Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 November 2017 d0i:10.20944/preprints201711.0040.v1

1 Article

. Behaviour of Charged Spinning Massless Particles

s Ivan Morales ', Bruno Neves !, Zui Oporto ' and Olivier Piguet -*

a 1 Departamento de Fisica, Universidade Federal de Vigosa, UFV, Vicosa, MG, Brazil;

5 mblivan@gmail.com, bruno.lqg@gmail.com, azurnasirpal@gmail.com, opiguet@pq.cnpq.br
¢ * Correspondence: opiguet@pq.cnpq.br; Tel.: +55-31-98887-9345
7 1t Current address: Centro Brasileiro de Pesquisas Fisicas, CBPF, Rio de Janeiro, Brazil

s 1 Current address: Instituto de Investigaciones Fisicas, UMSA, P.O. Box 8635 La Paz, Bolivia

s Abstract: We review some properties of a relativistic classical massless charged particle with
1o spininteracting with an external electromagnetic field. We give in particular a proper definition
u  of kinetic energy and total energy, the latter being conserved when the external field is stationary.
12 We find that the particle’s velocity may differ from c as a result of the spin - electromagnetic field
1z interaction, without jeopardizing Lorentz invariance.
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15 1. Introduction

16 Although charged, massless particles have never been observed in the world of real particles,
17 electrons in two-dimensional materials such as graphene behave as massless quasi-particles, i.e.,
1s , they show an approximately linear relativistic dispersion relation, of the type E ~ vg|p|. The
1 velocity vg ~ 10° m/s is the Fermi velocity, depending on the microscopic properties of the
20 material. It plays the role of the velocity of light for such a “mini-relativistic theory”. Moreover,
a1 beyond its (chiral) helicity, the quasi-electron possesses a quantum number, the “pseudo-spin”,
22 which makes its wave function to have four components and to obey a massless Dirac equation.
23 An introduction to the physics of graphene may be found in the reviews [1,2].

24 The existence of this very special behaviour justifies a re-visitation of the somewhat old
s literature dedicated to the theory of the “relativistic spinning particle” [3]-[13]. We find that,
26 in contrast with the case of the spinless particle, the behaviour of the particle with non-zero spin
2z is drastically different of what is expected from a massless particle: its velocity may be lower or
2s  higher than the velocity of light c. Moreover, this happens without conflict with Special Relativity:
20 Lorentz covariance of the equations is always preserved.

30 To the best of our knowledge, the only known way to derive the dynamics of a classical
a1 spinning particle, massive or not, from an action principle [3-6] is to describe the spin degrees
52 of freedom by anticommuting Grassmann variables ¢, and impose a supersymmetry. This is
33 the line we follow in the main part of the paper. However, in order to be able to give a realistic
s« classical interpretation, in the final part, we introduce, following [8], spin variables X, which
35 are quadratic in the ¢’s, treating the 2’s as real numbers. The resulting equations of motion are
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s no more derivable from an action. Moreover, they suffer incompatibilities, excepted for special
sz external field configurations, e.g., for constant fields. It is for the latter configuration that we solve
;s the equations, analytically or numerically, in order to gain some insight on the behaviours we
3 mentioned above.

a0 We restrict the scope of the present paper to the in interaction with an external
a1 electromagnetic field. The specific problem of the radiation field has been treated by the authors
a2 of Refs. [14-16].

a3 The plan of the paper is the following. We begin with a complete study of the spinless case
as in order to make some basic points more transparent, in Section 2. In Section 3 we present the
as results for the spinning case, with a last subsection containing particular solutions of interest, and
s terminate with our conclusions.

az 2. The spinless relativistic particle

The action for a classical spinless particle of mass m of electric charge g interacting with an
electromagnetic field given by the potential vector A, in 4-dimensional Minkowski space-time
may be written as the following integral on a time-like curve C parametrized by A [5,6,17]:

S[x,e] = —/Ccm (zlex(A)Z + @mZ + qxﬂ(A)A},(x(/\))) , 2.1)

where! x#()) are the coordinates of the particle’s position and e(A) a real function on the curve
C parametrized by A. Under (infinitesimal) reparametrizations A’ = A 4 ¢(A), the coordinates x#
transform as scalars and e as a scalar density of weight 1:

Oxt =ext, OJe =eé+ ée. (2.2)

Under these transformations, the action is invariant, up to boundary terms, and the equations of
motion following from the variation of x#(A),

d [x .
1 () —arur =0 23)

where
Fu = 0,A) —9,Ay, (2.4)

and the constraint following from the variation of e(A),

"
xef” = m?, (2.5)

a8 are covariant.

1 The units are defined by ¢ = /z = 1. The Minkowski metric is () = diag(1, —1, —1, —1). The dot means derivative

with respect to A and 12 stands for #x,. Coordinates will be also denoted as x? = tand (x/, i = 1,2,3) = (x,y,z).
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a0 The propagation of a massless charged particle is described by the same action where m is
so  set to zero.

We observe that the constraint (2.5) is not completely independent of the equations of motion
(2.3). Indeed, multiplying the latter by x# /¢, we find that the left-hand side of (2.5) is a constant:

d [ xtx
o (62”> =0. (2.6)

s1  This means that it will be sufficient to impose it at some initial value of the parameter A.

52 The solution of the constraint (2.5) differs qualitatively in the massive and in the massless
ss  case. These cases will be therefore treated separately in the following subsections.

54 The theory defined by the action (2.1) can be considered as a gauge theory in the
ss one-dimensional space-time defined by the world line C, the gauge invariance being that under
se reparametrizations (2.2) and the fields being the position coordinates x*(A) and the “einbein”
sz function e(A), the formers transforming as scalars and the latter as a density of weight 1.

58 One way to fix the gauge is to fix a value for the non-physical variable ¢(A). One equivalent
s way is to simply choose a particular parametrization, e.g., proper time or coordinate time. Then
o ¢(A) will be determined by either the constraint (2.5) — if ##x, # 0, i.e., in the massive case — or
&1 the equations of motion (2.3).

62 2.1. The massive case

Let us begin with the proper time parametrization A = 7. The 4-velocity x* then satisfies
=il =1,
so that the constraint (2.5) solves for e(7) as
e=1/m,

where we have chosen the positive solution. The equation of motion (2.3) then takes the familiar
covariant form
m#y —q Fux” = 0.

e where the second term is the relativistic expression for the Lorentz force.

In the time coordinate parametrization (the dot meaning now a time derivative), the
4-velocity takes the form (v, vx), with x = (', i = 1,2,3) and 4 = 1/v/1 —x2. The constraint
(2.5) solves now as

1
- = 2.7
_=my, 2.7)
and the equations of motion (2.3) read
d .
moy = gE - x,

d 2.8)
mE (vx) =q(E+x x B),
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where we have identified the electric and magnetic fields as
E = (Fo1, Foo, Fos), B = (—Fas, —F31, —Fio). (2.9)

In the stationary case, defined by d;A;, = 0, we have a conserved energy obtained by integrating
the first of Egs. (2.8):

€= (1” +qAo(x(b)) = my(t) + gAo(x(1)), (2.10)

e where the integration constant £ is the total energy.

es Example:

In the case of 4-dimensional space-time of coordinates ¢, x, y, z, with constant fields E =
(0,E,0) and B = (0,0, B), we can perform a first integration of the equations (2.8), obtaining

myx —qBy+Cy =0,
myy+qBx —qEt +C, =0, (2.11)
myz+C3 =0,

ss C1, Cp and C3 being integration constants.

67 2.2. The massless case

es 2.2.1. Equations of motion

We are now going to investigate the main topics of this paper, i.e., the motion of a massless
charged particle in an electromagnetic field. The action is given in (2.1), with now m = 0. The
main difference with respect to the massive one is in the constraint obtaining by varying the
variable e(A) in the action: It takes now the form of the light-cone condition

xx, =0, (2.12)
e and we see that, to the contrary of the massive case, it does not determine e(A).

The equations of motion are given by (2.3) for a general parametrization. There is of course
no proper time parametrization; we shall use the coordinate time as parameter, so that they take

the form
i (1) =gE-x
dt \e (2.13)
d [x
dt(g)zq(E-l—xXB)

The constraint (2.12) now reads

i(xf)2 =1. (2.14)
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This constraint (2.14) not being taken into account, we have 4 differential equations for 4 functions,
xi(t) and e(t), of second order in the x’s and first order in e. Its solutions depend therefore on 7
integration constants. 6 of them can by fixed by 6 boundary conditions, which may be chosen as
6 initial conditions at t = 0O:

¥(0)=0,i=1,2,3, (£'(0),%%(0),%°(0)) = (vox Voy, v02)- (2.15)
Due to (2.6), the constraint (2.12) will be satisfied if it is verified at t = 0, i.e.,

(vox)? + (v0y)* + (v0)* = 1. (2.16)
70 One of the integrations constants remain free and will be discussed in Subsection 2.2.2.

n  2.2.2. Energy equation

The main difference with respect to the massive case is that the einbein function e(t) is no
more determined by the constraint (2.5). Let us try to interpret it. Its evolution is determined,
up to an integration constant, by the first of the equations (2.13). Restricting ourselves to the
stationary case where d;A;, = 0, hence E = —VA,, we see that this equation is a total time
derivative, which yields

£= e(lt) + g Ao(x(8). (217)

The second term being the potential energy, we interpret the integration constant £ as the total
energy of the particle, its “kinetic energy” being identified with 1/e(t). In order to understand
better the physical meaning of this, let us normalize the electric potential — which in the stationary
case is defined up to a constant — by

Ao(x(1)) = — /O a B (x(#)x(F).

In this situation, £ = 1/¢(0), which may be interpreted as the kinetic energy accumulated until
the time t = 0. We shall assume & to be positive:

£>0. (2.18)

We may rewrite the second of Egs. (2.13) as

(€~ 4A0)X) = g(E +%x B). 2.19)

72 and remark that the energy £ — an arbitrary parameter — contributes to the inertia of the particle:
7 increasing the value of £ implies more inertia.
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7 2.2.3. Example of a constant electromagnetic field

In order to get more insight for the motion of the massless particle, let us consider constant
fields E = (0,E,0) and B = (0,0, B), orthogonal to each other. We can perform a first integration of
the equations (2.19), obtaining

(E+qEy)x —qBy+C, =0,
(€ +qEy)y+gBx —qEt+ Cy =0, (2.20)
(€ +qEy)z+C5 =0,

where the energy (2.17) reads

E= e(lt) —qEy(t). (2.21)

The integration constants C1, C, and Cj are fixed as
C1 = —800x, Cz = —é'voy, C3 = —5002, (2.22)
75 with ¥;(v}))? = 1, by the initial conditions(2.15).

A peculiar feature of the solutions of the equations (2.20) is a transition in their qualitative
behaviour: for |[B| > |E|, the trajectory is bounded in the y - direction, i.e., the direction of the
electric field, whereas it is unbounded in the case |B| < |E|. In order to show this, let us solve the
system (2.20) for x and y:

Evoy  EY(B — Evgy)
gB  ¢B(B—Ex)’
¢ (x — v()x)
v = .

E
(2.23)

7 Since the velocity components are all bounded by 1 in absolute value, it is clear that, if |B| > |E|,
7z the denominator of the expression for y(f) never vanishes, then y(t) remains bounded. However
7 x(t) is asymptotically linear in ¢ and thus is unbounded (unless the electric field vanishes).

70 Solutions with y(t) unbounded are those for |B| < |E|. This set includes the limiting case
so |B| = |E|, where one explicitly checks that y(t) and x(t) go asymptotically as x ~ t and y ~ t2/3,
s1  respectively, as t — 0o, unless the initial velocity is transverse to the electric field: (voy, Ooy, Voz) =
s2 (1,0, 0), in which case the solution of the equations — with the given initial conditions (2.15) — is

83 x(t) = t, y(t) =0.

Analytic solutions are easy to find for pure electric field or pure magnetic field. The solution
for B = 0 satisfying the boundary conditions (2.15),reads

\/(wt)z + 200,wt + 1+ wt + vgy
(1 "‘UOy)

y(t) = % (\/(wt)z + 2vp,wt +1 — 1) ,

2(t) = “Ex(t),

00x

x(t) = vwﬂlog

(2.24)
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with w = gE /&, whereas the solution for E = 0 with the same boundary conditions reads
1 .
x(t) = 5 | — voy(cos(2t) — 1) + vp sin(Q) ),
! - 225
y(t) = a (UOx(COS(Qf) —1) + vy sm(Qt)), (2.25)
Z(t) = vOztl

s« where ) = gB/£. We didn’t find analytic solutions of the system (2.20) in the presence of both
es the electric and the magnetic fields, but a numerical analysis is summarized in Figures 1 and 2,
ss where we have confined the movement to the plane (x,y) by setting to zero the initial velocity
ez component vg,. Figure 1 displays the particle trajectory for four values of the ratio B/E: As
se expected, the one for B > E is bounded in the y direction — which is the direction of the electric
s field — and exhibits a drift in the orthogonal direction. On the other hand, the two trajectories
s for B > E are unbounded in both directions. The dotted line corresponds to the limiting case
sn B = E. These behaviours are similar?. Figure 2 displays the trajectories for three values of the
o2 total energy £, showing clearly the increase of the inertia with increasing energy, for cases (a) of
s B < Eand(b)of B> E.
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Figure 1. Particle trajectories in the z = 0 plane for 0 < t < 5. Charge g = 1, constant electric field
E in the positive y direction, constant magnetic field B in the positive z direction. Energy £ = 0.2,
initial velocity vg = (0.1,0.995,0). Solid line: B = 1.6, E = 1; dotted line: B = E = 1; dashed line:
B = 0.4, E = 1; dotted-dashed line: B = 0, E = 1. The B = 0 trajectory would be on the upper
vertical axis in case of vo = (0,1, 0).

9¢ 3. The spinning charged and massless particle

95 We turn now to the case of a spinning particle [5,6,8,20,21], completing the action (2.1) by
96 terms involving the spin degrees of freedom. The latter are described by Grassmann odd (i.e.,
7 anti-commuting) variables: a Lorentz vector (1) and a scalar x(A). We restrict here to the less

In the case of B = 0, we have the trajectory equation

1 oo _* -1
y(x) = P cosh( R +sech™ (vox)),
which is not the catenary curved observed in the case of a massive particle [18,19], excepted if vy, = 1. Se in partcular
p-55 of [18]
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Figure 2. (a) Particle trajectories in the z = 0 plane for 0 < t < 5. Charge g = 1, constant electric
field E = 1 in the positive y direction, constant magnetic field B = 0.4 in the positive z direction.
Initial velocity vo = (1,0,0). Dashed line: £ = 0.1; dotted line: £ = 0.3; solid line: £ = 0.7; (b)
Particle trajectories in the z = 0 plane for 0 < t < 5. Charge q = 1, constant electric field E = 1 in
the positive y direction, constant magnetic field B = 1.6 in the positive z direction. Initial velocity
vg = (0.1,0.995,0). Dashed line: £ = 0.2; dotted line: £ = 0.3; solid line: £ = 0.5.

9s  well established case of a massless particle. Recent accounts for the massive spinning particle
9 may be found in [17,22]

The manifestly Lorentz invariant action reads, as an integral along a curve C parametrized
by A%

1 . i g
5= —/Cd/\(zexl‘ (% — ixyu) + Ellf’”l/’y +qAuit — quq;ﬂl-“wlpV) 3.1)
1o Where a dot means a derivative with respect to A.

The action (3.1) is invariant, up to boundary terms, under arbitrary reparametrizations of
A and local supersymmetric transformations. With €(A) (even) and «(A) (odd) as infinitesimal
parameters, these transformations read, respectively*,

(Ssxﬂ = ext, 5,,4.76” = iDCl/JM,
Oce = e+ gé, ope = —iny,
. , (3.2)
59_1/1” = 54114, 5MP” EE— (xii — éxlp#) /e,
OeX = €X +€X, SuX = 24
The electromagnetic potentials and fields then transform as
5€Al/l = EA;,;, 5DéA]/l = ltXaVAHll)v,
(3.3)

(58F;41/ = Swa (SaF]W = izxapquzP.

3
4

We follow the conventions of [8].
The second term in the transformation of 5, which does not appear in [8], is necessary and may be found in Eq. (6.2)
of [6].
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The commutator of two supersymmetry transformation yields the combination of a
reparametrization and of a supersymmetry transformation:

[606/ 5ﬁ] = 5§ + 55(/ (34)
with their infinitesimal parameters
’ .
&= —szﬁ, &= —%aﬁ
xHx yed .
i) i= 5t it e;”" + gy Fu g’ =0, (3.5)
Co(A) := 2ty = 0. (3.6)

The dynamical equations are obtained by varying the action with respect to x*(A) and ¢#(A):

i ﬂ_@ _ oV _if 0 o\ —
dA(e "¢ ) TI\F e g ¥POuFary” ) =0, -

. XuX
1py+2Le—equsz:O.

The local supersymmetry transformation (3.2) for x shows that the latter is a pure gauge of
freedom, which will be set from now on to zero:

x=0. (3.8)

12 This fixes the supersymmetry invariance. Later on we will also fix reparametrization invariance
102 by choosing a specific parametrization, namely A = ¢, instead of attributing a value to the einbein
103 e as it often done in the literature [3]-[13].

Using the dynamical equations (3.7), the anticomutativity of the ¥*’s and the equation (2.4),
one shows that the left-hand sides of the constraints obey the equations

C, ¢
—= = -, 3.9
G, e (3.9)
e These are consistency conditions which show that the constraints (3.5) and (3.6) are automatic
105 consequences of the equations of motion (3.7) if they are satisfied for some initial value A of the

e evolution parameter.

The theory with Grassmann parameters just described is the appropriate one for an
Hamiltonian formulation and a subsequent quantization, as it has been done for the free particle
in [6,10] and in [12,13] with electromagnetic interaction, but only in the massive case. A theory
easier to interpret as the one of a classical spinning particle may be obtained introducing the spin
tensor X, whose components are even Grassmann numbers [8,17]:

S = —iutpy = —Zup. (3.10)

w7z This formulation is the one which is suitable as an effective theory which ought to describe the
1s  semi-classical limit of the quantum theory in terms of expectation values.
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The constraints (3.5), (3.6) now read

0
2 qF"Z,, =0, (3.11)
Xy =0, (3.12)

and the equations of motion (3.7) take now the form
d (x ) e

i (:) — g (B + S0,FP7 %) =0, (3.13)
Y —qe(F Loy — B %0y) = 0. (3.14)

3.1. Time parametrization

Choosing now the time parametrization, A = f, we see that the spin constraint (3.6) can be
solved for the component ¢y in terms of the ¢; (i = 1,2, 3):

1,[]0 = —Xll/)i, (3.15)
where a dot now means the time derivative.

Instead of working with the odd Grassmann variables 1, we shall use the even Grassmann
spin tensor £ defined in (3.10). Its components can be written as components of the two 3-vectors

n = (Zo1,Z02, X03), s = (X23,%31,Z12), (3.16)
so that the spin constraint (3.12) can be solved for n in term of s:
n=xxs, (3.17)

and we observe that the vector n is orthogonal to the velocity. We remark that (3.12) or (3.17)
is identical to the covariant version of the Frenkel condition [17,23] — introduced for the massive
case! — that the 3-vector n vanishes in the rest frame of the particle.

The constraint (3.11) and the dynamical equations for the position (3.13) read, respectively,

1—%°
2t 29(sB +nE) =0, (3.18)
and
d (1 _
= <e> —gE-x+qe(so:B +noE) =0,
i/ (3.19)
X .
' <e> —q(E+xxB)—qeY?  (s;VB; +n;VE;) = 0.
In the same way, the equation (3.14) for the spin vector s reads
$+ge(Exn+Bxs)=0, (3.20)

the one forn, n + ge(B x n — E x s) = 0, following from (3.17) and (3.19).

d0i:10.20944/preprints201711.0040.v1
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In the case of a stationary exterior field, 9;E = 9;B = 0, integration of the first of Egs. (3.19)
leads to the same conserved energy £ as in the spinless case:

1
=—+4gA . 3.21
€ e(t) +4q O(X(t)) ( )
117 We observe from (3.18) that the particle’s velocity may be different from that of the light. This
us feature is a peculiarity of the massless theory. We will show some concrete examples in Subsection
119 3.3.

1o 3.2. Physical interpretation of the classical theory

In order to be able to interpret the theory as a truly classical one, in terms of real numbers,
on should forget about the Grassmann character of the spin variables X, (or s and n) and
consider them as real number quantities. The theory would still be defined by the set of equations
(3.11-3.14), or (3.17-3.20) in the 3D notation. These equations do no more derive from an action
principle, so that their consistency must be checked. Unfortunately, it happens that the spin
constraint (3.12) is incompatible with the rest of the equations. Indeed, deriving it with respect to

the evolution parameter A,

d . q
77 (#80) = S PR By, (3.22)

121 which only vanishes for special field configurations, such as, e.g., a constant electromagnetic
122 field®, which we shall consider in Subsection 3.3.

123 An alternative could be to use the constraint and equations of motion (3.11), the
12« spin-constraint (3.12) or (3.17)on one hand, and the spin equation (3.14) only for uv = ij, i.e., for
s the spin 3-vector s, on the other hand. However, such a choice would break Lorentz covariance.

e  3.3. Constant electromagnetic field

127 As we saw in the last Subsection, the restriction to a constant electromagnetic field preserves
s the full set of the Lorentz covariant constraints and dynamical equations.

We shall consider the same configuration with a constant electromagnetic field as discussed
in the spinless case at the end of Section 2.2.3, i.e., with E = (0, E,0) and B = (0,0, B), with mass
zero and with the time parametrization, A = t. The equations of motion for e, x, y and z take the
same form (2.13), or there integrated form (2.20), as in the spinless case. The conserved energy is
given by (2.21). The constraint equation and the spin equations read

1— %2
62

+2q (Bs; + Ezsy — Exs;)) =0, (3.23)

$x = qe (Eysy — Exsy + Bsy),
$y = —qeBsy, (3.24)

$; = qe (Eys; — Ezsy) .

If the XM’s still were even Grassmann numbers, products of odd elements as in (3.10), then the expression X/*'>f”
would be antisymmetric in the three indices y, p, o and the right-hand side of (3.22) would vanish due to Fyy =9y Ay —
97 Ap-
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Solutions for B = 0 or E = 0 are easy to find. We use again the notations

w— % 0= %/ (3.25)

120 of Subsection 2.2.3 and the boundary conditions (2.15).
For B = 0, the evolution of the position coordinates is given by (2.24), but with differences

in the initial velocity components due to the modified constraint (see (3.27)). The evolution of the
spin components is given by

SoyVox (Vgy + wit
sy(t) = — 01‘( v ) —l—sox\/l—l—ZUwat—l-wztz,
sy(£) = sy, (3.26)
S0y 00z (Voy + Wt
ca(t) = - O EOD) | avgat + 2P
The constraint reads
E(1- v%x — v%y — v%z) + 2w(SpxVoz — S0zV0x) = 0. (3.27)

1o In view of its constancy (see the first of Egs. (3.9)), we have taken it at t = 0: it is thus a constraint
131 on the initial parameters vg; and sp;. On sees that the particle’s velocity is not constrained to be
12 equal to the velocity of light ¢ = 1 - excepted for very peculiar initial spin/velocity configurations
13 in which the spin part of (3.27) vanishes. The particle’s velocity can even exceed c. We note that
e Lorentz invariance remains nevertheless unbroken. This feature, peculiar to the present approach
s of the classical massless spinning particle, will be encountered in various other examples, as we
e will see.

For the purely magnetic case, E = 0, the position coordinates are given by (2.25), and the
spin components by the precession equations

sx(t) = sox cos(Qt) + sgy sin(Q),
sy(t) = soy cos(Qt) — sox sin(Qt), (3.28)
sz(t) = soz,
where (soy, Soy, Soz) is the spin vector at t = 0. The constraint reads
E(1 %) 4205, =0, (3.29)

1z On sees that, the magnitude of the particle’s velocity — which here is constant due to the first of
e Egs. (3.9) — can be higher or lower than the velocity of light, depending on the sign of Qs /£.

In the case of both E and B being non-zero, one has first to solve the constraint (3.23) for one
of the velocity components, let us say the x-component. In view of the constancy of the constraint
(see the first of Eqgs. (3.9)), it is sufficient to do it at the initial time t = 0 for the initial velocity
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component v,. It is thus a quadratic equation for the initial value of the velocity component, v,.
In order to obtain real solutions, the discriminant

A = (1 =05y, — 05,) €2 + 2(s0x00:w + 50:Q) € + 55,07, (3.30)
must be non-negative, hence the reality condition:
A>0 (3.31)

13»  must hold.

In order to be more explicit, we specialise from now on to the case of trajectories in the
(x, y)-plane with the spin pointing to the z-direction, which is guaranteed by the initial conditions

Voz = 0, S0x = Soy = 0. (3.32)
The reality condition holds if and only if

20) w?
vy <1+ s+ ﬁséz. (3.33)

A necessary condition for this inequality is the positivity of the right-hand side, which holds in
the following three cases:

(a) ‘CL]| Z |Q|/ vsOZ/

£ & 07 —W?
(®) |w| <O, = <=7~ 2\ e (3.34)

EQ &2 |2 —w?

(©) |w| < |, S0 > = 2T 2\ T

o Figure 3 shows some characteristic solutions. One observes the same behaviour as in the spinless
w1 case for the trajectories (Figure 3a): bounded in the electric field direction (component y(t) for
w2 |B| > |E|, unbounded for |B| < |E|. A similar behaviour happens for the spin, as shown in Figure
13 3b: s;(t) is unbounded for |B| < |E|. In fact, all numerical examples investigated show this
uas transition between bounded and unbounded behaviour happening both for iy and s at |B| = |E|.
s In Figure 3c one sees the variation of the velocity’s absolute value in function of t. This velocity
ue turns out to be always bounded.

a7z 4. Discussion

148 We have presented a complete treatment of the massless charged particle in interaction with
10 an external electromagnetic field. One of our new results is the proper definition of energy given
10 in (2.17) for the spinless particle and in (3.21) for the spinning one. The inverse of the einbein
11 function, 1/e(t), plays the role of the “kinetic energy”.

152 We have considered both the pseudo-classical supersymmetric theory with odd Grassmann
153 parameters, suitable for a canonical quantization, and the classical theory with spin described by
s« real valued functions, which we have argued to better describe the classical limit of the quantum
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1.00f o = = = s s AT S a R L A

4
0.95¢

(c) Velocity |v(t)].

Figure 3. Particle trajectories in the z = 0 plane, spin s;(t) and velocity |v| = |x(¢)| for a constant
electric field E in the positive y direction and a constant magnetic field B in the positive z direction.
Parameters’ values are chosen : charge § = 1, energy £ = 2, initial spin s(0) = (0,0,0.5) and
initial velocity v(0) = (vgy, 0.9,0), vy being the largest of the solutions of the constraint (3.23).
The following field configurations have been chosen: B = 3.2, E = 2 (solid lines); B = E = 2
(dotted lines); B = 0.8, E = 2 (dashed lines); B = 0, E = 2 (dotted-dashed lines). The B = 0
trajectory would be on the upper vertical axis in case of v(0) = (voy, 1,0).

155 theory in terms of expectation values. The drawback of the latter description is the absence of
156 an action principle and the incompatibility of the full system of equations excepted for special
157 external field configurations, such as a constant one.

158 It is for a constant field configuration that we have calculated explicit solutions showing
150 characteristic behaviours of the particle, in particular the fact that due to the interaction of the
10 spin with the external field its velocity is in general different from the velocity of light, without
161 contradiction with Lorentz invariance.

162 This latter result would of course generate conflict with causality, as tachyons do, and may
13 constitute an argument explaining the absence of such particles in the realm of fundamental
1a  physics. On the other hand, there would be no such problem in application in condensed matter
s physics, such as graphene, where the critical velocity which plays the role of the "velocity of light"
166 1is far smaller than c [1,2].
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