Preprint
Article

Estimating Full Regional Skeletal Muscle Fibre Orientation from B-Mode Ultrasound Images Using Convolutional, Residual, and Deconvolutional Neural Networks

Altmetrics

Downloads

1491

Views

1269

Comments

0

This version is not peer-reviewed

Submitted:

19 January 2018

Posted:

19 January 2018

You are already at the latest version

Alerts
Abstract
Direct measurement of strain within muscle is important for understanding muscle function in health and disease. Current technology (kinematics, dynamometry, electromyography) provides limited ability to measure strain within muscle. Regional fiber orientation and length are related with active/passive strain within muscle. Currently, ultrasound imaging provides the only non-invasive means of observing regional fiber orientation within muscle during dynamic tasks. Previous attempts to automatically estimate fiber orientation from ultrasound are not adequate, often requiring manual region selection, feature engineering, providing low-resolution estimations (one angle per muscle), and deep muscles are often not attempted. Here, we propose deconvolutional neural networks (DCNN) for estimating fiber orientation at the pixel-level. Dynamic ultrasound images sequences of the calf muscles were acquired (25 Hz) from 8 healthy volunteers (4 male, ages: 25–36, median 30). A combination of expert annotation and interpolation/extrapolation provided labels of regional fiber orientation for each image. We then trained DCNNs both with and without dropout using leave one out cross-validation. Our results demonstrated robust estimation of regional fiber orientation with approximately 3° error, which was an improvement on previous methods. The methods presented here provide new potential to study muscle in disease and health.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Vision and Graphics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated