note

Di-Silicate Dental Ceramic Surface Preparation by 1070 nm Fiber Laser: Thermal and Ultrastructural Analysis

Altmetrics

Downloads

605

Views

539

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

04 November 2017

Posted:

05 November 2017

You are already at the latest version

Alerts
Abstract
Background: Lithium di-silicate dental ceramics bonding, realized by using different resins, is strictly dependent on micro-mechanical retention and chemical adhesion. The aim of this in vitro study was to investigate the capability of a 1070 nm fiber laser for their surface treatment. Methods: Samples were irradiated by a pulsed fiber laser at 1070 nm with different parameters (Peak Power from 5 kW to 5 kW, RR 20 kHz, speed from 10 to 50 mm/s, total Energy Density from 1.3 to 27 kW/cm2) and the thermal elevation during the experiment was recorded by a Fiber Bragg Grating (FBG) temperature sensor. Subsequently, the surface modifications were analysed by optical microscope, Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). Results: With a Peak Power of 5 kW, RR of 20 kHz and speed of 50 mm/s, the microscopic observation of the irradiated surface showed increased roughness with small areas of melting and carbonization. EDS analysis revealed that, with these parameters, there are no evident differences between laser-processed samples and controls. Thermal elevation during laser irradiation ranged between 5 °C and 9 °C. Conclusions: 1070 nm fiber laser can be considered as a good device to increase the adhesion of Lithium di-silicate ceramics.
Keywords: 
Subject: Medicine and Pharmacology  -   Dentistry and Oral Surgery
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated