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1. Introduction13

Partial fractional differential equations are nowadays both an important research subject14

and a popular modeling approach. Despite of importance of mathematical models in two-15

and three-dimensions for applications, most of the recent publications devoted to the fractional16

diffusion-wave equations dealt with the one-dimensional case. The literature dealing with the17

multi-dimensional partial fractional differential equations is still not numerous and can be divided18

into several groups as those devoted to the Cauchy problems on the whole space, the boundary-value19

problems on the bounded domains, and of course to different types of equations including the20

single-term and the multi-term equations as well as the equations of the distributed order. Because21

the focus of this paper is on the Cauchy problem for a model linear time- and space fractional22

diffusion-wave equation, we mention here only some important relevant publications.23

The fundamental solution to the multi-dimensional time-fractional diffusion-wave equation24

with the Laplace operator was derived for the fist time by Kochubei in [13] and Schneider and25

Wyss in [29] independently from each other in terms of the Fox H-function. Let us note that26

in [13] the Cauchy problem for the general fractional diffusion equation with the regularized27

fractional derivative (the Caputo fractional derivative in the modern terminology) and the general28

second order spatial differential operator was investigated, too. In the series of publications29

[9]-[11], Hanyga considered mathematical, physical, and probabilistic properties of the fundamental30

solutions to the multi-dimensional time-, space- and space-time-fractional diffusion-wave equations,31

respectively. Recently, Luchko and his co-authors started to employ the method of the Mellin-Barnes32

integral representation to derive further properties of the multi-dimensional space-time-fractional33

diffusion-wave equation (see e.g. [1], [2],[17]-[19]). Still, the list of the properties, particular cases,34

integral and series representations, asymptotic formulas, etc. known for the fundamental solution to35
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the one-dimensional diffusion-wave equation (see e.g. [25]) is essentially more expanded compared to36

the multi-dimensional case and thus further investigations of the multi-dimensional case are required.37

In this paper, some new properties and particular cases of the fundamental solution to the38

multi-dimensional space- and time-fractional diffusion-wave equation are deduced. In the second39

section, we recall the Mellin-Barnes representations of the fundamental solution that were derived40

in the previous publications of the author and his co-authors. In the third section, the Mellin-Barnes41

integral is used to get two new representations of the fundamental solution in form of the Mellin42

convolution of the special functions of the Wright type. The fourth section is devoted to derivation43

of some new closed form formulas for the fundamental solution. In particular, an open problem of44

representation of the fundamental solution to the two-dimensional neutral-fractional diffusion-wave45

equation in terms of the known elementary or special functions is solved.46

2. Problem formulation and auxiliary results47

In this section we present a problem formulation and some auxiliary results that will be used in48

the rest of the paper.49

2.1. Problem formulation50

In this paper, we deal with the multi-dimensional space- and time-fractional diffusion-wave51

equation in the following form:52

Dβ
t u(x, t) = −(−∆)

α
2 u(x, t), x ∈ Rn, t > 0, 1 < α ≤ 2, 0 < β ≤ 2, (1)

where (−∆)
α
2 is the fractional Laplacian and Dβ

t is the Caputo time-fractional derivative of order53

β.54

The Caputo time-fractional derivative of order β > 0 is defined by the formula55

Dβ
t u(x, t) =

(
In−β
t

∂nu
∂tn

)
(t), n− 1 < β ≤ n, n ∈ N , (2)

where Iγ
t is the Riemann-Liouville fractional integral:56

(Iγ
t u)(t) =

 1
Γ(γ)

∫ t
0 (t− τ)γ−1u(x, τ) dτ for γ > 0,

u(x, t) for γ = 0.

The fractional Laplacian (−∆)
α
2 is defined as a pseudo-differential operator with the symbol |κ|α57

([27,28]):58 (
F (−∆)

α
2 f
)
(κ) = |κ|α(F f )(κ) , (3)

where (F f )(κ) is the Fourier transform of a function f at the point κ ∈ Rn defined by

(F f )(κ) = f̂ (κ) =
∫
Rn

eiκ·x f (x) dx . (4)

For 0 < α < m, m ∈ N and x ∈ Rn, the fractional Laplacian can be also represented as a hypersingular59

integral ([28]):60

(−∆)
α
2 f (x) =

1
dn,m(α)

∫
Rn

(
∆m

h f
)
(x)

|h|n+α
dh (5)

with a suitably defined finite differences operator
(
∆m

h f
)
(x) and a normalization constant dn,m(α).61

According to [28], the representation (5) of the fractional Laplacian in form of the hypersingular62

integral does not depend on m, m ∈ N provided α < m.63
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Let us note that in the one-dimensional case the equation (1) is a particular case of a more general64

equation with the Caputo time-fractional derivative and the Riesz-Feller space-fractional derivative65

that was discussed in detail in [25]. For α = 2, the fractional Laplacian (−∆)
α
2 is just −∆ and thus the66

equation (1) is a particular case of the time-fractional diffusion-wave equation that was considered67

in many publications including, say, [3], [6], [11], [13], [14], [16], and [29]. For α = 2 and β = 1, the68

equation (1) is reduced to the diffusion equation and for α = 2 and β = 2 it is the wave equation that69

justifies its denotation as a fractional diffusion-wave equation.70

In this paper, we deal with the Cauchy problem for the equation (1) with the Dirichlet initial71

conditions. If the order β of the time-derivative satisfies the condition 0 < β ≤ 1, we pose an initial72

condition in the form73

u(x, 0) = ϕ(x) , x ∈ Rn. (6)

For the orders β satisfying the condition 1 < β ≤ 2, the second initial condition in the form74

∂u
∂t

(x, 0) = 0 , x ∈ Rn (7)

is added to the Cauchy problem.75

Because the initial-value problem (1), (6) (or (1), (6)-(7), respectively) is a linear one, its solution76

can be represented in the form77

u(x, t) =
∫
Rn

Gα,β,n(x− ζ, t)ϕ(ζ) dζ,

where Gα,β,n is the first fundamental solution to the fractional diffusion-wave equation (1), i.e.,78

the solution to the problem (1), (6) with the initial condition79

u(x, 0) =
n

∏
i=1

δ(xi) , x = (x1, x2, . . . , xn) ∈ Rn

or to the problem (1), (6)-(7) with the initial conditions80

u(x, 0) =
n

∏
i=1

δ(xi) , x = (x1, x2, . . . , xn) ∈ Rn

and81

∂u
∂t

(x, 0) = 0 , x ∈ Rn,

for 0 < β ≤ 1 or 1 < β ≤ 2, respectively, with δ being the Dirac delta function.82

Thus the behavior of the solutions to the problem (1), (6) (or (1), (6)-(7), respectively) is determined83

by the fundamental solution Gα,β,n(x, t) and the focus of this paper is on derivation of the new84

properties of the fundamental solution.85

2.2. Mellin-Barnes representations of the fundamental solution86

A Mellin-Barnes representation of the fundamental solution to the multi-dimensional space- and87

time-fractional diffusion-wave equation (1) was derived for the first time in [18] for the case β = α (see88

also [19]), in [2] for the case β = α/2, and in [1] for the general case. For the reader’s convenience, we89

present here a short schema of its derivation.90

Application of the multi-dimensional Fourier transform (4) with respect to the spatial variable91

x ∈ Rn to the equation (1) and to the initial conditions (6) with ϕ(x) = ∏n
i=1 δ(xi) and (7) (the last92

condition is relevant only if β > 1) leads to the ordinary fractional differential equation in the Fourier93

domain94
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Dβ
t Ĝα,β,n(κ, t) + |κ|αĜα,β,n(κ, t) = 0, (8)

along with the initial conditions95

Ĝα,β,n(κ, 0) = 1 (9)

in the case 0 < β ≤ 1 or with the initial conditions96

Ĝα,β,n(κ, 0) = 1,
∂

∂t
Ĝα,β,n(κ, 0) = 0 (10)

in the case 1 < β ≤ 2.97

In both cases, the unique solution of (8) with the initial conditions (9) or (9) and (10), respectively,98

has the following form (see e.g. [15]):99

Ĝα,β,n(κ, t) = Eβ

(
−|κ|αtβ

)
(11)

in terms of the Mittag-Leffler function Eβ(z) that is defined by a convergent series100

Eβ(z) =
∞

∑
n=0

zn

Γ(1 + β n)
, β > 0, z ∈ C. (12)

Because of the asymptotic formula (see e.g. [5])101

Eβ(−x) = −
m

∑
k=1

(−x)−k

Γ(1− βk)
+ O(|x|−1−m), m ∈ N, x → +∞, 0 < β < 2, (13)

we have the inclusion Ĝα,β,n ∈ L1(Rn) under the condition α > 1 and thus the inverse Fourier102

transform of (11) can be represented as follows103

Gα,β,n(x, t) =
1

(2π)n

∫
Rn

e−iκ·xEβ

(
−|κ|αtβ

)
dκ , x ∈ Rn , t > 0 . (14)

Because Eβ

(
−|κ|αtβ

)
is a radial function, the known formula (see e.g. [28])104

1
(2π)n

∫
Rn

e−iκ·x ϕ(|κ|) dκ =
|x|1− n

2

(2π)
n
2

∫ ∞

0
ϕ(τ)τ

n
2 J n

2−1(τ|x|) dτ (15)

for the Fourier transform of the radial functions can be applied, where Jν denotes the Bessel105

function with the index ν (for the properties of the the Bessel function see e.g. [4]), and we arrive at the106

representation107

Gα,β,n(x, t) =
|x|1− n

2

(2π)
n
2

∫ ∞

0
Eβ

(
−ταtβ

)
τ

n
2 J n

2−1(τ|x|) dτ , (16)

whenever the integral in (16) converges absolutely or at least conditionally.108

The representation (16) can be transformed to a Mellin-Barnes integral.109

We start with the case |x| = 0 (x = (0, . . . , 0)) and get the formula110

Gα,β,n(0, t) =
1

(2π)n

∫
Rn

Eβ(−|κ|αtβ)dκ

that can be represented in the form111

Gα,β,n(0, t) =
1

(2π)n
2π

n
2

Γ( n
2 )

∫ ∞

0
Eβ(−ταtβ) τn−1 dτ (17)

due to the known formula (see e.g. [28])112
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∫
Rn

f (|x|)dx =
2π

n
2

Γ( n
2 )

∫ ∞

0
τn−1 f (τ)dτ. (18)

The asymptotics of the Mittag-Leffler function ensures convergence of the integral in (17) under113

the condition 0 < n < α and thus for 1 < α ≤ 2 the fundamental solution Gα,β,n is finite at |x| = 0 only114

in the one-dimensional case and we get the formula115

Gα,β,1(0, t) =
t−

β
α

απ

∫ ∞

0
Eβ(−u) u

1
α−1 du =

t−
β
α

απ

Γ
(

1
α

)
Γ
(

1− 1
α

)
Γ
(

1− β
α

)
that is valid for α > 1 if 0 < β < 2 and for α > 2 if β = 2. This formula is nothing else as an easy116

consequence from the known Mellin integral transform of the Mittag-Leffler function (see e.g. [21],117

[26]):118

∫ ∞

0
Eβ(−u) us−1 du =

Γ(s)Γ(1− s)
Γ(1− βs)

if

{
0 < <(s) < 1 for 0 < β < 2,

0 < <(s) < 1/2 for β = 2.
(19)

The Mellin integral transform plays an important role in Fractional Calculus in general and119

for derivation of the results of this paper in particular, so let us recall the definitions of the Mellin120

ternasform and the inverse Mellin transform, respectively:121

f ∗(s) = (M f (τ))(s) =
∫ ∞

0
f (τ)τs−1 dτ , γ1 < <(s) < γ2, (20)

f (τ) = (M−1 f ∗(s))(τ) =
1

2πi

∫ γ+i∞

γ−i∞
f ∗(s)τ−s ds , τ > 0 , γ1 < <(s) = γ < γ2 . (21)

The Mellin integral transform exists in particular for the functions continuous on the intervals122

(0, ε] and [E,+∞) and integrable on the interval (ε, E) with any ε, E, 0 < ε < E < +∞ that satisfy123

the estimates | f (τ)| ≤ M1τ−γ1 for 0 < τ < ε and | f (τ)| ≤ M2τ−γ2 for τ > E with γ1 < γ2 and124

some constants M1, M2. In this case the Mellin integral transform f ∗(s) is analytic in the vertical strip125

γ1 < <(s) = γ < γ2.126

If f is piecewise differentiable and τγ−1 f (τ) ∈ Lc(0, ∞), then the formula (21) holds at all points127

of continuity for f . The integral in the formula (21) has to be considered in the sense of the Cauchy128

principal value.129

For the general theory of the Mellin integral transform we refer the reader to [26]. Several130

applications of the Mellin integral transform in fractional calculus are discussed in [18,21].131

If the dimension n of the equation (1) is greater that one, the fundamental solution Gα,β,n(x, t) has132

an integrable singularity at the point |x| = 0.133

Now we proceed with the case x 6= 0 and first discuss convergence of the integral in the integral134

representation (16). It follows from the asymptotic formulas for the Mittag-Leffler function and the135

known asymptotic behavior of the Bessel function (see e.g. [4]) that the integral in (16) converges136

conditionally in the case n < 2α + 1 and absolute in the case n < 2α− 1. Thus for 1 < α ≤ 2 and137

n = 1, 2, 3 the integral in (16) is at least conditionally convergent.138

Now the technique of the Mellin integral transform is applied to deduce a Mellin-Barnes139

representation of the fundamental solution Gα,β,n(x, t). In particular, we use the convolution theorem140

for the Mellin integral transform that reads as141 ∫ ∞

0
f1(τ) f2

( y
τ

) dτ

τ

M←→ f ∗1 (s) f ∗2 (s) , (22)

where by M←→ the juxtaposition of a function f with its Mellin transform f ∗ is denoted.142
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It can be easily seen that for x 6= 0 the integral at the right-hand side of the formula (16) is nothing143

else as the Mellin convolution of the functions144

f1(τ) = Eβ(−τα tβ) and f2(τ) =
|x|−n

(2π)
n
2

τ−
n
2−1 J n

2−1

(
1
τ

)
at the point y = 1

|x| .145

The Mellin transform of the Mittag-Leffler function (19), the known Mellin integral transform of146

the Bessel function ([26])147

Jν(2
√

τ)
M←→ Γ(ν/2 + s)

Γ(ν/2 + 1− s)
, −<(ν/2) < <(s) < 3/4,

and some elementary properties of the Mellin integral transform (see e.g. [21,26]) lead to the148

Mellin transform formulas:149

f ∗1 (s) =
t−

β
α s

α

Γ( s
α )Γ(1−

s
α )

Γ(1− β
α s)

, 0 < <(s) < α ,

f ∗2 (s) =
|x|−n

(2π)
n
2

(
1
2

)− n
2 +s Γ

( n
2 −

s
2
)

Γ
( s

2
) ,

n
2
− 1

2
< <(s) < n .

These two formulas, the convolution theorem (22) for the Mellin transform, and the inverse Mellin150

transform formula (21) result in the following Mellin-Barnes integral representation of the fundamental151

solution Gα,β,n:152

Gα,β,n(x, t) =
1
α

|x|−n

π
n
2

1
2πi

∫ γ+i∞

γ−i∞

Γ
( n

2 −
s
2
)

Γ
( s

α

)
Γ
(
1− s

α

)
Γ
(

1− β
α s
)

Γ
( s

2
)

(
2t

β
α

|x|

)−s

ds , (23)

where n
2 −

1
2 < γ < min(α, n). Starting with this representation and using simple linear variables153

substitutions, we can easily derive some other forms of this representation that will be useful for further154

discussions. Say, the substitutions s→ −s and then s→ s− n in the Mellin-Barnes representation (23)155

result in two other equivalent representations156

Gα,β,n(x, t) =
1
α

|x|−n

π
n
2

1
2πi

∫ γ+i∞

γ−i∞

Γ
( n

2 + s
2
)

Γ
(
− s

α

)
Γ
(
1 + s

α

)
Γ
(

1 + β
α s
)

Γ
(
− s

2
)

(
|x|
2t

β
α

)−s

ds (24)

and157

Gα,β,n(x, t) =
1
α

t−
βn
α

(4π)
n
2

1
2πi

∫ γ+i∞

γ−i∞

Γ
( s

2
)

Γ
( n

α −
s
α

)
Γ
(
1− n

α + s
α

)
Γ
(

1− β
α n + β

α s
)

Γ
( n

2 −
s
2
)
(
|x|
2t

β
α

)−s

ds (25)

under the conditions −min(α, n) < γ < 1
2 −

n
2 or max(n− α, 0) < γ < n, respectively.158

Finally, let us demonstrate how these integral representations can be used, say, for deriving some159

series representations of Gα,β,n(x, t) and then its representations in terms of elementary or special160

functions of the hypergeometric type. To this end, we consider a simple example. In the case β = 1161

and α = 2 (standard diffusion equation), the representation (25) takes the form (two pairs of the162

Gamma-functions in the integral at the right-hand side of (25) are canceled):163

G2,1,n(x, t) =
t−

n
2

2 (4π)
n
2

1
2πi

∫ γ+i∞

γ−i∞
Γ
( s

2

) ( z
2

)−s
ds, z =

|x|√
t
.

Substitution of the variables s→ 2s leads to an even simpler representation164
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G2,1,n(x, t) =
t−

n
2

(4π)
n
2

1
2πi

∫ γ+i∞

γ−i∞
Γ (s)

( z
2

)−2s
ds, z =

|x|√
t
.

According to the Cauchy theorem, the contour of integration in the integral at the right-hand side165

of the last formula can be transformed to the loop L−∞ starting and ending at −∞ and encircling all166

poles sk = −k, k = 0, 1, 2, . . . of the function Γ(s). Taking into account the Jordan lemma, the formula167

ress=−kΓ(s) =
(−1)k

k!
, k = 0, 1, 2, . . .

and the Cauchy residue theorem lead to a series representation of G2,1,n(x, t):168

G2,1,n(x, t) =
t−

n
2

(4π)
n
2

∫ γ+i∞

γ−i∞
Γ(s)

( z
2

)−2s
ds =

t−
n
2

(4π)
n
2

∞

∑
k=0

(−1)k

k!

( z
2

)2k
, z =

|x|√
t
.

Thus the fundamental solution G2,1,n to the n-dimensional diffusion equation takes its standard169

form:170

G2,1,n(x, t) =
1

(
√

4πt)n
exp

(
−|x|

2

4t

)
. (26)

2.3. Special functions of the Wright type171

The fundamental solutions to different time-, space, or time- and space-fractional partial172

differential equations are closely connected to the special functions of the hypergeometric type. In the173

general situation, some particular cases of the Fox H-function are often involved (see e.g. [13] and174

[29]). However, for particular cases of the orders of the fractional derivatives, the H-function can be175

sometimes reduced to some simpler special functions, mainly of the Wright-type (see e.g. [22] for the176

one-dimensional case of the time-fractional diffusion-wave equation). Because the Fox H-function177

is still not investigated in all details and in particular, no packages for its numerical calculation178

are available, this reduction is very welcome. In this paper, some new reduction formulas for the179

fundamental solution to the multi-dimensional time- and space-fractional diffusion-wave equation (1)180

will be derived. In this subsection, we shortly discuss the special functions of the Wright type that181

appear in these derivations.182

We start with the Wright function183

Wa,µ(z) =
∞

∑
k=0

zk

k!Γ(a + µk)
, µ > −1, a, z ∈ C (27)

that was introduced for the first time in [30] in the case µ > 0. In particular, in [30] and [31], Wright184

investigated some elementary properties and asymptotic behavior of the function (27) in connection185

with his research in the asymptotic theory of partitions.186

Because of the relation187

Jν(z) =
( z

2

)ν
W1+ν,1

(
−1

4
z2
)

, (28)

the Wright function can be considered as a generalization of the Bessel function Jν(z). In its turn,188

the Wright function is a particular case of the Fox H-function (see e.g. [8] or [12]):189

Wa,µ(−z) = H1,0
0,2

[
z

∣∣∣∣∣ −
(0, 1), (1− a, µ)

]
. (29)
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The Wright function is an entire function for all real values of the parameter µ (both positive190

and negative) under the condition −1 < µ, but its asymptotic behavior is different in the cases µ > 0,191

µ = 0, and µ < 0 (see [32] for details).192

Two particular cases of the Wright function, namely, the functions M(z; β) = W1−β,−β(−z)193

and F(z; β) = W0,−β(−z) with the parameter β between zero and one have been introduced and194

investigated in detail in [23,24]. These functions play an important role as fundamental solutions of the195

Cauchy and signaling problems to the one-dimensional time-fractional diffusion-wave equation ([22]).196

In this paper, a four parameters Wright function in the form197

W(a,µ),(b,ν)(z) :=
∞

∑
k=0

zk

Γ(a + µk)Γ(b + νk)
, µ, ν ∈ R, a, b, z ∈ C (30)

will be used, too. Wright himself investigated this function in [33] in the case µ > 0, ν > 0. For198

a = µ = 1 or b = ν = 1, respectively, the four parameters Wright function is reduced to the Wright199

function (27). In [20], Luchko and Gorenflo investigated the four parameters Wright function for the200

first time in the case when one of the parameters µ or ν is negative. In particular, they proved that the201

function W(a,µ),(b,ν)(z) is an entire function provided that 0 < µ + ν, a, b ∈ C.202

It is important to emphasize that the function W(a,µ),(b,ν)(z) can have an algebraic asymptotic203

expansion on the positive real semi-axis in the case of suitably restricted parameters (see [20] for204

details):205

W(a,µ),(b,ν)(x) =
L−1

∑
l=0

x(a−1−l)/(−µ)

(−µ)Γ(l + 1)Γ(b + ν(a− l − 1)/(−µ))
(31)

−
P

∑
k=1

x−k

Γ(b− νk)Γ(a− µk)
+ O(x(a−1−L)/(−µ)) + O(x−1−P), x → +∞

when 0 < ν/3 < −µ < ν ≤ 2, L, P ∈ N.206

In the important case µ + ν = 0, the four parameters Wright function is not en entire function207

anymore. Indeed, in this case the convergence radius of the series from (30) is equal to one, not to208

infinity, as can be seen from the asymptotics of the series terms as k→ ∞:209 ∣∣∣∣ 1
Γ(a− νk)Γ(b + νk)

∣∣∣∣ = ∣∣∣∣ sin(π(a− νk))
π

Γ(1− a + νk)
Γ(b + νk)

∣∣∣∣ =
=

∣∣∣∣cosh(π=(a))
π

(νk)1−a−b
[
1 + O(k−1)

]∣∣∣∣ , k→ +∞.

In the chain of the equalities above, the following known formulas for the Gamma-function were210

employed:211

Γ(z)
Γ(1− z)

=
π

sin(π z)
,

Γ(s + a)
Γ(s + b)

= sa−b
[
1 + O(s−1)

]
, |s| → +∞, | arg(s)| < π.

Finally, we mention here the generalized Wright function that is defined by the following series212

(in the case of its convergence):213

pΨq

[
(a1, A1), . . . , (ap, Ap)

(b1, B1) . . . (bq, Bq)
; z
]
=

∞

∑
k=0

∏
p
i=1 Γ(ai + Aik)

∏
q
i=1 Γ(bi + Bik)

zk

k!
. (32)

This function was introduced and investigated by Wright in [33]. For details regarding the214

generalized Wright function we refer the readers to the recent book [7].215
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3. New integral representations of the fundamental solution216

In the previous section, we derived the following integral representation of the fundamental217

solution218

Gα,β,n(x, t) =
|x|1− n

2

(2π)
n
2

∫ ∞

0
Eβ

(
−ταtβ

)
τ

n
2 J n

2−1(τ|x|) dτ . (33)

In this section, we demonstrate how the Mellin-Barnes representations of the fundamental solution219

can be employed to obtain other integral representations of the same type. The idea is very simple.220

Say, let us start with the Mellin-Barnes representation (25) and consider the kernel function221

Lα,β,n(s) =
Γ
( s

2
)

Γ
( n

α −
s
α

)
Γ
(
1− n

α + s
α

)
Γ
(

1− β
α n + β

α s
)

Γ
( n

2 −
s
2
) . (34)

When the kernel function is represented as a product of two factors, the convolution theorem for222

the Mellin integral transform can be applied and we get an integral representation of Gα,β,n of the type223

(33). Say, we got the integral representation (33) by employing the Mellin integral transform formulas224

for the Mittag-Leffler function and for the Bessel function, i.e., by representing the kernel function225

Lα,β,n(s) as the following product:226

Lα,β,n(s) =
Γ
( n

α −
s
α

)
Γ
(
1− n

α + s
α

)
Γ
(

1− β
α n + β

α s
) ×

Γ
( s

2
)

Γ
( n

2 −
s
2
) . (35)

Let us consider other possibilities of representation of the kernel function Lα,β,n(s) as a product of227

two factors. Of course, these factors should be chosen in a way that makes it possible to easily obtain228

the inverse Melling integral transform of these factors in terms of the known elementary or special229

functions. In the following theorem, two possible representations are given.230

Theorem 1. Let the inequalities 1 < α ≤ 2, 0 < β ≤ 2 hold true. Then the first fundamental solution231

Gα,β,n of the multi-dimensional space- and time-fractional diffusion-wave equation (1) has the following integral232

representations of the Mellin convolution type:233

Gα,β,n(x, t) =
1

(
√

π|x|)n

∫ ∞

0
e−ττ

n
2−1W(1,β),(0,−α/2)

(
− τα/2tβ

(|x|/2)α

)
dτ if β > α/2, (36)

Gα,β,n(x, t) =
1

(
√

π|x|)n

∫ ∞

0
Wα

2 , α
2
(−τ) 1Ψ1

[
( n

2 , α
2 )

(1, β)
;− τ tβ

(|x|/2)α

]
dτ. (37)

Proof. To make calculations easier, let us first perform the variables substitution s→ 2s in the integral234

representation (25). We get235

Gα,β,n(x, t) =
2
α

t−
βn
α

(4π)
n
2

1
2πi

∫ γ+i∞

γ−i∞

Γ (s) Γ
( n

α −
2
α s
)

Γ
(
1− n

α + 2
α s
)

Γ
(

1− β
α n + 2β

α s
)

Γ
( n

2 − s
) (

z2
)−s

ds , z =
|x|
2t

β
α

. (38)

Now we represent the kernel function of the last integral as follows:236

Lα,β,n(s) = Γ (s)×
Γ
( n

α −
2
α s
)

Γ
(
1− n

α + 2
α s
)

Γ
(

1− β
α n + 2β

α s
)

Γ
( n

2 − s
) . (39)

The inverse Mellin integral transform of Γ (s) is just the exponential function exp(−τ) ([26]):237
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f1(τ) =
1

2πi

∫ γ+i∞

γ−i∞
Γ(s) τ−s ds = e−τ . (40)

To calculate the inverse Mellin transform of the second factor, the variables substitution s→ α
2 s is238

first applied. We then get the formula239

f2(τ) =
α

2
1

2πi

∫ γ+i∞

γ−i∞

Γ
( n

α − s
)

Γ
(
1− n

α + s
)

Γ
(

1− β
α n + βs

)
Γ
( n

2 −
α
2 s
) (τ

α
2

)−s
ds. (41)

To get a series representation of the function f2, we employ the standard technique for the240

Mellin-Barnes integrals. According to the Cauchy theorem, the contour of integration in the integral at241

the right-hand side of the last formula can be transformed to the loop L+∞ starting and ending at +∞242

and encircling all poles sk = k + n
α , k = 0, 1, 2, . . . of the function Γ

( n
α − s

)
. Taking into account the243

Jordan lemma and the formula for the residual of the Gamma-function, the Cauchy residue theorem244

leads to a series representation of f2:245

f2(τ) =
α

2

∞

∑
k=0

(−1)k

k!
Γ(k + 1)

Γ (1 + βk) Γ
(
− α

2 k
) (τ

α
2

)−k− n
α . (42)

We thus got a representation of f2 in terms of the four parametric Wright function (30):246

f2(τ) =
α

2
τ−n/2 W(1,β),(0,−α/2)

(
−τ−α/2

)
(43)

that is valid under condition β > α/2.247

Now we take into consideration the Mellin-Barnes integral (38), the formulas (40) and (43) and the248

Mellin transform convolution theorem and thus get the integral representation (36) of the fundamental249

solution.250

The same procedure can be applied for other representations of the kernel function Lα,β,n(s) as a251

product of two factors. Let us again start with the Mellin-Barnes integral (25) and perform the variables252

substitution s→ αs. Then we get the representation253

Gα,β,n(x, t) =
t−

βn
α

(4π)
n
2

1
2πi

∫ γ+i∞

γ−i∞

Γ
(

α
2 s
)

Γ
( n

α − s
)

Γ
(
1− n

α + s
)

Γ
(

1− β
α n + βs

)
Γ
( n

2 −
α
2 s
) (zα)−s ds , z =

|x|
2t

β
α

. (44)

The next step is a representation of the kernel function of the last integral as a product of two254

factors:255

Lα,β,n(s) =
Γ
(
1− n

α + s
)

Γ
( n

2 −
α
2 s
) × Γ

(
α
2 s
)

Γ
( n

α − s
)

Γ
(

1− β
α n + βs

) . (45)

Now let us calculate the inverse Mellin integral transforms of the factors. For the first factor we256

employ the same technique as above and get the series representation257

f1(τ) =
1

2πi

∫ γ+i∞

γ−i∞

Γ
(
1− n

α + s
)

Γ
( n

2 −
α
2 s
) τ−s ds =

∞

∑
k=0

(−1)k

k!
1

Γ
(

α
2 + α

2 k
) τk+1− n

α . (46)

Thus the function f1 can be represented in terms of the Wright function (27):258

f1(τ) = τ1− n
α Wα

2 , α
2
(−τ). (47)

As to the second factor, we first get the series representation259
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f2(τ) =
1

2πi

∫ γ+i∞

γ−i∞

Γ
(

α
2 s
)

Γ
( n

α − s
)

Γ
(

1− β
α n + βs

) ds =
∞

∑
k=0

(−1)k

k!
Γ
( n

2 + α
2 k
)

Γ (1 + βk)
τ−k− n

α (48)

and then its representation in terms of the generalized Wright function (32)260

f2(τ) = τ−
n
α 1Ψ1

[
( n

2 , α
2 )

(1, β)
;− 1

τ

]
. (49)

Putting the formulas (44), (47), and (49) together and applying the Mellin convolution theorem,261

we finally arrive at the integral representation (37) of the fundamental solution in terms of the Wright262

function and the generalized Wright function.263

4. New closed form formulas for particular cases of the fundamental solution264

In the paper [1], the Mellin-Barnes representations of the fundamental solution to the265

multi-dimensional time- and space-fractional diffusion-wave equation were employed to derive some266

new particular cases of the solution in terms of the elementary functions and the special functions267

of the Wright type. In particular, the closed form formulas for the fundamental solution to the268

neutral-fractional diffusion equation (β = α in the equation (1)) in terms of elementary functions269

were deduced for the odd-dimensional case (n = 1, 3, . . . ). In this section, we derive among other270

things a representation of the fundamental solution to the neutral-fractional diffusion equation in the271

two-dimensional case in terms of the four parameters Wright function (30).272

Theorem 2. The first fundamental solution to the multi-dimensional space- and time-fractional diffusion273

equation (1) can be represented in terms of the Wright type functions274

a) for β = α and n = 2 under the condition 1 < α ≤ 2:

Gα,α,2(x, t) =


|x|α−2
√

πtα W( 1
2−

α
2 ,− α

2 ),( α
2 , α

2 )

(
−
(
|x|
t

)α)
if |x| < t,

|x|−2
√

π
W(0,− α

2 ),( 1
2 , α

2 )

(
−
(

t
|x|

)α)
if |x| > t.

(50)

b) for β = 3
2 α and n = 2 under the condition 1 < α ≤ 4

3 :

Gα, 3
2 α,2(x, t) =

√
3

2π2|x|2 1Ψ3

 (1, 1)(
1
3 , α

2

)
,
( 2

3 , α
2
)

,
(
0,− α

2
) ;−

(
|x|

2(3t)
3
2

)α
 . (51)

Proof. Once again we start with the Mellin-Barnes integral representation (25) that for β = α and275

n = 2 takes the following form276

Gα,α,2(x, t) =
1
α

t−2

4π

1
2πi

∫ γ+i∞

γ−i∞

Γ
( s

2
)

Γ
( 2

α −
s
α

)
Γ
(
1− 2

α + s
α

)
Γ (−1 + s) Γ

(
1− s

2
) (

|x|
2t

)−s
ds . (52)

The general theory of the Mellin-Barnes integrals (see e.g. [26]) says that for |x| ≤ 2t a series277

representation of (52) can be obtained by transforming the contour of integration in the integral at278

the right-hand side of (52) to the loop L−∞ starting and ending at −∞ and encircling all poles of the279

functions Γ
( s

2
)

and Γ
(
1− 2

α + s
α

)
. The problem is that in this case we have to take into consideration280

the cases where some of the poles of Γ
( s

2
)

coincide with the poles Γ
(
1− 2

α + s
α

)
and then the series281

representation becomes to be very complicated.282

To avoid this problem let us try to "eliminate" one of this Gamma-functions. Application of the283

duplication formula for the Gamma-function284
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Γ(2s) =
22s−1
√

π
Γ(s)Γ

(
s +

1
2

)
to the function Γ (−1 + s) (one of the Gamma-functions in the denominator of the kernel function285

from the integral in (52)) results in the following representation:286

Γ(1− s) = Γ
(

2
(
−1

2
+

s
2

))
=

2s−2
√

π
Γ
(
−1

2
+

s
2

)
Γ
( s

2

)
.

Now we substitute the last formula into the integral in (52) and get another Mellin-Barnes287

representation288

Gα,α,2(x, t) =
1
α

t−2
√

π

1
2πi

∫ γ+i∞

γ−i∞

Γ
( 2

α −
s
α

)
Γ
(
1− 2

α + s
α

)
Γ
(
− 1

2 + s
2

)
Γ
(
1− s

2
) (

|x|
t

)−s
ds . (53)

In contrast to the representation (52), the numerator of the kernel function in (53) has just289

one Gamma-function with the poles tending to minus infinity and one Gamma-function with the290

poles tending to plus infinity and thus this representation is very suitable for derivation of a series291

representation of Gα,α,2.292

To proceed, the variables substitution s→ αs is first employed in the integral from (53). We get293

then the representation294

Gα,α,2(x, t) =
t−2
√

π

1
2πi

∫ γ+i∞

γ−i∞

Γ
( 2

α − s
)

Γ
(
1− 2

α + s
)

Γ
(
− 1

2 + α
2 s
)

Γ
(
1− α

2 s
) (( |x|t

)α)−s

ds . (54)

To get the series representation of the Mellin-Barnes integral (54), we have to consider two cases:295

i) |x| < t,296

ii) |x| > t.297

In the first case, the contour of integration in the integral at the right-hand side of (54) can be298

transformed to the loop L−∞ starting and ending at −∞ and encircling all poles of the functions299

Γ
(
1− 2

α + s
)
. Taking into account the Jordan lemma and the formula for the residuals of the300

Gamma-function, the Cauchy residue theorem leads to the following series representation of Gα,α,2:301

Gα,α,2(x, t) =
t−2
√

π

∞

∑
k=0

(−1)k

k!

k!
((
|x|
t

)α)1+k− 2
α

Γ
(

1
2 −

α
2 −

α
2 k
)

Γ
(

α
2 + α

2 k
) . (55)

We thus arrive at the closed form formula302

Gα,α,2(x, t) =
|x|α−2
√

πtα
W( 1

2−
α
2 ,− α

2 ),( α
2 , α

2 )

(
−
(
|x|
t

)α)
(56)

in terms of the four parameters Wright function (30) that is valid for |x| < t.303

In the case |x| > t, the contour of integration in the integral at the right-hand side of (54) can304

be transformed to the loop L+∞ starting and ending at +∞ and encircling all poles of the functions305

Γ
( 2

α − s
)
. Proceeding as in the case i), we first get a series representation of Gα,α,2 in the form306

Gα,α,2(x, t) =
t−2
√

π

∞

∑
k=0

(−1)k

k!

k!
((
|x|
t

)α)−k− 2
α

Γ
(
− α

2 k
)

Γ
(

1
2 + α

2 k
) (57)

and then the closed form formula307
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Gα,α,2(x, t) =
|x|−2
√

π
W(0,− α

2 ),( 1
2 , α

2 )

(
−
(

t
|x|

)α)
(58)

in terms of the four parameters Wright function that is valid for |x| > t.308

Combining (56) and (58), the get the representation (50) of the fundamental solution Gα,α,2 in309

terms of the four parameters Wright function.310

In the case |x| = t both series are divergent and the problem of determining of a series311

representation of Gα,α,2 is more complicated and will be considered elsewhere.312

The method described above can be used for derivation of other closed form formulas for313

particular cases of the fundamental solution Gα,β,n in terms of the Wright type functions. Say, let us314

consider the case β = 3
2 α and n = 2 (because of the condition β ≤ 2, in this case the inequalities315

1 < α ≤ 4
3 have to be satisfied). The Mellin-Barnes representation of Gα, 3

2 α,2 is as follows:316

Gα, 3
2 α,2(x, t) =

1
α

t−3

4π

1
2πi

∫ γ+i∞

γ−i∞

Γ
( s

2
)

Γ
( 2

α −
s
α

)
Γ
(
1− 2

α + s
α

)
Γ
(
−2 + 3

2 s
)

Γ
(
1− s

2
) (

|x|
2t

3
2

)−s
ds . (59)

To proceed, let us apply the multiplication formula for the Gamma-function317

Γ(ms) = mms− 1
2 (2π)

1−m
2

m−1

∏
k=0

Γ
(

s +
k
m

)
, m = 2, 3, 4, . . .

with m = 3 to the Gamma-function Γ
(
−2 + 3

2 s
)

from the denominator of the kernel function318

from the Mellin-Barnes representation (59). We thus get the representation319

Γ
(
−2 +

3
2

s
)
= Γ

(
3
(
−2

3
+

1
2

s
))

= 3−
5
2+

3
2 s(2π)−1Γ

(
−2

3
+

1
2

s
)

Γ
(
−1

3
+

1
2

s
)

Γ
(

1
2

s
)

.

By applying this formula to (59) and by variables substitution s→ αs we arrive at the following320

Mellin-Barnes representation:321

Gα, 3
2 α,2(x, t) =

t−3

4π

3−
5
2

2π

1
2πi

∫ γ+i∞

γ−i∞

Γ
( 2

α − s
)

Γ
(
1− 2

α + s
)

Γ
(
− 2

3 + α
2 s
)

Γ
(
− 1

3 + α
2 s
)

Γ
(
1− α

2 s
)
((

|x|
2(3t)

3
2

)α)−s

ds . (60)

Using the technique presented above, the representation (60) leads first to a series representation322

of Gα, 3
2 α,2 in form323

Gα, 3
2 α,2(x, t) =

√
3

2π2|x|2
∞

∑
k=0

(
−
(
|x|

2(3t)
3
2

)α)k

Γ
(

1
3 + α

2 k
)

Γ
( 2

3 + α
2 k
)

Γ
(
− α

2 k
)

that can be represented as a particular case of the generalized Wright function (51).324

5. Discussion325

This paper is devoted to some applications of the Mellin-Barnes integral representations of the326

fundamental solution to the multi-dimensional space- and time-fractional diffusion-wave equation327

for analysis of its properties. In particular, this representation is used to get two new representations328

of the fundamental solution in form of the Mellin convolution of the special functions of the Wright329

type and for derivation of some new closed form formulas for particular cases of the fundamental330

solution. Among other things, an open problem of representation of the fundamental solution to the331

two-dimensional neutral-fractional diffusion-wave equation in terms of the known special functions332
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is solved. The potential of the Mellin-Integral representation of the fundamental solution to the333

multi-dimensional space- and time-fractional diffusion-wave equation is of course not yet ladled. It334

can be used among other things for derivation of the new closed form formulas for its particular335

cases, asymptotical formulas for the fundamental solution, and relationships between the fundamental336

solutions for different values of the derivatives orders α and β. These problems will be considered337

elsewhere in the further publications.338
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