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1 Abstract: In ultra-relativistic collisions of heavy ions, the strongly interacting Quark Gluon Plasma
2= (sQGP) is created. The fluid nature of the sQGP was one of the important discoveries of high energy
s heavy ion physics in the last decades. Henceforth the explosion of this matter may be described
s by hydrodynamical models. Besides numerical simulations, it is important to study the analytic
s solutions of the equations of hydrodynamics, as these enable us to understand the connection of
s the final and initial states better. In this paper we present a perturbative, accelerating solution of
»  relativistic hydrodynamics, on top of a known class of solutions describing Hubble-expansion. We
s describe the properties of this class of perturbative solutions, and investigate a few selected solutions
o indetail.

1o Keywords: relativistic hydrodynamics; solutions; Hubble flow; acceleration

1 1. Introduction

-

12 The equations of perfect hydrodynamics have no internal scale, and hence they describe aspects
1z of the time evolution of systems with vastly different sizes: from galactic clusters and galaxies through
12 stars, planets and human-scale systems, down to the femtometer scale sQGP, created in heavy ion
s collisions at RHIC [1,2] and the LHC [3-6]. The sQGP is formed in heavy ion collisions after an initial
1s thermalization time O(1fm/c), its evolutions lasts O(10 fm/c), after that it creates hadrons in the
1z quark-hadron freeze-out. We observe these hadrons, and hydrodynamics may be used to infer the
1= time evolution and the initial state from the hadron final state distributions.

19 Hydrodynamics is based on the local conservation of energy and momentum, expressed through

o, T =0, (1)

20 with TM" being the energy-momentum tensor. In case of a perfect fluid, this can be written as

™ = (e + p)utu? — pgh”. )

a1 where u" is the flow field (subject to the u,u" = 1 constraint), € is the energy density and p is the
22 pressure. The Equation of State (EoS) closes this set of equations:

e =xp 3)

23 Where x is the EoS parameter, which may depend on the temperature. In this paper we assume constant
2« values, even if x(T) type of solutions of relativistic hydrodynamics are know [7]. In case of the above
s described perfect fluid, continuity for the entropy density ¢ = (e + p)/T follows from the above
26 equations, and a similar continuity equation for the density of some conserved charge (n) may be
2z prescribed:
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du(out) =0, 4)
9y (nut) = 0. ®)

2s  With this, a solution of the equations is a set of fields (u*, p,n,0), given in terms of coordinates x#,
2 where sometimes also the coordinate proper-time is introduced as T = /x,x¥, along some scaling
so variable s(x#) that describes the spatial profile of the densities in the solution.

31 The discovery of the fluid nature of the sQGP produced a revival of interest for solutions of
sz hydrodynamics, beyond the well-known Landau-Khalatnikov [8,9] and Hwa-Bjorken [10,11] solutions.
33 Besides numerical simulations (see e.g. Refs. [12-14] for recent examples), multiple advanced analytic
se solutions were found in the last decade [7,15-19]. One important example is the simple, ellipsoidal
s Hubble-flow described in Ref. [15], which describes hadron and photon observables well [20,21].
s However, this solution lacks acceleration, and while Hubble-flow is natural in the final state, initial
sz pressure gradients may be important in understanding the time evolution of this system. In this paper
s we attempt to find accelerating perturbations on top of Hubble-flow.

3o 2. Perturbative solutions of hydrodynamics

40 The equation for the conservation of energy and momentum density, Eq. (1) may be projected
a onto u¥, producing a Lorentz-parallel and a Lorentz-orthogonal equation:

kuto,p + (k +1)po,ut =0 (6)
(k+Dputo,u’ = (g —uu”)o,p, @)
«2 where the first is called the energy equation, and the second is the Euler equation of relativistic

«s hydrodynamics. If a given solution is given in terms of (1", p, n), then perturbations on top of this
4s  solution may be given as:

ut — ut + su¥, 8)
p—p+op, )
n—n-+on, (10)

4 where we restrict ourselves to a conserved charge here, but the continuity may be understood for the
s entropy density just as well. Now if these perturbations are small, then the equations of hydrodynamics
«z may be given in first order. First of all, the perturbations of the flow field must fulfill

(ut + our) (uy +ouy,) =1 (11)

s which yields the first order equation of

uyout = 0. (12)

40 With this, we may substitute the perturbed fields in Egs. (8)-(10) into the equations of hydrodynamics,
so Egs. (5) and (6)-(7). For the continuity equation, we get the following first order equation:

ut9,on + ondyut + dutoyn + na,dut = 0. (13)
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s For the energy equation, we obtain:

koutdyp + xut9,op + (k +1)6pd,ut + (x +1)pd,dut = 0. (14)

s2  And for the Euler-equation, the first order perturbative equation is

(k +1)oputo,u’ + (x + 1) pouto,u’ + (x + 1)puto,ou’ = (g" — utu")0,0p — outu’o,p — u"éu"o,p.

(15)

53 To perform a basic consistency check of the above equations, one may investigate what happens
s« when the basic solution of a fluid at rest. The flow and pressure is then

uy = (1,0,0,0) and p = po. (16)

ss  One may immediately observe, that d,u* = 0,9, p = 0, and u"d,, = d¢. With this, the energy and Euler
ss equations become

K010p + (k 4 1)po,dut =0, (17)
(k +1)porou” — (uhu" — g")a,ép = 0. (18)

sz The time derivative of the energy equation is then

kd20p + (k + 1)pa;o,out = 0. (19)

ss Let us then introduce the Q" = (u#u? — gM) operator — which is here nothing else than diag(0,1,1,1).
so  Then the effect of Q,,0” on the Euler equation is

(k4 1)pdgoydu’ + Adp =0, (20)
eo Where we observed that
Qo QMoF = (3% + 0 +97) = A. (1)
e From Egs. (19) and (20), we obtain
5 1

s2 which means that, as expected, pressure perturbations behave as waves with a speed of sound of

63 Cszl/\/E.

es 3. Perturbations on top of Hubble-flow

o5 As mentioned above, in Ref. [15] a Hubble-type of self-similar solution is given, with a flow field
e Of
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uh = —. (23)

ez The basic quantity of this solution is the scale variable assuring self-similarity, for which the comoving
es derivative vanishes:

9,8 = 0. (24)

o Since in this case, u"d;, = dr, the following simple pressure field and density can be obtained:

n =y (170)31\/(5), (25)
P = po (?)HS (26)
(27)

o where NV (S) is an arbitrary scale function. This soluton can be generalized to describe multipole type
1+ of scale variables [19], but a standard choice yielding ellipsoidal symmetry is

~

~

2y oz

Xyt z

2

S (28)

> with the coordinates given as x, y, z, and the axes of the expanding ellipsoid are X, Y, Z, all linear in
»s time. We will focus here on the spherical case:

~

S= v (29)

7o where 7 is the radial coordinate, and R describes the expansion velocity of the scale of the solution.

~

s This solution yields the following equations for the perturbations of the fields:

!
(Su”n%ays +ut0,0n + 3(5?11 + na,out = 0. (30)
xut0,0p + L;Ll)ép = —(k+1)po,dout. (31)
9,0p K—3
T [oHV _ MV — v 12 v
Gt 1)p g utuV] - ou” +uta,ou’. (32)

76 A similar setup was investigated in Ref. [22], where the authors found expressions for the ripples
propagating on Hubble-flow. Unlike Ref. [22], we will now discuss global perturbations in terms of
s out,op and on.

79 In this proceedings paper we do not detail the way this solution was obtained, but simply present
o the result for the flow, pressure and density:

~
J

N

']
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3
Sub =6 |1+ (;) ] g(x*)x(S)o*s,
0
T0\3+%
ép=194-po (f) n(S),

on=24-ng (%)3h(xﬂ)v(8),

50f 10

(33)

(34)

(35)

a1 where § is the scale variable (with vanishing comoving derivative), J is the perturbation scale, c is an
arbitrary constant, F, i1, g are profile functions, while 7z, x, v are scale functions subject to the following

82

83

84

85

86

87

88

89

920

condition equations:

X'(S)  9,0S  0,S0*Ing(x) N

x(S) ~ 9,5"S 9,S0rs (36)

7;:((5)) = (k+1) [P(T) (uﬂayg(xﬂ) _ 3g}§fl)> +F/(T)g(xﬂ)} ) (37)

v(S)  _ ~ F(1)g(x#)0uSo"s -
X(SIN'(S) Ul h(xh)

In simple terms, these equations can be translated to the following conditions:

e The scale variable S fulfills u,0"S = 0 with the original flow field.
o The right hand sides of Egs. (42)-(38) depends only on S.

First of all, let us restrict ourselves to the simplest case of g(x#) = 1 here, in order to describe the way

this class of perturbative solutions works. This gives a simple form for F as

3
K

Fit)=1t+c1n (TTO)

Then let us select an & function that leads to simpler condition equations:

()% (1)

h(x") = (1+¢)In (;) (ifx = 3).

Al

-1

,(if x #3),

The above choices of transforms Egs. (42)-(38) to the simple equations of

X'(S) _  9ud"S
x(S) —  9uSars’
(S)  (x+1)(x—3)
x(S) K
v(§)  _
TN —120,S9"S.

(39)

(40)

(41)

(42)

(43)

(44)

o1 While more general solutions can also be found, a broad class of perturbative solutions can already be
given, if suitable S scale variables and associated 7, x, v and / functions are found. Such suitable scale

92

93

variables include
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oa In the next section, we will detail one particular sub-class of this class of solutions.
os 4. A selected sub-class of perturbative solutions
% If we introduce h as given in Egs. (40)-(41) and S as r""* /", we obtain the following scale functions:
x(S) =", (46)
(S) = _W,ﬂsf%, (47)
v(S) = m28"% (s% —1) (1—5*%)N’(5). (48)

oz This sub-class of solutions contains an arbitrary parameter c, the § perturbation scale, the m exponent
s and the NV (S) scale function (included in the original Hubble-solution as well). Let us chose m = —1,
oo then the scale functions are

x(8) =1, (49)
7(S) = WS, (50)
v(S) = (1 - 52)2/\/’(5). (51)

100 Let us furthermore choose a suitable V, leading to a Gaussian profile:

N(©S)=e 57 = e_b:% (52)

11 With these, the perturbed fields (for x # 3, this special case is discussed in Eq. (41)) are as follows:

sut =5 | T+ e <T> s, (53)
T
3+3 1)(x —3
31
51 =6-np (?)3 [m (:0) + o3 = - (;) 1 53 (1 _ 52)2217/\[(5). (55)

102 For the visualisation of these fields, let us chose parameter values from Refs. [20,21] as 19 = 7.7 fm/c,
103 kK =10and b = —0.1.

108 On the top left panel of Fig. 1, a slice of the x component of the flow field is shown with T = 6
w5 fm/c,c = —3 and 6 = 0.001. The perturbation is the most important in the center, it also changes the
106 direction of the field, but it vanishes for large radial distances. The top right panel indicates the c and
17 0 dependence of the relative perturbed fields. We observe here that for this particular solution, the

1

o

s relative perturbation increases to very large values for very small distances. The bottom panel of Fig. 1

100 indicates the transverse flow field for various proper-time slices, showing that also the direction of the

o

1o flow is perturbed for some particular distances. Next, let us investigate the pressure perturbation. The
11 top panels of Fig. 2 shows the pressure field with fixed values of § = 0.001 and T = 6 fm/c (there is no
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Figure 1. The perturbed flow field component (i, + d1y) is shown in the left plot as a function of x, for
T = 6 fm/c (the other parameters are given in the text). The right plot indicates the relative change
(ux + 01y )/ uy for various & and c values. The bottom plot shows the flow perturbation field (dy, dizy)
in the transverse plane, for various proper-time values.

12 c-dependence in p). Again it is clear that the perturbation vanishes for increasing radial distance, and
13 increases for small distances. It is an important next step to present a sub-class of perturbative solutions
ua that does not exhibit this feature. One may also note that § controls the perturbation magnitude, as
us  also visible in the ratio plots in the top right panel of Fig. 2. On the bottom panel, the time evolution of
us the pressure perturbation is given in the transverse plane, showing a vanishing perturbation for large
17 times. Finally, let us investigate the behavior of the density 7. The left panel of Fig. 3 (with T = 6 fm/c,
us 0 = 0.001 and ¢ = —3) indicates again a vanishing perturbation for large distances. The right panel
1o shows the relative perturbation and its dependence on § and c. With these fields at hand, and utilizing
120 a freeze-out hypersurface similarly to e.g. Ref. [20], one may evaluate observables such as transverse
121 momentum distribution, flow and Bose-Einstein correlation radii. We plan to do this in a subsequent
122 publication.

123 5. Summary

124 In this paper we presented the method of obtaining perturbative solutions of relativistic
125 hydrodynamics on top of known solutions. A new perturbative class of solutions on top of Hubble
126 flow was discussed, and the modified fields were investigated in detail. These fields were scaled to a
127 single 6 perturbation parameter, and several scale functions appeared, subject to condition equations.
126 As a subsequent step, we plan to describe more particular sub-classes of solutions. We also plan to
120 calculate the modification of observables and in case of realistic geometries, we plan to compare them
130 to measurements.
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Figure 2. The perturbed pressure p + p is shown in the left plot as a function of x, for T = 6 fm/c
(the other parameters are given in the text). The right plot indicates the relative change (p + ép)/p for
various ¢ and ¢ values. The bottom plot shows the pressure perturbation Jp in the transverse plane, for
various proper-time values.
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Figure 3. The perturbed density n + dn is shown in the left plot as a function of x, for T = 6 fm/c (the
other parameters are given in the text). The right plot indicates the relative change (1 + én)/n for

various ¢ and ¢ values.
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