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Abstract: The consequences of a fall on an elderly person can be diminished if the accident is attended1

by medical personnel within the first hour. Independent elderly people use to stay alone for long2

periods of time, being in more risk if they suffer a fall. The literature offers several approaches for3

detecting falls with embedded devices or smartphones using a triaxial accelerometer. Most of these4

approaches were not tested with the objective population, or are not feasible to be implemented in5

real-life conditions. In this work we propose a Kalman-filter-based fall detection methodology that6

includes a periodicity detector to reduce the false positive rate. Moreover, this methodology requires7

a sampling rate of only 25 Hz, it does not require large computations or memory, and it is robust8

among devices. We tested our approach with the SisFall dataset. Then, we validated it with a new9

round of simulated activities with young adults and an elderly person achieving 99.4 % of accuracy.10

Finally, we gave the devices to three elderly persons during two days for full-day validations. They11

continued with their normal life and the devices behaved as expected.12

Keywords: triaxial accelerometer; wearable devices; fall detection; mobile health-care; SisFall;13

Kalman filter14

1. Introduction15

At least one third of elderly people suffers a fall per year, and the probability of falling increases16

with age and previous falls [1–4]. The consequences of a fall can be diminished if the person is attended17

by medical services within an hour from the accident [5–7]. This timing is feasible with institutionalized18

elderly people, but healthy independent elderly people use to stay alone for long periods of time19

increasing their risk of aggravating the injuries in case of an accident. Nowadays, authors focus on20

developing automatic fall detection systems that generate an alarm in case of an event, but they still21

present high error rates in real-life conditions (see [7–10] for reviews on the field). In this paper, we22

tackle this issue with a novel fall detection methodology tested in real-life situations with the objective23

population, using a simple to implement triaxial-accelerometer-based embedded device.24

Detecting falls with a triaxial accelerometer is commonly divided in three stages: pre-processing,25

feature extraction, and classification. The preprocessing can be as simple as a low-pass filter [11],26

but it mainly depends on the selected feature extraction. In this sense, there is a wide amount of27

features available in the literature, such as acceleration peaks, variance, angles, etc. (see [9, Table 4]28

for a complete list). These features transform the acceleration signal in order to better discriminate29

between falls and activities of daily living (ADL). Regarding classification, threshold based detection30

is still the most opted choice over machine learning alternatives, mainly because the latter ones are31

impractical for real-time implementation. Habib et al. [10] show various examples of SVM approaches32

consuming the battery in few hours; and Igual et al. [12] concluded that these approaches are highly33

dependent on the acquisition device used.34

A common problem with approaches proposed in the literature is that most of them were tested35

with young adults under controlled conditions [9, Table 5]. Moreover, previous works demonstrated36
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that the accuracy of these approaches is significantly diminished when tested on institutionalized37

[13] and independent [11] elderly people. The main reason for authors not testing with the objective38

population is the lack of appropriate public datasets, and the difficulty of acquiring real falls with39

elderly people [9,11,13]. In order to tackle these issues, we recently released the SisFall dataset [11], a40

fall and movement dataset acquired with a triaxial accelerometer mounted on an embedded device41

attached to the waist (see [14] for implementation details).42

In [11], we demonstrated that most failures in fall detection are focused on a few activities. Most43

of these activities coincide in periodic waveforms (from walk and jog) and high peak acceleration44

ADL (e.g., jump). There are previous approaches in the literature for detecting jog and walk with45

accelerometers. Cola et al. [15] detected gait deviation as a fall-risk feature. [16] used the peaks of the46

acceleration signal measured with a smartphone to detect steps, and subsequently the kind of activity47

based on the period between steps. Wundersitz et al. [17] did it with an embedded device. Other48

authors used more elaborated metrics but all peak based. Clements et al. [18] computed principal49

components of the Fast Fourier Transform (FFT), to cite an example. In contrast, we previously50

developed a more stable gait detector based on wavelet or auto-correlation indistinctly [19]. However,51

it was too computationally intensive for real-life implementation in an embedded device.52

In this work, we present a Kalman-filter-based fall detection algorithm that additionally detects53

gait as a feature to avoid false positives. The fall detection feature is a novel non-linear metric based54

on two widely used features: the sum vector magnitude and the standard deviation magnitude. The55

Kalman filter is a well-known optimal estimator [20] widely used in several research fields. The56

Kalman filter is Markovian (avoiding large memory storage), and linear (simple computations for57

lower energy consumption). Here, we use it as an input to the non-linear feature by determining58

the orientation of the subject: jogging activities may lead to high accelerations, but the absence of59

inclination implies that the subject is not falling. We additionally use the Kalman filter to smooth gait60

patterns (as sinusoidal-shape waveforms) in order to feed our gait detector.61

The Kalman filter has been previously used to identify movements of interest with accelerometers.62

Bagalà et al. [21] used it to determine the lie-to-sit-to-stand-to-walk states, which are commonly63

used to measure the risk of falling in elderly people (with the Berg Balance Scale –BBS– for example64

[22]). There, the authors used an Extended Kalman filter to determine the orientation of the device.65

Otebolaku et al. [23] proposed a novel user context recognition using a smartphone. In their work, the66

Kalman filter was used to obtain the orientation of the device based on its multiple sensors (not only67

the accelerometer). But the authors did not specify how they did it. Finally, Novak et al. [24] used a68

multiple sensors system to determine gait initiation and termination. In their work, the Kalman filter69

was used again to obtain the orientation of the device.70

The aforementioned works coincide in their objective with the Kalman filter (identifying71

locomotion activities), but they differ on the way it was implemented, and none of them was interested72

in detecting falls. In Yuan et al. [25], the authors used the Kalman filter to obtain the device angle73

for detecting falls, but using three different sensors (including gyroscope, which demands too much74

energy for long-term use [7]). All previously mentioned works demonstrate that the orientation of75

the device computed with a Kalman filter is a strong feature, and that it is useful to detect periodic76

activities such as walking or jogging. However, none of them combined these capabilities as we77

propose in this work.78

This paper continues as follows: In Sections 2 and 3 we present the dataset used and explain the79

proposed approach. In Section 4 we present the overall results with controlled activities and falls (in80

simulation and implemented on an embedded device); we perform an individual activity analysis; and81

we show an on-line validation, where three elderly voluntaries carried an embedded device during at82

least two days each. Finally, we present our conclusions in Section 5.83
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2. Materials84

We recently published a dataset with falls and ADL acquired with accelerometer (SisFall: Sistemic85

research group fall and movement dataset [11]). Here we use this dataset to train and test the proposed86

approach. It was generated with 38 participants divided in elderly people and young adults. Twenty87

three young adults performed five repetitions of 19 ADL and 15 fall types, while 14 participants over88

62 years old performed 15 ADL. One additional participant of 60 years old performed both ADL and89

falls. The dataset was acquired with a self-developed embedded device attached to the waist [14].90

The embedded device was based on a Kinets MKL25Z128VLK4 microcontroller with an ADXL34591

accelerometer. The accelerometer was configured for ±16 G, 13 bits of ADC, and a sampling rate of92

200 Hz.93

A second device was developed for validating our methodology (Figure 1). This device consisted94

of the same microcontroller and sensor used for SisFall, but it included a GPRS transmitter (to send95

short text messages –SMS) that was activated if a fall was detected. As we did with the first device,96

it was fixed with a homemade belt (see the supplementary videos of [11]) to guarantee that it does97

not move relative to the subject. It does not require to be completely vertical neither an additional98

calibration once the subject wears it.99

5 cm

Figure 1. Validation device. With similar characteristics of the device used in [11], this one included a
GPRS module able to send text messages in case of alarm.

Two additional validation tests were performed with this device:100

• Individual activities: Six young adults (subjects SA03, SA04, SA05, SA06, SA09, SA21) and one101

elderly person (subject SE06) performed again three trials of all activities in SisFall (except D17,102

getting in and out of a car, due to logistic issues).103

• On-line tests: We gave the device to three elderly participants that were not part of SisFall dataset.104

They used the device permanently for at least two days, except during sleep and shower (as the105

device is not water-proof yet). We used three devices to guarantee the integrity of the system.106

Table 1 shows their gender, age, height and weight.107

Table 1. Gender, age, height and weight of the on-line test participants.

Code Gender Age Height [m] Weight [kg]

SM01 Female 60 1.56 54
SM02 Female 68 1.46 56
SM03 Male 79 1.62 68

All activities performed by the participants were approved by the Bio-ethics Committee of the108

Medicine Faculty, Universidad de Antioquia UDEA (Medellín, Colombia). Additionally, all participants109

were evaluated by a sports specialized physician.110
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3. Methods111

Figure 2 shows a schematic of the proposed approach. It includes bias variations of the signal112

together with acceleration peaks. This increases the robustness of the feature extraction and allows113

simpler classifiers. The proposed methodology consists of four stages: Preprocessing, feature extraction,114

classification, and periodic activity detection. For each time sample k, the raw acceleration data~a[k]115

is initially low-pass filtered. Then, it splits into bias removal and Kalman filtering, which feed116

both features J1 and J2 respectively (see Eqs. (8) and (9) below). A threshold-based classification is117

performed over a non-linear indirect feature. If the resultant value crosses the threshold, the periodicity118

of the signal (extracted from the Kalman filter and a zero-crossing algorithm) is analyzed in order to119

determine if it is a false fall alert, or if indeed the alarm should be turned on. This methodology is120

explained in the following section.121

measure accel

LP Filter

d/dt Kalman filter

J1 (J2)
2

×

Threshold

Fall?

Update

Periodic?

ALARM!

yes

no

yes

no

Figure 2. Proposed methodology. It is based on a non-linear feature that allows detecting falls with a
simple threshold based detector. Then, false positives are discarded if a periodic activity is detected
after the fall.

3.1. Preprocessing and periodicity detector122

The same 4-th order IIR low-pass Butterworth filter with a cut-off frequency of 5 Hz used in [11]123

was used in this work. This filter was selected because: (i) It can be implemented in simple embedded124

devices; (ii) It does not require large computations in software; and (iii) Increasing the order or the125

cut-off frequency did not improve the accuracy, i.e., it does not require higher sampling frequencies.126

The filtered data is then bias removed with a simple differentiation of consecutive samples, as it is127

needed to compute the static feature (J1). SisFall dataset was initially acquired at 200 Hz; however,128

the proposed methodology only requires 25 Hz to feed the filter. Then, all results presented here129

correspond to the proper downsampled signals.130

The second feature (J2) is computed over the bias level, which is obtained with a Kalman filter. A131

Kalman filter [20] is an optimal quadratic estimator able to recover hidden states of a state-space model.132

It was used here with two purposes: to recover the bias-level variation, and to find the periodicity of133

the signal.134
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Let us define the filtered acceleration data as~a[k] = [ax, ay, az]T ∈ <3×1 for time instant k, where135

ax, ay, and az are single samples of raw acceleration (in practice it comes in bits, as acquired by the136

ADC of the device). These data feed the following autonomous state-space model:137

~x[k] = A~x[k− 1] + η

~y[k] = C~x[k] + ε
(1)

where the first three states of ~x ∈ <4×1 are used for classification, and the fourth state x4 removes138

peaks from periodic signals (see Figure 3, example with activity F05: jog, trip, and fall). As this Kalman139

filter is exclusively used for smoothing (and not for feature extraction or classification), the state140

transition A ∈ <4×4 and output C ∈ <4×4 matrices are identity matrices. Finally, the output is defined141

as ~y = [ax, ay, az, ay − bay ]
T ∈ <4×1, where the first three terms are the low-pass filtered acceleration142

data in the three axis, and the fourth output is the acceleration on vertical axis minus its current bias143

bay , updated together with the feature. x4 provides a zero-bias sinusoidal-shape waveform when the144

acceleration comes from periodic activities (walk, jog, going-up stairs, etc.). The period of this signal145

can be detected counting zero-crossings (changes of sing) and dividing by two over a given time146

window.147

This state-space model is affected by Gaussian measurement noise ε = N (0, R), and Gaussian148

state uncertainty η = N (0, Q). The objective of the Kalman filter is to minimize the variance of the149

states P ∈ <4×4, considering them as random variables with a Gaussian distribution: ~x = N (x, P).150

The Kalman filter consists of five equations divided in two stages. The prediction stage of the151

Kalman filter predicts the current value of the states and their variance solely based on their previous152

values:153

~x[k]− = A~x[k− 1] (2)

P[k]− = AP[k− 1]AT + Q (3)

both ~x[k]− and P[k]− are intermediate values that must be corrected based on the current data154

values:155

G[k] = CP[k](CP[k]−CT + R)−1 (4)

~x[k] = ~x[k]− + G[k](~y[k]− C~x[k]−) (5)

P[k] = (I4 − G[k]TC)P[k]− (6)

where I4 ∈ <4×4 is a (4× 4) identity matrix.156

This strategy only requires to sintonize two parameters to set-up the Kalman filter: the variance157

matrices Q and R. There are not rules to determine their values, but specifically for this problem they158

are not difficult to define. Both are usually diagonal (no interaction among states), large values of Q159

and R tend to the original data: ~x ≈ ~y, and they are also complementary, i.e., reducing any of them flats160

the states. As shown in Figure 3 (Second and Third panels), the first three states are flat (inclination of161

the subject), and the fourth one seeks for periodic (sinusoidal shape) waveforms.162
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Figure 3. Kalman filtering.(Top panel) Reference filtered acceleration data (Activity F05 of SisFall: jog,
trip, and fall) in gravities [G]. (Second panel) First three states of the Kalman filter. The filter estimates
the bias-level variations of the signal. (Third panel) The forth state of the Kalman filter recovers a quasi
sinusoidal signal during the first 6 s. Its objective is to dynamically remove bias to allow posterior zero
crossing detection. (Bottom panel) Periodicity detector. The first 6 s the subject is jogging with a period
of 10 time samples (half zero crossings); when the subject suffers a fall it stops detecting periodicity too.

The states can be initialized with zero values, and P[0] = Q, i.e., selecting uninformative priors.163

However, for faster convergence x2[0] and bay [0] can be initialized with −1 G (approx. -258 in bytes for164

the device configuration used here), which is the initial condition of the accelerometer in our device.165

Q and R can be computed with a simple heuristic process: For the first three states, initialize Q and166

R with identity matrices and reduce their standard deviation in scales of 10 until the accuracy stops167

increasing. For the fourth state, reduce Q and R until x4 shows a sinusoidal shape in periodic activities168

(walk and jog). The final values used in this work were:169

Q = 0.0012 × I4 R =


0.052 0 0 0

0 0.052 0 0
0 0 0.052 0
0 0 0 0.012

 (7)

In practice, all computations in both the computer (Matlab, Mathworks) and the embedded device170

were performed in bits and not in gravities to reduce the computational burden.171

Figure 3 (Bottom panel) shows how state x4 tends to a zero-bias sinusoidal shape when the person172

walks or jogs. This allows implementing a simple zero-crossing periodicity detector. Note how the173

periodicity is lost when the person trips and fall. The periodicity detector analyzes three seconds after174

a possible fall event. If during this 3 s window the periodicity is kept stable, we may expect that it was175

not a fall. The size of the window is selected as the minimum to guarantee that the person is slowly176

walking.177

3.2. Feature extraction and classification178

The feature extraction consists of a non-linear feature composed of two widely used ones, the179

sum vector magnitude and the standard deviation magnitude. The static sum vector magnitude is180

computed as the root-mean-square (RMS) of the static acceleration with previous bias removal:181
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J1[k] = RMS(~a[k]−~a[k− 1]) (8)

where the bias is rejected with differentiation.182

The standard deviation magnitude is computed at each time step k over a 1 s sliding window of183

the first three states of the Kalman filter: x̃[k] = [~x[k− N], . . . ,~x[k]] ∈ <3×N , where N = 25 is the size184

of the window (for a frequency sample of 25 Hz). This second feature is computed as follows:185

J2[k] = RMS(std(x̃[k])) (9)

where std(·) is the standard deviation operator. The size of the window is selected as the one that186

includes the three stages of the fall: the pre-fall, the hit, and the time just after it [26]. Testing with187

windows between 0.25 and 2 s did not improve the accuracy, as expected [11].188

The same sliding window can be used to determine the current bias on the y axis: bay [k] =189

mean(x̃y[k]). Figure 4 shows both features with the jog-trip-fall example of Figure 3. The maximum190

values during jogging are half way of the fall in J1, but they get clearly distant in J2.191
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Figure 4. Feature extraction. (Top panel) Reference raw data (The subject is running, trips and falls).
(Second panel) Feature J1 detects the fall as a large difference between its peak and jogging peaks.
(Third panel) Feature J2 has a similar shape but with a larger percentual difference. Both J1 and J2 are
computed in bits for reducing computations on the embedded device. (Bottom panel) J3 is formed by
J1 and J2, increasing their coincidences and diminishing their differences.

Finally, the classification stage is performed over an indirect feature:192

J3[k] = max( J̃1[k]) ·max( J̃2[k])2 (10)

With J̃i[k] ∈ <N×1 a sliding window with the last N values of the corresponding feature. This193

window is necessary as the Kalman filter takes some time to achieve the maximum, i.e., not always194

both metrics present a maximum at the same time. The objective of this product of features is to195

amplify the values of those activities where both features agree, and to minimize those where both196

features disagree (see Figure 4, bottom panel). The square of J2 gives it priority over J1, as it is more197

accurate [11].198

The classification consists of a single threshold over J3[k] computed at each time step k. The value199

of the threshold is defined after a training process. The robustness of the threshold was analyzed200

with a cross-validation set-up. This analysis was performed guaranteeing the same proportion of falls201

and ADL in all groups (4510 files randomly divided in 10 groups). A 10-fold cross-validation was202
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performed, each fold had 4059 files for training and 451 for validation. Each group was used in one203

round as validation data.204

Accuracy (ACC), Sensitivity (SEN) and specificity (SPE) were used as performance metrics. SEN205

and SPE were calculated as specified in [27]:206

SEN =
TP

TP + FN
SPE =

TN
TN + FP

(11)

where TP are falls correctly classified, FN are falls that the algorithm did not detect, TN are ADL207

correctly classified, and FP indicates false falls. The accuracy was calculated using Eq. (12):208

ACC =
SEN + SPE

2
(12)

This balanced computation of the accuracy is selected due to the large difference between the209

number of ADL and fall files.210

4. Results211

4.1. Fall detection212

We initially tested the performance of the proposed algorithm without detecting periodic activities.213

Table 2 shows the validation results with SisFall dataset over a 10-fold cross-validation (451 files214

each). All subjects and activities available in the dataset were included in the cross validation. The215

low detection accuracy obtained with J1 (around 86 %) would raise questions about its usefulness.216

However, note how J3 is significantly higher than J2 (99.3 % vs. 96.5 %), i.e., even J1 is not a good217

metric, combined with J2 it improves the individual accuracy values.218

Table 2. Test on SisFall dataset without periodicity detector.

J1 J2 J3

Sensitivity [%] 92.92 ±1.56 96.06 ±1.52 99.27 ±0.78
Specificity [%] 81.72 ±2.22 96.79 ±1.12 99.37 ±0.36
Accuracy [%] 86.14 ±1.36 96.50 ±0.84 99.33 ±0.28

Threshold 110.88 ±3.23 22.88 ±0.027 42628 ±511.59

Figure 5 shows an activity-by-activity analysis for the three metrics. The horizontal red line is the219

threshold for the best accuracy value, and the vertical red line divides ADL and falls. By comparing J1220

(Figure 5(a)) and J2 (Figure 5(b)), we observe that J1 largely fails in periodic ADL (D03, D04, D06, D18,221

and D19) while J2 does not, and J2 goes closer to the threshold in activities where J1 does not (D16222

for example). This separation was the basis to create J3, it combines their results with a product but223

giving priority to J2 (computed with square), given that it is more accurate. The small box in Figure 5(c)224

shows how all activities are more separated from the threshold; and importantly, less fall files crossed225

the threshold (false negatives). This initial result significantly improves those obtained with previous226

approaches tested in [11] (none of them achieved more than 96 %).227
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Figure 5. Individual activity analysis of the proposed algorithm tested with SisFall. The horizontal red
line corresponds to the optimal threshold value, and the vertical one separates ADL and falls. (a) J1

has large errors on periodic activities, while (b) J2 fails in those that change the body angle. (c) They
provide to J3 a better discriminant capability (the small box at the left shows a vertical zoom).

4.2. Fall detection with periodicity detector228

We then performed the same analysis but including the periodicity detector. The main purpose229

of this detector is to take J1 to zero if a periodic activity is observed after a possible fall (false230

positive) –Same result is obtained if J2 is selected. Table 3 shows the validation results after a 10-fold231

cross-validation. Compared to the previous analysis, J1 has 8 % of improvement (94.32 %). Although232

one would expect a similar improvement in J3, this is not the case (although it is higher, with 99.4 % of233

accuracy) given that on SisFall dataset, walk and jog only have one file per subject. Nevertheless, the234

periodicity detector was active in 606 files (13.5 % of the dataset).235
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Every dataset has a limited number of repetitions per activity. SisFall for example contains only236

one 1 minute repetition of walk per subject. However, it is expected that a walk will last more than237

one minute, i.e., the possibility of failure is higher with activities that the subject performs regularly238

(such as walking). Additionally, Figure 6 shows how the possibility of errors in other activities is lower239

given their larger distance from the threshold.240

Table 3. Test on SisFall dataset with periodicity detector.

J1 J2 J3

Sensitivity [%] 97.35 ±1.37 96.15 ±1.59 99.28 ±0.59
Specificity [%] 91.49 ±1.74 96.69 ±1.30 99.51 ±0.48
Accuracy [%] 94.42 ±1.33 96.42 ±0.58 99.39 ±0.36

Threshold 103.03 ±0.02 22.914 ±0.11 42230 ±985.01

Figure 6 shows the same individual activity analysis of Figure 5 but with the periodicity detector241

in J1. Figure 6 shows how activities D01 to D04 were turned to zero, as the detector confirmed that the242

subject was walking or jogging. In this case, J3 shows overall more distance from the threshold than243

the previous test (the threshold is updated accordingly). This indicates that even the cross-validation244

did not show a significant improvement on accuracy, the inclusion of the periodicity detector increased245

the robustness of the algorithm. Importantly, none fall was turned to zero in Figure 6, indicating that246

the periodicity detector was turned off in all periodic activities that finished in a fall.247
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Figure 6. Individual activity analysis of the proposed algorithm including the periodicity detector. The
horizontal red line corresponds to the optimal threshold value, and the vertical red line separates ADL
and falls. J3 was turned to zero in all periodic ADL, this allowed it to increase the distance between
most ADL and Falls.

4.3. On-line validation248

In order to verify the off-line results presented in Table 3, we repeated the activities of SisFall with249

six young adults and an elderly person with the algorithm implemented on the device (see Section 2).250

During the tests, we verified on-line if the alarm was turned on (with an indicator incorporated to251

the device). Additionally, all raw data and the device computations were recorded in text files. We252

obtained no significant differences between the device and the computer. The proposed approach was253

implemented on the embedded device with the same parameters and sample frequency defined above254

(25 Hz). The threshold for J3 was set at 40,000. The six volunteers performed 18 types of ADL and 15255

types of fall in the same way that SisFall dataset was acquired (around 100 total trials per subject).256

The participants presented a total of 4 false positives and 1 false negative. Subject SE06 (the elderly257

person) did not show errors. All false positives were in D13 and D14 (bed related ones). Following258

Figure 6, it is clear that these activities are commonly close to the threshold. A deeper analysis of this259
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problem (which is not reflected in the following test) demonstrated that when a person moves on the260

bed, it is usual to separate the hip from the mattress and let it fall in the new position. The pad used for261

this experiment is harder than a mattress increasing the false positive probability. The overall results262

coincided with the statistics expected from Table 3.263

4.4. Full-day (pilot) tests264

We invited three elderly participants that were not part of SisFall acquisition (in order to avoid265

biases) to carry the device for full days (see Section 2). We asked them to behave normally while266

carrying the device during at least two days, and we checked the integrity of the devices every couple267

of hours. They used the device permanently except during night sleep and shower. The files were cut268

in segments to avoid computational overloads (one hour of recording implied a text file of around269

10 MB).270

This is a summary of the activities that they performed and the overall behavior of the system:271

• SM01: She assisted to a Tae-Bo for adults class (INDER Medellín, Colombia), and stayed at home272

cooking, cleaning and resting. She did not present false positives.273

• SM02: She stayed most of the time cooking at home, cleaning and sit on the dinning room. She274

usually supports her belly against the kitchen or the table, it caused some false positives (4) of275

the system. She went out of her home two times, unfortunately both times the device got hits276

and lost the SD card, loosing all data. This is worrying as after an interview we concluded that277

she strongly hit the device in both cases presumably against furniture. We presume that her low278

height together with the shape of her belly (rounded) incremented the risk of direct hits to the279

device.280

• SM03: He did some trips to a business in the downtown and to the church. The rest of the time he281

stayed at home in bed or in the dinning room. He did not have false positives in any activity. His282

trip to the downtown included stairs, two train trips and two bus trips. This trip is presented in283

Figure 7, note that despite the wide amount of activities, the levels of feature J3 were not close to284

the threshold (40,000).285
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Figure 7. Trip to the downtown of subject SM03. (Top panel) Raw acceleration data, 2 hours and 45
minutes of recording. (Second panel) First three states of the Kalman filter. (Third panel) feature J3.
It was always below the threshold (set at 40,000). Data recorded and processed with the embedded
device of Figure 1.
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5. Conclusions286

In this paper, we proposed a fall detection methodology with the following features: Simple287

frequency filtering, a non-linear feature based on commonly used ones, theshold-based classification,288

and a periodicity detector to avoid false positives. With these features, we generated a novel fall289

detection algorithm centered on a Kalman filter stage. The Kalman filter is not computationally290

intensive as it is Markovian, and it demonstrated to be stable with acceleration data. We selected the291

Kalman filter because its low computational cost and robustness, it provided an orientation level to292

a variance feature and at the same time a sinusoidal signal when the subject performed a periodic293

activity. This last result highly reduces the computational cost to obtain the period of the signal, as it294

avoids to compute more elaborated approaches such as Wavelets or auto-correlation [19].295

The most significant improvement of this approach is the way that a combined non-linear feature296

(J3) provided higher accuracy (99.4 % with SisFall dataset) than the individual ones (94.3 % and 96.4 %).297

We obtained this feature after analyzing individually several features with each activity (finally keeping298

J1 and J2). They were selected as they were highly complementary (each fails in different activities299

than the other one).300

This methodology allowed reducing the frequency sample to just 25 Hz. The battery allowed301

more than 17 hours of continuous acquisition in the full-day tests (without saving data to a SD, it lasts302

more than one week). This final validation demonstrated that the proposed methodology can be used303

in real-life with objective population. However, although it behaved well with on-line simulated falls304

and real-life use, only real falls that may occur at any moment will show its real accuracy.305

The new non-linear feature used for this work was obtained in an intuitive way, and together with306

a threshold based classifier it achieved 99.4 % of accuracy with SisFall dataset. We then implemented307

this methodology in embedded devices and tested it by simulating again all SisFall activities. Finally,308

we validated our work with full-day tests with the objective population (two female and one male,309

all over 60 years old). We asked them to do what they use to, including traveling in train and bus,310

making exercise and cooking or cleaning. With a sampling frequency of 25 Hz (lower than most works311

in the literature), the devices behaved as expected; just with a couple of false positives due to hits of312

the device during cooking. This final issue is out of the scope of this work, and a good starting point313

for a future analysis.314
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