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Abstract: We review some properties of a relativistic classical massless charged particle with9

spin interacting with an external electromagnetic field. We give in particular a proper definition10

of kinetic energy and total energy, the latter being conserved when the external field is stationary.11

We find that the particle’s velocity may differ from c as a result of the spin - electromagnetic field12

interaction, without jeopardizing Lorentz invariance.13

Keywords: Lorentz symmetry, massless charged particle, spinning particle, relativistic particle.14

1. Introduction15

Although charged, massless particles have never been observed in the world of real particles,16

electrons in two-dimensional materials such as graphene behave as massless quasi-particles, i.e.,17

, they show an approximately linear relativistic dispersion relation, of the type E ∼ vF|p|. The18

velocity vF ∼ 106 m/s is the Fermi velocity, depending on the microscopic properties of the19

material. It plays the role of the velocity of light for such a “mini-relativistic theory”. Moreover,20

beyond its (chiral) helicity, the quasi-electron possesses a quantum number, the “pseudo-spin”,21

which makes its wave function to have four components and to obey a massless Dirac equation.22

An introduction to the physics of graphene may be found in the reviews [1,2].23

The existence of this very special behaviour justifies a re-visitation of the somewhat old24

literature dedicated to the theory of the “relativistic spinning particle” [3]–[13]. We find that,25

in contrast with the case of the spinless particle, the behaviour of the particle with non-zero spin26

is drastically different of what is expected from a massless particle: its velocity may be lower or27

higher than the velocity of light c. Moreover, this happens without conflict with Special Relativity:28

Lorentz covariance of the equations is always preserved.29

To the best of our knowledge, the only known way to derive the dynamics of a classical30

spinning particle, massive or not, from an action principle [3–6] is to describe the spin degrees31

of freedom by anticommuting Grassmann variables ψµ and impose a supersymmetry. This is32

the line we follow in the main part of the paper. However, in order to be able to give a realistic33

classical interpretation, in the final part, we introduce, following [8], spin variables Σµν which34

are quadratic in the ψ’s, treating the Σ’s as real numbers. The resulting equations of motion are35
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no more derivable from an action. Moreover, they suffer incompatibilities, excepted for special36

external field configurations, e.g., for constant fields. It is for the latter configuration that we solve37

the equations, analytically or numerically, in order to gain some insight on the behaviours we38

mentioned above.39

We restrict the scope of the present paper to the in interaction with an external40

electromagnetic field. The specific problem of the radiation field has been treated by the authors41

of Refs. [14–16].42

The plan of the paper is the following. We begin with a complete study of the spinless case43

in order to make some basic points more transparent, in Section 2. In Section 3 we present the44

results for the spinning case, with a last subsection containing particular solutions of interest, and45

terminate with our conclusions.46

2. The spinless relativistic particle47

The action for a classical spinless particle of mass m of electric charge q interacting with an
electromagnetic field given by the potential vector Aµ in 4-dimensional Minkowski space-time
may be written as the following integral on a time-like curve C parametrized by λ [5,6,17]:

S[x, e] = −
∫
C

dλ

(
1
2e

ẋ(λ)2 +
e(λ)

2
m2 + q ẋµ(λ)Aµ(x(λ))

)
, (2.1)

where1 xµ(λ) are the coordinates of the particle’s position and e(λ) a real function on the curve
C parametrized by λ. Under (infinitesimal) reparametrizations λ′ = λ + ε(λ), the coordinates xµ

transform as scalars and e as a scalar density of weight 1:

δxµ = εẋµ, δe = εė + ε̇e. (2.2)

Under these transformations, the action is invariant, up to boundary terms, and the equations of
motion following from the variation of xµ(λ),

d
dλ

(
ẋµ

e

)
− qFµν ẋν = 0, (2.3)

where
Fµν = ∂µ Aν − ∂ν Aµ, (2.4)

and the constraint following from the variation of e(λ),

ẋµ ẋµ

e2 = m2, (2.5)

are covariant.48

1 The units are defined by c = h̄ = 1. The Minkowski metric is (ηµν) = diag(1,−1,−1,−1). The dot means derivative
with respect to λ and ẋ2 stands for ẋµ ẋµ. Coordinates will be also denoted as x0 = t and (xi , i = 1, 2, 3) = (x, y, z).
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The propagation of a massless charged particle is described by the same action where m is49

set to zero.50

We observe that the constraint (2.5) is not completely independent of the equations of motion
(2.3). Indeed, multiplying the latter by ẋµ/e, we find that the left-hand side of (2.5) is a constant:

d
dλ

(
ẋµ ẋµ

e2

)
= 0. (2.6)

This means that it will be sufficient to impose it at some initial value of the parameter λ.51

The solution of the constraint (2.5) differs qualitatively in the massive and in the massless52

case. These cases will be therefore treated separately in the following subsections.53

The theory defined by the action (2.1) can be considered as a gauge theory in the54

one-dimensional space-time defined by the world line C, the gauge invariance being that under55

reparametrizations (2.2) and the fields being the position coordinates xµ(λ) and the “einbein”56

function e(λ), the formers transforming as scalars and the latter as a density of weight 1.57

One way to fix the gauge is to fix a value for the non-physical variable e(λ). One equivalent58

way is to simply choose a particular parametrization, e.g., proper time or coordinate time. Then59

e(λ) will be determined by either the constraint (2.5) – if ẋµ ẋµ 6= 0, i.e., in the massive case – or60

the equations of motion (2.3).61

2.1. The massive case62

Let us begin with the proper time parametrization λ = τ. The 4-velocity ẋµ then satisfies

ẋ2 = ẋµ ẋµ = 1,

so that the constraint (2.5) solves for e(τ) as

e = 1/m,

where we have chosen the positive solution. The equation of motion (2.3) then takes the familiar
covariant form

mẍµ − q Fµν ẋν = 0.

where the second term is the relativistic expression for the Lorentz force.63

In the time coordinate parametrization (the dot meaning now a time derivative), the
4-velocity takes the form (γ, γẋ), with ẋ = (ẋi, i = 1, 2, 3) and γ = 1/

√
1− ẋ2. The constraint

(2.5) solves now as
1
e
= mγ, (2.7)

and the equations of motion (2.3) read

m
d
dt

γ = qE · ẋ,

m
d
dt

(γẋ) = q(E + ẋ× B),
(2.8)
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where we have identified the electric and magnetic fields as

E = (F01, F02, F03), B = (−F23,−F31,−F12). (2.9)

In the stationary case, defined by ∂t Aµ = 0, we have a conserved energy obtained by integrating
the first of Eqs. (2.8):

E =
1

e(t)
+ qA0(x(t)) = mγ(t) + qA0(x(t)), (2.10)

where the integration constant E is the total energy.64

Example:65

In the case of 4-dimensional space-time of coordinates t, x, y, z, with constant fields E =
(0, E, 0) and B = (0, 0, B), we can perform a first integration of the equations (2.8), obtaining

mγẋ− qBy + C1 = 0,

mγẏ + qBx− qEt + C2 = 0,

mγż + C3 = 0,

(2.11)

C1, C2 and C3 being integration constants.66

2.2. The massless case67

2.2.1. Equations of motion68

We are now going to investigate the main topics of this paper, i.e., the motion of a massless
charged particle in an electromagnetic field. The action is given in (2.1), with now m = 0. The
main difference with respect to the massive one is in the constraint obtaining by varying the
variable e(λ) in the action: It takes now the form of the light-cone condition

ẋµ ẋµ = 0, (2.12)

and we see that, to the contrary of the massive case, it does not determine e(λ).69

The equations of motion are given by (2.3) for a general parametrization. There is of course
no proper time parametrization; we shall use the coordinate time as parameter, so that they take
the form

d
dt

(
1
e

)
= qE · ẋ,

d
dt

(
ẋ
e

)
= q(E + ẋ× B).

(2.13)

The constraint (2.12) now reads
3

∑
i=1

(ẋi)2 = 1. (2.14)
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This constraint (2.14) not being taken into account, we have 4 differential equations for 4 functions,
xi(t) and e(t), of second order in the x’s and first order in e. Its solutions depend therefore on 7
integration constants. 6 of them can by fixed by 6 boundary conditions, which may be chosen as
6 initial conditions at t = 0:

xi(0) = 0, i = 1, 2, 3, (ẋ1(0), ẋ2(0), ẋ3(0)) = (v0x, v0y, v0z). (2.15)

Due to (2.6), the constraint (2.12) will be satisfied if it is verified at t = 0, i.e.,

(v0x)
2 + (v0y)

2 + (v0z)
2 = 1. (2.16)

One of the integrations constants remain free and will be discussed in Subsection 2.2.2.70

2.2.2. Energy equation71

The main difference with respect to the massive case is that the einbein function e(t) is no
more determined by the constraint (2.5). Let us try to interpret it. Its evolution is determined,
up to an integration constant, by the first of the equations (2.13). Restricting ourselves to the
stationary case where ∂t Aµ = 0, hence E = −∇A0, we see that this equation is a total time
derivative, which yields

E =
1

e(t)
+ qA0(x(t)). (2.17)

The second term being the potential energy, we interpret the integration constant E as the total
energy of the particle, its “kinetic energy” being identified with 1/e(t). In order to understand
better the physical meaning of this, let us normalize the electric potential – which in the stationary
case is defined up to a constant – by

A0(x(t)) = −
∫ t

0
dt′ E(x(t′)ẋ(t′).

In this situation, E = 1/e(0), which may be interpreted as the kinetic energy accumulated until
the time t = 0. We shall assume E to be positive:

E > 0. (2.18)

We may rewrite the second of Eqs. (2.13) as

d
dt

((E − qA0)ẋ) = q(E + ẋ× B). (2.19)

and remark that the energy E – an arbitrary parameter – contributes to the inertia of the particle:72

increasing the value of E implies more inertia.73
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2.2.3. Example of a constant electromagnetic field74

In order to get more insight for the motion of the massless particle, let us consider constant
fields E = (0, E, 0) and B = (0, 0, B), orthogonal to each other. We can perform a first integration of
the equations (2.19), obtaining

(E + qEy)ẋ− qBy + C1 = 0,

(E + qEy)ẏ + qBx− qEt + C2 = 0,

(E + qEy)ż + C3 = 0,

(2.20)

where the energy (2.17) reads

E =
1

e(t)
− qEy(t). (2.21)

The integration constants C1, C2 and C3 are fixed as

C1 = −Ev0x, C2 = −Ev0y, C3 = −Ev0z, (2.22)

with ∑i(vi
0)

2 = 1, by the initial conditions(2.15).75

A peculiar feature of the solutions of the equations (2.20) is a transition in their qualitative
behaviour: for |B| > |E|, the trajectory is bounded in the y - direction, i.e., the direction of the
electric field, whereas it is unbounded in the case |B| < |E|. In order to show this, let us solve the
system (2.20) for x and y:

x(t) =
E
B

t +
Ev0y

qB
− E ẏ(B− Ev0x)

qB(B− Eẋ)
,

y(t) =
E(ẋ− v0x)

q(B− Eẋ)
.

(2.23)

Since the velocity components are all bounded by 1 in absolute value, it is clear that, if |B| > |E|,76

the denominator of the expression for y(t) never vanishes, then y(t) remains bounded. However77

x(t) is asymptotically linear in t and thus is unbounded (unless the electric field vanishes).78

Solutions with y(t) unbounded are those for |B| ≤ |E|. This set includes the limiting case79

|B| = |E|, where one explicitly checks that y(t) and x(t) go asymptotically as x ∼ t and y ∼ t2/3,80

respectively, as t→ ∞, unless the initial velocity is transverse to the electric field: (v0x, v0y, v0z) =81

(1, 0, 0), in which case the solution of the equations – with the given initial conditions (2.15) – is82

x(t) = t, y(t) = 0.83

Analytic solutions are easy to find for pure electric field or pure magnetic field. The solution
for B = 0 satisfying the boundary conditions (2.15),reads

x(t) =
v0x

ω
log


√
(ωt)2 + 2v0yωt + 1 + ωt + v0y

(1 + v0y)

 ,

y(t) =
1
ω

(√
(ωt)2 + 2v0yωt + 1− 1

)
,

z(t) =
v0z

v0x
x(t),

(2.24)
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with ω = qE/E , whereas the solution for E = 0 with the same boundary conditions reads

x(t) =
1
Ω

(
− v0y(cos(Ωt)− 1) + v0x sin(Ωt)

)
,

y(t) =
1
Ω

(
v0x(cos(Ωt)− 1) + v0y sin(Ωt)

)
,

z(t) = v0zt,

(2.25)

where Ω = qB/E . We didn’t find analytic solutions of the system (2.20) in the presence of both84

the electric and the magnetic fields, but a numerical analysis is summarized in Figures 1 and 2,85

where we have confined the movement to the plane (x, y) by setting to zero the initial velocity86

component v0z. Figure 1 displays the particle trajectory for four values of the ratio B/E: As87

expected, the one for B > E is bounded in the y direction – which is the direction of the electric88

field – and exhibits a drift in the orthogonal direction. On the other hand, the two trajectories89

for B > E are unbounded in both directions. The dotted line corresponds to the limiting case90

B = E. These behaviours are similar2. Figure 2 displays the trajectories for three values of the91

total energy E , showing clearly the increase of the inertia with increasing energy, for cases (a) of92

B < E and (b) of B > E.93

1 2 3 4
x

1

2

3

4

5

y

Figure 1. Particle trajectories in the z = 0 plane for 0 ≤ t ≤ 5. Charge q = 1, constant electric field
E in the positive y direction, constant magnetic field B in the positive z direction. Energy E = 0.2,
initial velocity v0 = (0.1, 0.995, 0). Solid line: B = 1.6, E = 1; dotted line: B = E = 1; dashed line:
B = 0.4, E = 1; dotted-dashed line: B = 0, E = 1. The B = 0 trajectory would be on the upper
vertical axis in case of v0 = (0, 1, 0).

3. The spinning charged and massless particle94

We turn now to the case of a spinning particle [5,6,8,20,21], completing the action (2.1) by95

terms involving the spin degrees of freedom. The latter are described by Grassmann odd (i.e.,96

anti-commuting) variables: a Lorentz vector ψµ(λ) and a scalar χ(λ). We restrict here to the less97

2 In the case of B = 0, we have the trajectory equation

y(x) = − 1
ω

+
v0x

ω
cosh(

x
v0x/ω

+ sech−1(v0x)),

which is not the catenary curved observed in the case of a massive particle [18,19], excepted if v0x = 1. Se in partcular
p.55 of [18]
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Figure 2. (a) Particle trajectories in the z = 0 plane for 0 ≤ t ≤ 5. Charge q = 1, constant electric
field E = 1 in the positive y direction, constant magnetic field B = 0.4 in the positive z direction.
Initial velocity v0 = (1, 0, 0). Dashed line: E = 0.1; dotted line: E = 0.3; solid line: E = 0.7; (b)
Particle trajectories in the z = 0 plane for 0 ≤ t ≤ 5. Charge q = 1, constant electric field E = 1 in
the positive y direction, constant magnetic field B = 1.6 in the positive z direction. Initial velocity
v0 = (0.1, 0.995, 0). Dashed line: E = 0.2; dotted line: E = 0.3; solid line: E = 0.5.

well established case of a massless particle. Recent accounts for the massive spinning particle98

may be found in [17,22]99

The manifestly Lorentz invariant action reads, as an integral along a curve C parametrized
by λ3:

S = −
∫
C

dλ

(
1
2e

ẋµ
(

ẋµ − iχψµ

)
+

i
2

ψµψ̇µ + qAµ ẋµ − iq
2

eψµFµνψν

)
, (3.1)

where a dot means a derivative with respect to λ.100

The action (3.1) is invariant, up to boundary terms, under arbitrary reparametrizations of
λ and local supersymmetric transformations. With ε(λ) (even) and α(λ) (odd) as infinitesimal
parameters, these transformations read, respectively4,

δεxµ = εẋµ,

δεe = ε̇e + εė,

δεψ
µ = εψ̇µ,

δεχ = ε̇χ + εχ̇,

δαxµ = iαψµ,

δαe = −iαχ,

δαψµ = −α
(

ẋµ − i
2 χψµ

)
/e,

δαχ = 2α̇.

(3.2)

The electromagnetic potentials and fields then transform as

δε Aµ = εȦµ,

δεFµν = εḞµν,

δα Aµ = iα∂ν Aµψν,

δαFµν = iα∂ρFµνψρ.
(3.3)

3 We follow the conventions of [8].
4 The second term in the transformation of ψ5, which does not appear in [8], is necessary and may be found in Eq. (6.2)

of [6].
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The commutator of two supersymmetry transformation yields the combination of a
reparametrization and of a supersymmetry transformation:

[δα, δβ] = δε̃ + δα̃, (3.4)

with their infinitesimal parameters

ε̃ =
2i
e

αβ, α̃ = − iχ
e

αβ.

C1(λ) :=
ẋµ ẋµ

e2 − i
χẋµψµ

e2 + iqψµFµνψν = 0, (3.5)

C2(λ) := ẋµψµ = 0. (3.6)

The dynamical equations are obtained by varying the action with respect to xµ(λ) and ψµ(λ):

d
dλ

(
ẋµ

e
− i

χψµ

2e

)
− q

(
ẋνFµν −

ie
2

ψρ∂µFρσψσ

)
= 0,

ψ̇µ +
ẋµχ

2e
− eqFµνψν = 0.

(3.7)

The local supersymmetry transformation (3.2) for χ shows that the latter is a pure gauge of
freedom, which will be set from now on to zero:

χ = 0. (3.8)

This fixes the supersymmetry invariance. Later on we will also fix reparametrization invariance101

by choosing a specific parametrization, namely λ = t, instead of attributing a value to the einbein102

e as it often done in the literature [3]–[13].103

Using the dynamical equations (3.7), the anticomutativity of the ψµ’s and the equation (2.4),
one shows that the left-hand sides of the constraints obey the equations

Ċ1 = 0,
Ċ2

C2
=

ė
e

. (3.9)

These are consistency conditions which show that the constraints (3.5) and (3.6) are automatic104

consequences of the equations of motion (3.7) if they are satisfied for some initial value λ0 of the105

evolution parameter.106

The theory with Grassmann parameters just described is the appropriate one for an
Hamiltonian formulation and a subsequent quantization, as it has been done for the free particle
in [6,10] and in [12,13] with electromagnetic interaction, but only in the massive case. A theory
easier to interpret as the one of a classical spinning particle may be obtained introducing the spin
tensor Σ, whose components are even Grassmann numbers [8,17]:

Σµν = −iψµψν = −Σνµ. (3.10)

This formulation is the one which is suitable as an effective theory which ought to describe the107

semi-classical limit of the quantum theory in terms of expectation values.108
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The constraints (3.5), (3.6) now read109

ẋµ ẋµ

e2 − qFµνΣµν = 0, (3.11)

ẋµΣµν = 0, (3.12)

and the equations of motion (3.7) take now the form110

d
dλ

(
ẋµ

e

)
− q

(
Fµν ẋν +

e
2

∂µFρσΣρσ

)
= 0, (3.13)

Σ̇µν − q e(Fµ
σΣσν − Fν

σΣσµ) = 0. (3.14)

3.1. Time parametrization111

Choosing now the time parametrization, λ = t, we see that the spin constraint (3.6) can be
solved for the component ψ0 in terms of the ψi (i = 1, 2, 3):

ψ0 = −ẋiψi, (3.15)

where a dot now means the time derivative.112

Instead of working with the odd Grassmann variables ψµ, we shall use the even Grassmann
spin tensor Σ defined in (3.10). Its components can be written as components of the two 3-vectors

n = (Σ01, Σ02, Σ03), s = (Σ23, Σ31, Σ12), (3.16)

so that the spin constraint (3.12) can be solved for n in term of s:

n = ẋ× s, (3.17)

and we observe that the vector n is orthogonal to the velocity. We remark that (3.12) or (3.17)113

is identical to the covariant version of the Frenkel condition [17,23] – introduced for the massive114

case! – that the 3-vector n vanishes in the rest frame of the particle.115

The constraint (3.11) and the dynamical equations for the position (3.13) read, respectively,

1− ẋ2

e2 + 2q(sB + nE) = 0, (3.18)

and
d
dt

(
1
e

)
− qE · ẋ + q e(s∂tB + n∂tE) = 0,

d
dt

(
ẋ
e

)
− q(E + ẋ× B)− q e ∑3

i=1(si∇Bi + ni∇Ei) = 0.
(3.19)

In the same way, the equation (3.14) for the spin vector s reads

ṡ + q e(E× n + B× s) = 0, (3.20)

the one for n, ṅ + q e(B× n− E× s) = 0, following from (3.17) and (3.19).116
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In the case of a stationary exterior field, ∂tE = ∂tB = 0, integration of the first of Eqs. (3.19)
leads to the same conserved energy E as in the spinless case:

E =
1

e(t)
+ qA0(x(t)). (3.21)

We observe from (3.18) that the particle’s velocity may be different from that of the light. This117

feature is a peculiarity of the massless theory. We will show some concrete examples in Subsection118

3.3.119

3.2. Physical interpretation of the classical theory120

In order to be able to interpret the theory as a truly classical one, in terms of real numbers,
on should forget about the Grassmann character of the spin variables Σµν (or s and n) and
consider them as real number quantities. The theory would still be defined by the set of equations
(3.11-3.14), or (3.17-3.20) in the 3D notation. These equations do no more derive from an action
principle, so that their consistency must be checked. Unfortunately, it happens that the spin
constraint (3.12) is incompatible with the rest of the equations. Indeed, deriving it with respect to
the evolution parameter λ,

d
dλ

(
ẋµΣµν

)
=

q
2

∂µFρσΣµνΣρσ, (3.22)

which only vanishes for special field configurations, such as, e.g., a constant electromagnetic121

field5, which we shall consider in Subsection 3.3.122

An alternative could be to use the constraint and equations of motion (3.11), the123

spin-constraint (3.12) or (3.17)on one hand, and the spin equation (3.14) only for µν = ij, i.e., for124

the spin 3-vector s, on the other hand. However, such a choice would break Lorentz covariance.125

3.3. Constant electromagnetic field126

As we saw in the last Subsection, the restriction to a constant electromagnetic field preserves127

the full set of the Lorentz covariant constraints and dynamical equations.128

We shall consider the same configuration with a constant electromagnetic field as discussed
in the spinless case at the end of Section 2.2.3, i.e., with E = (0, E, 0) and B = (0, 0, B), with mass
zero and with the time parametrization, λ = t. The equations of motion for e, x, y and z take the
same form (2.13), or there integrated form (2.20), as in the spinless case. The conserved energy is
given by (2.21). The constraint equation and the spin equations read

1− ẋ2

e2 + 2q (Bsz + Eżsx − Eẋsz)) = 0, (3.23)

ṡx = q e
(
Eẏsx − Eẋsy + Bsy

)
,

ṡy = −q eBsx,

ṡz = q e
(
Eẏsz − Eżsy

)
.

(3.24)

5 If the Σµν’s still were even Grassmann numbers, products of odd elements as in (3.10), then the expression ΣµνΣρσ

would be antisymmetric in the three indices µ, ρ, σ and the right-hand side of (3.22) would vanish due to Fρσ = ∂ρ Aσ −
∂σ Aρ.
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Solutions for B = 0 or E = 0 are easy to find. We use again the notations

ω =
qE
E , Ω =

qB
E , (3.25)

of Subsection 2.2.3 and the boundary conditions (2.15).129

For B = 0, the evolution of the position coordinates is given by (2.24), but with differences
in the initial velocity components due to the modified constraint (see (3.27)). The evolution of the
spin components is given by

sx(t) = −
s0yv0x(v0y + ωt)

1− v2
0y

+ s0x

√
1 + 2v0yωt + ω2t2,

sy(t) = s0y,

sz(t) = −
s0yv0z(v0y + ωt)

1− v2
0y

+ s0z

√
1 + 2v0yωt + ω2t2.

(3.26)

The constraint reads

E(1− v2
0x − v2

0y − v2
0z) + 2ω(s0xv0z − s0zv0x) = 0. (3.27)

In view of its constancy (see the first of Eqs. (3.9)), we have taken it at t = 0: it is thus a constraint130

on the initial parameters v0i and s0i. On sees that the particle’s velocity is not constrained to be131

equal to the velocity of light c = 1 – excepted for very peculiar initial spin/velocity configurations132

in which the spin part of (3.27) vanishes. The particle’s velocity can even exceed c. We note that133

Lorentz invariance remains nevertheless unbroken. This feature, peculiar to the present approach134

of the classical massless spinning particle, will be encountered in various other examples, as we135

will see.136

For the purely magnetic case, E = 0, the position coordinates are given by (2.25), and the
spin components by the precession equations

sx(t) = s0x cos(Ωt) + s0y sin(Ωt),

sy(t) = s0y cos(Ωt)− s0x sin(Ωt),

sz(t) = s0z,

(3.28)

where (s0x, s0y, s0z) is the spin vector at t = 0. The constraint reads

E(1− ẋ2) + 2Ωs0z = 0, (3.29)

On sees that, the magnitude of the particle’s velocity – which here is constant due to the first of137

Eqs. (3.9) – can be higher or lower than the velocity of light, depending on the sign of Ωs0z/E .138

In the case of both E and B being non-zero, one has first to solve the constraint (3.23) for one
of the velocity components, let us say the x-component. In view of the constancy of the constraint
(see the first of Eqs. (3.9)), it is sufficient to do it at the initial time t = 0 for the initial velocity

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 November 2017                   doi:10.20944/preprints201711.0040.v1

http://dx.doi.org/10.20944/preprints201711.0040.v1


13 of 15

component v0x. It is thus a quadratic equation for the initial value of the velocity component, v0x.
In order to obtain real solutions, the discriminant

∆ := (1− v2
0y − v2

0z)E2 + 2(s0xv0zω + s0zΩ)E + s2
0zω2, (3.30)

must be non-negative, hence the reality condition:

∆ ≥ 0 (3.31)

must hold.139

In order to be more explicit, we specialise from now on to the case of trajectories in the
(x, y)-plane with the spin pointing to the z-direction, which is guaranteed by the initial conditions

v0z = 0, s0x = s0y = 0. (3.32)

The reality condition holds if and only if

v2
0y ≤ 1 +

2Ω
E s0z +

ω2

E2 s2
0z. (3.33)

A necessary condition for this inequality is the positivity of the right-hand side, which holds in
the following three cases:

(a) |ω| ≥ |Ω|, ∀ s0z,

(b) |ω| < |Ω|, s0z < −
EΩ
ω2 −

E2

ω2

√
Ω2 −ω2

E2 ,

(c) |ω| < |Ω|, s0z > −
EΩ
ω2 +

E2

ω2

√
Ω2 −ω2

E2 .

(3.34)

Figure 3 shows some characteristic solutions. One observes the same behaviour as in the spinless140

case for the trajectories (Figure 3a): bounded in the electric field direction (component ẏ(t) for141

|B| > |E|, unbounded for |B| ≤ |E|. A similar behaviour happens for the spin, as shown in Figure142

3b: sz(t) is unbounded for |B| ≤ |E|. In fact, all numerical examples investigated show this143

transition between bounded and unbounded behaviour happening both for ẏ and sz at |B| = |E|.144

In Figure 3c one sees the variation of the velocity’s absolute value in function of t. This velocity145

turns out to be always bounded.146

4. Discussion147

We have presented a complete treatment of the massless charged particle in interaction with148

an external electromagnetic field. One of our new results is the proper definition of energy given149

in (2.17) for the spinless particle and in (3.21) for the spinning one. The inverse of the einbein150

function, 1/e(t), plays the role of the “kinetic energy”.151

We have considered both the pseudo-classical supersymmetric theory with odd Grassmann152

parameters, suitable for a canonical quantization, and the classical theory with spin described by153

real valued functions, which we have argued to better describe the classical limit of the quantum154
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(a) Trajectories in the z = 0 plane.
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Figure 3. Particle trajectories in the z = 0 plane, spin sz(t) and velocity |v| = |ẋ(t)| for a constant
electric field E in the positive y direction and a constant magnetic field B in the positive z direction.
Parameters’ values are chosen : charge q = 1, energy E = 2, initial spin s(0) = (0, 0, 0.5) and
initial velocity v(0) = (v0x, 0.9, 0), v0x being the largest of the solutions of the constraint (3.23).
The following field configurations have been chosen: B = 3.2, E = 2 (solid lines); B = E = 2
(dotted lines); B = 0.8, E = 2 (dashed lines); B = 0, E = 2 (dotted-dashed lines). The B = 0
trajectory would be on the upper vertical axis in case of v(0) = (v0x, 1, 0).

theory in terms of expectation values. The drawback of the latter description is the absence of155

an action principle and the incompatibility of the full system of equations excepted for special156

external field configurations, such as a constant one.157

It is for a constant field configuration that we have calculated explicit solutions showing158

characteristic behaviours of the particle, in particular the fact that due to the interaction of the159

spin with the external field its velocity is in general different from the velocity of light, without160

contradiction with Lorentz invariance.161

This latter result would of course generate conflict with causality, as tachyons do, and may162

constitute an argument explaining the absence of such particles in the realm of fundamental163

physics. On the other hand, there would be no such problem in application in condensed matter164

physics, such as graphene, where the critical velocity which plays the role of the "velocity of light"165

is far smaller than c [1,2].166
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