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Abstract: In ultra-relativistic collisions of heavy ions, the strongly interacting Quark Gluon Plasma1

(sQGP) is created. The fluid nature of the sQGP was one of the important discoveries of high energy2

heavy ion physics in the last decades. Henceforth the explosion of this matter may be described3

by hydrodynamical models. Besides numerical simulations, it is important to study the analytic4

solutions of the equations of hydrodynamics, as these enable us to understand the connection of5

the final and initial states better. In this paper we present a perturbative, accelerating solution of6

relativistic hydrodynamics, on top of a known class of solutions describing Hubble-expansion. We7

describe the properties of this class of perturbative solutions, and investigate a few selected solutions8

in detail.9
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1. Introduction11

The equations of perfect hydrodynamics have no internal scale, and hence they describe aspects12

of the time evolution of systems with vastly different sizes: from galactic clusters and galaxies through13

stars, planets and human-scale systems, down to the femtometer scale sQGP, created in heavy ion14

collisions at RHIC [1,2] and the LHC [3–6]. The sQGP is formed in heavy ion collisions after an initial15

thermalization time O(1 fm/c), its evolutions lasts O(10 fm/c), after that it creates hadrons in the16

quark-hadron freeze-out. We observe these hadrons, and hydrodynamics may be used to infer the17

time evolution and the initial state from the hadron final state distributions.18

Hydrodynamics is based on the local conservation of energy and momentum, expressed through19

∂νTµν = 0, (1)

with Tµν being the energy-momentum tensor. In case of a perfect fluid, this can be written as20

Tµν = (ε + p)uµuν − pgµν. (2)

where uµ is the flow field (subject to the uµuµ = 1 constraint), ε is the energy density and p is the21

pressure. The Equation of State (EoS) closes this set of equations:22

ε = κp (3)

where κ is the EoS parameter, which may depend on the temperature. In this paper we assume constant23

values, even if κ(T) type of solutions of relativistic hydrodynamics are know [7]. In case of the above24

described perfect fluid, continuity for the entropy density σ = (ε + p)/T follows from the above25

equations, and a similar continuity equation for the density of some conserved charge (n) may be26

prescribed:27
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∂µ(σuµ) = 0, (4)

∂µ(nuµ) = 0. (5)

With this, a solution of the equations is a set of fields (uµ, p, n, σ), given in terms of coordinates xµ,28

where sometimes also the coordinate proper-time is introduced as τ =
√

xµxµ, along some scaling29

variable s(xµ) that describes the spatial profile of the densities in the solution.30

The discovery of the fluid nature of the sQGP produced a revival of interest for solutions of31

hydrodynamics, beyond the well-known Landau-Khalatnikov [8,9] and Hwa-Bjorken [10,11] solutions.32

Besides numerical simulations (see e.g. Refs. [12–14] for recent examples), multiple advanced analytic33

solutions were found in the last decade [7,15–19]. One important example is the simple, ellipsoidal34

Hubble-flow described in Ref. [15], which describes hadron and photon observables well [20,21].35

However, this solution lacks acceleration, and while Hubble-flow is natural in the final state, initial36

pressure gradients may be important in understanding the time evolution of this system. In this paper37

we attempt to find accelerating perturbations on top of Hubble-flow.38

2. Perturbative solutions of hydrodynamics39

The equation for the conservation of energy and momentum density, Eq. (1) may be projected40

onto uµ, producing a Lorentz-parallel and a Lorentz-orthogonal equation:41

κuµ∂µ p + (κ + 1)p∂µuµ = 0 (6)

(κ + 1)puµ∂µuν = (gµν − uµuν)∂µ p, (7)

where the first is called the energy equation, and the second is the Euler equation of relativistic42

hydrodynamics. If a given solution is given in terms of (uµ, p, n), then perturbations on top of this43

solution may be given as:44

uµ → uµ + δuµ, (8)

p→ p + δp, (9)

n→ n + δn, (10)

where we restrict ourselves to a conserved charge here, but the continuity may be understood for the45

entropy density just as well. Now if these perturbations are small, then the equations of hydrodynamics46

may be given in first order. First of all, the perturbations of the flow field must fulfill47

(uµ + δuµ)(uµ + δuµ) = 1 (11)

which yields the first order equation of48

uµδuµ = 0. (12)

With this, we may substitute the perturbed fields in Eqs. (8)-(10) into the equations of hydrodynamics,49

Eqs. (5) and (6)-(7). For the continuity equation, we get the following first order equation:50

uµ∂µδn + δn∂µuµ + δuµ∂µn + n∂µδuµ = 0. (13)
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For the energy equation, we obtain:51

κδuµ∂µ p + κuµ∂µδp + (κ + 1)δp∂µuµ + (κ + 1)p∂µδuµ = 0. (14)

And for the Euler-equation, the first order perturbative equation is52

(κ + 1)δpuµ∂µuν + (κ + 1)pδuµ∂µuν + (κ + 1)puµ∂µδuν = (gµν − uµuν)∂µδp− δuµuν∂µ p− uµδuν∂µ p.
(15)

To perform a basic consistency check of the above equations, one may investigate what happens53

when the basic solution of a fluid at rest. The flow and pressure is then54

uµ = (1, 0, 0, 0) and p = p0. (16)

One may immediately observe, that ∂µuµ = 0, ∂µ p = 0, and uµ∂µ = ∂t. With this, the energy and Euler55

equations become56

κ∂tδp + (κ + 1)p∂µδuµ = 0, (17)

(κ + 1)p∂tδuν − (uµuν − gµν)∂µδp = 0. (18)

The time derivative of the energy equation is then57

κ∂2
t δp + (κ + 1)p∂t∂µδuµ = 0. (19)

Let us then introduce the Qµν = (uµuν − gµν) operator – which is here nothing else than diag(0, 1, 1, 1).58

Then the effect of Qρν∂ρ on the Euler equation is59

(κ + 1)p∂0∂νδuν + ∆δp = 0, (20)

where we observed that60

Qρν∂ρQµν∂µ = (∂2
x + ∂2

y + ∂2
z) = ∆. (21)

From Eqs. (19) and (20), we obtain61

∂2
0δp− 1

κ
∆δp = 0, (22)

which means that, as expected, pressure perturbations behave as waves with a speed of sound of62

cs = 1/
√

κ.63

3. Perturbations on top of Hubble-flow64

As mentioned above, in Ref. [15] a Hubble-type of self-similar solution is given, with a flow field65

of66
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uµ =
xµ

τ
. (23)

The basic quantity of this solution is the scale variable assuring self-similarity, for which the comoving67

derivative vanishes:68

uµ∂µS = 0. (24)

Since in this case, uµ∂µ = ∂τ , the following simple pressure field and density can be obtained:69

n = n0

(τ0

τ

)3
N (S), (25)

p = p0

(τ0

τ

)3+ 3
κ

, (26)

(27)

where N (S) is an arbitrary scale function. This soluton can be generalized to describe multipole type70

of scale variables [19], but a standard choice yielding ellipsoidal symmetry is71

S =
x2

X2 +
y2

Y2 +
z2

Z2 (28)

with the coordinates given as x, y, z, and the axes of the expanding ellipsoid are X, Y, Z, all linear in72

time. We will focus here on the spherical case:73

S =
r2

Ṙ2
0t2

, (29)

where r is the radial coordinate, and Ṙ0 describes the expansion velocity of the scale of the solution.74

This solution yields the following equations for the perturbations of the fields:75

δuµn
N ′
N ∂µS + uµ∂µδn +

3δn
τ

+ n∂µδuµ = 0. (30)

κuµ∂µδp +
3(κ + 1)

τ
δp = −(κ + 1)p∂µδuµ. (31)

∂µδp
(κ + 1)p

[gµν − uµuν] =
κ − 3

τκ
δuν + uµ∂µδuν. (32)

A similar setup was investigated in Ref. [22], where the authors found expressions for the ripples76

propagating on Hubble-flow. Unlike Ref. [22], we will now discuss global perturbations in terms of77

δuµ, δp and δn.78

In this proceedings paper we do not detail the way this solution was obtained, but simply present79

the result for the flow, pressure and density:80
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δuµ = δ ·
[

τ + cτ0

(
τ

τ0

) 3
κ

]
g(xµ)χ(S)∂µS, (33)

δp = δ · p0

(τ0

τ

)3+ 3
κ

π(S), (34)

δn = δ · n0

(τ0

τ

)3
h(xµ)ν(S), (35)

where S is the scale variable (with vanishing comoving derivative), δ is the perturbation scale, c is an81

arbitrary constant, F, h, g are profile functions, while π, χ, ν are scale functions subject to the following82

condition equations:83

χ′(S)
χ(S)

= −
∂µ∂µS

∂µS∂µS
−

∂µS∂µ ln g(xµ)

∂µS∂µS
, (36)

π′(S)
χ(S)

= (κ + 1)
[

F(τ)
(

uµ∂µg(xµ)− 3g(xµ)

κτ

)
+ F′(τ)g(xµ)

]
, (37)

ν(S)
χ(S)N ′(S) = −

F(τ)g(xµ)∂µS∂µS
uµ∂µh(xµ)

. (38)

In simple terms, these equations can be translated to the following conditions:84

• The scale variable S fulfills uµ∂µS = 0 with the original flow field.85

• The right hand sides of Eqs. (42)-(38) depends only on S.86

First of all, let us restrict ourselves to the simplest case of g(xµ) = 1 here, in order to describe the way87

this class of perturbative solutions works. This gives a simple form for F as88

F(τ) = τ + cτ0

(
τ

τ0

) 3
κ

. (39)

Then let us select an h function that leads to simpler condition equations:89

h(xµ) = ln
(

τ

τ0

)
+

cκ

3− κ

(
τ

τ0

) 3
κ−1

, ( if κ 6= 3), (40)

h(xµ) = (1 + c) ln
(

τ

τ0

)
( if κ = 3). (41)

The above choices of transforms Eqs. (42)-(38) to the simple equations of90

χ′(S)
χ(S)

= −
∂µ∂µS

∂µS∂µS
, (42)

π′(S)
χ(S)

=
(κ + 1)(κ − 3)

κ
(43)

ν(S)
χ(S)N ′(S) = −τ2∂µS∂µS. (44)

While more general solutions can also be found, a broad class of perturbative solutions can already be91

given, if suitable S scale variables and associated π, χ, ν and h functions are found. Such suitable scale92

variables include93
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S =
rm

tm , S =
rm

τm , S =
τm

tm . (45)

In the next section, we will detail one particular sub-class of this class of solutions.94

4. A selected sub-class of perturbative solutions95

If we introduce h as given in Eqs. (40)-(41) and S as rm/tm, we obtain the following scale functions:96

χ(S) = S−
m+1

m , (46)

π(S) = − (κ + 1)(κ − 3)
κ

mS−
1
m , (47)

ν(S) = m2S
m−1

m

(
S

2
m − 1

) (
1− S−

2
m

)
N ′(S). (48)

This sub-class of solutions contains an arbitrary parameter c, the δ perturbation scale, the m exponent97

and the N (S) scale function (included in the original Hubble-solution as well). Let us chose m = −1,98

then the scale functions are99

χ(S) = 1, (49)

π(S) =
(κ + 1)(κ − 3)

κ
S, (50)

ν(S) =
(

1− S2
)2
N ′(S). (51)

Let us furthermore choose a suitable N , leading to a Gaussian profile:100

N (S) = e−bS−2
= e−b r2

t2 (52)

With these, the perturbed fields (for κ 6= 3, this special case is discussed in Eq. (41)) are as follows:101

δuµ = δ ·
[

τ + cτ0

(
τ

τ0

) 3
κ

]
∂µS, (53)

δp = δ · p0

(τ0

τ

)3+ 3
κ (κ + 1)(κ − 3)

κ
S, (54)

δn = δ · n0

(τ0

τ

)3
[

ln
(

τ

τ0

)
+ c

κ

3− κ

(
τ

τ0

) 3
κ−1
]

S−3
(

1− S2
)2

2bN (S). (55)

For the visualisation of these fields, let us chose parameter values from Refs. [20,21] as τ0 = 7.7 fm/c,102

κ = 10 and b = −0.1.103

On the top left panel of Fig. 1, a slice of the x component of the flow field is shown with τ = 6104

fm/c, c = −3 and δ = 0.001. The perturbation is the most important in the center, it also changes the105

direction of the field, but it vanishes for large radial distances. The top right panel indicates the c and106

δ dependence of the relative perturbed fields. We observe here that for this particular solution, the107

relative perturbation increases to very large values for very small distances. The bottom panel of Fig. 1108

indicates the transverse flow field for various proper-time slices, showing that also the direction of the109

flow is perturbed for some particular distances. Next, let us investigate the pressure perturbation. The110

top panels of Fig. 2 shows the pressure field with fixed values of δ = 0.001 and τ = 6 fm/c (there is no111
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Figure 1. The perturbed flow field component (ux + δux) is shown in the left plot as a function of x, for
τ = 6 fm/c (the other parameters are given in the text). The right plot indicates the relative change
(ux + δux)/ux for various δ and c values. The bottom plot shows the flow perturbation field (δux, δuy)

in the transverse plane, for various proper-time values.

c-dependence in p). Again it is clear that the perturbation vanishes for increasing radial distance, and112

increases for small distances. It is an important next step to present a sub-class of perturbative solutions113

that does not exhibit this feature. One may also note that δ controls the perturbation magnitude, as114

also visible in the ratio plots in the top right panel of Fig. 2. On the bottom panel, the time evolution of115

the pressure perturbation is given in the transverse plane, showing a vanishing perturbation for large116

times. Finally, let us investigate the behavior of the density n. The left panel of Fig. 3 (with τ = 6 fm/c,117

δ = 0.001 and c = −3) indicates again a vanishing perturbation for large distances. The right panel118

shows the relative perturbation and its dependence on δ and c. With these fields at hand, and utilizing119

a freeze-out hypersurface similarly to e.g. Ref. [20], one may evaluate observables such as transverse120

momentum distribution, flow and Bose-Einstein correlation radii. We plan to do this in a subsequent121

publication.122

5. Summary123

In this paper we presented the method of obtaining perturbative solutions of relativistic124

hydrodynamics on top of known solutions. A new perturbative class of solutions on top of Hubble125

flow was discussed, and the modified fields were investigated in detail. These fields were scaled to a126

single δ perturbation parameter, and several scale functions appeared, subject to condition equations.127

As a subsequent step, we plan to describe more particular sub-classes of solutions. We also plan to128

calculate the modification of observables and in case of realistic geometries, we plan to compare them129

to measurements.130
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Figure 2. The perturbed pressure p + δp is shown in the left plot as a function of x, for τ = 6 fm/c
(the other parameters are given in the text). The right plot indicates the relative change (p + δp)/p for
various δ and c values. The bottom plot shows the pressure perturbation δp in the transverse plane, for
various proper-time values.
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Figure 3. The perturbed density n + δn is shown in the left plot as a function of x, for τ = 6 fm/c (the
other parameters are given in the text). The right plot indicates the relative change (n + δn)/n for
various δ and c values.
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