

1 Article

2 Cryptic species diversity of rice hopper parasitoids in Southeast Asia

3 Christina Sann^{1*}, Franziska Wemheuer^{1,*}, Alexis Beaurepaire^{2,3}, Rolf Daniel⁴, Silvio Erler² and
4 Stefan Vidal¹

5 ¹ Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Grisebachstr. 6, 37077
6 Göttingen, Germany; fwemheu@gwdg.de (F.W.); svidal@gwdg.de (S.V.)

7 ² Molecular Ecology, Institut of Biology, Hoher Weg 4, 06099 Halle (Saale), Germany;
8 silvio.erler@zoologie.uni-halle.de (S.E.)

9 ³ Abeilles et Environment, INRA PACA, 84914 Avignon Cedex 9, France; alexis.beaurepaire@inra.fr
10 (A.B.)

11 ⁴ Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology,
12 University of Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany; rdaniel@gwdg.de (R.D.)

13 * Correspondence: Christina.Sann@agr.uni-göttingen.de (C.S.)

14 **Abstract:** On-going intensification of rice production systems in Southeast Asia is causing
15 devastating yield losses each year due to rice hoppers. Continuing development of immunity to
16 resistant rice varieties and pesticide application further complicate this problem. Hence, there is a
17 high demand for biological control agents. Egg parasitoid wasps are among the most important
18 natural enemies of rice hoppers such as *Nilaparvata lugens* and *Nephrotettix* spp. However, our
19 knowledge on their diversity is still very limited due to their small size and the lack of available
20 morphological information. Classifying these parasitoids is the first step to properly understand
21 their role in the rice agroecosystem. We used traditional morphological identification as well as
22 DNA sequencing of COI and 28S genes to investigate the diversity of four important hopper egg
23 parasitoid genera in the Philippines. Parasitoids of the genera *Anagrus* spp., *Oligosita* spp.,
24 *Gonatocerus* spp. and *Paracentrobria* spp. were collected in eight study landscapes located in Luzon.
25 We found discrepancies between the morphological and the molecular analysis. Morphological
26 and molecular results were only valid for *Paracentrobria* spp. *Anagrus* spp. and *Gonatocerus* spp.
27 showed more genetic diversity, than expected after the morphological analysis, indicating cryptic
28 species. The sequences for *Oligosita* spp. revealed less variation than expected. This is the first study
29 on molecular diversity of rice parasitoids in the Philippines. More research combining
30 morphological, behavioural and genetic methods as well as the establishment of a comprehensive
31 DNA database is urgently needed to assess the performance and suitability of these organisms as
32 biocontrol agents.

33 **Keywords:** DNA barcoding; genetic diversity; hymenopteran parasitoids; *Nephrotettix* spp.;
34 *Nilaparvata lugens*; rice

35 36 37 1. Introduction

38 Rice is the main food resource for more than half of world's population [1,2]. The rice
39 production system of Asia is one of the most important food production systems on Earth [3]. The
40 brown planthopper (BPH; *Nilaparvata lugens*, Stål 1854) and the green leafhopper (GLH; *Nephrotettix*
41 spp.) are among the economically major rice pests. These insects cause immense damages in the
42 Asian rice paddies through xylem sap feeding resulting in wilting of the rice crops which
43 subsequently die [4] as well as through the transfer of devastating viruses among fields [5,6]. So far,
44 the introduction of rice varieties resistant to BPH and GLH has not been successful as these pests
45 rapidly adapt to the new varieties [7,8]. Pesticide application further enhances the problem by
46 disturbing the rice agroecosystem, which can increase outbreak risk of hopper [7,9,10].

47 An alternative solution to the perpetual increasing application of synthetic pesticides in
48 Southeast Asia [1] is the biological control of rice pests using their natural enemies. BPH and GLH

49 are typically attacked by a wide range of natural enemies, such as spiders, predatory bugs,
50 dragonflies and egg parasitoid wasps from the *Mymaridae* and *Trichogrammatidae* family [11]. Among
51 these enemies, parasitoid species are of particular interest. These organisms are very mobile and can
52 disperse over large distances [12]. In addition, adults feed on pollen and nectar or the honeydew of
53 their sap-feeding hosts, whereas their larvae develop in the hopper eggs and disrupt the hoppers'
54 life cycles at the earliest possible stage [11]. In two previous studies on egg parasitoids of rice
55 hoppers, egg parasitism levels of more than 60% have been observed [13,14]. This is supported by
56 Drechsler & Settele [15], who showed that parasitoids can play a major role in controlling hoppers
57 pests in rice agroecosystems.

58 Despite their importance, knowledge about species composition and diversity of parasitoid
59 wasps especially in the tropics is still limited (but see Nishida, Wongsiri and Wongsiri [16] as well as
60 Gurr *et al.* [11]). The morphological species identification requires extensive taxonomic expertise and
61 is hampered by the small size (<1.5 mm) of the wasps as well as the limited amount of literature. To
62 date, molecular information on rice parasitoids from the Philippines is completely lacking.
63 Molecular methods have become a promising tool to resolve species identities [17–19]. Different
64 barcodes such as the mitochondrial cytochrome c oxidase I (COI) and fragments of the small or large
65 subunits of the ribosomal RNA (18S or 28S rRNA) genes have been applied to construct
66 hymenopteran and dipteran parasitoid phylogenies [20,21]. However, molecular analyses might not
67 only improve species identification but might also reveal cryptic species [22,23]. Smith *et al.* [24]
68 suggested to combine barcoding with morphology and natural history. A similar conclusion was
69 drawn by Padial and colleagues [25] in their review on an integrative taxonomy for improvement of
70 species discovery and description.

71 In a previous study, we investigated parasitoid wasps of *Nilaparvata lugens* (BPH) and
72 *Nephrotettix* spp. (GLH) in eight rice production landscapes located in Luzon, Philippines (Sann *et al.*
73 2017, unpublished data). We found that BPH was parasitized by the Chalcid genera *Anagrus* spp.
74 and *Oligosita* spp., while GLH was parasitized by the Chalcid genera *Gonatocerus* spp. and
75 *Paracentrobria* spp. In the present study, we analyzed the diversity of these genera by traditional
76 morphological and molecular techniques. The present study provides the first molecular
77 identification of parasitoid wasps in rice paddies in the Philippines, combined with a taxonomic
78 identification based on dichotomous keys. Moreover, the results of this study highlight the benefits
79 of using molecular approaches for a rapid identification of parasitoid diversity and form a basis for
80 further molecular studies on parasitoids wasps in the Philippines.

81 2. Materials and Methods

82 2.1. Study System and Sampling

83 This study was embedded in the project LEGATO, which focused on a sustainable rice
84 production [26]. Parasitoids were collected in eight study landscapes located in the Laguna province,
85 Luzon, Philippines (Figure S1). Sampling took place during the rice growing and fallow period of
86 the dry season from February to June 2013. In brief, rice plants of the variety Taichung Native (1)
87 (TN1) were grown in a greenhouse for 6 weeks, trimmed to three tillers and covered with small
88 tubular insect cages (85 cm high, 15 cm diameter). Greenhouse cultures of BPH and GLH were
89 reared on TN1 as previously described by Heinrichs *et al.* [27]. The BPH culture consisted
90 exclusively of *Nilaparvata lugens*, while the GLH culture consisted of *Nephrotettix virescens* (Distant)
91 and *Nephrotettix nigropictus* (Ståhl). Both populations came from wild individuals caught in the rice
92 fields of the Laguna Province. Different GLH species can only be distinguished by the male genitalia
93 and the establishment of a pure population is very difficult.

94 Four gravid females of either BPH or GLH were released into each cage for 48 h to lay eggs.
95 Subsequently, the plants were transferred to three different plots per study site, to cover the
96 naturally occurring landscape diversity in the Laguna province. Three plants infested with BPH

97 eggs and three plants infested with GLH eggs were distributed randomly within each plot. After 72
98 h, all plants were returned to the greenhouse and placed back inside separate insect cages. The
99 parasitoids hatched 13-17 days after the field exposure of the eggs. Adult parasitoids were collected
100 daily within this period, morphologically identified to genera level and stored at -80°C. In total,
101 19,455 parasitoids were collected and initially separated into the four genera *Paracentrobia* spp.,
102 *Gonatocerus* spp., *Oligosita* spp. and *Anagrus* spp. using morphological keys [28-30].

103 *2.2. Preliminary morphological identification*

104 Fifty parasitoids from each of the four identified genera (*Paracentrobia* spp., *Gonatocerus* spp.,
105 *Oligosita* spp. and *Anagrus* spp.) were randomly selected. The 200 parasitoids were slide mounted
106 and identified to species level using a microscope at the International Rice Research Institute (IRRI)
107 using the protocols previously described [28-30].

108 *2.3. DNA extraction and amplification*

109 Total genomic DNA was extracted from 105 whole single parasitoid individuals (Table S2)
110 employing the Phire Animal Tissue Direct PCR Kit (Thermo Scientific, Waltham, MA, USA)
111 according to the manufacturer's instructions. Parasitoids were suspended in 20 µl TE buffer (100
112 mM Tris, 10 mM EDTA). To increase DNA extraction efficiency, 1 µl Proteinase K (20 mg mL⁻¹) was
113 added. Parasitoid samples were carefully homogenized with sterile micro pestles and incubated
114 over night at room temperature.

115 Two independent gene fragments were amplified from the extracted DNA: one located on the
116 COI subunit I (COI I, amplicon length 670bp) and the other one on the expansion regions D2-3 of the
117 28S ribosomal subunit (28-D2, amplicon length 610 bp). The COI region was amplified using the
118 primer pair HCO2198/LCO1490 [31]. The PCR reaction mixture (25 µl) contained 2.5 µl of 10-fold Ex
119 Taq Buffer (Takara Biotechnology, co., LTD, Dalian, China), 25 mM MgCl₂, 2.5 mM of each of the
120 four dNTPs (deoxynucleotide triphosphates), 10 µM of each primer, 1 U TaKaRa Ex Taq polymerase
121 Buffer (Takara Biotechnology), and approximately 25 ng parasitoid DNA. The following thermal
122 cycling scheme was used: initial denaturation at 94°C for 3 min, 5 cycles of denaturation at 94°C for
123 45 s, annealing at 45°C for 45 s, followed by extension at 72°C for 1 min, and 25 cycles of denaturation
124 at 94°C for 45 s, annealing at 50°C for 45 s, followed by extension at 72°C for 1 min. The final
125 extension was carried out at 72°C for 5 min.

126 The D2-D3 region of 28S rDNA was amplified as described for the PCR above using the primers
127 D2-3549 [32] and D2-4068 [33]. The following thermal cycling scheme was used: initial denaturation
128 at 94°C for 3min, 30 cycles of denaturation at 94°C for 45 s, annealing at 58°C for 45 s, followed by
129 extension at 72°C for 1 min. The final extension was carried out at 72°C for 6 min. Negative controls
130 were performed by using the reaction mixture without template. Obtained PCR products were
131 controlled for appropriate size and then purified using the peqGOLD Gel Extraction kit as
132 recommended by the manufacturer (Peqlab, Erlangen, Germany; now VWR).
133 Sequencing was performed at the Göttingen Genomics Laboratory using an ABI 3730xl system and a
134 BigDye terminator chemistry version 3.1 (Thermo Fisher Scientific).

135 *2.4. Data analysis*

136 Forward and reverse DNA sequences were processed with Gap5 v 1.2.14-r [34]. DNA sequence
137 alignment and analysis was performed using MEGA 6 [35]. The best model to construct parasitoid
138 identities was determined assuming partial deletion, site coverage cut-off of 95% and the branch
139 swap filter set to 'very strong'. Additional Chalcidoidea (the super family containing all four genera)
140 amino acid sequences as reference material were selected by using the National Center for
141 Biotechnology Information (NCBI) BLAST tool [36] and the BOLD Identification System
142 (<http://www.boldsystems.org>) (Table S3). Maximum likelihood trees were generated under the

143 assumption of the best fitting model and with 1000 bootstraps. Finally, median-joining networks
144 were constructed using the software NETWORK v. 4.6.1.2 [37].

145 The genetic diversity between and within species was estimated using additional sequences
146 from the superfamily Chalcidoidea (Table S3). The appropriate models to calculate the distances
147 were determined with MEGA. The 28S distances were calculated based on the K2 model, COI
148 distances were calculated based on the GTR model. The values were compared using a
149 Kruskal-Wallis test and the Dunn's post hoc test [38] in R version 3.2.3 [39].

150 To prove whether the local diversity of parasitoid species was covered by the sample size used
151 in the analyses, we performed a rarefaction analysis (Figure S4, Figure S5) in R version 3.2.3. using
152 the packages vegan [40] and drc [41]

153 *2.5. Sequence data deposition*

154 All sequence data have been submitted to the NCBI GenBank databases under accession number
155 XXXX-YYYY.

156 **3. Results**

157 *3.1. Morphological Analysis*

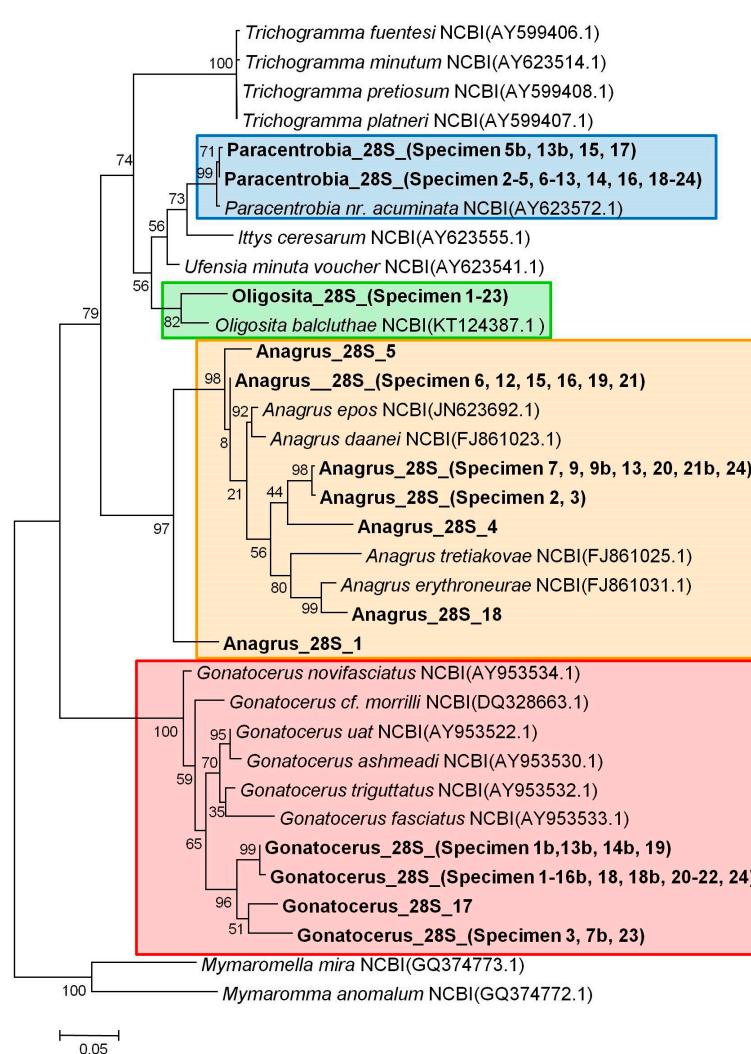
158 In total, 200 parasitoids were determined morphologically. Only one species was found for the
159 genera Gonatocerus spp. and Paracentrobia spp., while three species were found for the genus
160 Anagrus spp. and Oligosita spp.: Anagrus flaveolus (11 specimen), Anagrus optabilis (6 specimen),
161 Anagrus frequens (33 specimen), Oligosita aesopi (41 specimen), Oligosita naias (7 specimen),
162 Oligosita shibuya (2 specimen), Gonatocerus orientalis (50 specimen), Paracentrobia andoi iishi (50
163 specimen) (Table 1, Table S1).

164 **Table 1.** Species idenetified by the morphological analysis within 50 specimen per genera (GLH:
165 green leafhopper, BPH: brown planthopper).

Species	Host	Examined individuals
Paracentrobia andoi	GLH	50
Oligosita aesopi	BPH	41
Oligosita naias	BPH	7
Oligosita shibuya	BPH	2
Anagrus frequens	BPH	33
Anagrus optabilis	BPH	6
Anagrus flaveolus	BPH	11
Gonatocerus orientalis	GLH	50

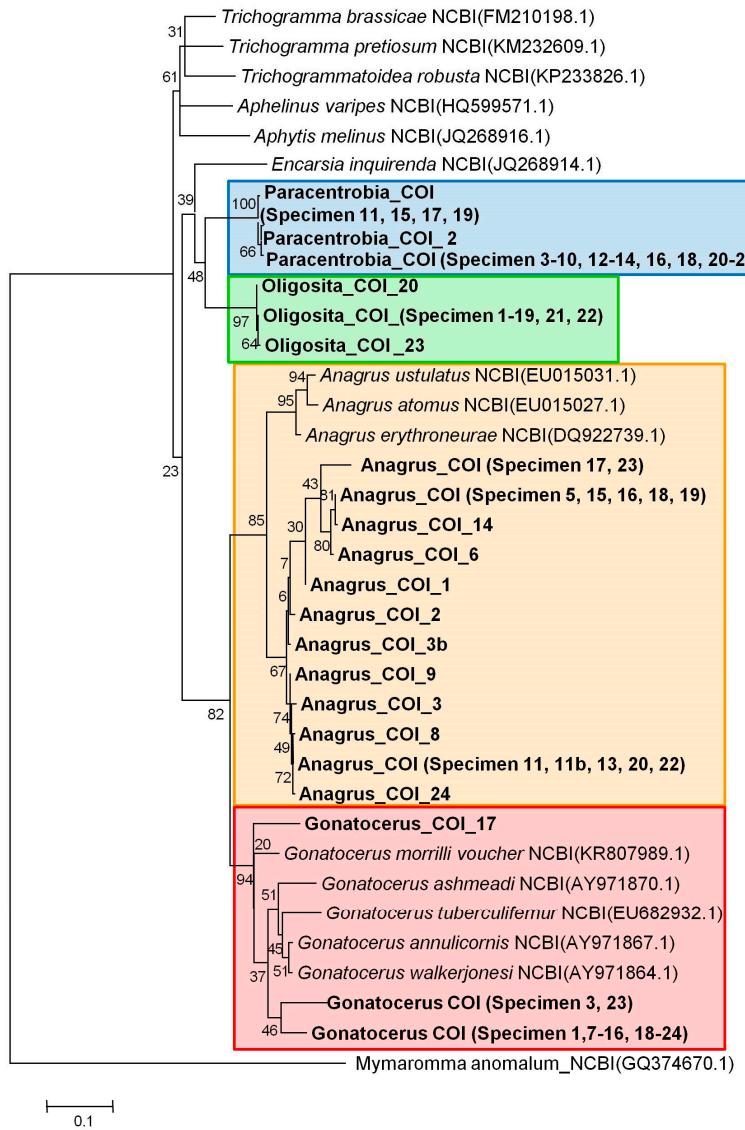
166

167 *3.2. Genetic Analysis*


168 Molecular analyses were successfully performed on a total of 105 parasitoid samples (Table S2).
169 We failed to sequence 162 specimen, which could not be processed further. A total of 86 (COI) and
170 105 (28S) sequences were used to create the neighbouring joining trees. The final dataset for
171 comparison of the two gene fragments included the sequences from 74 parasitoid individuals.

172 Rarefaction analysis for the local hopper egg parasitoids diversity revealed that sampling
173 saturation was reached for the gene 28S (Figure S2). In contrast, the curve for COI was not saturated
174 (Figure S3).

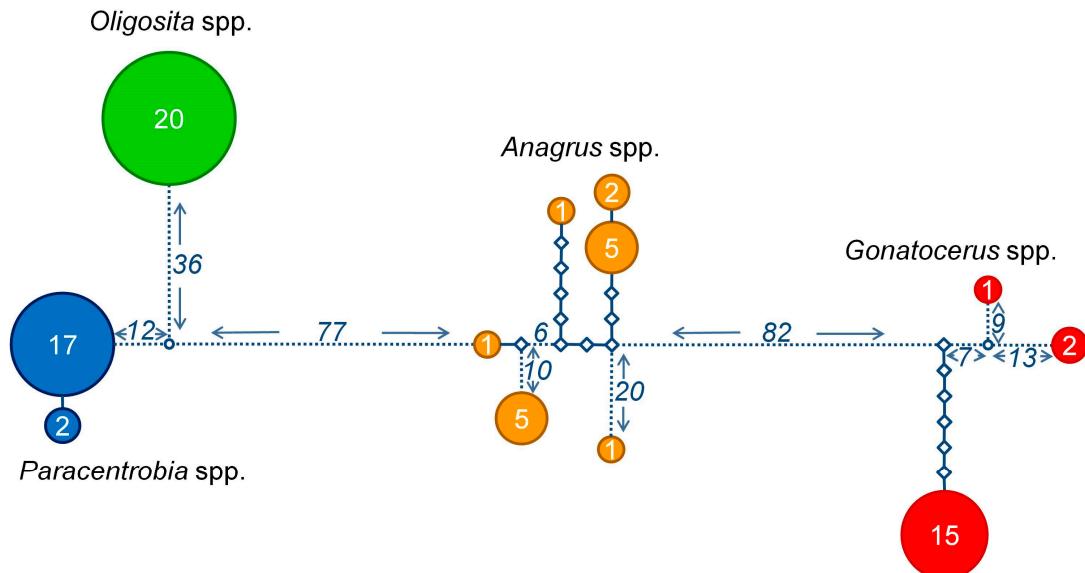
175


176 3.3. Comparison between the morphological and genetical approach

177 The genetic analyses based on COI and 28S fragments revealed that the sequences clearly
 178 segregate according to the morphological pre-assigned genera (Figure 1-4, Figure S4-S5). Oligosita
 179 spp. exhibited the lowest genetic diversity with two sequences differing by one base pair for COI,
 180 while all other sequences were identical. In contrast, three Oligosita species were identified using the
 181 morphological approach. Similar to Oligosita spp., Paracentrobia spp. sequences were uniform, with
 182 only two highly similar haplotypes for the 28S and three highly similar haplotypes for the COI gene
 183 sequence (Figure 1-4, Figure S4-S5). This is in accordance to the morphological data, where only one
 184 Paracentrobia spp. species was found. On the other hand, the sequences from Gonatocerus spp.
 185 exhibited more variability than the morphological data for both genes. Three clusters could be
 186 unambiguously identified, with one cluster occurring prevalently (83.3% for 28S, 84.2% for COI)
 187 compared to the other two clusters (Figure 1-4, Figure S4-S5). Anagrus spp. was by far the most
 188 genetically diverse genus, with 7 different haplotypes identified for the 28S gene sequence and 12
 189 haplotypes for the COI sequence (Figure 1-2, Figure S4-S5, Table S2).
 190

191

192 **Figure 1.** Maximum likelihood tree for the 28S sequences (bootstraps =1000, TN93 model), including 105 rice
 193 parasitoids and 17 outgroup specimens. Maximum likelihood bootstrap values are given for each node.
 194 Sequences with the same haplotype have been pooled together.



195

0.1

196
197
198

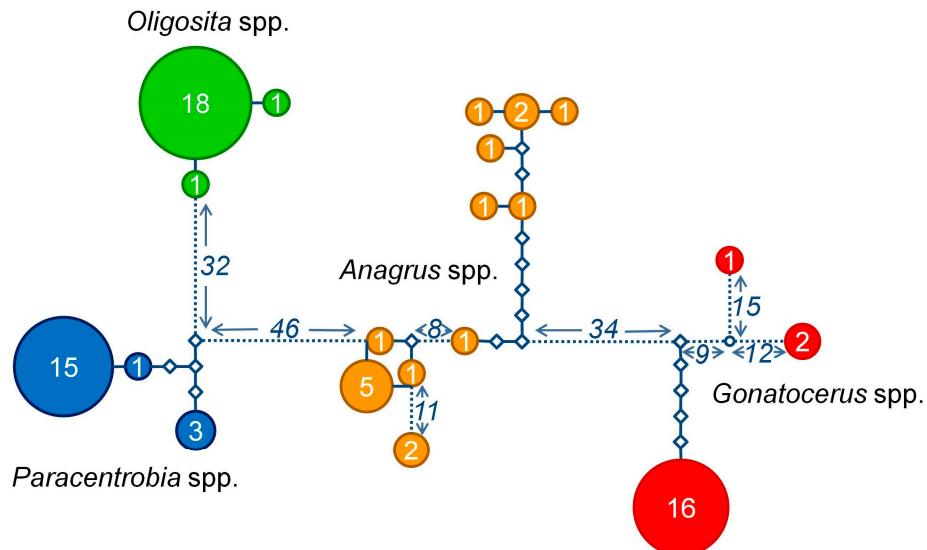
Figure 2. Maximum likelihood tree for the COI sequences (bootstraps =1000, GTR model), including 85 rice parasitoids and 15 outgroup specimens. Maximum likelihood bootstrap values are given for each node. sequences with the same haplotype have been pooled together.

199

200

Figure 3. Overall 28S haplotype distances. Network representing the amount of substitutions between the different 28S sequences obtained from different parasitoid genera: *Paracentrobia* spp. (blue), *Oligosita* spp. (green), *Anagrus* spp. (orange) and *Gonatocerus* spp. (red). The sample size for each haplotype is written inside the respective circles. Each diamond represents a substitution. The numbers next to the dotted lines are the number of substitutions not represented in detail in the figure.

201


202

203

204

205

206

207

208

209

210

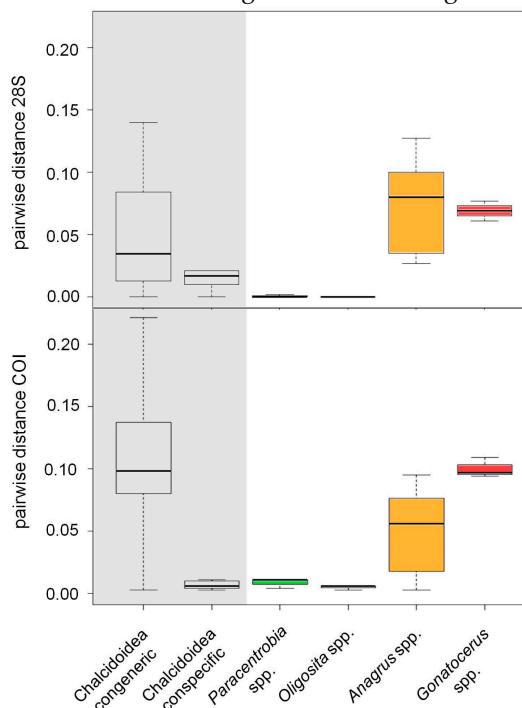
211

212

213

214

215


216

217

218

Figure 4. Overall COI haplotype distance. Network representing the amount of substitutions between the different COI sequences obtained from different parasitoid genera: *Paracentrobia* spp. (blue), *Oligosita* spp. (green), *Anagrus* spp. (orange) and *Gonatocerus* spp. (red). The sample size for each haplotype is written inside the respective circles. Each diamond represents a substitution. The numbers next to the dotted lines are the number of substitutions not represented in detail in the figure.

219 The degree of genetic diversity found in *Anagrus* spp. and *Gonatocerus* spp. sequences was
 220 particularly high. The pairwise distance was 0.075 ± 0.012 SE (28S) and 0.050 ± 0.009 SE (COI) for
 221 *Anagrus* spp. and 0.069 ± 0.012 SE (28S) and 0.100 ± 0.016 SE (COI) for *Gonatocerus* spp. In contrast,
 222 the pairwise distance was 0.000 ± 0.000 (28S) and 0.005 ± 0.003 SE (COI) for *Oligosita* spp. and $0.001 \pm$
 223 0.001 (28S) and 0.009 ± 0.004 SE (COI) for *Paracentrobia* spp. (Figure 5). *Paracentrobia* spp. and
 224 *Oligosita* spp. were significantly different from the congeneric Chalcidoidea data but not from the
 225 conspecific Chalcidoidea (Figure 5, Table 2). The genetic differences of *Gonatocerus* spp. and
 226 *Anagrus* spp. were within the same order of magnitude as the congeneric Chalcidoidea data.

227
 228 **Figure 5.** Pairwise molecular distances between individuals from different species of the same genus in the
 229 Chalcidoidea (congeneric), different members of the same species in the genus Chalcidoidea (conspecific) and
 230 individuals collected in this study. Pairwise distances were calculated by using the K2P+G (Kimura 2-parameter
 231 model with Gamma distribution) model for the 28S sequences and the T92+G (Tamura 3-parameter model with
 232 Gamma distribution) model for the COI sequences.

233

234

235 **Table 2.** Results of the Dunn's test (p) with degrees of freedom (df) for pairwise comparison of the pairwise
 236 genetic distances calculated within the parasitoid genera examined in this study and the pairwise genetic
 237 differences calculated for the congeneric and conspecific Chalcidoidea sequences (n.s. stands for not significant
 238 data).

		<i>Paracentrobia</i> spp.		<i>Oligosita</i> spp.		<i>Anagrus</i> spp.		<i>Gonatocerus</i> spp.	
		p	df	p	df	p	df	p	df
28S	Chalcidoidea congeneric	0.003	2	0.003	2	0.021	2	n.s.	2
	Chalcidoidea conspecific	n.s.	2	n.s.	2	<0.001	2	0.05	2
COI	Chalcidoidea congeneric	0.017	2	0.002	2	<0.001	2	n.s.	2
	Chalcidoidea conspecific	n.s.	2	n.s.	2	<0.001	2	0.006	2

239 **4. Discussion**

240 The genetic analysis of the diversity within the four Chalcidoidea genera studied showed
241 discrepancies with the morphological analyses. This finding is in line with previous studies on
242 hymenopteran parasitoids [23,42,43]. For example Mottern and Heraty [44] found that one species of
243 the parasitoid previously described as *Cales noacki* were actually ten different *Cales* species.
244 Previous studies showed that DNA barcoding can be misleading resulting in potentially more
245 species than really exist [45,46], which might play a role in the present study. The COI gene, as the
246 classical barcoding gene, has shown its utility in many studies [42,47,48] and it constitutes the basis
247 for the BOLD (www.barcodinglife.org) database. The 28S gene is valuable to distinguish among
248 closely related species of Chalcidoidea [49–51]. In addition, it is more conserved and more accurate
249 than the COI gene for this group of insects [43,44,52]. This is supported by our results as we found
250 that sampling saturation was only reached for the gene 28S, but not for the COI gene.
251 Our study showed further that an accurate identification relies on both, molecular and
252 morphological techniques. A similar conclusion was drawn previously [21,23]. In the tropical rice
253 agroecosystem, more research combining morphological, behavioural and genetic methods are
254 necessary to improve the identification of cryptic species [53]. Once a reliable and comprehensive
255 DNA database is established, the identification of hopper parasitoids using DNA sequencing will be
256 a vital step towards assessing the performance and suitability of these organisms as biocontrol
257 agents [54,55]. For instance, it was hypothesized that *Anagrus* spp. can switch between alternative
258 hopper species [56,57]. The strong diversity found in the present study by using molecular tools
259 suggests, however, that *Anagrus* spp. is a complex of cryptic species. This is of high importance as
260 the discovery of so far unknown cryptic species could expand the list of potential biological control
261 agents [44].

262 Although we were not able to secure the existence of new species of *Anagrus* and *Gonatocerus* by
263 mating tests and/or further morphometric analyses, our data strongly suggest that the two genera
264 include so far unknown species. The level of genetic difference for both 28S and COI sequences
265 among samples from the *Anagrus* spp. and *Gonatocerus* spp. genera exceeded the threshold of
266 0.17–2% within sequence variation which is generally accepted to delineate individuals of the same
267 species [17,48,58]. The genetic differences determined in the present study for the *Anagrus* spp. and
268 *Gonatocerus* spp. genera were more representative of congeneric Chalcidoidea, with values
269 separating genera from this superfamily generally assumed to be 5.8–11.25% [17,48,58].

270 We concluded that the specimen morphological identified as *Gonatocerus orientalis* are likely to
271 belong to a complex of cryptic species, as commonly reported in hymenopteran parasitoids
272 [19,24,59]. We further suggest that there was at least one more species for *Anagrus* spp., that was not
273 accounted by using the morphology alone. Interestingly, we observed the opposite for samples from
274 *Oligosita* spp., indicating that *Oligosita* spp. is one species that varies morphologically and/or shows
275 sexual dimorphism, maybe due to a high degree of phenotypic plasticity [60,61].

276 In conclusion, our results clearly demonstrated that molecular identification should be used in
277 combination with morphological methods for assessing the diversity of rice hopper parasitoids.
278 However, further studies using an integrative approach are needed to cover the whole diversity of
279 parasitoids as well as to find sustainable solutions to problems caused by the BPH and GLH. To
280 validate the potential application of parasitoid wasps as biocontrol agents, it is of crucial importance
281 to have a comprehensive knowledge on their ecology and diversity. We hope that this study will
282 encourage further research by providing the first barcodes for egg parasitoid species from rice
283 paddies in Southeast Asia.

284 **Supplementary Materials:** The following are available online, Table S1: Species found, according to
285 morphometric analysis, throughout the Laguna province, Philippines., Table S2: Sequences obtained from
286 parasitoids of the rice fields in the Philippines., Table S3: Sequences obtained from the NCBI GenBank., Figure
287 S1: Distribution of the eight study sites throughout the Laguna province., Figure S2: Rarefaction curve for the
288 28S gene fragment., Figure S3: Rarefaction curve for the COI gene fragment., Figure S4: Maximum likelihood
289 tree for the 28S sequences., Figure S5: Maximum likelihood tree for the COI Sequences.

290 **Acknowledgments:** We thank Bianca Tappe, Daniel Kretzschmar and Heike Rollwage for their technical
291 assistance. We also want to thank Jo Catinding from the International Rice Research Institute (IRRI) for the help
292 to identify the insects. The work has been funded by the LEGATO project [26], which is part of the BMBF
293 (German Federal Ministry of Education and Research) Framework Program Research for Sustainable
294 Development (FONA, FKZ: 01LL0917A & 01LL0917N).

295 **Author Contributions:** S.V. conceived and designed the experiments; C.S. performed the experiment; C.S. and
296 F.W. did the laboratory work, C.S., A.B. and S.E. analyzed the data; R.D. contributed materials and analysis
297 tools; C.S. wrote the paper with S.V., F.W., A.B. and S.E. contributing to the development of the paper.

298 **Conflicts of Interest:** The authors declare no conflict of interest.

299 **References**

- 300 1. FAO Available online: <http://www.fao.org/faostat/en/#home> (accessed on Mar 30, 2017).
- 301 2. IRRI - Trends in global rice consumption Available online: <http://irri.org/rice-today/trends-in-global-rice-consumption> (accessed on Jun 1, 2017).
- 302 3. Gurr, G. M.; Lu, Z.; Zheng, X.; Xu, H.; Zhu, P.; Chen, G.; Yao, X.; Cheng, J.; Zhu, Z.; Catindig, J.
303 L.; Villareal, S.; Van Chien, H.; Cuong, L. Q.; Channoo, C.; Chengwattana, N.; Lan, L. P.; Hai, L.
304 H.; Chaiwong, J.; Nicol, H. I.; Perovic, D. J.; Wratten, S. D.; Heong, K. L. Multi-country
305 evidence that crop diversification promotes ecological intensification of agriculture. *Nat. Plants*
306 **2016**, *2*, 16014, doi:10.1038/nplants.2016.14.
- 307 4. Heong, K. L.; Aquino, G.-B.; Barrion, A. T. Population dynamics of plant- and leafhoppers and
308 their natural enemies in rice ecosystems in the Philippines. *Crop Prot.* **1992**, *11*, 371–379.
- 309 5. Ling, K. C. *Rice virus diseases*; International Rice Research Institute: Los Banos, Philippines,
310 1972;
- 311 6. Cabauatan, P. Q.; Cabunagan, R. C.; Choi, I.-R. Rice viruses transmitted by the brown
312 planthopper *Nilaparvata lugens* Stal. In *Planthoppers: New threats to the sustainability of intensive*
313 *rice production systems in Asia*; Heong, K. L., Hardy, B., Eds.; International Rice Research
314 Institute: Los Banos, Philippines, 2009; pp. 357–368.
- 315 7. Catindig, J. L.; Arida, G. S.; Baehaki, S. E.; Bentur, J. S.; Cuong, L. Q.; Norowi, M.; Rattanakarn,
316 W.; Sriratanasak, W.; Xia, J.; Lu, Z. Situations of planthoppers in Asia. In *Planthoppers: New*
317 *threats to the sustainability of intensive rice production systems in Asia*; Heong, K. L., Hardy, B.,
318 Eds.; International Rice Research Institute: Los Banos, Philippines, 2009; pp. 191–220.
- 319 8. Seo, B. Y.; Jung, J. K.; Choi, B.-R.; Park, H. M.; Lee, B. H. Resistance-breaking ability and
320 feeding behavior of the brown planthopper *Nilaparvata lugens*, recently collected in Korea. In
321 *Planthoppers: New threats to the sustainability of intensive rice production systems in Asia*;
322 International Rice Research Institute: Los Banos, Philippines, 2009; pp. 303–314.
- 323 9. Heong, K. L.; Schoenly, K. G. Impact of insecticides on herbivore-natural enemy communities
324 in tropical rice ecosystems. In *Ecotoxicology*; Springer, Boston, MA, 1998; pp. 381–403 ISBN
325 978-1-4613-7653-8.
- 326 10. Heong, K. L. Are planthopper problems caused by a breakdown in ecosystem services? In
327 *Planthoppers: New threats to the sustainability of intensive rice production systems in Asia*; Heong, K.
328 L., Hardy, B., Eds.; International Rice Research Institute: Los Banos, Philippines, 2009; pp.
329 221–232 ISBN 978-971-22-0251-3.
- 330 11. Gurr, G. M.; Liu, J.; Read, D. M. Y.; Catindig, J. L. A.; Cheng, J. A.; Lan, L. P.; Heong, K. L.
331 Parasitoids of Asian rice planthopper (Hemiptera: Delphacidae) pests and prospects for

333 enhancing biological control by ecological engineering. *Ann. Appl. Biol.* **2011**, *158*, 149–176,
334 doi:10.1111/j.1744-7348.2010.00455.x.

335 12. Antolin, M. F.; Strong, D. R. Long-distance dispersal by a parasitoid (*Anagrus delicatus*,
336 *Mymaridae*) and its host. *Oecologia* **1987**, *73*, 288–292.

337 13. Fowler, S. V.; Claridge, M. F.; Morgan, J. C.; Peries, I. D. R.; Nugaliyadde, L. Egg mortality of
338 the brown planthopper, *Nilaparvata lugens* (Homoptera: Delphacidae) and green leafhoppers,
339 *Nephrotettix* spp. (Homoptera: Cicadellidae), on rice in Sri Lanka. *Bull. Entomol. Res.* **1991**, *81*,
340 161–167.

341 14. Watanabe, T.; Wada, T.; Salleh, N. M. N. bin N. Parasitic Activities of Egg Parasitoids on the
342 Rice Planthoppers, *Nilaparvata lugens* (Stål) and *Sogatella furcifera* (Horvath) (Homoptera:
343 Delphacidae), in the Muda Area, Peninsular Malaysia. *Appl. Entomol. Zool.* **1992**, *27*, 205–211.

344 15. Drechsler, M.; Settele, J. Predator–prey interactions in rice ecosystems: effects of guild
345 composition, trophic relationships, and land use changes — a model study exemplified for
346 Philippine rice terraces. *Ecol. Model.* **2001**, *137*, 135–159, doi:10.1016/S0304-3800(00)00423-3.

347 16. Nishida, T.; Wongsiri, T.; Wongsiri, N. Species composition, population trends and egg
348 parasitism of planthopper and leafhopper rice pests of Thailand. *Plant Prot. Bull. FAO* **1976**, *24*,
349 22–26.

350 17. Chesters, D.; Wang, Y.; Yu, F.; Bai, M.; Zhang, T.-X.; Hu, H.-Y.; Zhu, C.-D.; Li, C.-D.; Zhang,
351 Y.-Z. The Integrative Taxonomic Approach Reveals Host Specific Species in an Encyrtid
352 Parasitoid Species Complex. *PLOS ONE* **2012**, *7*, e37655, doi:10.1371/journal.pone.0037655.

353 18. Hebert, P. D. N.; Penton, E. H.; Burns, J. M.; Janzen, D. H.; Hallwachs, W. Ten species in one:
354 DNA barcoding reveals cryptic species in the neotropical skipper butterfly *Astraptes*
355 *fulgerator*. *Proc. Natl. Acad. Sci. U. S. A.* **2004**, *101*, 14812–14817, doi:10.1073/pnas.0406166101.

356 19. Smith, M. A.; Rodriguez, J. J.; Whitfield, J. B.; Deans, A. R.; Janzen, D. H.; Hallwachs, W.;
357 Hebert, P. D. N. Extreme diversity of tropical parasitoid wasps exposed by iterative integration
358 of natural history, DNA barcoding, morphology, and collections. *Proc. Natl. Acad. Sci.* **2008**,
359 105, 12359–12364, doi:10.1073/pnas.0805319105.

360 20. Schwarzbeld, M. D.; Broad, G. R.; Sperling, F. A. H. Molecular phylogeny of the diverse
361 parasitoid wasp genus *Ophion* Fabricius (Hymenoptera: Ichneumonidae: Ophioninae):
362 Phylogeny of *Ophion*. *Syst. Entomol.* **2016**, *41*, 191–206, doi:10.1111/syen.12152.

363 21. Munro, J. B.; Heraty, J. M.; Burks, R. A.; Hawks, D.; Mottern, J.; Cruaud, A.; Rasplus, J.-Y.;
364 Jansta, P. A Molecular Phylogeny of the Chalcidoidea (Hymenoptera). *PLoS ONE* **2011**, *6*,
365 e27023, doi:10.1371/journal.pone.0027023.

366 22. Smith, M. A.; Woodley, N. E.; Janzen, D. H.; Hallwachs, W.; Hebert, P. D. N. DNA barcodes
367 reveal cryptic host-specificity within the presumed polyphagous members of a genus of
368 parasitoid flies (Diptera: Tachinidae). *Proc. Natl. Acad. Sci.* **2006**, *103*, 3657–3662,
369 doi:10.1073/pnas.0511318103.

370 23. Zhou, Q.-S.; Xi, Y.-Q.; Yu, F.; Zhang, X.; Li, X.-J.; Liu, C.-L.; Niu, Z.-Q.; Zhu, C.-D.; Qiao, G.-X.;
371 Zhang, Y.-Z. Application of DNA barcoding to the identification of Hymenoptera parasitoids
372 from the soybean aphid (*Aphis glycines*) in China: DNA barcoding to identify parasitoids from
373 *Aphis glycines* in China. *Insect Sci.* **2014**, *21*, 363–373, doi:10.1111/1744-7917.12095.

374 24. Smith, M. A.; Wood, D. M.; Janzen, D. H.; Hallwachs, W.; Hebert, P. D. N. DNA barcodes
375 affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are
376 not all generalists. *Proc. Natl. Acad. Sci.* **2007**, *104*, 4967–4972, doi:10.1073/pnas.0700050104.

377 25. Padial, J. M.; Miralles, A.; De la Riva, I.; Vences, M. The integrative future of taxonomy. *Front.*
378 *Zool.* **2010**, *7*, 16, doi:10.1186/1742-9994-7-16.

379 26. Settele, J.; Spangenberg, J. H.; Heong, K. L.; Burkhard, B.; Bustamante, J. V.; Cabbigat, J.; Van
380 Chien, H.; Escalada, M.; Grescho, V.; Hai, L. H.; Harpke, A.; Horgan, F. G.; Hotes, S.; Jahn, R.;
381 Kühn, I.; Marquez, L.; Schädler, M.; Tekken, V.; Vetterlein, D.; Villareal, S. “Bong”; Westphal,
382 C.; Wiemers, M. Agricultural landscapes and ecosystem services in South-East Asia—the
383 LEGATO-Project. *Basic Appl. Ecol.* **2015**, *16*, 661–664, doi:10.1016/j.baae.2015.10.003.

384 27. Heinrichs, E. A.; Medrano, F. G.; Rapusas, H. R. *Genetic evaluation for insect in rice*; International
385 Rice Research Institute: Los Banos, Philippines, 1985; ISBN 971-10-4110-3.

386 28. Shepard, B. M.; Barrion, A. T.; Listinger, J. A. *Friends of the rice farmer. Helpful insects, spiders and*
387 *pathogens*; International Rice Research Institute: Los Banos, Philippines, 1987; ISBN
388 971-10-4162-6.

389 29. *Planthoppers: New threats to the sustainability of intensive rice production systems in Asia*; Heong, K.
390 L., Hardy, B., Eds.; International Rice Research Institute: Los Banos, Philippines, 2009; ISBN
391 978-971-22-0251-3.

392 30. Heinrichs, E. A. *Biology and management of rice insects*; Wiley Eastern Limited: New Delhi, India,
393 1994; ISBN 81-224-0581-2.

394 31. Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of
395 mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. *Mol. Mar.*
396 *Biol. Biotechnol.* **1994**, *3*, 294–299.

397 32. Campbell, B. C.; Steffen-Campbell, J. D.; Werren, J. H. Phylogeny of the *Nasonia* species
398 complex (Hymenoptera: Pteromalidae) inferred from an internal transcribed spacer (ITS2) and
399 28S rDNA sequences. *Insect Mol. Biol.* **1993**, *2*, 225–237.

400 33. Campbell, B. C.; Heraty, J. M.; Rasplus, J. Y.; Chan, K.; Steffen-Campbell, J. D.; Babcock, C.
401 Molecular systematic of the Chalcidoidea using 28S-D2 rDNA. In *Hymenoptera: evolution,*
402 *biodiversity and biological control*; Heong, K. L., Hardy, B., Eds.; CSIRO Publishing: Collingwood,
403 Australia, 2000; pp. 59–73 ISBN 0-643-06610-1.

404 34. Bonfield, J. K.; Whitwham, A. Gap5--editing the billion fragment sequence assembly.
405 *Bioinformatics* **2010**, *26*, 1699–1703, doi:10.1093/bioinformatics/btq268.

406 35. Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis
407 (MEGA) software version 4.0. *Mol. Biol. Evol.* **2007**, *24*, 1596–1599, doi:10.1093/molbev/msm092.

408 36. Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W.; Lipman, D. J. Basic local alignment search
409 tool. *J. Mol. Biol.* **1990**, *215*, 403–410, doi:10.1016/S0022-2836(05)80360-2.

410 37. Bandelt, H. J.; Forster, P.; Rohl, A. Median-joining networks for inferring intraspecific
411 phylogenies. *Mol. Biol. Evol.* **1999**, *16*, 37–48, doi:10.1093/oxfordjournals.molbev.a026036.

412 38. Dunn, O. J. Multiple comparisons using rank sums. *Technometrics* **1964**, *6*, 241–252.

413 39. R Development Core Team (2013) The R foundation for Statistical Computing, ver 3.0.2.
414 Vienna University of Technology, Vienna, Austria. Available at: <http://www.r-project.org/>

415 40. Dixon, P. VEGAN, a package of R functions for community ecology. *J. Veg. Sci.* **2003**, *14*,
416 927–930, doi:10.1111/j.1654-1103.2003.tb02228.x.

417 41. Ritz, C.; Baty, F.; Streibig, J. C.; Gerhard, D. Dose-Response Analysis Using R. *PLOS ONE* **2015**,
418 *10*, e0146021, doi:10.1371/journal.pone.0146021.

419 42. Smith, M.; Fernández-Triana, J. L.; Eveleigh, E.; Gómez, J.; Guclu, C.; Hallwachs, W.; Hebert, P.
420 D. N.; Hrcek, J.; Huber, J. T.; Janzen, D.; Mason, P. G.; Miller, S.; Quicke, D. L. J.; Rodriguez, J. J.;
421 Rougerie, R.; Shaw, M. R.; Várkonyi, G.; Ward, D. F.; Whitfield, J. B.; Zaldívar-Riverón, A.
422 DNA barcoding and the taxonomy of Microgastrinae wasps (Hymenoptera, Braconidae):
423 impacts after 8 years and nearly 20 000 sequences. *Mol. Ecol. Resour.* **2013**, *13*, 168–176,
424 doi:10.1111/1755-0998.12038.

425 43. Kenyon, S. G.; Buerki, S.; Hansson, C.; Alvarez, N.; Benrey, B. Uncovering Cryptic Parasitoid
426 Diversity in Horismenus (Chalcidoidea, Eulophidae). *PLOS ONE* **2015**, *10*, e0136063,
427 doi:10.1371/journal.pone.0136063.

428 44. Mottern, J. L.; Heraty, J. M. Revision of the Cales noacki species complex (Hymenoptera,
429 Chalcidoidea, Aphelinidae). *Syst. Entomol.* **2014**, *39*, 354–379, doi:10.1111/syen.12060.

430 45. Brower, A. V. Z. Problems with DNA barcodes for species delimitation: “Ten species” of
431 *Astraptes fulgerator* reassessed (Lepidoptera: Hesperiidae). *Syst. Biodivers.* **2006**, *4*, 127–132,
432 doi:10.1017/S147720000500191X.

433 46. Collins, R. A.; Cruickshank, R. H. The seven deadly sins of DNA barcoding. *Mol. Ecol. Resour.*
434 **2012**, n/a-n/a, doi:10.1111/1755-0998.12046.

435 47. Gutiérrez-Arellano, D.; Gutiérrez-Arellano, C.; Zaldívar-Riverón, A. DNA Barcoding of the
436 parasitoid wasp subfamily Doryctinae (Hymenoptera: Braconidae) from Chamela, Mexico.
437 *Biodivers. Data J.* **2015**, *3*, e5109, doi:10.3897/BDJ.3.e5109.

438 48. Hebert, P. D. N.; Cywinska, A.; Ball, S. L.; deWaard, J. R. Biological identifications through
439 DNA barcodes. *Proc. R. Soc. B Biol. Sci.* **2003**, *270*, 313–321, doi:10.1098/rspb.2002.2218.

440 49. Babcock, C. S.; Heraty, J. M.; De Barro, P. J.; Driver, F.; Schmidt, S. Preliminary Phylogeny of
441 Encarsia Förster (Hymenoptera: Aphelinidae) Based on Morphology and 28S rDNA. *Mol.*
442 *Phylogenetic Evol.* **2001**, *18*, 306–323, doi:10.1006/mpev.2000.0875.

443 50. Manzari, S.; Polaszek, A.; Belshaw, R.; Quicke, D. L. J. Morphometric and molecular analysis of
444 the Encarsia inaron species-group (Hymenoptera: Aphelinidae), parasitoids of whiteflies
445 (Hemiptera: Aleyrodidae). *Bull. Entomol. Res.* **2002**, *92*, doi:10.1079/BER2001144.

446 51. Triapitsyn, S. V.; Vickerman, D. B.; Heraty, J. M.; Logarzo, G. A. *A New Species Of Gonatocerus*
447 *(Hymenoptera: Mymaridae) Parasitic On Proconiine Sharpshooters (Hemiptera: Cicadellidae) In The*
448 *New World*; Zenodo, 2006;

449 52. Gillespie, J. J. A Secondary Structural Model of the 28S rRNA Expansion Segments D2 and D3
450 for Chalcidoid Wasps (Hymenoptera: Chalcidoidea). *Mol. Biol. Evol.* **2005**, *22*, 1593–1608,
451 doi:10.1093/molbev/msi152.

452 53. Desneux, N.; Starý, P.; Delebecque, C. J.; Gariepy, T. D.; Barta, R. J.; Hoelmer, K. A.; Heimpel,
453 G. E. Cryptic Species of Parasitoids Attacking the Soybean Aphid (Hemiptera: Aphididae) in
454 Asia: *Binodoxys communis* and *Binodoxys koreanus* (Hymenoptera: Braconidae: Aphidiinae).
455 *Ann. Entomol. Soc. Am.* **2009**, *102*, 925–936, doi:10.1603/008.102.0603.

456 54. Greenstone, M. H. Molecular methods for assessing insect parasitism. *Bull. Entomol. Res.* **2006**,
457 *96*, 1–13, doi:10.1079/BER2005402.

458 55. Gariepy, T. D.; Kuhlmann, U.; Gillott, C.; Erlandson, M. Parasitoids, predators and PCR: the
459 use of diagnostic molecular markers in biological control of Arthropods. *J. Appl. Entomol.* **2007**,
460 *131*, 225–240, doi:10.1111/j.1439-0418.2007.01145.x.

461 56. Zheng, X.; Yu, X.; Lu, Z.; Chen, J.; Xu, H.; Ju, R. Parasitization adaptability of Anagrus optabilis
462 on Nilaparvata lugens. *Chin. J. Biol. Control* **2003**, *19*, 136–138.

463 57. Zheng, X.; Lu, Y.; Zhu, P.; Zhang, F.; Tian, J.; Xu, H.; Chen, G.; Nansen, C.; Lu, Z. Use of banker
464 plant system for sustainable management of the most important insect pest in rice fields in
465 China. *Sci. Rep.* **2017**, *7*, 45581, doi:10.1038/srep45581.

466 58. Meier, R.; Zhang, G.; Ali, F. The Use of Mean Instead of Smallest Interspecific Distances
467 Exaggerates the Size of the “Barcode Gap” and Leads to Misidentification. *Syst. Biol.* **2008**, *57*,
468 809–813, doi:10.1080/10635150802406343.

469 59. Burns, J. M.; Janzen, D. H.; Hajibabaei, M.; Hallwachs, W.; Hebert, P. D. N. DNA barcodes and
470 cryptic species of skipper butterflies in the genus *Perichares* in Área de Conservación
471 Guanacaste, Costa Rica. *Proc. Natl. Acad. Sci.* **2008**, *105*, 6350–6355,
472 doi:10.1073/pnas.0712181105.

473 60. Pfennig, D. W.; Wund, M. A.; Snell-Rood, E. C.; Cruickshank, T.; Schlichting, C. D.; Moczek, A.
474 P. Phenotypic plasticity's impacts on diversification and speciation. *Trends Ecol. Evol.* **2010**, *25*,
475 459–467, doi:10.1016/j.tree.2010.05.006.

476 61. Stillwell, R. C.; Blanckenhorn, W. U.; Teder, T.; Davidowitz, G.; Fox, C. W. Sex Differences in
477 Phenotypic Plasticity Affect Variation in Sexual Size Dimorphism in Insects: From Physiology
478 to Evolution. *Annu. Rev. Entomol.* **2010**, *55*, 227–245, doi:10.1146/annurev-ento-112408-085500.