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1 Abstract: The consequences of a fall on an elderly person can be diminished if the accident is attended
2= by medical personnel within the first hour. Independent elderly people use to stay alone for long
s periods of time, being in more risk if they suffer a fall. The literature offers several approaches for
«  detecting falls with embedded devices or smartphones using a triaxial accelerometer. Most of these
s approaches were not tested with the objective population, or are not feasible to be implemented in
s  real-life conditions. In this work we propose a Kalman-filter-based fall detection methodology that
»  includes a periodicity detector to reduce the false positive rate. Moreover, this methodology requires
¢ asampling rate of only 25 Hz, it does not require large computations or memory, and it is robust
o among devices. We tested our approach with the SisFall dataset. Then, we validated it with a new
1o round of simulated activities with young adults and an elderly person achieving 99.4 % of accuracy.
1 Finally, we gave the devices to three elderly persons during two days for full-day validations. They
1z continued with their normal life and the devices behaved as expected.

1z Keywords: triaxial accelerometer; wearable devices; fall detection; mobile health-care; SisFall;
1« Kalman filter

s 1. Introduction

"

16 At least one third of elderly people suffers a fall per year, and the probability of falling increases
1z with age and previous falls [1-4]. The consequences of a fall can be diminished if the person is attended
1 by medical services within an hour from the accident [5-7]. This timing is feasible with institutionalized
1o elderly people, but healthy independent elderly people use to stay alone for long periods of time
20 increasing their risk of aggravating the injuries in case of an accident. Nowadays, authors focus on
xn  developing automatic fall detection systems that generate an alarm in case of an event, but they still
22 present high error rates in real-life conditions (see [7-10] for reviews on the field). In this paper, we
s tackle this issue with a novel fall detection methodology tested in real-life situations with the objective
2a population, using a simple to implement triaxial-accelerometer-based embedded device.

2 Detecting falls with a triaxial accelerometer is commonly divided in three stages: pre-processing,
26 feature extraction, and classification. The preprocessing can be as simple as a low-pass filter [11],
=z but it mainly depends on the selected feature extraction. In this sense, there is a wide amount of
2e features available in the literature, such as acceleration peaks, variance, angles, etc. (see [9, Table 4]
2 for a complete list). These features transform the acceleration signal in order to better discriminate
30 between falls and activities of daily living (ADL). Regarding classification, threshold based detection
a1 is still the most opted choice over machine learning alternatives, mainly because the latter ones are
;2 impractical for real-time implementation. Habib et al. [10] show various examples of SVM approaches
s consuming the battery in few hours; and Igual et al. [12] concluded that these approaches are highly
s dependent on the acquisition device used.

3 A common problem with approaches proposed in the literature is that most of them were tested
s with young adults under controlled conditions [9, Table 5]. Moreover, previous works demonstrated
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sz that the accuracy of these approaches is significantly diminished when tested on institutionalized
sz [13] and independent [11] elderly people. The main reason for authors not testing with the objective
3o population is the lack of appropriate public datasets, and the difficulty of acquiring real falls with
« elderly people [9,11,13]. In order to tackle these issues, we recently released the SisFall dataset [11], a
a fall and movement dataset acquired with a triaxial accelerometer mounted on an embedded device
«2 attached to the waist (see [14] for implementation details).

43 In [11], we demonstrated that most failures in fall detection are focused on a few activities. Most
s of these activities coincide in periodic waveforms (from walk and jog) and high peak acceleration
s ADL (e.g., jump). There are previous approaches in the literature for detecting jog and walk with
s accelerometers. Cola et al. [15] detected gait deviation as a fall-risk feature. [16] used the peaks of the
«z acceleration signal measured with a smartphone to detect steps, and subsequently the kind of activity
s based on the period between steps. Wundersitz et al. [17] did it with an embedded device. Other
2 authors used more elaborated metrics but all peak based. Clements et al. [18] computed principal
so components of the Fast Fourier Transform (FFT), to cite an example. In contrast, we previously
51 developed a more stable gait detector based on wavelet or auto-correlation indistinctly [19]. However,
s2 it was too computationally intensive for real-life implementation in an embedded device.

53 In this work, we present a Kalman-filter-based fall detection algorithm that additionally detects
s¢ gait as a feature to avoid false positives. The fall detection feature is a novel non-linear metric based
ss on two widely used features: the sum vector magnitude and the standard deviation magnitude. The
ss Kalman filter is a well-known optimal estimator [20] widely used in several research fields. The
s> Kalman filter is Markovian (avoiding large memory storage), and linear (simple computations for
ss lower energy consumption). Here, we use it as an input to the non-linear feature by determining
s the orientation of the subject: jogging activities may lead to high accelerations, but the absence of
e inclination implies that the subject is not falling. We additionally use the Kalman filter to smooth gait
&1 Ppatterns (as sinusoidal-shape waveforms) in order to feed our gait detector.

62 The Kalman filter has been previously used to identify movements of interest with accelerometers.
es Bagala et al. [21] used it to determine the lie-to-sit-to-stand-to-walk states, which are commonly
s« used to measure the risk of falling in elderly people (with the Berg Balance Scale -BBS— for example
es [22]). There, the authors used an Extended Kalman filter to determine the orientation of the device.
es Otebolaku et al. [23] proposed a novel user context recognition using a smartphone. In their work, the
e Kalman filter was used to obtain the orientation of the device based on its multiple sensors (not only
es the accelerometer). But the authors did not specify how they did it. Finally, Novak et al. [24] used a
e multiple sensors system to determine gait initiation and termination. In their work, the Kalman filter
70 was used again to obtain the orientation of the device.

7 The aforementioned works coincide in their objective with the Kalman filter (identifying
=2 locomotion activities), but they differ on the way it was implemented, and none of them was interested
73 in detecting falls. In Yuan et al. [25], the authors used the Kalman filter to obtain the device angle
7a for detecting falls, but using three different sensors (including gyroscope, which demands too much
7 energy for long-term use [7]). All previously mentioned works demonstrate that the orientation of
76 the device computed with a Kalman filter is a strong feature, and that it is useful to detect periodic
7z activities such as walking or jogging. However, none of them combined these capabilities as we
7e  propose in this work.

79 This paper continues as follows: In Sections 2 and 3 we present the dataset used and explain the
so proposed approach. In Section 4 we present the overall results with controlled activities and falls (in
e1 simulation and implemented on an embedded device); we perform an individual activity analysis; and
s2 we show an on-line validation, where three elderly voluntaries carried an embedded device during at
es least two days each. Finally, we present our conclusions in Section 5.
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sa 2. Materials

85 We recently published a dataset with falls and ADL acquired with accelerometer (SisFall: Sistemic
ss research group fall and movement dataset [11]). Here we use this dataset to train and test the proposed
ez approach. It was generated with 38 participants divided in elderly people and young adults. Twenty
ss three young adults performed five repetitions of 19 ADL and 15 fall types, while 14 participants over
s 62 years old performed 15 ADL. One additional participant of 60 years old performed both ADL and
oo falls. The dataset was acquired with a self-developed embedded device attached to the waist [14].
o1 The embedded device was based on a Kinets MKL25Z128VLK4 microcontroller with an ADXL345
o2 accelerometer. The accelerometer was configured for +16 G, 13 bits of ADC, and a sampling rate of
s 200 Hz.

0a A second device was developed for validating our methodology (Figure 1). This device consisted
os of the same microcontroller and sensor used for SisFall, but it included a GPRS transmitter (to send
ss short text messages —-SMS) that was activated if a fall was detected. As we did with the first device,
oz it was fixed with a homemade belt (see the supplementary videos of [11]) to guarantee that it does
s not move relative to the subject. It does not require to be completely vertical neither an additional
9o calibration once the subject wears it.

Figure 1. Validation device. With similar characteristics of the device used in [11], this one included a
GPRS module able to send text messages in case of alarm.

100 Two additional validation tests were performed with this device:

101 o Individual activities: Six young adults (subjects SA03, SA04, SA05, SA06, SA09, SA21) and one

102 elderly person (subject SE06) performed again three trials of all activities in SisFall (except D17,
103 getting in and out of a car, due to logistic issues).

10s  ®  On-line tests: We gave the device to three elderly participants that were not part of SisFall dataset.
108 They used the device permanently for at least two days, except during sleep and shower (as the
106 device is not water-proof yet). We used three devices to guarantee the integrity of the system.
107 Table 1 shows their gender, age, height and weight.

Table 1. Gender, age, height and weight of the on-line test participants.

Code Gender Age Height[m] Weight [kg]

SMO01 Female 60 1.56 54
SM02 Female 68 1.46 56
SMO03 Male 79 1.62 68
108 All activities performed by the participants were approved by the Bio-ethics Committee of the

100 Medicine Faculty, Universidad de Antioquia UDEA (Medellin, Colombia). Additionally, all participants
uo  were evaluated by a sports specialized physician.
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111 3. Methods

112 Figure 2 shows a schematic of the proposed approach. It includes bias variations of the signal
us  together with acceleration peaks. This increases the robustness of the feature extraction and allows
us  simpler classifiers. The proposed methodology consists of four stages: Preprocessing, feature extraction,
us  classification, and periodic activity detection. For each time sample k, the raw acceleration data k]
us is initially low-pass filtered. Then, it splits into bias removal and Kalman filtering, which feed
ur both features J; and |, respectively (see Egs. (8) and (9) below). A threshold-based classification is
us performed over a non-linear indirect feature. If the resultant value crosses the threshold, the periodicity
s Of the signal (extracted from the Kalman filter and a zero-crossing algorithm) is analyzed in order to
120 determine if it is a false fall alert, or if indeed the alarm should be turned on. This methodology is
11 explained in the following section.
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Figure 2. Proposed methodology. It is based on a non-linear feature that allows detecting falls with a
simple threshold based detector. Then, false positives are discarded if a periodic activity is detected
after the fall.

122 3.1. Preprocessing and periodicity detector

123 The same 4-th order IIR low-pass Butterworth filter with a cut-off frequency of 5 Hz used in [11]
122 'was used in this work. This filter was selected because: (7) It can be implemented in simple embedded
125 devices; (ii) It does not require large computations in software; and (iif) Increasing the order or the
126 cut-off frequency did not improve the accuracy, i.e., it does not require higher sampling frequencies.
127 The filtered data is then bias removed with a simple differentiation of consecutive samples, as it is
122 needed to compute the static feature (J;). SisFall dataset was initially acquired at 200 Hz; however,
120 the proposed methodology only requires 25 Hz to feed the filter. Then, all results presented here
130 correspond to the proper downsampled signals.

131 The second feature (J,) is computed over the bias level, which is obtained with a Kalman filter. A
132 Kalman filter [20] is an optimal quadratic estimator able to recover hidden states of a state-space model.
133 It was used here with two purposes: to recover the bias-level variation, and to find the periodicity of
134 the signal.
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138 Let us define the filtered acceleration data as @[k] = [ax, ay,a;]7 € R3*! for time instant k, where
1 Ay, a4y, and a; are single samples of raw acceleration (in practice it comes in bits, as acquired by the
137 ADC of the device). These data feed the following autonomous state-space model:

)

138 where the first three states of ¥ € #4*1 are used for classification, and the fourth state x4 removes
130 peaks from periodic signals (see Figure 3, example with activity F05: jog, trip, and fall). As this Kalman
1o filter is exclusively used for smoothing (and not for feature extraction or classification), the state
1 transition A € R4 and output C € R*** matrices are identity matrices. Finally, the output is defined
w2 asy = [ay,ay,az,ay — bay]T € 71, where the first three terms are the low-pass filtered acceleration
13 data in the three axis, and the fourth output is the acceleration on vertical axis minus its current bias
s by, updated together with the feature. x4 provides a zero-bias sinusoidal-shape waveform when the
15 acceleration comes from periodic activities (walk, jog, going-up stairs, etc.). The period of this signal
s can be detected counting zero-crossings (changes of sing) and dividing by two over a given time
17 window.

148 This state-space model is affected by Gaussian measurement noise € = N (0,R), and Gaussian
10 state uncertainty 7 = N(0, Q). The objective of the Kalman filter is to minimize the variance of the
150 states P € R4*4, considering them as random variables with a Gaussian distribution: ¥ = N/ (%, P).
151 The Kalman filter consists of five equations divided in two stages. The prediction stage of the
152 Kalman filter predicts the current value of the states and their variance solely based on their previous

153 values:
X[k]” = AX[k —1] ()
Plk]” = APk —1]AT +Q ©)
154 both ¥[k]~ and P[k]~ are intermediate values that must be corrected based on the current data
155 values:
G[k] = cP[k](CP[k]~CT +R)! (4)
X[k] = X[k]™ + G[k]([K] — CX[K]") ®)
Pk = (I, = GIK"C)P[~ (©)
156 where I; € R***is a (4 x 4) identity matrix.
157 This strategy only requires to sintonize two parameters to set-up the Kalman filter: the variance

1se  matrices Q and R. There are not rules to determine their values, but specifically for this problem they
1ss  are not difficult to define. Both are usually diagonal (no interaction among states), large values of Q
10 and R tend to the original data: ¥ = i/, and they are also complementary, i.e., reducing any of them flats
11 the states. As shown in Figure 3 (Second and Third panels), the first three states are flat (inclination of
12 the subject), and the fourth one seeks for periodic (sinusoidal shape) waveforms.
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Figure 3. Kalman filtering.(Top panel) Reference filtered acceleration data (Activity FO5 of SisFall: jog,
trip, and fall) in gravities [G]. (Second panel) First three states of the Kalman filter. The filter estimates
the bias-level variations of the signal. (Third panel) The forth state of the Kalman filter recovers a quasi
sinusoidal signal during the first 6 s. Its objective is to dynamically remove bias to allow posterior zero
crossing detection. (Bottom panel) Periodicity detector. The first 6 s the subject is jogging with a period
of 10 time samples (half zero crossings); when the subject suffers a fall it stops detecting periodicity too.

163 The states can be initialized with zero values, and P[0] = Q, i.e., selecting uninformative priors.
1« However, for faster convergence x;[0] and by, [0] can be initialized with —1 G (approx. -258 in bytes for
165 the device configuration used here), which is the initial condition of the accelerometer in our device.
s (Q and R can be computed with a simple heuristic process: For the first three states, initialize Q and
167 R with identity matrices and reduce their standard deviation in scales of 10 until the accuracy stops
s increasing. For the fourth state, reduce Q and R until x4 shows a sinusoidal shape in periodic activities
1es  (walk and jog). The final values used in this work were:

005 0 0 0
0 005 0 0
=0.001% x I R= 7
Q= 0001 Iy 0 0 00 0 @)
0 0 0 001
170 In practice, all computations in both the computer (Matlab, Mathworks) and the embedded device
11 were performed in bits and not in gravities to reduce the computational burden.
172 Figure 3 (Bottom panel) shows how state x4 tends to a zero-bias sinusoidal shape when the person

173 walks or jogs. This allows implementing a simple zero-crossing periodicity detector. Note how the
17a  periodicity is lost when the person trips and fall. The periodicity detector analyzes three seconds after
175 a possible fall event. If during this 3 s window the periodicity is kept stable, we may expect that it was
17e not a fall. The size of the window is selected as the minimum to guarantee that the person is slowly
17z walking.

w7e  3.2. Feature extraction and classification

170 The feature extraction consists of a non-linear feature composed of two widely used ones, the
10 sum vector magnitude and the standard deviation magnitude. The static sum vector magnitude is
e computed as the root-mean-square (RMS) of the static acceleration with previous bias removal:
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Jilk] = RMS(alk] — alk —1]) ®)

182 where the bias is rejected with differentiation.
183 The standard deviation magnitude is computed at each time step k over a 1 s sliding window of

1ss  the first three states of the Kalman filter: £[k] = [X[k — N],..., ¥[k]] € R¥*N, where N = 25 is the size
s Of the window (for a frequency sample of 25 Hz). This second feature is computed as follows:

Ja[K] = RMS(std (%[k])) ©)

186 where std(-) is the standard deviation operator. The size of the window is selected as the one that
167 includes the three stages of the fall: the pre-fall, the hit, and the time just after it [26]. Testing with
1.s  windows between 0.25 and 2 s did not improve the accuracy, as expected [11].

189 The same sliding window can be used to determine the current bias on the y axis: by, [k] =
1o mean(Xy[k]). Figure 4 shows both features with the jog-trip-fall example of Figure 3. The maximum
101 values during jogging are half way of the fall in J;, but they get clearly distant in 5.
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Figure 4. Feature extraction. (Top panel) Reference raw data (The subject is running, trips and falls).
(Second panel) Feature J; detects the fall as a large difference between its peak and jogging peaks.
(Third panel) Feature ], has a similar shape but with a larger percentual difference. Both J; and ], are
computed in bits for reducing computations on the embedded device. (Bottom panel) 3 is formed by
J1 and [, increasing their coincidences and diminishing their differences.

192 Finally, the classification stage is performed over an indirect feature:
Jalk] = max(Jy [K]) - max (]2 [k])* (10)
103 With J;[k] € RN*! a sliding window with the last N values of the corresponding feature. This

1a  window is necessary as the Kalman filter takes some time to achieve the maximum, i.e., not always
105 both metrics present a maximum at the same time. The objective of this product of features is to
s amplify the values of those activities where both features agree, and to minimize those where both
17 features disagree (see Figure 4, bottom panel). The square of ], gives it priority over [, as it is more
1es accurate [11].

199 The classification consists of a single threshold over J3[k] computed at each time step k. The value
200 Of the threshold is defined after a training process. The robustness of the threshold was analyzed
201 with a cross-validation set-up. This analysis was performed guaranteeing the same proportion of falls
202 and ADL in all groups (4510 files randomly divided in 10 groups). A 10-fold cross-validation was
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203 performed, each fold had 4059 files for training and 451 for validation. Each group was used in one
20s round as validation data.

208 Accuracy (ACC), Sensitivity (SEN) and specificity (SPE) were used as performance metrics. SEN
206 and SPE were calculated as specified in [27]:

TP TN
— = 11

SEN TP+ FN SPE TN+ FP (1)
207 where TP are falls correctly classified, FN are falls that the algorithm did not detect, TN are ADL
20e  correctly classified, and FP indicates false falls. The accuracy was calculated using Eq. (12):

ACC:SEN;SPE (12)

200 This balanced computation of the accuracy is selected due to the large difference between the
210 number of ADL and fall files.
an 4. Results
212 4.1. Fall detection
213 We initially tested the performance of the proposed algorithm without detecting periodic activities.

212 Table 2 shows the validation results with SisFall dataset over a 10-fold cross-validation (451 files
25 each). All subjects and activities available in the dataset were included in the cross validation. The
zns  low detection accuracy obtained with J; (around 86 %) would raise questions about its usefulness.
2z However, note how J3 is significantly higher than J, (99.3 % vs. 96.5 %), i.e., even J; is not a good
218 metric, combined with [ it improves the individual accuracy values.

Table 2. Test on SisFall dataset without periodicity detector.

J1 J2 J3

Sensitivity [%]  92.92 £1.56 96.06 £1.52 99.27 £0.78

Specificity [%]  81.72 £2.22  96.79 £1.12 99.37 £0.36

Accuracy [%] 86.14 £1.36 96.50 £0.84 99.33 £0.28
Threshold 110.88 £3.23  22.88 +0.027 42628 +511.59

210 Figure 5 shows an activity-by-activity analysis for the three metrics. The horizontal red line is the
220 threshold for the best accuracy value, and the vertical red line divides ADL and falls. By comparing J;
2z (Figure 5(a)) and J, (Figure 5(b)), we observe that J; largely fails in periodic ADL (D03, D04, D06, D18,
222 and D19) while ], does not, and |, goes closer to the threshold in activities where |; does not (D16
223 for example). This separation was the basis to create [3, it combines their results with a product but
224 giving priority to J, (computed with square), given that it is more accurate. The small box in Figure 5(c)
225 shows how all activities are more separated from the threshold; and importantly, less fall files crossed
226 the threshold (false negatives). This initial result significantly improves those obtained with previous
227 approaches tested in [11] (none of them achieved more than 96 %).
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Figure 5. Individual activity analysis of the proposed algorithm tested with SisFall. The horizontal red
line corresponds to the optimal threshold value, and the vertical one separates ADL and falls. (a) J;
has large errors on periodic activities, while (b) ], fails in those that change the body angle. (c) They
provide to [3 a better discriminant capability (the small box at the left shows a vertical zoom).

226 4.2. Fall detection with periodicity detector

220 We then performed the same analysis but including the periodicity detector. The main purpose
20 Of this detector is to take [; to zero if a periodic activity is observed after a possible fall (false
21 positive) -Same result is obtained if ], is selected. Table 3 shows the validation results after a 10-fold
232 cross-validation. Compared to the previous analysis, J1 has 8 % of improvement (94.32 %). Although
233 one would expect a similar improvement in J3, this is not the case (although it is higher, with 99.4 % of
23a  accuracy) given that on SisFall dataset, walk and jog only have one file per subject. Nevertheless, the
235 periodicity detector was active in 606 files (13.5 % of the dataset).
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236 Every dataset has a limited number of repetitions per activity. SisFall for example contains only
23z one 1 minute repetition of walk per subject. However, it is expected that a walk will last more than
23s  One minute, i.e., the possibility of failure is higher with activities that the subject performs regularly
230 (such as walking). Additionally, Figure 6 shows how the possibility of errors in other activities is lower
2a0  given their larger distance from the threshold.

Table 3. Test on SisFall dataset with periodicity detector.

J1 J2 J3

Sensitivity [%]  97.35 £1.37  96.15 £1.59 99.28 £0.59

Specificity [%]  91.49 £1.74  96.69 £1.30 99.51 £0.48

Accuracy [%] 9442 £1.33  96.42 +£0.58 99.39 £0.36
Threshold 103.03 £0.02  22.914 +0.11 42230 £985.01

241 Figure 6 shows the same individual activity analysis of Figure 5 but with the periodicity detector
2e2  in Jq. Figure 6 shows how activities D01 to D04 were turned to zero, as the detector confirmed that the
2e3  subject was walking or jogging. In this case, /3 shows overall more distance from the threshold than
24 the previous test (the threshold is updated accordingly). This indicates that even the cross-validation
2es  did not show a significant improvement on accuracy, the inclusion of the periodicity detector increased
26 the robustness of the algorithm. Importantly, none fall was turned to zero in Figure 6, indicating that
2z the periodicity detector was turned off in all periodic activities that finished in a fall.

: T
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Figure 6. Individual activity analysis of the proposed algorithm including the periodicity detector. The
horizontal red line corresponds to the optimal threshold value, and the vertical red line separates ADL
and falls. J3 was turned to zero in all periodic ADL, this allowed it to increase the distance between
most ADL and Falls.

28 4.3. On-line validation

249 In order to verify the off-line results presented in Table 3, we repeated the activities of SisFall with
20 six young adults and an elderly person with the algorithm implemented on the device (see Section 2).
=1 During the tests, we verified on-line if the alarm was turned on (with an indicator incorporated to
=2 the device). Additionally, all raw data and the device computations were recorded in text files. We
253 Obtained no significant differences between the device and the computer. The proposed approach was
264 implemented on the embedded device with the same parameters and sample frequency defined above
25 (25 Hz). The threshold for [3 was set at 40,000. The six volunteers performed 18 types of ADL and 15
=6 types of fall in the same way that SisFall dataset was acquired (around 100 total trials per subject).

287 The participants presented a total of 4 false positives and 1 false negative. Subject SE06 (the elderly
ze  person) did not show errors. All false positives were in D13 and D14 (bed related ones). Following
20 Figure 6, it is clear that these activities are commonly close to the threshold. A deeper analysis of this
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260 problem (which is not reflected in the following test) demonstrated that when a person moves on the
261 bed, it is usual to separate the hip from the mattress and let it fall in the new position. The pad used for
202 this experiment is harder than a mattress increasing the false positive probability. The overall results
263 coincided with the statistics expected from Table 3.

20 4.4. Full-day (pilot) tests

2605 We invited three elderly participants that were not part of SisFall acquisition (in order to avoid
206 biases) to carry the device for full days (see Section 2). We asked them to behave normally while
267 carrying the device during at least two days, and we checked the integrity of the devices every couple
2ee  Of hours. They used the device permanently except during night sleep and shower. The files were cut
260 in segments to avoid computational overloads (one hour of recording implied a text file of around

270 10 MB).

am This is a summary of the activities that they performed and the overall behavior of the system:
2z ®  SMO1: She assisted to a Tae-Bo for adults class (INDER Medellin, Colombia), and stayed at home
273 cooking, cleaning and resting. She did not present false positives.

27za @  SMO2: She stayed most of the time cooking at home, cleaning and sit on the dinning room. She
275 usually supports her belly against the kitchen or the table, it caused some false positives (4) of
276 the system. She went out of her home two times, unfortunately both times the device got hits
277 and lost the SD card, loosing all data. This is worrying as after an interview we concluded that
278 she strongly hit the device in both cases presumably against furniture. We presume that her low
279 height together with the shape of her belly (rounded) incremented the risk of direct hits to the
260 device.

22 ®  SMO03: He did some trips to a business in the downtown and to the church. The rest of the time he
282 stayed at home in bed or in the dinning room. He did not have false positives in any activity. His
283 trip to the downtown included stairs, two train trips and two bus trips. This trip is presented in
284 Figure 7, note that despite the wide amount of activities, the levels of feature J3 were not close to
285 the threshold (40,000).

T T T T T
Walk Train  Train Bus Busihess Restaurant Bus Train Train  Walk

0
0 1000 2000 3000 4000 TSOOO[] 6000 7000 8000 9000 1000(
Ime (S

Figure 7. Trip to the downtown of subject SM03. (Top panel) Raw acceleration data, 2 hours and 45
minutes of recording. (Second panel) First three states of the Kalman filter. (Third panel) feature J3.
It was always below the threshold (set at 40,000). Data recorded and processed with the embedded
device of Figure 1.
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286 5. Conclusions

287 In this paper, we proposed a fall detection methodology with the following features: Simple
2s  frequency filtering, a non-linear feature based on commonly used ones, theshold-based classification,
200 and a periodicity detector to avoid false positives. With these features, we generated a novel fall
200 detection algorithm centered on a Kalman filter stage. The Kalman filter is not computationally
201 intensive as it is Markovian, and it demonstrated to be stable with acceleration data. We selected the
202 Kalman filter because its low computational cost and robustness, it provided an orientation level to
203 a variance feature and at the same time a sinusoidal signal when the subject performed a periodic
20a  activity. This last result highly reduces the computational cost to obtain the period of the signal, as it
205 avoids to compute more elaborated approaches such as Wavelets or auto-correlation [19].

206 The most significant improvement of this approach is the way that a combined non-linear feature
207 (J3) provided higher accuracy (99.4 % with SisFall dataset) than the individual ones (94.3 % and 96.4 %).
20s  We obtained this feature after analyzing individually several features with each activity (finally keeping
200 J1 and J»). They were selected as they were highly complementary (each fails in different activities
s00 than the other one).

301 This methodology allowed reducing the frequency sample to just 25 Hz. The battery allowed
;02 more than 17 hours of continuous acquisition in the full-day tests (without saving data to a SD, it lasts
303 more than one week). This final validation demonstrated that the proposed methodology can be used
s0s in real-life with objective population. However, although it behaved well with on-line simulated falls
s0s and real-life use, only real falls that may occur at any moment will show its real accuracy.

306 The new non-linear feature used for this work was obtained in an intuitive way, and together with
sz a threshold based classifier it achieved 99.4 % of accuracy with SisFall dataset. We then implemented
s0s  this methodology in embedded devices and tested it by simulating again all SisFall activities. Finally,
;00 we validated our work with full-day tests with the objective population (two female and one male,
a0 all over 60 years old). We asked them to do what they use to, including traveling in train and bus,
su  making exercise and cooking or cleaning. With a sampling frequency of 25 Hz (lower than most works
a1z in the literature), the devices behaved as expected; just with a couple of false positives due to hits of
a3 the device during cooking. This final issue is out of the scope of this work, and a good starting point
ss  for a future analysis.
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