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Abstract: Direct measurement of strain within muscle is important for understanding muscle 8 
function in health and disease. Current technology (kinematics, dynamometry, electromyography) 9 
provides limited ability to measure strain within muscle. Regional fiber orientation and length are 10 
related with active/passive strain within muscle. Currently, ultrasound imaging provides the only 11 
non-invasive means of observing regional fiber orientation within muscle during dynamic tasks. 12 
Previous attempts to automatically estimate fiber orientation from ultrasound are not adequate, 13 
often requiring manual region selection, feature engineering, providing low-resolution estimations 14 
(one angle per muscle), and deep muscles are often not attempted. Here, we propose 15 
deconvolutional neural networks (DCNN) for estimating fiber orientation at the pixel-level. 16 
Dynamic ultrasound images sequences of the calf muscles were acquired (25Hz) from 8 healthy 17 
volunteers (4 male, ages: 25–36, median 30). A combination of expert annotation and 18 
interpolation/extrapolation provided labels of regional fiber orientation for each image. We then 19 
trained DCNNs both with and without dropout using leave one out cross-validation. Our results 20 
demonstrated robust estimation of regional fiber orientation to within 5° error, which was 21 
comparable to previous methods. The methods presented here provide new potential to study 22 
muscle in disease and health. 23 

Keywords: ultrasound; b-mode; skeletal muscle; fascicle orientation; pennation angle; fiber 24 
orientation; fiber tract; fascicle tract; convolutional neural network; deconvolutional neural network 25 

 26 

1. Introduction 27 

This paper presents a novel application of deconvolutional neural networks for estimating full 28 
regional skeletal muscle fiber orientation directly from standard frame rate (25Hz) b-mode 29 
ultrasound images. In recent years, ultrasound has become a valuable and ubiquitous clinical and 30 
research tool for understanding the changes which take place within muscle in ageing, disease, 31 
atrophy, and exercise. Ultrasound has been proposed [1] as a non-invasive alternative to 32 
intramuscular electromyography (iEMG) for measuring twitch frequency, useful for early the 33 
diagnosis of motor neuron disease (MND). Ultrasound has also recently demonstrated application to 34 
rehabilitative biofeedback [2]. Other computational techniques have been developed for muscle-35 
ultrasound analysis which would allow estimation of changes in muscle length during contraction[3], 36 
and changes in fiber orientation and length [4]–[8]. Regional muscle fiber orientation (curvature) and 37 
length change when muscle is under active (generated internally through contraction) and/or passive 38 
strain (generated externally through joint movements or external pressure) [9], [10]. Muscle fiber 39 
orientation is one of the main identifying features of muscle state [11]. Below, we review the previous 40 
computational methods which attempt to automatically estimate fascicle orientation from ultrasound 41 
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images of skeletal muscle. We do not consider feature tracking based approaches [8], [12], since 42 
within ultrasound feature tracking is an ill-posed problem, leading to tracking drift and feature 43 
dropout due low signal to noise ration and out of plane feature motion [13]. 44 

Previous attempts to automatically estimate fiber orientation directly from b-mode ultrasound 45 
images are inadequate, typically requiring manual region identification, a priori feature engineering, 46 
presumptuous problem approach (e.g. fascicles and connective tissues appear as straight lines), 47 
and/or typically providing low resolution estimates (i.e. one angle for an entire muscle region). 48 
Further, to our knowledge, nobody has attempted the deep (more challenging) muscles. All previous 49 
methods depend on some parameterization of features such as Gabor wavelets [4], [5], and/or edge 50 
detectors and vessel enhancement filters [4]–[8], [14]–[16]. In all cases, parameters are empirically 51 
chosen and/or are based on assumptions about how the descriptive features will present within an 52 
image. In the studies we are aware of, parameters are chosen presumptuously or empirically rather 53 
than tuned with a multiple-fold cross-validation set, and since the authors unanimously write that 54 
results are sensitive to parameter changes, the assumption is that real world performance may not be 55 
as optimistic as reported. 56 

Zhou and colleagues [17] developed a method based on the Revoting Hough Transform (RVHT) 57 
which provides an estimate of the overall fiber orientation in a single muscle, the gastrocnemius in 58 
the calf. Based upon the incorrect assumption that the fiber paths are straight lines, they use the RVHT 59 
to detect an empirically predetermined number of lines within a manually defined region of interest 60 
and then take the median orientation of all detected lines as the overall orientation of the fibers. The 61 
approach of Zhou and colleagues is fundamentally limited to detecting straight lines, whereas muscle 62 
fibers do not always present that way. When observing muscle fibers using ultrasound, there are 63 
many other features which can appear as straight lines (blood vessels, noise/dropout, 64 
artefacts/reflections, skin/fat layers, connective tissues, etc…). These fundamental facts are a strong 65 
limiting factor to the potential of methods such as the RVHT and the Radon Transform [7]. 66 

Rana and colleagues [5] introduced a method which potentially allowed estimation of local 67 
orientation, although after suggesting this, the mean of local orientations is used to produce another 68 
method which provides an estimate of the overall fiber orientation. Local orientations were identified 69 
by convolving a bank of Gabor Wavelet filters with a processed version of the image. They compare 70 
their proposed method with manual annotations from 10 experts and the Radon Transform, which 71 
like the Hough Transform (or RVHT) is a method which can be used for detecting straight lines in 72 
images. Both the Radon Transform and Wavelet methods require a preprocessing step described as 73 
vessel enhancement filtering, which enhances anisotropic features within the image. The vessel 74 
enhancement method is parametric, where parameters were chosen empirically with no cross-75 
validation or evaluation of results over varying parameters. Their results showed that the Radon 76 
Transform was not significantly different to the expert annotations, whereas the Wavelet method was 77 
significantly different. Other than significance values, the only accessible results they report are mean 78 
differences (1.41°) between the Wavelet method and the expert annotations of real images, and mean 79 
differences between both the Radon and Wavelet method applied to synthetic images with known 80 
orientations (< 0.06°). Although the Wavelet method performed comparatively poorly, the authors 81 
rightly suggest that this approach has potential to allow tracking of fiber paths throughout the 82 
muscle, whereas Radon and Hough Transform methods do not. 83 
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Namburete and colleagues [6] expanded upon the methods of Rana and colleagues [5], 84 
developing the hypothesis that regional fiber orientation can be tracked using local orientated Gabor 85 
Wavelets and vessel enhancement filters, for the first time going beyond linear approximations to the 86 
overall orientation. The proposed extension is to convolve the local orientations with a median filter, 87 
which effectively smooths the local orientations. The fiber trajectories are then tracked between the 88 
muscle boundaries on a continuous coordinate system with linear (following the dominant 89 
orientation in a local 15 × 15-pixel region centered on the current fiber track) steps of 15 pixels. Finally, 90 
curvature is quantified using the Frenet-Serret curvature formula [18]. Namburete’s method differs 91 
significantly from all preceding methods because it provides an estimation of local fiber orientation, 92 
rather than a more global estimate. However, the authors do not provide an estimate of the error for 93 
example when comparing to expert annotations; instead they evaluate errors on synthetic images 94 
with known orientations, which are trivial. Further, they do not apply this method to the deeper 95 
muscles, which are even more challenging. 96 

Several important problems have been identified as unaddressed from a review of previous 97 
methods for estimating full regional fiber orientation in multiple layers of muscle; most commonly, 98 
the lack of error evaluation on real data, estimating overall fiber orientation and not local orientation, 99 
limited application to superficial muscles only, and presumptuous justification for chosen 100 
parameters. We propose to address these problems by introducing advanced machine learning 101 
methods and cross-validation against expert annotation of real data. In recent years the popularity of 102 
machine learning (in particular neural networks) has surged since a number of successive 103 
algorithmic, methodological, and computational hardware developments were introduced [19]–[23]. 104 
The application of machine learning to estimating local fiber orientations has thus far not been 105 
considered. In recent years, the development of deconvolutional neural networks (DCNN) allows 106 
robust regression (heatmaps [24]–[26]) or classification (semantic segmentation [27]) of pixel level 107 
labels in full resolution images, without any feature engineering or preprocessing (i.e. all parameters 108 
are learned from data, and cross-validated against held-out validation and test sets). Therefore, we 109 
expect DCNNs to perform well at predicting fiber orientation heat maps from ultrasound images of 110 
muscle. For comparison we implement a version of the wavelet method described by Namburete, 111 
and colleagues [6], since no data are presented on the accuracy of their method on real ultrasound 112 
images. 113 

2. Materials and Methods 114 

2.1. Deep Learning Software 115 

All neural network software was developed from scratch by the authors using C/C++ and 116 
CUDA-C (Nvidia Corporation, Santa Clara, California). No libraries other than the standard CUDA 117 
libraries (runtime version 8.0 cuda.h, cuda_runtime.h, curand.h, curand_kernel.h, 118 
cuda_occupancy.h, and device_functions.h) and the C++ 11 standard library were used. All DCNNs 119 
were trained on an Intel Xeon CPU E5-2697 v3 (2.60GHz), 64GB (2133 MHz), Nvidia with a TitanX 120 
(Maxwell) GPU. 121 
 122 
 123 
 124 
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2.2. Data Acquisition 125 

Ultrasound image data were recorded at 25Hz (AlokaSSD-5000 PHD, 7.5MHz) from the calf 126 
muscles (medial gastrocnemius and soleus) of 8 healthy volunteers (4 male, ages: 25-36, median 30) 127 
during dynamic maximum isometric voluntary contractions. Images represented a 6cm × 5cm 128 
(horizontal × vertical axes) cross-section of the calf muscles. Volunteers lay prone on a physio bed 129 
with their right ankle strapped to a immobilised pedal. Volunteers were asked to push their toes 130 
down against the pedal as hard as they could. A dynamometer (Cybex) recorded the torque at 100Hz 131 
at the ankle during the contraction. Matlab (Matlab, R2013a, The MathWorks Inc., Natick, MA) was 132 
used to acquire ultrasound frames and a hardware trigger was used to initiate recording at the start 133 
of each trial. 134 

2.3. Generating Ground Truth 135 

 Following data collection, we extracted all frames beginning one frame before contraction 136 
started, and ending with the frame when contraction peaked, where initial and peak contraction were 137 
identified manually. This resulted in a total of 504 images containing spatiotemporal variations in 138 
both fiber orientation and muscle thickness. Two experts were asked to manually identify fiber paths 139 
in all muscles/compartments in all images by marking a series of multiple-point lines/curves 140 
(typically 20-30 per muscle/compartment). The same experts were asked to identify the boundaries 141 
of the medial gastrocnemius (superficial muscle) and the boundaries and internal compartments 142 
(where visible) of the Soleus (deep muscle) by marking multiple-points lines/curves around the 143 
boundaries and visible intramuscular compartments. 144 
 To create labels for each pixel, first a blank image (matrix of zeros with equal dimensions to the 145 
ultrasound image) was created. Then, the angles along each of the annotated fiber lines were 146 
calculated, and for each pixel under the lines the calculated angle was stored. The result was an image 147 
of mostly zeroes and a few angled lines, where the value of the non-zero pixels represents the local 148 
angle of the line intersecting each pixel. Then, within each muscle/compartment (defined by the 149 
experts), nearest neighbor interpolation was used to fill the gaps between lines, followed by nearest 150 
neighbor extrapolation to fill the muscle/compartment. Between muscles/compartments, nearest 151 
neighbor interpolation was also used to fill the gaps. All other pixels (outside muscle, e.g. skin) were 152 
set to zero. Following, additional data were created to introduce variation in the data/labels and help 153 
prevent over-fitting, by randomly (uniform) rotating each image and corresponding labels/angles 154 
between -5° and 5°, thus doubling the size dataset to 1008. 155 

 
(a) (b) (c) (d) 

Figure 1. Image annotation. (a) shows the raw ultrasound image, (b) shows expert annotated line 156 
traces of visible fibre paths, (c) shows nearest neighbor region filling of annotated fiber paths within 157 
annotated muscles/compartments, (d) shows line traces over the filled regions. The colors in (b)-(d) 158 
represent the local fibre orientation in degrees (see colour bar in (c)). 159 

 160 
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2.4. Wavelet Filter Bank Method 161 

 The wavelet method was implemented faithful to the original paper [6]. A bank of 180 Gabor 162 
wavelet filters was generated spanning 0°-179° in 1° increments using, 163 ݃ሺݔ, ሻݕ = −݁൬ሺೣషೖషభሻమሺ೤షೖషభሻమష೏ೖ ൰ cos ቀଶగ൫ሺ௫ି௞ିଵሻ ୡ୭ୱሺఈሻିሺ௬ି௞ିଵሻ ୱ୧୬ሺఈሻ൯௙ ቁ, 164 

where k is the kernel size (k = 20), d is a damping term (d = 51.243), α is the orientation, and f is the 165 
spatial frequency (f = 7). Initially, all parameters were set as originally described in [6], and after a 166 
first analysis, some parameters (f and k) were varied (f = 9, f = 11, f = 13, k = f*3-1) to give some scope 167 
to the potential of this method on real data. Vessel enhancement was performed using a Matlab 168 
version of the Frangi multiscale vessel enhancement filter [28] which can be found here [29]. 169 
Following [6], filtering was performed at 3 resolutions, 2, 3, and 4. Following a first analysis, a second 170 
analysis was done at resolutions, 4, 6, and 8, for all variants of the Gabor wavelet filters described 171 
above. 172 
 To analyse an image, the image was filtered with the vessel enhancement filter and then 173 
convolved with the entire wavelet filter bank. At each spatial location in the image, we take the α 174 
corresponding to the filter with the highest convolution in that location. The result is a map of local 175 
orientations. Following [6], the image was then convolved with a 35 × 35 median filter resulting in 176 
the final map of local fiber orientations. 177 

2.5. Deconvolution Neural Network Method 178 

 Our primary concern when deciding on a DCNN architecture (number of layer and units per 179 
layer) was having a large enough model to learn the training set. Our secondary concern was training 180 
time, since we planned to execute an 8-fold cross-validation. Addressing the latter concern, both 181 
input images and labels were down-sampled (bilinear interpolation) to 128 × 128 pixels. Addressing 182 
the former concern, the DCNN implemented 16 convolutional filters in the input layer, with 4 183 
additional convolutional layers, each with double the number of filters in the preceding 184 
convolutional layer. Between convolutional layers, the spatial dimensions were down-sampled (max-185 
pooling) by a factor of 2. A dense fully connected layer of 512 nodes was fully connected to an initial 186 
up-sampling (2 × 2 max-un-pooling) layer, followed by a deconvolution layer. An additional 4 up-187 
sampling with deconvolutional layers following, completes the network architecture, with the final 188 
layer being a full 128 × 128 resolution regression map. Every layer consisted of rectified linear units 189 
(ReLU), with the exception of the final (output) layer, which consisted of linear units. The DCNN was 190 
trained by minimizing mean square error (MSE) between the labels and the output layer using online 191 
stochastic gradient descent (batch size of 1 sample). 192 
 193 
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Figure 2. DCNN schematic. On the far left the grayscale input image is connected to a series of 194 
convolutional (Conv.) and max-pooling (Pool.) layers, followed by a series of fully connected (FC.) 195 
layers, followed by a series of max-un-pooling (UnPool.) and deconvolutional (DeConv.). The green, 196 
blue and red arrows and numbers represent the vertical and horizontal axes, and the number of filters 197 
(or depth/color channels with respect to the input/output layers) respectively in each layer. This 198 
network has 1,286,656 units (neurons), and 4,983,552 trainable weights/biases (synapses). 199 

2.6. DCNN Cross-Validation and Regularization 200 

 To optimize and test generalization (estimated real-world performance), leave one person out 201 
cross-validation was performed on a DCNN with a small amount of L2 weight decay, 5e-4, to prevent 202 
the weights from growing too large. The weights of the DCNN were initialized using Xavier 203 
initialization [30]. To train the DCNN we used a learning rate of 2e2 and weight gradient momentum 204 
of 9.5e-1, for a maximum of 200 full batch iterations (approx. 200,000 weight updates). All learning 205 
parameters were chosen empirically on a small fraction of the training data. The DCNN was trained 206 
8 distinct times (one for each person), each time reinitializing the network and leaving a different 207 
person out for testing, and randomly splitting the remaining data (7 people) into validation and 208 
training sets (10% and 90% respectively). Prior to training, each pixel of the input images were 209 
normalized over the training set to zero mean and unit variance, and each pixel of the output images 210 
were simply divided by a constant (45) so that each pixel fell between -1 and +1. Validation and test 211 
errors were observed periodically, and the test error recorded at the lowest validation error (early 212 
stopping method) gave results for the validation set and the test set (estimated real-world 213 
generalization error) for the held-out person. Test results for all held-out participants were combined 214 
to reveal the performance of the DCNN. 215 

3. Results 216 

Following model optimization of the wavelet and DCNN methods, both methods were 217 
compared against the ground truth labels using a range of error measures, thus making the work 218 
accessible and comparable to others. In sections 3.1 and 3.2 results are presented respectively for the 219 
wavelet method and the DCNN method. With respect to data ranges, within the GM muscle, the 220 
maximum range of angles within a single muscle region was 34.84°, whereas the maximum range of 221 
angles over all participants was 76.58°. Within the Sol muscle (compartment 1), the maximum range 222 
of angles within a single muscle region was 35.02°, whereas the maximum range of angles over all 223 
participants was 64.92°. Within the Sol muscle (compartment 2), the maximum range of angles within 224 
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a single muscle region was 65.15°, whereas the maximum range of angles over all participants was 225 
79.05°. 226 

3.1. Wavelet Method 227 

 
GM Sol (1st compartment) Sol (2nd compartment) 

Figure 3. Wavelet parameter tuning. This graphic depicts how the error changes with respect to the 228 
parameters of the Frangi filter (res), and the Gabor wavelet filters (k). 229 

 230 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4. Representative wavelet visual result. (a) shows the raw image, (b) shows the vessel-231 
enhanced image, (c) shows the ground truth, (d) shows the result of Gabor wavelet convolution with 232 
(b), (e) shows the result of a 35 × 35 median filter applied to (d), (f) shows line traces of (e). It is clear, 233 
when comparing (e) to (c), that the heatmaps partial match within the GM region, but almost not at 234 
all in the Sol region. The line trace visually confirms that the fibre traces are roughly aligned with the 235 
visible fibres in the raw image in the GM muscle, and the second compartment of the Sol muscle only. 236 
 237 
The wavelet method was evaluated using the optimal parameters (within the range of 238 

parameters investigated) for each muscle/compartment, separately. To find the optimal parameters 239 
within each muscle, the local orientation over each pixel identified by the wavelet method was 240 
compared to each pixel of the ground truth by root mean square error (RMSE) (see fig. 3). Within the 241 
parameters we investigated, for the GM muscle, smaller wavelet filters resulted in smaller RMSE for 242 
the higher-resolution Frangi filter (res= [4, 6, 8]), conversely larger wavelet filters results in smaller 243 
RMSE for the lower-resolution Frangi filter. Within the parameters we investigated, the first 244 
compartment of the Sol muscle yields best results with the higher-resolution Frangi filter and larger 245 
wavelet filters. Conversely, within the parameters we investigated, the second compartment of the 246 
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Sol muscle yields best results for smaller wavelet filters and lower-resolution Frangi filter. The 247 
models with the lowest RMSE were compared to ground truth using mean difference (MD) and mean 248 
absolute error (MAE), to be compared with the DCNN method (section 3.2). 249 
 For the optimal models within each muscle/compartment, the deviations of predicted local fibre 250 
orientations from ground truth were much too high to be useful in any real context, particularly in 251 
the Sol (compartment 1) muscle, which reports an optimal RMSE of over 26° (see fig. 3). Discrepancies 252 
were much lower in the GM and Sol (compartment 2) muscles at 11.3° and 7.1°, respectively. Visual 253 
comparisons were also made by comparing the wavelet analysis, presented as a heat-map, to the 254 
ground truth, also presented as a heat-map (see fig. 4). Visual comparison revealed quite sporadic 255 
agreement between wavelet predictions and ground truth. Visual comparison also revealed that any 256 
agreement between wavelet predictions and ground truth was not only heavily dependent on the 257 
presence of well-defined muscle fibre tracts, but also on the ability of the Frangi filter to extract those 258 
features. 259 

Application of the wavelet method was computationally expensive using the Matlab framework, 260 
with full regional analysis (whole image including all muscles) taking between one and two hours to 261 
process all 504 images for a single set of parameters. We note that this can be significantly improved 262 
upon with the use of graphics processing units (GPUs) and/or a full compiled language (such as 263 
C/C++). 264 

3.2. DCNN Method 265 

The DCNN method was evaluated using the optimal models as identified by cross-validation 266 
(see sec. 2.6). Following, the output heat-map from the DCNN for all 504 images was compared to 267 
the ground truth using mean difference (MD) and mean absolute error (MAE), to be compared with 268 
the wavelet method (see sec. 3.1). Visual comparisons were also made by comparing the DCNN 269 
predictions, presented as a heat-map, to the ground truth, also presented as a heat-map (see fig. 5). 270 
The most immediate result of visual comparisons was the ability of the DCNN to ‘color-code’ the 271 
correct regions; the GM and Sol (compartment 1) muscles typically present with opposing fibre 272 
orientations, with negative angles in the Sol muscle and positive angles in the GM muscle. In almost 273 
all images the DCNN was able to identify the Sol and GM muscles simply by predicting negative and 274 
positive angles respectively for each compartment. Furthermore, this was broadly true for entire 275 
muscle regions, even where there were no visually identifiable fibre tracts (see fig. 5). 276 

 277 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Representative DCNN visual result. (a) shows the ground truth, (b) shows the output from 278 
the DCNN, (c) shows line traces of (b). Compare (b) to (a), and notice that the heatmaps differ around 279 
the deep aponeurosis (boundary between Sol and GM). The line traces confirm this, by depicting 280 
visually accurate fibre traces throughout each muscle/compartment until the deep aponeurosis, 281 
where curvature starts to increase rapidly. 282 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 November 2017                   doi:10.20944/preprints201711.0053.v1

http://dx.doi.org/10.20944/preprints201711.0053.v1


 

 

Table 1. Table of results per muscle/compartment. This table shows results computed by comparing 283 
predictions of each method, over all pixels (128 × 128 = 16384), to the ground truth. 284 

Muscle/ 
Compartment 

Error 
Measure Namburete, et al [6] Proposed (DCNN) 

GM 
MD 1 7.57° ± 8.37° 4.46° ± 10.50° 
MAE 2 8.23° ± 7.72° 8.32° ± 7.81° 
RMSE 3 11.29° 11.41° 

Sol 
(1st Compartment) 

MD 1 -22.84° ± 14.01° -7.62° ± 12.88° 
MAE 2 23.09° ± 13.61° 12.14° ± 8.75° 
RMSE 3 26.80° 14.97° 

Sol 
(2nd Compartment) 

MD 1 1.61° ± 6.92° 11.79° ± 10.86° 
MAE 2 5.03° ± 5.01° 13.33° ± 8.90° 
RMSE 3 7.11° 16.03° 

1 mean difference. 2 mean absolute error. 3 root mean square error. 285 

4. Discussion 286 
In this paper we reviewed the state of the art computational methods for estimating regional 287 

fibre orientation from ultrasound images of skeletal muscle. We found that the previous approaches 288 
were fundamentally lacking in their comparison to real ultrasound data, thus rendering them 289 
incomparable unless implemented. We also found that previous methods were targeted at estimating 290 
global/overall muscle fibre orientation by using some line detection technique such as the Hough or 291 
Radon transform [5], [7], [14], [17]. Fibres are known to curve within a muscle, and here we have also 292 
provided data in support of this, based on expert identification of fibre tracts within 3 293 
muscles/compartments over 8 people, which show how fibre orientation is different within a 294 
muscle/compartment (see paragraph 1 of Results section). 295 

In review of previous methods we found an approach which demonstrated potential to provide 296 
estimates of local orientation [5], [6]. The authors did not present any comparable data to assess the 297 
performance of this method on real ultrasound data, only reporting that there were significant 298 
differences between their method and expert annotations of fibre orientation in real ultrasound 299 
images. The authors also highlight weaknesses in their approach such as the need for manual region 300 
identification, where the region selected should contain visibly well-defined fibre tracts. We 301 
recognized the potential for this method to fail in the presence of noise, artefacts, other quasi-line 302 
structures (blood vessels, connective tissues, etc.), and other muscles where fibres do not present as 303 
clearly, such as the deep muscles. 304 

We proposed the application of a deep learning method known as deconvolutional neural 305 
networks (DCNN). We identified that such a method is capable of robust regression (heatmaps [24]–306 
[26]) or classification (semantic segmentation [27]) of pixel level labels in full resolution images. The 307 
advantage of a deep learning approach is that the model can learn to identify fibres in well-defined 308 
regions, interpolate between well-defined regions and extrapolate from regions to fill the 309 
muscle/compartment with predictions of local fibre orientation. Deep learning models can also learn 310 
to ignore regions with spurious (non-fibrous) features. After training a DCNN using 8-fold cross-311 
validation and early stopping using a validation set, we compared the results to the wavelet method 312 
applied to the same data. Results were compared within specific muscle regions (identified by two 313 
experts) since large variations were expected due to the challenging textural appearance of the deep 314 
muscles (Sol). Results revealed that both methods showed large deviations from the ground truth, 315 
however the DCNN method gave much more accurate predictions for the deep muscles than the 316 
wavelet method. Those predictions were also much more consistent as identified by standard 317 
deviations of the error metrics (see table. 1). Regardless of the similarity in performance, we suggest 318 
that the DCNN method could be improved with more sophisticated regularization (e.g. dropout and 319 
residual connections), or with additional labelled data. In contrast, although figure 3 indicates that 320 
there is scope to tune the wavelet method, it is much harder to do so in such a way which generalizes 321 
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and deals with all of the problems we identified as well as the original authors (image artefacts, 322 
spurious fibre features, noise, reflections, etc.). 323 

5. Conclusions 324 
In this paper have we provided the first comprehensive analysis of an existing and a novel 325 

computational method for estimating full regional fibre orientation from ultrasound images of 326 
human skeletal muscle. We have proposed a novel application of deep learning to a long-standing 327 
and challenging problem, and demonstrated state of the art results. We present analyses in a form 328 
which is comparable to any future developments, and we also publish our ultrasound and ground 329 
truth data to support this end. The application of DCNNs to this problem has opened up new 330 
potential to hi-resolution analysis of skeletal muscle, from prediction of motion maps to segmentation 331 
of muscles and other structures of interest. This paper provides further evidence that deep learning 332 
methods can surpass state of the art performance, even when there is not an abundance of labeled 333 
data available. With additional data we propose that this project could easily be extended 334 
successfully, and this preliminary muscle analysis step could very likely form part of a skeletal 335 
muscle analysis system which accurately predicts the passive and active muscle forces non-invasively 336 
directly from single ultrasound images and sequences. Such a contribution could enable early 337 
diagnoses of diseases such as MND, and would enable personalized musculoskeletal medical 338 
diagnosis, monitoring, treatment targeting, and care. 339 
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