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3 1. Introduction

"

14 Partial fractional differential equations are nowadays both an important research subject
1z and a popular modeling approach. Despite of importance of mathematical models in two-
1e and three-dimensions for applications, most of the recent publications devoted to the fractional
» diffusion-wave equations dealt with the one-dimensional case. The literature dealing with the
1= multi-dimensional partial fractional differential equations is still not numerous and can be divided
1o into several groups as those devoted to the Cauchy problems on the whole space, the boundary-value
20 problems on the bounded domains, and of course to different types of equations including the
zn  single-term and the multi-term equations as well as the equations of the distributed order. Because
22 the focus of this paper is on the Cauchy problem for a model linear time- and space fractional
= diffusion-wave equation, we mention here only some important relevant publications.

24 The fundamental solution to the multi-dimensional time-fractional diffusion-wave equation
= with the Laplace operator was derived for the fist time by Kochubei in [13] and Schneider and
2 Wyss in [29] independently from each other in terms of the Fox H-function. Let us note that
2z in [13] the Cauchy problem for the general fractional diffusion equation with the regularized
2s fractional derivative (the Caputo fractional derivative in the modern terminology) and the general
2 second order spatial differential operator was investigated, too. In the series of publications
o [9]-[11], Hanyga considered mathematical, physical, and probabilistic properties of the fundamental
a1 solutions to the multi-dimensional time-, space- and space-time-fractional diffusion-wave equations,
sz  respectively. Recently, Luchko and his co-authors started to employ the method of the Mellin-Barnes
ss  integral representation to derive further properties of the multi-dimensional space-time-fractional
;s diffusion-wave equation (see e.g. [1], [2],[17]-[19]). Still, the list of the properties, particular cases,
ss  integral and series representations, asymptotic formulas, etc. known for the fundamental solution to
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ss the one-dimensional diffusion-wave equation (see e.g. [25]) is essentially more expanded compared to
sz the multi-dimensional case and thus further investigations of the multi-dimensional case are required.
38 In this paper, some new properties and particular cases of the fundamental solution to the
s multi-dimensional space- and time-fractional diffusion-wave equation are deduced. In the second
20 section, we recall the Mellin-Barnes representations of the fundamental solution that were derived
a1 in the previous publications of the author and his co-authors. In the third section, the Mellin-Barnes
«2 integral is used to get two new representations of the fundamental solution in form of the Mellin
s convolution of the special functions of the Wright type. The fourth section is devoted to derivation
4 of some new closed form formulas for the fundamental solution. In particular, an open problem of
«s representation of the fundamental solution to the two-dimensional neutral-fractional diffusion-wave
« equation in terms of the known elementary or special functions is solved.

«z 2. Problem formulation and auxiliary results

48 In this section we present a problem formulation and some auxiliary results that will be used in
a0 the rest of the paper.

so  2.1. Problem formulation

51 In this paper, we deal with the multi-dimensional space- and time-fractional diffusion-wave
s2 equation in the following form:

DPu(x,t) = —(=A)3u(x,t), xE€R", t>0,1<a<2 0<p<2, )
53 where (—A)? is the fractional Laplacian and Df is the Caputo time-fractional derivative of order
54 ﬁ.
55 The Caputo time-fractional derivative of order > 0 is defined by the formula
n
Dfu(x,t): (Ifﬁaatf’l) (), n—-1<p<n neN, )
56 where I} is the Riemann-Liouville fractional integral:
1t -1
o t—1)"  u(x, t)dt for v >0,
(I?u)(t) — JT() fO( ) ( ) Y
u(x, t) for v =0.
57 The fractional Laplacian (—A)? is defined as a pseudo-differential operator with the symbol |x|*

58 ([27,28])

(F(=8)3F) () = x*(F f)(x), G)
where (F f)(x) is the Fourier transform of a function f at the point ¥ € R" defined by
(FAE) = fx) = [ Flx)dx. @

so For0 < a <m, m € Nand x € R", the fractional Laplacian can be also represented as a hypersingular
e integral ([28]):

$ 1 (ARf) ()
_A 2 = dh
(R0 = s [ i ©)
o1 with a suitably defined finite differences operator (A} f) (x) and a normalization constant d, ,, («).
62 According to [28], the representation (5) of the fractional Laplacian in form of the hypersingular

es integral does not depend on m, m € N provided o < m.
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64 Let us note that in the one-dimensional case the equation (1) is a particular case of a more general
es equation with the Caputo time-fractional derivative and the Riesz-Feller space-fractional derivative
es that was discussed in detail in [25]. For a = 2, the fractional Laplacian (—A)? is just —A and thus the
ez equation (1) is a particular case of the time-fractional diffusion-wave equation that was considered
e in many publications including, say, [3], [6], [11], [13], [14], [16], and [29]. For &« = 2 and B = 1, the
e equation (1) is reduced to the diffusion equation and for « = 2 and § = 2 it is the wave equation that
70 justifies its denotation as a fractional diffusion-wave equation.

7 In this paper, we deal with the Cauchy problem for the equation (1) with the Dirichlet initial
72 conditions. If the order B of the time-derivative satisfies the condition 0 < 8 < 1, we pose an initial
73 condition in the form

u(x,0) = ¢(x), xeR" (6)
74 For the orders B satisfying the condition 1 < § < 2, the second initial condition in the form
ad
alt‘(x,O):o, x € R" @)
75 is added to the Cauchy problem.
76 Because the initial-value problem (1), (6) (or (1), (6)-(7), respectively) is a linear one, its solution

7z can be represented in the form

u(x,t) = [ Gopalx =2 9(0)dz,

78 where G, g , is the first fundamental solution to the fractional diffusion-wave equation (1), i.e.,
7o the solution to the problem (1), (6) with the initial condition

n
u(x,0) =J[6(xi), x=(x1,x,...,%,) €R"
i=1
80 or to the problem (1), (6)-(7) with the initial conditions

n
u(x,0) =] J6(xi), x=(x1,x,...,x,) €R"
i=1

81 and
ou "
g(X,O)—O, XER,
82 for0 < p<1lorl < B <2, respectively, with J being the Dirac delta function.
83 Thus the behavior of the solutions to the problem (1), (6) (or (1), (6)-(7), respectively) is determined

s« by the fundamental solution G, g, (x,t) and the focus of this paper is on derivation of the new
ss properties of the fundamental solution.

ss 2.2. Mellin-Barnes representations of the fundamental solution

87 A Mellin-Barnes representation of the fundamental solution to the multi-dimensional space- and
ss time-fractional diffusion-wave equation (1) was derived for the first time in [18] for the case B = « (see
e also [19]), in [2] for the case B = a/2, and in [1] for the general case. For the reader’s convenience, we
%o present here a short schema of its derivation.

o1 Application of the multi-dimensional Fourier transform (4) with respect to the spatial variable
o2 X € R”" to the equation (1) and to the initial conditions (6) with ¢(x) = [T/_; 6(x;) and (7) (the last
oz condition is relevant only if B > 1) leads to the ordinary fractional differential equation in the Fourier
ss domain
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Dy Gy pn(x,t) + [x|* Gy pu(x,t) =0, (8)
o5 along with the initial conditions
étx,ﬁ,n<K1 0) =1 (9)
96 in the case 0 < B < 1 or with the initial conditions
97

a 0 -
Gtx,ﬁ,n(KrO) = 1, &Ga,ﬁ,n(K/ 0) =0
inthecasel < B < 2.

(10)
In both cases, the unique solution of (8) with the initial conditions (9) or (9) and (10), respectively,
has the following form (see e.g. [15]):

100

ol t) = Eg <—|K|“t/3>

(11)
in terms of the Mittag-Leffler function E4(z) that is defined by a convergent series

Zn
101

Eg(z) = ) =, >0,zcC.
&= Lt P
Because of the asymptotic formula (see e.g. [5])

(12)

o (o
Eo (=) == L v i

102

-
o

+O0(Jx|1"™), meN, x = +o0, 0 < B < 2, (13)
we have the inclusion Glx,ﬁ,ﬂ € L1(R") under the condition # > 1 and thus the inverse Fourier
s transform of (11) can be represented as follows

1
Ga,ﬁ,n (Xz t) =

104

—1iK-X ERPALYT:] n
(zn)n/n" Eﬁ( |K|t>dK, x€eR",t>0. (14)
Because Eg (— |K|"‘tﬁ ) is a radial function, the known formula (see e.g. [28])

1

—iK- X 1_% e n
g Jo 0 e = B [ gy (ol ar

o

17 representation

(15)

for the Fourier transform of the radial functions can be applied, where ], denotes the Bessel
function with the index v (for the properties of the the Bessel function see e.g. [4]), and we arrive at the

1_1n
x|t72
Ga,ﬁ,n<xrt) = il

s ) o

(16)
whenever the integral in (16) converges absolutely or at least conditionally.
The representation (16) can be transformed to a Mellin-Barnes integral.
We start with the case |[x| =0 (x = (0,...,0)) and get the formula

1
G,X,ﬁ,n(o t) - W /n E,B(_|K|“tlg)d7c
that can be represented in the form

1 271z [
Ger,B,n(O’t): (27-[)11 (%) 0

E,;(—T“t/s) ™ ldr
due to the known formula (see e.g. [28])

(17)
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[ Fxlyax = 2t ARG (18)
R" r'(%) Jo
113 The asymptotics of the Mittag-Leffler function ensures convergence of the integral in (17) under

us  the condition 0 < n < a and thus for 1 < a < 2 the fundamental solution G, g , is finite at |x| = 0 only
us  in the one-dimensional case and we get the formula

1 1
Gup1(0,8) = — /OOE (—u)urVdu = i (H)r(—)
B a7t Jo B %4 T (1 _ é)
o

116 that is valid for« > 1if 0 < B < 2 and for « > 2 if B = 2. This formula is nothing else as an easy
uz  consequence from the known Mellin integral transform of the Mittag-Leffler function (see e.g. [21],
118 [26])

e — 0<®(s) <1 for 0 <B<2,

/ El;(—u) usfl du = F(S)r(l S) : (S) or .B (19)

0 I'(1-ps) 0<R(s) <1/2 for p=2.

110 The Mellin integral transform plays an important role in Fractional Calculus in general and

120 for derivation of the results of this paper in particular, so let us recall the definitions of the Mellin
11 ternasform and the inverse Mellin transform, respectively:

F16) = MFAE) = [ fEEdr, 1 <R(s) < 0)
—1 x 1 vHieo * —s
O =M@ =g [T T, T 0m<RE =y <m. @)
122 The Mellin integral transform exists in particular for the functions continuous on the intervals

12s (0,¢] and [E, +00) and integrable on the interval (¢, E) with any ¢, E, 0 < ¢ < E < +oo that satisfy
124 the estimates |f(7)| < Myt " for 0 < T < eand |f(7)| < Mpt 72 for T > E with 91 < 7 and
125 some constants My, M. In this case the Mellin integral transform f*(s) is analytic in the vertical strip
126 Y < R(s) =9 < 7.

127 If f is piecewise differentiable and T~ f(T) € L¢(0, o), then the formula (21) holds at all points
12s  Of continuity for f. The integral in the formula (21) has to be considered in the sense of the Cauchy
120 principal value.

130 For the general theory of the Mellin integral transform we refer the reader to [26]. Several
11 applications of the Mellin integral transform in fractional calculus are discussed in [18,21].

132 If the dimension 7 of the equation (1) is greater that one, the fundamental solution G, g , (x,t) has
133 an integrable singularity at the point |x| = 0.

134 Now we proceed with the case x # 0 and first discuss convergence of the integral in the integral

135 representation (16). It follows from the asymptotic formulas for the Mittag-Leffler function and the
13s  known asymptotic behavior of the Bessel function (see e.g. [4]) that the integral in (16) converges
137 conditionally in the case n < 2a + 1 and absolute in the case n < 24 — 1. Thus for 1 < a < 2 and
s 7 = 1,2,3 the integral in (16) is at least conditionally convergent.

130 Now the technique of the Mellin integral transform is applied to deduce a Mellin-Barnes
10 representation of the fundamental solution G, g ,,(x, t). In particular, we use the convolution theorem
11 for the Mellin integral transform that reads as

T

/Ooofl(f)fZ (%) d7 My 6 f (), 22)

142 where by M the juxtaposition of a function f with its Mellin transform f* is denoted.
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143 It can be easily seen that for x # 0 the integral at the right-hand side of the formula (16) is nothing
s else as the Mellin convolution of the functions
filr) = Ep(~7*19) and fo(r) = Bp e i1y ()
P (27)2 2 A\T
145 at the point y = ‘%
146 The Mellin transform of the Mittag-Leffler function (19), the known Mellin integral transform of
1z the Bessel function ([26])
T(v/2+5s)
T (2v/7) Fw/241—3) —R(v/2) < R(s) < 3/4,
148 and some elementary properties of the Mellin integral transform (see e.g. [21,26]) lead to the
14 Mellin transform formulas:
FRST(IA-3)
1(s) = R B L=, 0< R(s) <a,
_ X (1)5“ rG—3 n_1
S (s , 55 <R(s)<n.
150 These two formulas, the convolution theorem (22) for the Mellin transform, and the inverse Mellin

1 transform formula (21) result in the following Mellin-Barnes integral representation of the fundamental
= solution Gy g :

1

I

"
o

1
sz,ﬁ,n (X/ t) = X

|X‘_n 1 /7+100r(g—;)r(2)r(1_2) (M;) 75(;[5, (23)

e T-E)T()

183 where 7 — % < v < min(a, n). Starting with this representation and using simple linear variables
« substitutions, we can easily derive some other forms of this representation that will be useful for further
155 discussions. Say, the substitutions s — —s and then s — s — n in the Mellin-Barnes representation (23)
156 result in two other equivalent representations

1

[

1Ix|=" 1 fr+ico T (2 4+ )T (=3)T (14 £ -
Gupn(xt) = —|X|ﬂ / E+3)I (-)r+3) <|Xl|;> ds (24)
X 772 27'[1 y—ico I“(1+§S>I“ 7%) 2t
157 and
pn , —s
1 t % 1 YHico T (ST (2 — irl_ﬂ+§ X
Cupn(X,t) = oo —7 / ) (Z “; ( - 5“) ('l) ds (25)
( ) y—ico r(l—&n‘i‘ S) (f_j) 2ta
158 under the conditions — min(a, ) < 7 < 3 — % or max(n — a,0) < 7 < n, respectively.
159 Finally, let us demonstrate how these mtegral representations can be used, say, for deriving some

10 series representations of G, g, (x,t) and then its representations in terms of elementary or special
11 functions of the hypergeometric type. To this end, we consider a simple example. In the case f =1
12 and « = 2 (standard diffusion equation), the representation (25) takes the form (two pairs of the
1es  Gamma-functions in the integral at the right-hand side of (25) are canceled):

tm7 1 i g\ sz x|
G ,t) = 7n7/ I'5) (5 ds, z =
2,1,n(X ) 2(47.[)7 271 y—ico (2) (2) = \/E

168 Substitution of the variables s — 2s leads to an even simpler representation
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73 1 e z\ 7% ||
G ,tzin—./ T'(s) (= ds, z = —.
21,(%, 1) (470)% 271 Jy—ioo (s) (2) NG
165 According to the Cauchy theorem, the contour of integration in the integral at the right-hand side
166 Of the last formula can be transformed to the loop L_c starting and ending at —co and encircling all
17 poles sy = —k, k=0,1,2,... of the function I'(s). Taking into account the Jordan lemma, the formula
_1)k
ress— (I'(s) = ( o k=0,1,2,...
168 and the Cauchy residue theorem lead to a series representation of Gy 1 ,,(X, f):
$73  ptico ZN\ 2 7 & (=1)k sz\2% x|
G x,tzi,,/ I'(s) (= ds = - =) ,z=-—.
20 (1) (47) % Jyioo ()(2) (47)3 k;o ! (2) NG
169 Thus the fundamental solution Gy 1 , to the n-dimensional diffusion equation takes its standard
1o form:
1 [x[?
G 1) = —— . 26
2,1,n (X ) (m)n exp ( At ) ( )
i 2.3. Special functions of the Wright type
172 The fundamental solutions to different time-, space, or time- and space-fractional partial

s differential equations are closely connected to the special functions of the hypergeometric type. In the
17a  general situation, some particular cases of the Fox H-function are often involved (see e.g. [13] and
s [29]). However, for particular cases of the orders of the fractional derivatives, the H-function can be
e sometimes reduced to some simpler special functions, mainly of the Wright-type (see e.g. [22] for the
177 one-dimensional case of the time-fractional diffusion-wave equation). Because the Fox H-function
s is still not investigated in all details and in particular, no packages for its numerical calculation
170 are available, this reduction is very welcome. In this paper, some new reduction formulas for the
10 fundamental solution to the multi-dimensional time- and space-fractional diffusion-wave equation (1)
1 will be derived. In this subsection, we shortly discuss the special functions of the Wright type that
2 appear in these derivations.

1

J

1

3

1

[

1

®

183 We start with the Wright function
B ppa—-s C (27)
Wyu(z) = —— u>-1,a,z¢ 27
W= LT (a4 k)
184 that was introduced for the first time in [30] in the case p > 0. In particular, in [30] and [31], Wright

s investigated some elementary properties and asymptotic behavior of the function (27) in connection
1es  With his research in the asymptotic theory of partitions.

1

)

187 Because of the relation

1@ = (3) Wi (-37). 28)

188 the Wright function can be considered as a generalization of the Bessel function J,(z). In its turn,
180 the Wright function is a particular case of the Fox H-function (see e.g. [8] or [12]):

(0,1),(1—a,p) ] )
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190 The Wright function is an entire function for all real values of the parameter y (both positive
11 and negative) under the condition —1 < y, but its asymptotic behavior is different in the cases y > 0,
12y =0,and u < 0 (see [32] for details).

103 Two particular cases of the Wright function, namely, the functions M(z;8) = W;_g_g(—2)
ws and F(z; B) = Wp,_p(—z) with the parameter B between zero and one have been introduced and
105 investigated in detail in [23,24]. These functions play an important role as fundamental solutions of the
s Cauchy and signaling problems to the one-dimensional time-fractional diffusion-wave equation ([22]).

107 In this paper, a four parameters Wright function in the form
0 k
Wia ), (bv) g ST CERTL uveR, a b zeC (30)
108 will be used, too. Wright himself investigated this function in [33] in the case > 0, v > 0. For

1o 4=y =1o0rb=v =1, respectively, the four parameters Wright function is reduced to the Wright
200 function (27). In [20], Luchko and Gorenflo investigated the four parameters Wright function for the
201 first time in the case when one of the parameters u or v is negative. In particular, they proved that the
202 function W, ) 5,)(2) is an entire function provided that0 < p +v, a,b € C.

203 It is important to emphasize that the function W, ) ;,,)(z) can have an algebraic asymptotic
204 expansion on the positive real semi-axis in the case of suitably restricted parameters (see [20] for
205 details):

L1 x(@=1=0)/(=p)
W = 31
A P X N (e e e e
—i L +0O(x@ =L/ =1y L O(x 1 P), x = +o0
= T(b—vk)I'(a — pk)
206 when0 <v/3<—pu<v<2 LPeN
207 In the important case j + v = 0, the four parameters Wright function is not en entire function

20s anymore. Indeed, in this case the convergence radius of the series from (30) is equal to one, not to
200 infinity, as can be seen from the asymptotics of the series terms as k — co:

‘F(a - vk)ll"(b + k) ‘ -

sin(rt(a — vk)) T'(1 —a + vk) ‘ _

T I'(b+ vk)
_ [cosh(mS(@)) (pey1-a-t [1 + O(k—l)} k — +oo
T ’ ’
210 In the chain of the equalities above, the following known formulas for the Gamma-function were
2 employed:
I'z) =«
[(1—-z) sin(mz)’
II:EZ i Z; =gt b {1 + O(sfl)] , |s| = 400, |arg(s)| < 7.
212 Finally, we mention here the generalized Wright function that is defined by the following series

23 (in the case of its convergence):

(a1, A1), ..., (ap, Ap) . ] - i [T T(oi + Aik) 2 (32)

b4 [ ;z| =
poa (bl,Bl) (bq, Bq) k=0 H?:l F(bi+BZ~k) k!
214 This function was introduced and investigated by Wright in [33]. For details regarding the
25 generalized Wright function we refer the readers to the recent book [7].
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=6 3. New integral representations of the fundamental solution
217 In the previous section, we derived the following integral representation of the fundamental
ze  solution
Gapn(Xt) = X2 /OOE ( r“tﬁ) T2 4 (tlx]) dT (33)
Dt,ﬂ,i’l 4 (27_[)% 0 ﬂ 7_1 .
210 In this section, we demonstrate how the Mellin-Barnes representations of the fundamental solution

220 can be employed to obtain other integral representations of the same type. The idea is very simple.
21 Say, let us start with the Mellin-Barnes representation (25) and consider the kernel function

FHrE-—a)rt-g+3a)
LD{,‘B,H (S) = ﬁ ‘B . (34)
r 1—En+as>r(%—§)
222 When the kernel function is represented as a product of two factors, the convolution theorem for

223 the Mellin integral transform can be applied and we get an integral representation of G, g , of the type
224 (33). Say, we got the integral representation (33) by employing the Mellin integral transform formulas
225 for the Mittag-Leffler function and for the Bessel function, i.e., by representing the kernel function
226 Ly p,u(5) as the following product:

r2-3)r(1—-2+: r(5
th,ﬁ,n(s) — (a lx) ( o tx) % n(Z)S . (35)
F(1—§n+§s> r(z-3)
227 Let us consider other possibilities of representation of the kernel function L, g ,,(s) as a product of

228 two factors. Of course, these factors should be chosen in a way that makes it possible to easily obtain
220 the inverse Melling integral transform of these factors in terms of the known elementary or special
230 functions. In the following theorem, two possible representations are given.

2 Theorem 1. Let the inequalities 1 < o < 2, 0 < B < 2 hold true. Then the first fundamental solution
232 Gy g Of the multi-dimensional space- and time-fractional diffusion-wave equation (1) has the following integral
233 representations of the Mellin convolution type:

Gapn t)—L/Oo “Trilyy L DR (36)
w0 = Ty o €T o \ Ty | AT TP 02

B 1 o (5.%5) Tth
Gupaloe) = s Jy W0 0 [ ) iz o 0

23 Proof. To make calculations easier, let us first perform the variables substitution s — 2s in the integral
235 representation (25). We get

pn .
2t % 1 e T ()T (2—25)T(1—2+ 25 = X
Gopnlxt) = 1o —r Tm/ I (aﬁ s )zﬁ ( Ll ) (%) “ds, z= % (38)
(47r)2 e F(l—;n—i—;s)l‘(j—s) 2ta
236 Now we represent the kernel function of the last integral as follows:

“E)T(i-t+3s)
fn+s) T (3 -)

(39)

237 The inverse Mellin integral transform of T (s) is just the exponential function exp(—T1) ([26]):
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(0= [T ds = (0
T) = — s)T %ds=¢e"".
h 2711 Jy—ico
238 To calculate the inverse Mellin transform of the second factor, the variables substitution s — %s is

230 first applied. We then get the formula

w1 e TE-9T-24) g
fZ(T)_ZZTL'i[y_ioo 1"(1_5;,1_‘_[35)1"(%_%5) (T ) ds. (41)

240 To get a series representation of the function f;, we employ the standard technique for the
2a  Mellin-Barnes integrals. According to the Cauchy theorem, the contour of integration in the integral at
222 the right-hand side of the last formula can be transformed to the loop L « starting and ending at +co
22 and encircling all poles sy = k+ %, k = 0,1,2,... of the function I' (£ —5). Taking into account the
2es  Jordan lemma and the formula for the residual of the Gamma-function, the Cauchy residue theorem
2es  leads to a series representation of f:

& (1) T(k+1) L
folt) == T2 . (42)
Zkgé kt' T (1+Bk)T (—5k) ( )
240 We thus got a representation of f, in terms of the four parametric Wright function (30):
& -
f(7) = 57T "2 Wa,p),0,-a/2) (—T Mz) (43)
247 that is valid under condition > «a/2.
248 Now we take into consideration the Mellin-Barnes integral (38), the formulas (40) and (43) and the

2e0  Mellin transform convolution theorem and thus get the integral representation (36) of the fundamental
250 solution.

251 The same procedure can be applied for other representations of the kernel function L, g, (s) as a
22 product of two factors. Let us again start with the Mellin-Barnes integral (25) and perform the variables
253 substitution s — as. Then we get the representation

Bn
tmw 1 gyl (Fs)T (2 —s)T(1—-2%+s _
Gopalit) = Aot [P BT EO i) g o L
(47)3 (1= Entps)T (4~ 4s) 2t
254 The next step is a representation of the kernel function of the last integral as a product of two
25 factors:
T2+ TEIT (-9 -
«,p,n N
g FG-39)  1(1-Lfntps)
256 Now let us calculate the inverse Mellin integral transforms of the factors. For the first factor we
=7 employ the same technique as above and get the series representation
Lo l(A-g4s) o, oD 1 e
T) = — — L s = THH=a, 46
A= 5] e TR L w T+ 4o
288 Thus the function f; can be represented in terms of the Wright function (27):
fl(T) = Tlig W%,% (—T). (47)

280 As to the second factor, we first get the series representation
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Yo T (45) T (2 — © (—1)kT (2 + 4k n
fz(T) _ i/ (25) (IX S) ds = ( 1'> (2 + 2 ) T*k*; (48)
271 Jy—ico T (1 —Buy 55) = k' T (1+ k)
260 and then its representation in terms of the generalized Wright function (32)
_ -t (3.3), 1
261 Putting the formulas (44), (47), and (49) together and applying the Mellin convolution theorem,

22 we finally arrive at the integral representation (37) of the fundamental solution in terms of the Wright
263 function and the generalized Wright function. [J

2ea 4. New closed form formulas for particular cases of the fundamental solution

265 In the paper [1], the Mellin-Barnes representations of the fundamental solution to the
2es multi-dimensional time- and space-fractional diffusion-wave equation were employed to derive some
2z new particular cases of the solution in terms of the elementary functions and the special functions
26 Of the Wright type. In particular, the closed form formulas for the fundamental solution to the
200 Neutral-fractional diffusion equation (8 = « in the equation (1)) in terms of elementary functions
20 were deduced for the odd-dimensional case (n = 1,3,...). In this section, we derive among other
= things a representation of the fundamental solution to the neutral-fractional diffusion equation in the
22 two-dimensional case in terms of the four parameters Wright function (30).

23 Theorem 2. The first fundamental solution to the multi-dimensional space- and time-fractional diffusion
2ra  equation (1) can be represented in terms of the Wright type functions

a) for B = w and n = 2 under the condition 1 < o < 2:

‘X|[x—a2wl_z _a)(aa <_ (m)"‘) Z:7(|X|<t'
a2 (X b) = \/%t2 (3-5-9).(5%) at (50)
ST e () s ?

V3 ) X )
Gy g2t = 555 1Y “\oeni) | !
220 =3 (1), 3.9), 09 <z<3t>z o

2rs Proof. Once again we start with the Mellin-Barnes integral representation (25) that for § = a and
zre 1 = 2 takes the following form

1 e rrE-nra-ie (dy°
Gaﬂl(x,t)_&ﬁﬁ/qu r(_1+s)r(1_%) (2t> ds. (52)

277 The general theory of the Mellin-Barnes integrals (see e.g. [26]) says that for |x| < 2t a series
zre  representation of (52) can be obtained by transforming the contour of integration in the integral at
270 the right-hand side of (52) to the loop L_ starting and ending at —co and encircling all poles of the
20 functions T’ (§) and T' (1 — 2 + £). The problem is that in this case we have to take into consideration
21 the cases where some of the poles of T' (5) coincide with the poles T' (1 — 2 + £) and then the series
202 representation becomes to be very complicated.

283 To avoid this problem let us try to "eliminate" one of this Gamma-functions. Application of the
2sa  duplication formula for the Gamma-function
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22s—1 1
I'(2s) = I(s)I'{s+ =
2) = Z=1r (s+3)
285 to the function I' (—1 + s) (one of the Gamma-functions in the denominator of the kernel function

2e6  from the integral in (52)) results in the following representation:

r(1—s)—r<2(—§+;>> —25\/;r<—;+;>r(;).

287 Now we substitute the last formula into the integral in (52) and get another Mellin-Barnes
288 representation

142 1 pr+ioT (2 -S\T(1—245 -
Ga,:x,Z(Xlt):*tif/ ‘ G-Hr-5+3) <|X|> ds. (53)
0 /7T 2711 Joy—ico F(—%—I—%)F(l—%) t
280 In contrast to the representation (52), the numerator of the kernel function in (53) has just

200 one Gamma-function with the poles tending to minus infinity and one Gamma-function with the

201 poles tending to plus infinity and thus this representation is very suitable for derivation of a series

©

202 representation of Gy 42.
203 To proceed, the variables substitution s — as is first employed in the integral from (53). We get
20 then the representation

Gunatos) = L2 L [P LGIT AR 9 ()7, o0

V7T 271 Joy—ico F(—%Jr%s)l"(l—%s) t
205 To get the series representation of the Mellin-Barnes integral (54), we have to consider two cases:
206 1) |X| <t,
207 i) [X| > L.
208 In the first case, the contour of integration in the integral at the right-hand side of (54) can be

200 transformed to the loop L_« starting and ending at —oo and encircling all poles of the functions
I'(1—2+s5s). Taking into account the Jordan lemma and the formula for the residuals of the
s Gamma-function, the Cauchy residue theorem leads to the following series representation of Gy 4 2:

3

o
=)

2

e k()Y
Ga/a,Z(x,t)Zﬁkgo I r(%_%—%)r(%ﬁ-%k)' (55)

302 We thus arrive at the closed form formula
_[xje? x[\"
Guan2(D) = " Wiaos )80 \ 3 6)
303 in terms of the four parameters Wright function (30) that is valid for |x| < t.
304 In the case |x| > t, the contour of integration in the integral at the right-hand side of (54) can

305 be transformed to the loop L« starting and ending at +oco and encircling all poles of the functions
s06 I (% — s). Proceeding as in the case i), we first get a series representation of G, , 2 in the form

ay —k—
s ()
Graalot) = T2 L F(—40)T (3+5k) ~

3

307 and then the closed form formula
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Gua2(Xt) = |>\(/|; Wio,-8).(1%) <— <|Xt|>a> (58)

308 in terms of the four parameters Wright function that is valid for |x| > t.

300 Combining (56) and (58), the get the representation (50) of the fundamental solution G, 42 in
s10  terms of the four parameters Wright function.

a1 In the case |x| = t both series are divergent and the problem of determining of a series
sz representation of G, 45 is more complicated and will be considered elsewhere.

213 The method described above can be used for derivation of other closed form formulas for

s1e  particular cases of the fundamental solution G, g, in terms of the Wright type functions. Say, let us
a5 consider the case f = %a and n = 2 (because of the condition § < 2, in this case the inequalities
s 1 <a< % have to be satisfied). The Mellin-Barnes representation of G, 302 is as follows:

143 1 Yo T (ST (2 —8\T (1 =2+ 8 —s
Ga31x2( t):fii‘/ (2) ( oc) ( 1X+IX) (|Xl) ds. (59)
& 477 2711 Jo—ico T(—2+3s)T(1-3%) 2t2
a17 To proceed, let us apply the multiplication formula for the Gamma-function

T'(ms) = m™~ 5 27r HF(S—i— > =2,34,...

s18 with m = 3 to the Gamma-function T (—2 + 3s) from the denominator of the kernel function
s from the Mellin-Barnes representation (59). We thus get the representation

243 = 20 LYY o opir (224 L LN 1
F( 2+25>F<3< 3+2s>>3 272%(2m) F( 3+2S>F< 3+2S>F(2s).

320 By applying this formula to (59) and by variables substitution s — as we arrive at the following
sz Mellin-Barnes representation:

_3 _E Fioo T 2 T(1— 2 o\ —S
G, 2 s(008) = 3372 1 /V i (2=5)T(1—2+5) x| 3 ds. (60)
2% 470 27T 270 Jo—ico T(-2+4%)T (—%+%s) T(1-4%s) \\2(3t)3

322 Using the technique presented above, the representation (60) leads first to a series representation
23 of G w302 in form

)Y
(_ (z(st)3> >
§+8K)T (343K T (3K

324 that can be represented as a particular case of the generalized Wright function (51). O

sz,%tx,Z( 7'[2|X|2 2 (

s2s 5. Discussion

326 This paper is devoted to some applications of the Mellin-Barnes integral representations of the
;22 fundamental solution to the multi-dimensional space- and time-fractional diffusion-wave equation
s2s  for analysis of its properties. In particular, this representation is used to get two new representations
s20  Of the fundamental solution in form of the Mellin convolution of the special functions of the Wright
30 type and for derivation of some new closed form formulas for particular cases of the fundamental
a1 solution. Among other things, an open problem of representation of the fundamental solution to the
;32 two-dimensional neutral-fractional diffusion-wave equation in terms of the known special functions
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:s is solved. The potential of the Mellin-Integral representation of the fundamental solution to the
;s multi-dimensional space- and time-fractional diffusion-wave equation is of course not yet ladled. It
s can be used among other things for derivation of the new closed form formulas for its particular
:36  cases, asymptotical formulas for the fundamental solution, and relationships between the fundamental
sz solutions for different values of the derivatives orders a and . These problems will be considered
a3s  elsewhere in the further publications.
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