

1 Article

2 Effect of the Chemical Composition of Mesoporous 3 Cerium-Zirconium Oxides on the Modification with 4 Sulfur and Gold Species and Their Application in 5 Glycerol Oxidation

6 Piotr Kaminski ^{1, 2,*}7 ¹ Adam Mickiewicz University in Poznań, Faculty of Chemistry, ul. Umultowska 89b, 61-614 Poznań, Poland;
8 e-mail: piotr.kaminski@amu.edu.pl9 ² Wrocław Research Centre EIT+, the Polymer Materials Laboratory, ul. Stabłowicka 147, 54-066 Wrocław,
10 Poland; e-mail: piotr.kaminski@eitplus.pl

11 * Correspondence: piotr.kaminski2905@gmail.com; Tel.: +48-71-734-7112

12 **Abstract:** Ceria, zirconia and mixed cerium-zirconium mesoporous oxides were synthesized and
13 used as supports for sulfur and gold species. The materials were characterised using selected
14 advanced techniques (ICP-OES, elemental analysis, XPS, XRD, N₂ adsorption and desorption
15 isotherms, UV-vis, ATR-FTIR, TPR-H₂, TG-DTA) which allowed monitoring of the oxidation state
16 of metals (cerium and gold) and the surface properties of the catalysts, in particular the
17 concentration of the components on the surface and in the bulk of materials. The interactions
18 between gold, sulfur and metals from oxides were considered. The goal of this work was studied
19 the changes in the chemical composition of materials and the oxidation states of cerium species
20 after the modification of oxides with sulfur and gold species and the estimation of the influence of
21 these changes on the surface properties. The chemical composition of surface affects the mobility of
22 surface oxygen and the oxidation state of cerium, which can play the role of redox sites (e.g.
23 Ce³⁺/Ce⁴⁺ species), and therefore it strongly influences on the adsorption of hydrogen sulfide and
24 then gold loading. Additionally, gold catalysts modified with sulfur species were tested in the
25 reaction of glycerol oxidation in the liquid phase at basic conditions as the test reaction of the
26 catalytic oxidation of organic pollutants from water.

27 **Keywords:** ceria; zirconia; gold; sulfur; catalysts characterisation; glycerol oxidation

28

29 1. Introduction

30 Ceria is an oxide characterised of high oxygen storage/transport capacity. This oxide is able to
31 release oxygen under oxygen deficient environment and quickly reoxidize under oxygen rich
32 environment, but these processes are lower effective under high temperatures and reductive
33 conditions. Exhibiting a unique redox property of ceria is based on the shift from its reduced state
34 (Ce³⁺) to oxidized state (Ce⁴⁺) [1]. In the oxidation processes in the gas phase, when cerium oxide is
35 reduced, the oxygen vacancies are refilled with air atmosphere, and then a cyclic redox process can
36 run [2], for example in CO hydrogenation, a certain amount of ceria can remarkably enhance the
37 reducibility of the catalyst due to the defect sites of Ce⁴⁺–O[–]–Ce³⁺ in the crystal structure. This can
38 explain why ceria modified with gold, palladium and/or copper is applied as a catalyst or a
39 promoter in selected oxidation processes, e.g.: Water Gas Shift (WGS) [3,4], methanol oxidation [5],
40 Volatile Organic Compounds (VOCs) oxidation [6], soot combustion [7].

41 The addition of zirconia stabilizes ceria, forming a ceria-zirconia solid solution in all
42 composition range and it can improve textural parameters, catalytic activity at lower temperatures
43 and oxygen storage/transport properties [8–12]. The theoretical and experimental studies confirmed
44 that the addition of zirconium to the lattice of ceria induces the severe distortion of the atomic

45 structures on the reduced and unreduced surface. It has been explained by the formation of oxygen
46 vacancy around zirconium species and the reduction of two neighboring cerium cations by the
47 electrons left and it leads to the removing of oxygen atom [13]. This way, the presence of zirconium
48 atoms improves the mobility of oxygen and oxygen storage/transport properties in ceria-zirconia
49 solid solutions. Additionally, the interaction of zirconia with other oxides can increase of Lewis acid
50 sites (LAS) concertation on the surface of catalysts and these acid sites can play crucial role in redox
51 reactions, e.g. hydrodeoxygenation (HDO) reaction [14–17]. The occurrence of oxygen mobility on
52 the surface of cerium-zirconium oxides was applied in catalytic processes, e.g. CO oxidation [13],
53 preferential oxidation (PrOx) of CO [18], the catalytic reduction of NO by CO [19], hydrogen
54 production by methanol steam reforming [20] or methanol oxidation [21]. It has been reported in
55 previous papers [22–24] that the catalysts which contain gold species supported on pure ceria or
56 SBA-15 with ceria and loaded with additives such as copper and zirconium species are
57 characterised by the strong interactions between each metals, which were based on the electron
58 transfer between two metals and this process enhanced on the redox properties of catalysts.
59 Moreover, the introduction of sulfur to the lattice of support and exchanging between sulfur and
60 oxygen atoms can lead to the growth of redox properties in the catalytic system [25]. It has been
61 reported [26,27] that gold nanoparticles can be effective produced and stable thanks the
62 neighborhood of sulfur species on the surface of solid materials, because gold particles were not
63 aggregate in the presence sulfanilic acid [27]. It was reported [26] that the phenomena of electron
64 interaction between gold and sulfur species could be investigated and applied to design the
65 attractive materials for chemical industry, e.g. electroactive polymer monolayers.

66 The application of the different compositions of materials described in this paper, it was
67 possible to obtain the catalysts characterised of the different surface and texture properties. For a
68 better insight into the observed behavior, mesoporous cerium and zirconium oxides were applied
69 in this study as supports for gold and sulfur species.

70 Gold loading on mesoporous materials were applied as catalysts in the catalytic oxidation of
71 many organic compounds [28–30]. The elimination of organic compounds from water, which are
72 generally created during the variety of industrial processes, is a challenge for a chemical industry,
73 because these compounds can be the source of environmental pollutants. This is often complicated
74 by the fact that the real composition of wastewater is often the mixture of different toxic compounds
75 such as alcohols, aldehydes, hydrocarbons, etc. The development of highly effective catalysts for
76 stationary and mobile wastewater installations is still the matter of intensive research [28–31]. Gold
77 supported on different materials such as activated carbons or mesopores oxides (e.g. TiO_2 Al_2O_3 ,
78 CeO_2) has shown high activities in the catalytic oxidation of pollutants in the liquid and/or gas phase
79 [29,31–37]. The electronic state of gold species and the size of gold particles determine the activity
80 toward catalytic oxidation of organic compounds in such systems. Moreover, gold nanoparticles
81 supported on reducible oxides can increase the mobility of lattice oxygen atoms involved in the
82 reaction process.

83 The main aim of this work was the preparation and deep characterisation of ceria, zirconia and
84 mixed cerium-zirconium oxides, their modification with the chemical adsorption of hydrogen
85 sulfide and with gold species. The materials were characterised using selected advanced techniques
86 to know their physicochemical properties and were tested as the catalysts in the reaction of glycerol
87 oxidation in the liquid phase. This reaction was applied as the test reaction of the catalytic oxidation
88 of organic pollutants from water at basic conditions.

89 2. Materials and Methods

90 2.1. Preparation of materials

91 The synthesis of all mesoporous oxides were carried out using the solution of organic
92 copolymer – Pluronic® P-123 (poly(ethylene glycol)-block-poly(propylene glycol)-block-
93 poly(ethylene glycol), average M_n ~5800, Sigma-Aldrich) in dried methanol (POCh, >99.8%).

94 2.1.1. Preparation of ceria

95 A portion of 0.9308 g ($1.60 \cdot 10^{-4}$ mol) of Pluronic P-123 (surfactant) was dissolved in 18.4950 g
96 (0.5759 mol) of methanol. P123 was mixed with methanol at room temperature for 1 h. Then a
97 powder of metal source (precursor) – 40.3684 g (0.0930 mol) of cerium(III) nitrate ($\text{Ce}(\text{NO}_3)_3 \cdot 6 \text{ H}_2\text{O}$,
98 $\geq 99.99\%$, Sigma-Aldrich) was added to this mixture and stirred for 4 h at room temperature. The
99 surfactant/precursor molar ratio was 0.0017. After mixing, a clear colorless solution was obtained.
100 The solution was transferred to three Petri dishes ($\varnothing = 19 \text{ cm}$), and it was dried at 303 K for 14 days,
101 then step by step at 313 K for 24 h, 323 K for 24 h, 333 K for 24 h and 373 K for 24 h (a heating rate for
102 each step was 1 K min^{-1}). This procedure of very long drying was applied in the order to remove
103 methanol from the mixture of metal salts and Pluronic P-123 and it was assumed that it has to
104 guarantee that the specific surface area will be larger than $100 \text{ m}^2 \text{ g}^{-1}$. The procedure of drying was
105 based on laboratory tests. The final material was obtained by heating the sample at 673 K for 4 h (a
106 heating rate of 3 K min^{-1}). The catalyst was in the form of yellow powder.

107 2.1.2. Synthesis of cerium-zirconium oxides

108 For the synthesis of mesoporous mixed cerium-zirconium oxides was assumed that 1.0000 g
109 ($1.72 \cdot 10^{-4}$ mol) of organic template (Pluronic P-123) will be dissolved in 20.0000 g of methanol (0.624
110 mol, POCh , $>99.8\%$) and the mass of each oxide after its calcination will be 16.0000 g and 100% of
111 cerium in the oxide will be in the form of CeO_2 and the molar nominal ratio of $\text{CeO}_2:\text{ZrO}_2$ will be:
112 4:1, 2:1, 1:1, 1:2 and 1:4. At the beginning, Pluronic P-123 was mixed with methanol at room
113 temperature for 1 h. Then a mixture of metal sources in the form of powder – cerium nitrate
114 ($\text{Ce}(\text{NO}_3)_3 \cdot 6 \text{ H}_2\text{O}$, $\geq 99.99\%$, Sigma-Aldrich) and zirconium oxonitrate ($\text{ZrO}(\text{NO}_3)_2 \cdot x \text{ H}_2\text{O}$, $\geq 99.99\%$,
115 Sigma-Aldrich) were added to this mixture and the mixture was stirred for 4 h at room temperature.
116 After mixing, a white colorless solution was obtained. The solution was transferred to three Petri
117 dishes ($\varnothing = \sim 19 \text{ cm}$), and the procedures of drying and calcination were the same as for pure ceria
118 (the procedures were described in the paragraph 2.1.1. of this paper). The catalysts were in the form
119 of yellow powders. At the final, five catalysts were prepared: CeZrO_x (4:1), CeZrO_x (2:1), CeZrO_x (1:1),
120 CeZrO_x (1:2) and CeZrO_x (1:4) in which $0 \leq x \leq 2$ and the ratio in brackets means the nominal molar
121 ratio between ceria and zirconia in the catalysts.

122 2.1.3. Synthesis of zirconia

123 A portion of 1.2987 g ($2.24 \cdot 10^{-4}$ mol) of Pluronic P-123 was dissolved in 25.9910 g (0.8093 mol) of
124 methanol. P123 was mixed with methanol at room temperature for 1 h. Then a powder of metal
125 source – 30.3304 g (0.1312 mol) zirconium oxonitrate ($\text{ZrO}(\text{NO}_3)_2 \cdot x \text{ H}_2\text{O}$, $\geq 99.99\%$, Sigma-Aldrich)
126 was added to this mixture and stirred for 4 h at room temperature. After mixing, a white solution
127 was obtained. The solution was transferred to four Petri dish ($\varnothing = \sim 19 \text{ cm}$), and the procedures of
128 drying and calcination were the same as for pure ceria (the procedures were described in the
129 paragraph 2.1.1. of this paper). The catalyst was in the form of white powder.

130 The preparation procedures of all materials were similar, because the goals of this work were
131 the comparison of sulfur-gold catalysts based on different supports, and the preparation of
132 mesoporous oxides, which will be characterised by the specific surface areas larger than $100 \text{ m}^2 \text{ g}^{-1}$.

133 2.1.4. Modification of supports with hydrogen sulfide (H_2S)

134 At the beginning, the portion (8.000 g) of mesoporous oxides in the form of fraction ($0.5 < \varnothing <$
135 1.0 mm) were put into a bed-flow reactor of quartz ($\varnothing = 16 \text{ mm}$ and $l = 50 \text{ mm}$) and thermal
136 treatment in the flow of inert gas – helium ($50 \text{ cm}^3 \text{ min}^{-1}$, Linde, 5.0 N) for 2 h at 673 K (a heating
137 ramp – 10 K min^{-1}) to remove water and other contaminations. The adsorption of hydrogen sulfide
138 was performed according to the procedure described below. The samples after thermal treatment
139 in the flow of helium was treatment in the flow of gas mixture $\text{H}_2\text{S}/\text{He}$ (total flow – $50 \text{ cm}^3 \text{ min}^{-1}$,
140 $\text{H}_2\text{S}/\text{He} = 4/96 \text{ v/v \%}$, H_2S , Sigma-Aldrich, 99% and He, Linde, 5.0 N) at the beginning at 303 K for 30
141 minutes then were heated to 673 K for 5 h (a heating ramp – 10 K min^{-1}). Then physical adsorbed

142 hydrogen sulfide was removed with samples in flow of pure helium ($50\text{ cm}^3\text{ min}^{-1}$) during cooling
143 from 673 K to 303 K (a cooling ramp – 10 K min^{-1}) and at 303 K for 60 minutes. At the final, seven
144 catalysts were prepared: $\text{CeO}_x\text{S}_{(2-x)}$, $\text{CeZrO}_x\text{S}_{(2-x)}$ (4:1), $\text{CeZrO}_x\text{S}_{(2-x)}$ (2:1),
145 $\text{CeZrO}_x\text{S}_{(2-x)}$ (1:1), $\text{CeZrO}_x\text{S}_{(2-x)}$ (1:2), $\text{CeZrO}_x\text{S}_{(2-x)}$ (1:4) and $\text{ZrO}_x\text{S}_{(2-x)}$, in which x is $0 < x < 2$ and the ratios in brackets mean
146 the nominal molar ratio between ceria and zirconia in the catalysts.

147 2.1.5. Modification of samples with gold

148 A portion of 4.000 g of ceria, zirconia or ceria-zirconia oxides modified with sulfur was used to
149 the introduction of gold an according to the literature data [38]. 247 mg of tetrachloroauric acid
150 ($\text{HAuCl}_4 \cdot 3\text{ H}_2\text{O}$, Sigma-Aldrich, to achieve nominal 3.0 wt % of gold loading) was added to 392 cm^3
151 of distilled water. Then urea (99%, Fluka, to achieve 0.42 mol dm^{-3}) was added. The molar ratio of
152 urea/gold was 100. The solution ($\text{pH} = 2$) was stirred in a quartz flask for 4 h at 353 K. Urea played
153 the role of reducing agent of cationic gold and it stabilized the gold nanocrystals supported on the
154 surface of materials. Then the product was filtered and washed with 85 cm^3 of aqua solution of
155 ammonia (25%, $\text{NH}_3 \cdot \text{H}_2\text{O}$, Avantor, pure to analysis) and 345 cm^3 of distilled water to reach $\text{pH} = 7$
156 and remove chlorides. Then the product was dried at room temperature for 24 h in air.

157 The final material was obtained after heating in a flow of gas mixture ($\text{Ar}/\text{H}_2 = 90/10\text{ v/v \%, total}$
158 volume – $40\text{ cm}^3\text{ min}^{-1}$) at 373 K for 1 h and then at 573 K for 1 h (a heating rate – 5 K
159 min^{-1}). Thus, seven gold catalysts: $\text{Au}/\text{CeO}_x\text{S}_{(2-x)}$, $\text{Au}/\text{CeZrO}_x\text{S}_{(2-x)}$ (4:1),
160 $\text{Au}/\text{CeZrO}_x\text{S}_{(2-x)}$ (2:1), $\text{Au}/\text{CeZrO}_x\text{S}_{(2-x)}$ (1:1), $\text{Au}/\text{CeZrO}_x\text{S}_{(2-x)}$ (1:2), $\text{Au}/\text{CeZrO}_x\text{S}_{(2-x)}$ (1:4) and $\text{Au}/\text{ZrO}_x\text{S}_{(2-x)}$ were made.

161 2.2. Characterisation of materials

162 The materials prepared were characterised using ICP-OES analysis, elemental analysis,
163 adsorption/desorption of nitrogen, XRD, XPS, UV-vis spectroscopy, ATR-FTIR spectroscopy,
164 TG-DTA, TEM and TPR by H_2 .

165 2.2.1. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) analysis

166 In order to establish the metal content (cerium, zirconium and gold), the ICP-OES analysis was
167 applied using a Varian ICP-OES VISTA MPX equipment. Prior to analysis, the accurately weighted
168 catalysts portion (around 15-25 mg) was treated first in 2 cm^3 of fresh aqua regia (to preparation of
169 solution were taken HCl , 35-38%, POCh and HNO_3 , 65%, POCh) and brought to reflux on the
170 heating plate in a fume hood and then 1 cm^3 of sulfuric acid was added to obtain totally dissolved
171 material. After the following addition of distilled water, the solution was analyzed by ICP-OES.

172 2.2.2. Elemental analysis

173 Elemental analyses of the materials were carried out using an Elementar Analyzer Vario EL III.
174 The three accurately weighted catalysts portion (around 20 mg) for each sample were analyzed by
175 thermal decomposition. This method was applied to estimate the content of sulfur.

176 2.2.3. Adsorption/desorption of nitrogen

177 The N_2 adsorption/desorption isotherms were obtained using an ASAP 2020 Micromeritics
178 at 77 K. The samples were pretreated *in situ* under vacuum at 363 K for 1 h and then at 573 K for 8 h.
179 The surface area was calculated by the BET method. The pore volume and average of pore volume
180 were determined from BJH method.

181 2.2.4. X-ray diffraction (XRD)

182 XRD measurements were carried out on a Bruker AXS D8 Advance diffractometer with $\text{Cu K}\alpha$
183 radiation ($\lambda = 0.154\text{ nm}$), with a step size of 0.05° in the wide-angle range (21 – 81°). XRD analysis was
184 used to try the estimation of the crystallization state and the average size of metallic gold particles
185 using the Scherrer formula [39].

186 2.2.5. X-ray Photoelectron Spectroscopy (XPS)

187 Photoelectron spectra were recorded using an Ultra High Vacuum (UHV) System (Specs,
188 Germany). The study was conducted using X-ray Al $K\alpha$ = 1486.6 eV with the parameters of the lamp:
189 14.5 kV, 20 mA. Measurements were carried out in vacuum of approximately $5.0 \cdot 10^{-9}$ mbar in the
190 chamber of the analyzer. The spectra were recorded for the energy range from 1100 eV to 0 eV in
191 increments of 0.4 eV, the energy transition CAE = 100 eV. The XP spectra for metal species were
192 recorded in increments of 0.1 eV, at the energy transition CAE = 30 eV and time counts 50 ms. The
193 number of scans of the range measured was chosen to correspond to a given signal to noise ratio.
194 The powder sample was put on the conductive tape, which was adhered to the carrier surface and
195 positioned in perpendicular to the axis of the analyzer. The X-ray source was set at an angle of 60° to
196 the plane of the surface. The area of the samples analyzed corresponded to the size of the aperture of
197 the analyzer used (large area), ca. 50 mm². Deconvolution of XP spectra was carried out using
198 OMNIC 8.0TM software. Band intensities were estimated by calculating the integral of each band
199 after smoothing and baseline correction, then set the deconvolution parameters for the experimental
200 curve using the software – Gaussian function, signal sensitivity: small and base line: linear. Atomic
201 ratios were computed from the intensity ratios normalized by atomic sensitivity factors. An
202 estimated error of ± 0.1 eV can be assumed for all measurements.

203 2.2.6. Ultraviolet-visible spectroscopy (UV-vis)

204 The spectra were recorded for fresh samples on a Varian-Cary 300 Scan UV-vis
205 spectrophotometer. Powder samples were put into a cell with a quartz window. The measurements
206 were conducted in the range of 800-190 nm. SpectralonTM was used as the reference material. The
207 intensity and the positons of UV-vis bands in the spectra can give the information about the
208 coordination of cerium, zirconium and gold species and they can prove the oxidation state of metals.

209 2.2.7. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR)

210 The ATR-FTIR spectra were recorded using the Vertex 70 (Bruker) FTIR spectrophotometer
211 (resolution 4 cm⁻¹, number of scans = 64, in the range 4000-400 cm⁻¹). Samples were put into the
212 Platinum ATR diamond F vacuum A225/Q equipment which was connected to the
213 spectrophotometer. Spectra were recorded for all samples at room temperature (RT). The spectrum
214 without any sample („background spectrum”) was scanned and subtracted from all recorded
215 spectra. The spectra were recorded before and after the thermal treatment of samples at 373 K for 24
216 h in air conditions.

217 2.2.8. Thermogravimetric and differential thermal analysis (TG-DTA)

218 Thermogravimetric analyses of the solids were carried out in air atmosphere using SETARAM
219 SETSYS-12 apparatus with a temperature ramp 5 K min⁻¹.

220 2.2.9. Transmission electron microscopy (TEM)

221 The powders were deposited on a grid covered with a holey carbon film and transferred to
222 JEOL 2000 electron microscope operating at 80 kV. Before measurement, samples were made in the
223 form of a suspension in 1-butanol. The size of particles was estimated using ImageJTM software.

224 2.2.10. Temperature programmed reduction (TPR-H₂)

225 The temperature-programmed reduction (TPR) of all samples was carried out using the flow of
226 mixture gases H₂ and He (10 vol. % H₂ in He) as a reducing agent (flow rate = 40 cm³
227 min⁻¹). A sample (20 mg) in the form of powder was packed in a quartz tube (\varnothing = 5 mm), treated in
228 a flow of helium at 373 K for 4 h and cooled to room temperature (RT). Then the sample was heated
229 at a rate of 5 K min⁻¹ to 1073 K in the presence of the reducing mixture. Hydrogen consumption was
230 measured by a thermal conductivity (TCD) detector.

231 2.3. Catalytic activity – glycerol oxidation

232 The glycerol oxidation experiments were performed in a 30 cm³ batch reactor made by Parr
 233 Company (USA). The oxidation reactions were carried out with oxygen under pressure 6 atm, at 333
 234 K. 0.200 g of NaOH (POCh, 99%, NaOH/glycerol molar ratio = 2) and 0.050 g of gold catalyst were
 235 added to aqua solution of glycerol (0.230 g glycerol, Sigma-Aldrich, 99%). Glycerol was dissolved
 236 earlier in 25.000 g of distilled water.

237 The reaction mixture was stirred at 600 rpm for 5 h at selected temperature. The quantitative
 238 analyses of the reaction mixtures were performed by high performance liquid chromatography
 239 (HPLC). The analysis was carried out using a HPLC chromatograph (Waters 600) equipped with
 240 ultraviolet (UV) and refractive index (RI) detectors. The reactant and the products were separated on
 241 an ion exclusion column (IC-Pak Ion Exclusion 7.8×300 mm – Waters) heated at 308 K. The eluent
 242 was a solution of H₂SO₄ (0.0004 M). The samples were taken at the end of the reactions, 1 ml of
 243 solution after reaction was injected and 5 µl of this solution was analyzed.

244 3. Results and Discussion

245 3.1. Chemical composition of materials

246 The contents of chemical elements in the catalysts were estimated using ICP-OES, elemental
 247 analysis and XPS measurements (Tables 1-4). The first technique (ICP-OES) allowed the evaluation
 248 of cerium, zirconium and gold contents in the bulk materials (Tables 1 and 2). The second
 249 (elemental analysis) was used to the estimation of sulfur content in the bulk materials (Table 3).

250 **Table 1.** The comparison between real and nominal molar ratio CeO₂:ZrO₂ in prepared oxides. The
 251 results were estimated using ICP-OES. It was assumed that 100% of Ce species are in the form of
 252 CeO₂.

support before modification	nominal molar ratio CeO ₂ :ZrO ₂	real molar ratio CeO ₂ :ZrO ₂		
		after modification		
		pure oxide	with Au	with S
CeZrO _x (4:1)	4.00	7.06	4.97	4.80
CeZrO _x (2:1)	2.00	3.33	2.48	2.31
CeZrO _x (1:1)	1.00	1.86	1.22	1.18
CeZrO _x (1:2)	0.50	0.70	0.56	0.94
CeZrO _x (1:4)	0.25	0.34	0.33	0.44
				0.39

253

254 **Table 2.** The content of gold and size of its particles.

catalyst	gold concentration, wt. %			crystal size of Au particles, nm	
	nominal	from ICP-OES	from XPS	from XRD ^a	from TEM ^b
Au/CeO _x S _(2-x)	3.0	0.4	3.1	16.2	5.0
Au/CeZrO _x S _(2-x) (4:1)	3.0	0.6	6.8	13.8	5.1
Au/CeZrO _x S _(2-x) (2:1)	3.0	0.5	3.4	16.3	5.0
Au/CeZrO _x S _(2-x) (1:1)	3.0	0.5	4.9	28.1	5.3
Au/CeZrO _x S _(2-x) (1:2)	3.0	0.3	13.2	19.3	5.0
Au/CeZrO _x S _(2-x) (1:4)	3.0	0.2	12.6	29.1	4.7
Au/ZrO _x S _(2-x)	3.0	1.0	20.4	31.3	4.8

255 ^a from the Scherer's formula, calculated for the gold particles >5 nm256 ^b the TEM images can give the information about all small crystals loaded on the surface of materials

257 The last (XPS) provided the information about gold (Table 2), cerium, zirconium, sulfur and
 258 oxygen contents on the external surface of materials and it was applied to define the stoichiometric
 259 formulas of catalysts (Table 4). The results of ICP-OES analysis show the difference between the
 260 nominal (assumed) and real (measured) contents of metals in the materials (Table 1). The real molar
 261 ratio between ceria and zirconia for all supports was around 50% higher than the nominal molar
 262 ratio. This difference can suggest the inhomogeneous composition of materials and/or the presence
 263 of oxygen vacancies in the crystal lattice of catalysts which can be created by the partial removal of
 264 oxygen atoms from the crystal structure.

265 **Table 3.** The influence of texture parameters on sulfur species content in samples.

catalyst	μmol S / g of catalyst	μmol S / m ² of catalyst surface	mol S / m ³ of catalyst volume
CeO _x S _(2-x)	1197	21.0	74.8
CeZrO _x S _(2-x) (4:1)	1127	16.3	56.3
CeZrO _x S _(2-x) (2:1)	1046	17.7	58.1
CeZrO _x S _(2-x) (1:1)	973	18.0	121.6
CeZrO _x S _(2-x) (1:2)	271	13.5	135.3
CeZrO _x S _(2-x) (1:4)	320	13.3	106.7
ZrO _x S _(2-x)	409	9.5	68.2
Au/CeO _x S _(2-x)	342 (29%) ¹	3.9 (19%) ¹	20.1 (27%) ¹
Au/CeZrO _x S _(2-x) (4:1)	331 (29%) ¹	3.7 (23%) ¹	16.6 (29%) ¹
Au/CeZrO _x S _(2-x) (2:1)	391 (37%) ¹	5.4 (30%) ¹	23.0 (40%) ¹
Au/CeZrO _x S _(2-x) (1:1)	489 (50%) ¹	8.0 (44%) ¹	61.1 (50%) ¹
Au/CeZrO _x S _(2-x) (1:2)	181 (67%) ¹	10.1 (74%) ¹	45.3 (33%) ¹
Au/CeZrO _x S _(2-x) (1:4)	139 (43%) ¹	6.0 (45%) ¹	46.3 (43%) ¹
Au/ZrO _x S _(2-x)	199 (49%) ¹	4.9 (51%) ¹	33.2 (49%) ¹
ZrO ₂ modified with H ₂ S ²	65 (32.5)	2.7 (13.5)	no data

266 ¹ in brackets are % of sulfur which was still after modification with gold

267 ² comparison for sample presented in [40], but the adsorption of hydrogen sulfide was carried out for
 268 0.1 g of pure zirconia (which a specific surface area was 24 m² g⁻¹) for 1 h at 673 K and in the bracket
 269 was put a hypothetical amount after 5 h

270 The results of XPS study can evidence the presence of oxygen vacancies, because the value of
 271 stoichiometric coefficient for oxygen designated by this method is lower than the assumed
 272 stoichiometric coefficient (Table 4). The total introduction of sulfur species to oxides was estimated
 273 using elemental analysis (Table 3). The highest sulfur content (1197 μmol S g⁻¹) and the highest
 274 concentration of sulfur on the surface of materials (21 μmol S m⁻²) was measured for support based
 275 on pure ceria. In the case of the highest concentration of sulfur in the total volume of materials, this
 276 parameter was obtained by CeZrO_xS_(2-x)(1:2) (135.3 μmol S m⁻³). The real molar ratio between CeO₂
 277 and ZrO₂ was 0.94 in this support and the amount of sulfur per m³ of catalyst was higher than in the
 278 case of materials based on pure ceria or pure zirconia. It can suggest the presence of the synergistic
 279 effect based on the electron interaction between cerium and zirconium species can lead to higher
 280 yield of hydrogen sulfide (H₂S) adsorption. It confirmed the results of the theoretical and
 281 experimental studies, that the presence of zirconium species in the crystal structure of ceria can
 282 induce the formation of oxygen vacancy around zirconium species [13]. These vacancies can be the
 283 places, where sulfur atoms are located during the chemical adsorption of hydrogen sulfide. The
 284 presence of zirconium species had also positive effect on the stability of sulfur species after the

285 modification oxides with gold species, because materials with high zirconium content were
 286 characterised of the smallest decrease of sulfur content (at around 33-57%) than in the case of
 287 materials based on cerium oxides (the decrease was around 63-71%). It can be explained by the
 288 partial blocking of pores by the metallic gold particles, which were the biggest in the material based
 289 on pure zirconia (Table 2).

290 **Table 4.** Stoichiometric formulas of oxides estimated
 291 using XPS measurements and texture parameters.

catalyst	stoichiometric formula		surface area, $\text{m}^2 \text{g}^{-1}$ ³	total pore volume, $\text{cm}^3 \text{g}^{-1}$ ⁴	average pore diameter, nm ⁴
	nominal ¹	from XPS analysis ²			
CeO ₂	Ce _{1.00} O _{2.00}	no data	104	0.18	8.2
CeO _x S _(2-x)	Ce _{1.00} O _x S _(2-x)	Ce _{1.00} O _{1.53} S _{0.25(1.78)}	57	0.16	10.2
Au/CeO _x S _(2-x)	Au/Ce _{1.00} O _x S _(2-x)	Au _{0.03} /Ce _{1.00} O _{1.01} S _{0.09(1.10)}	87	0.17	8.6
CeZrO _x (4:1)	Ce _{0.80} Zr _{0.20} O _{2.00}	Ce _{0.80} Zr _{0.04} O _{0.58}	98	0.22	9.5
CeZrO _x S _(2-x) (4:1)	Ce _{0.80} Zr _{0.20} O _x S _(2-x)	Ce _{0.80} Zr _{0.06} O _{0.91} S _{0.12(1.03)}	69	0.20	11.0
Au/CeZrO _x S _(2-x) (4:1)	Au/Ce _{0.80} Zr _{0.20} O _x S _(2-x)	Au _{0.05} /Ce _{0.80} Zr _{0.06} O _{1.12} S _{0.13(1.25)}	90	0.20	10.0
CeZrO _x (2:1)	Ce _{0.67} Zr _{0.33} O _{2.00}	Ce _{0.67} Zr _{0.34} O _{0.71}	87	0.18	9.8
CeZrO _x S _(2-x) (2:1)	Ce _{0.67} Zr _{0.33} O _x S _(2-x)	Ce _{0.67} Zr _{0.41} O _{1.05} S _{0.14(1.17)}	59	0.18	11.5
Au/CeZrO _x S _(2-x) (2:1)	Au/Ce _{0.67} Zr _{0.33} O _x S _(2-x)	Au _{0.03} /Ce _{0.67} Zr _{0.43} O _{0.79} S _{0.14(0.93)}	73	0.17	10.4
CeZrO _x (1:1)	Ce _{0.50} Zr _{0.50} O _{2.00}	Ce _{0.50} Zr _{0.54} O _{1.24}	73	0.08	5.7
CeZrO _x S _(2-x) (1:1)	Ce _{0.50} Zr _{0.50} O _x S _(2-x)	Ce _{0.50} Zr _{0.46} O _{1.05} S _{0.12(1.17)}	54	0.08	6.3
Au/CeZrO _x S _(2-x) (1:1)	Au/Ce _{0.50} Zr _{0.50} O _x S _(2-x)	Au _{0.04} /Ce _{0.50} Zr _{0.44} O _{1.05} S _{0.10(1.15)}	61	0.08	6.1
CeZrO _x (1:2)	Ce _{0.33} Zr _{0.67} O _{2.00}	Ce _{0.33} Zr _{0.21} O _{0.45}	26	0.03	4.8
CeZrO _x S _(2-x) (1:2)	Ce _{0.33} Zr _{0.67} O _x S _(2-x)	Ce _{0.33} Zr _{0.31} O _{0.65} S _{0.04(0.69)}	20	0.02	5.2
Au/CeZrO _x S _(2-x) (1:2)	Au/Ce _{0.33} Zr _{0.67} O _x S _(2-x)	Au _{0.04} /Ce _{0.33} Zr _{0.17} O _{0.71} S _{0.04(0.75)}	18	0.04	9.0
CeZrO _x (1:4)	Ce _{0.20} Zr _{0.80} O _{2.00}	Ce _{0.20} Zr _{0.48} O _{0.78}	27	0.03	4.9
CeZrO _x S _(2-x) (1:4)	Ce _{0.20} Zr _{0.80} O _x S _(2-x)	Ce _{0.20} Zr _{0.76} O _{1.19} S _{0.03(1.22)}	24	0.03	4.9
Au/CeZrO _x S _(2-x) (1:4)	Au/Ce _{0.20} Zr _{0.80} O _x S _(2-x)	Au _{0.08} /Ce _{0.20} Zr _{0.71} O _{1.06} S _{0.05(1.11)}	23	0.03	5.5
ZrO ₂	Zr _{1.00} O _{2.00}	no data	46	0.06	5.9
ZrO _x S _(2-x)	Zr _{1.00} O _x S _(2-x)	Zr _{1.00} O _{1.35} S _{0.05(1.40)}	43	0.06	5.6
Au/ZrO _x S _(2-x)	Au/Zr _{1.00} O _x S _(2-x)	Au _{0.16} /Zr _{1.00} O _{1.46} S _{0.16(1.62)}	41	0.06	6.1

292 ¹ x – stoichiometric coefficient can be $0 < x < 2$

293 ² in brackets is the sum of the values of stoichiometric coefficients for oxygen and sulfur

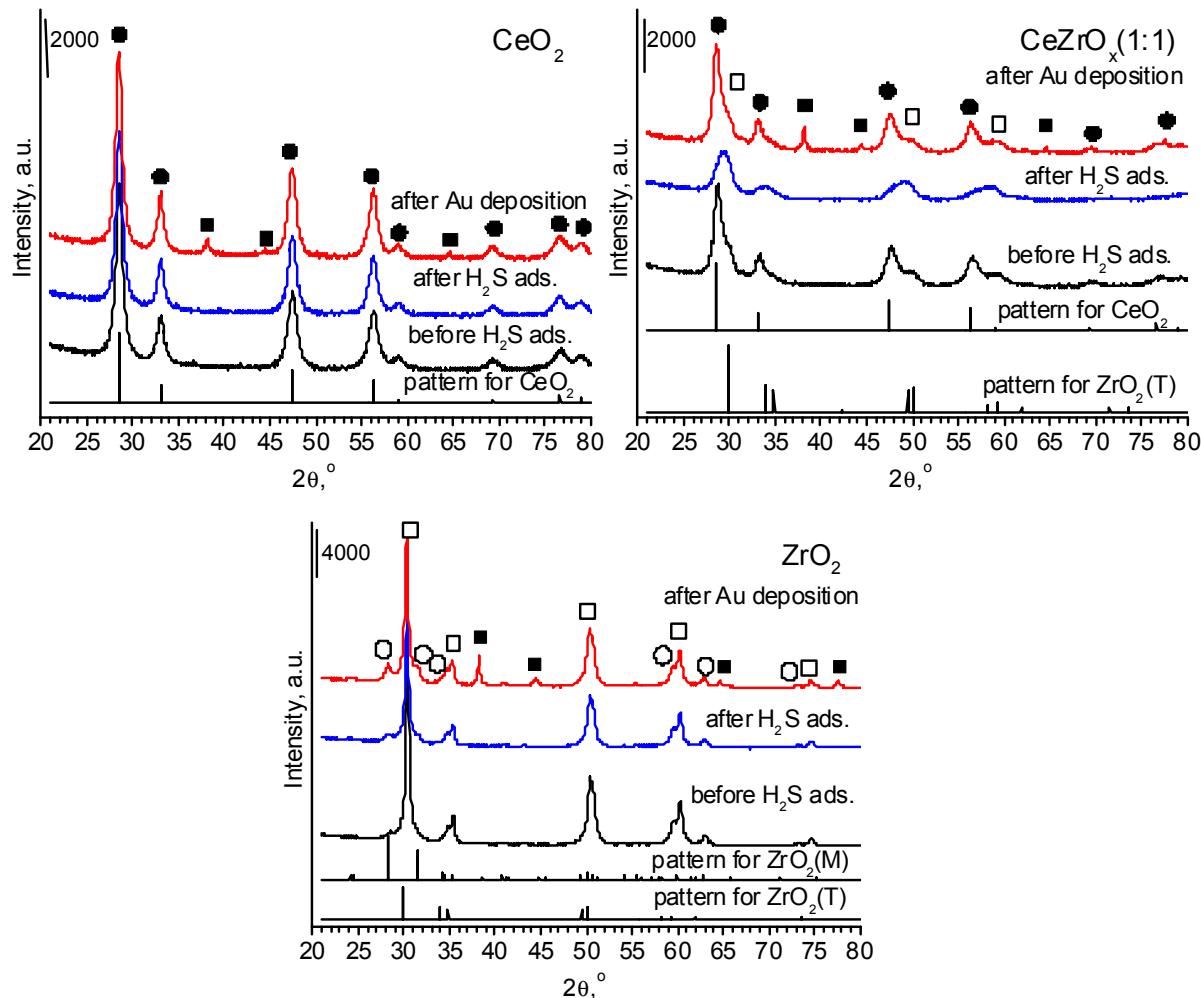
294 ³ calculating by BET method

295 ⁴ calculating with BJH adsorption

296 Additionally, the materials with high zirconium content were characterised of smaller average
 297 pore size than the materials with high cerium content (Table 4). The X-ray photoelectron
 298 spectroscopy (XPS) was applied to measure metals content on the external surface of catalysts (to
 299 around 3-10 nm into the studied materials). The comparison of the results of gold content estimated
 300 using the ICP-OES and XPS techniques was used to the description of the location of gold species in
 301 studied catalysts (Table 2). It was observed the increase of gold content on the external surface with
 302 the growth of zirconium content. It can be explained by the decrease of average pore diameter with
 303 the increase of zirconium concentration, which was confirmed by the results of the adsorption and
 304 desorption of nitrogen (Table 4). It could be also by the partial blocking of pores by gold particles,
 305 which was evidenced by the increase of average metallic gold particles loading on the surface of
 306 materials with the growth of zirconium content estimated using XRD and TEM (Table 2). Gold
 307 species were preferentially localized on the surface of all materials, whereas, the location of
 308 zirconium species depended strongly on the presence of gold in the bulk of materials.

309 The prepared cerium-zirconium oxides were studied using the XPS method to the
 310 determination of stoichiometric formulas and oxygen vacancies in the crystal lattice of materials. The

311 stoichiometric formulas of oxides before and after their modification with sulfur and gold species
312 were shown in table 4. The measured contents of oxygen on the external surfaces of materials were
313 lower, than their nominal (assumed) contents, independently of the presence or the absence of
314 sulfur species. It can suggest the presence of oxygen vacancies in the mesoporous oxides on the
315 external surface, also before their modification with hydrogen sulfur.


316 The lower values of stoichiometric coefficient for oxygen in the chemical formulas were noted
317 for the catalysts based on the mixed cerium-zirconium oxides, than pure ceria or pure zirconia. The
318 addition of sulfur led to the decrease of oxygen content and it can be explained by the exchanging
319 between oxygen and sulfur atoms from the crystal structure of oxides during the chemical
320 adsorption of hydrogen sulfide. The possibility of exchanging between these two elements was
321 reported in the literature [40–43].

322 *3.2. Characterisation of materials*

323 3.2.1. Texture and structure properties

324 The positive effect of the addition cerium species to support on the texture parameters
325 (the growth of surface area, total pore volume and average pore size) was confirmed by the results of
326 the adsorption and desorption of nitrogen (Table 4). It can be explained by the better dissolution of
327 cerium nitrate in the solution of methanol and Pluronic P-123, than zirconium oxonitrate during the
328 preparation of oxides and also the longer crystallization of ceria than zirconia. It can be a reason,
329 why the real molar ratios between ceria and zirconia on the external surface of catalysts, which were
330 estimated using the XPS, were higher, than the nominal molar ratios (Table 1). The modification of
331 oxides by sulfur species led to the significant decrease of surface area (from around 30% in the case
332 of pure zirconia to around 45% in pure ceria) and the increase of average pore diameter (excluding
333 $\text{CeZrO}_x(1:4)$ and ZrO_2).

334 It suggests that hydrogen sulfide was adsorbed mainly in the internal pores of materials. After
335 the modification of materials with gold, the surface area increased to the values similar before the
336 modification with hydrogen sulfide. It can be explained by the partial removal of sulfur species
337 during the thermal treatment of supports after gold loading and the results of elemental analysis can
338 confirm this phenomena (Table 3). The XRD diffraction analysis showed that ceria in all samples
339 with cerium were in the form of cubic (JCPDS ICDD PDF Card-00-043-1002) and zirconia in the
340 samples with zirconium species crystallized in the form of monoclinic (JCPDS ICDD PDF Card-
341 00-007-0343) or tetragonal (JCPDS ICDD PDF Card-00-042-1164) (Fig. 1). It is worth to note, that very
342 small changes in the XRD patterns are observed after the modification of oxides with hydrogen
343 sulfide, because the position and intensities of reflections are very similar before and after the
344 treatment of hydrogen sulfide (excluding $\text{CeZrO}_x(1:1)$).

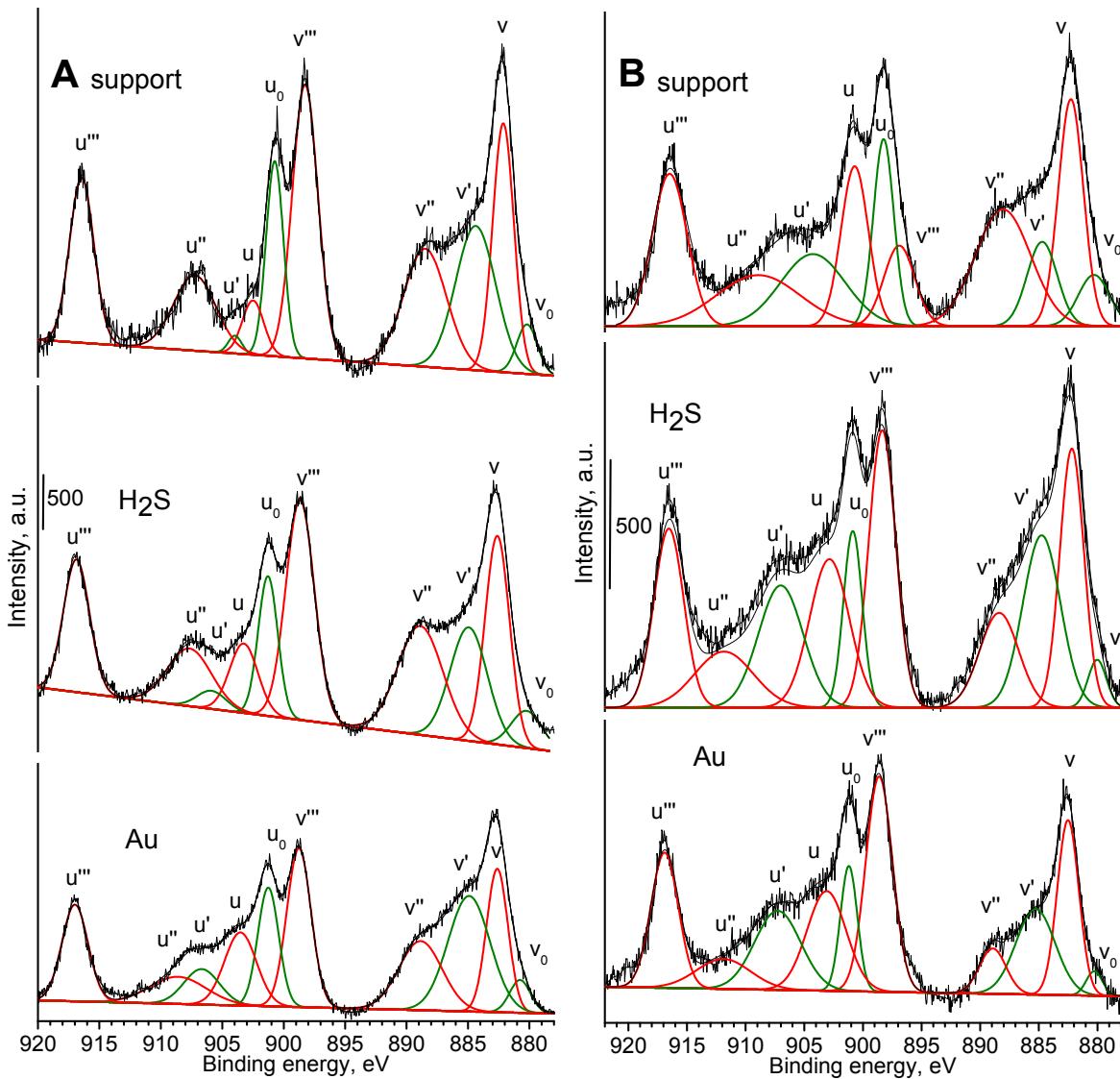
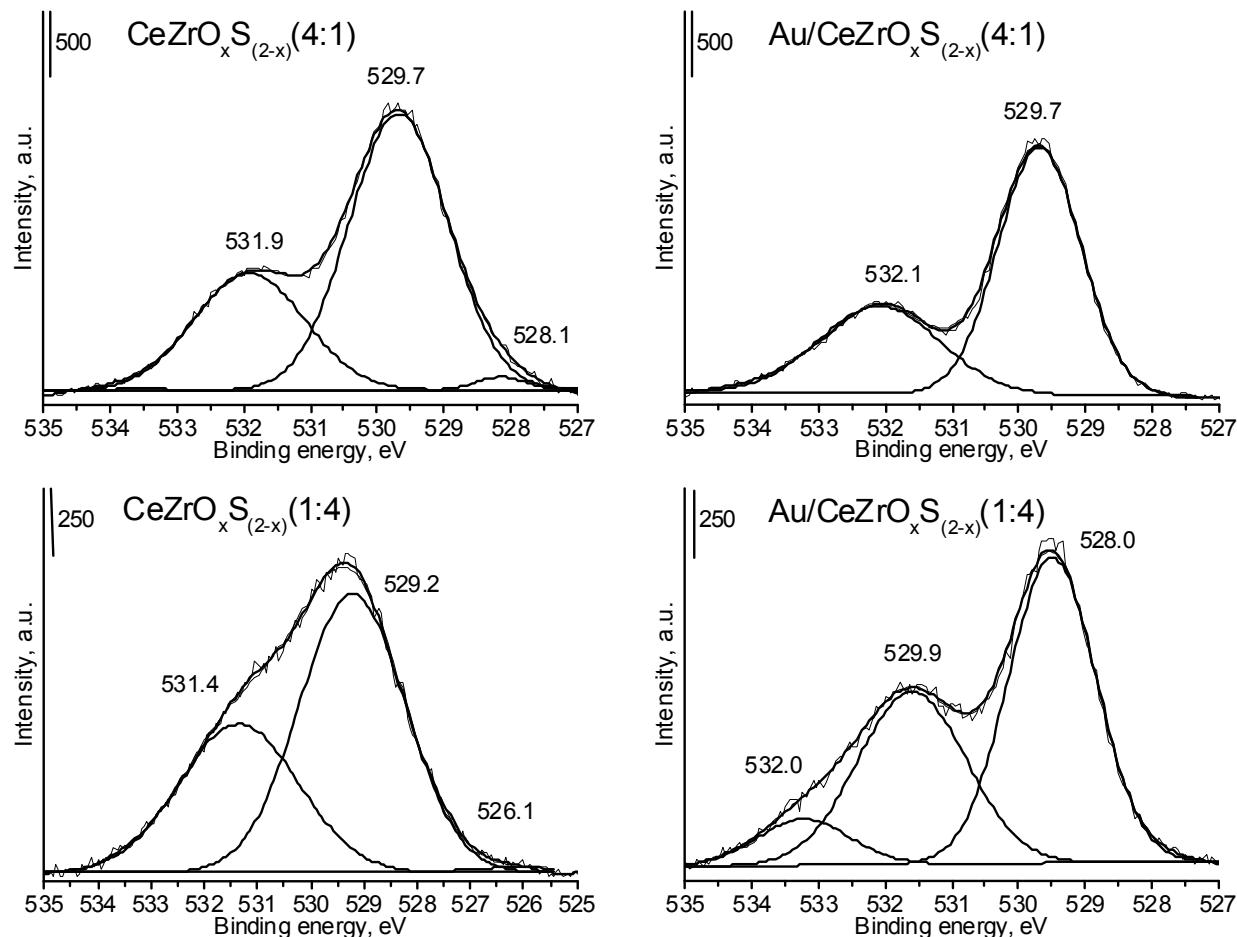


Fig. 1. XRD patterns of selected samples before and after H_2S adsorption and after Au deposition, where ■ – means the crystal phase of metallic gold particles, ● – cubic crystal phase of ceria (pattern for CeO_2), □ – tetragonal crystal phase of zirconia (pattern for $\text{ZrO}_2(\text{T})$) and ○ – monoclinic crystal phase of zirconia (pattern for $\text{ZrO}_2(\text{M})$).

345 It is worth to note, that the XRD method can be used to estimate the size of crystal phase of
 346 particles, which are larger than 5 nm. It means that particles, which are smaller than 5 nm, cannot
 347 give any reflections in the XRD patterns. The reflections due to metallic gold particles were observed
 348 in the XRD patterns recorded for all samples modified with this metal (Fig. 1). The average size of
 349 metallic gold particles was calculated using the Scherrer's formula (Table 2) [39]. The results show
 350 that the increase of specific surface area (Table 4) and cerium content (Table 1) had positive effect on
 351 the decrease of the average size of gold particles, but this correlation was not linear, because gold
 352 particles were much smaller in the case of $\text{Au}/\text{CeZrO}_{x}\text{S}_{(2-x)}$ (1:2), than $\text{Au}/\text{CeZrO}_{x}\text{S}_{(2-x)}$ (1:1) (in the case
 353 of gold particles estimated using the Scherrer's formula [39]). It can be explained by the changes in
 354 the average size of pore diameter (Table 4). The decrease of pore diameters favored the
 355 agglomeration of gold on the external surface of catalysts. The comparison of gold content in the
 356 bulk and on the external surface of materials shows that gold was preferential located on the
 357 external surface in all catalysts (Table 2), especially in $\text{Au}/\text{ZrO}_{x}\text{S}_{(2-x)}$.
 358

359 The TEM images confirmed the presence of metallic gold particles in the materials modified
 360 with gold and the mesoporous structure of the obtained catalysts (Table 2 and Fig. S1). The results
 361 obtained using TEM show that the increase of zirconia content in mixed cerium-zirconium oxides
 362 had positive effect on the decrease of the average gold particles and better dispersion of gold
 363 particles (from 5.3 nm in $\text{Au}/\text{CeO}_{x}\text{S}_{(2-x)}$ (1:1) to 4.7 nm in $\text{Au}/\text{CeO}_{x}\text{S}_{(2-x)}$ (1:4)). It can suggest that the
 direct interaction between gold, sulfur and zirconium species can protect gold particles in their

364 agglomeration. It means that the size of gold particles loading on ceria, zirconia and mixed
 365 cerium-zirconium oxides can be controlled by the chemical composition of supports.
 366


367 **Fig. 2.** XP spectra recorded for Ce 3d species for selected oxides before (**support**) and after
 368 modification with sulphur (H_2S) and gold species (**Au**). The spectra were recorded for the catalysts
 369 based on: [A] CeZrO_x (4:1) and [B] CeZrO_x (1:1).

370 3.2.2. The oxidation state of metal species

371 The main form of cerium species on the external surface of studied samples was Ce^{4+}
 372 (Table 5). The occurred differences between the catalysts can be explained by the partial reduction of
 373 cerium species (from Ce^{4+} to Ce^{3+}) during the flow of inert gas (helium) before the modification of
 374 materials with hydrogen sulfide. The phenomena of cerium species reduction during the activation
 375 of catalysts in the flow of inert gas was explained in earlier studies [24]. The presence of zirconium
 376 species in the support led to the easier reduction of cerium species in the mixed oxides before their
 377 modification with sulfur and gold species. In the case of mixed cerium-zirconium oxides modified
 378 with sulfur species, the increase of zirconium content promoted also the reduction of cerium species.
 379

380 The distribution of metallic gold (Au^0) species estimated using the XPS method was higher in
 381 the catalysts based on mixed cerium-zirconium oxides than pure ceria or zirconia (Table 5). It can
 suggest the presence of synergistic effect supported on the electron interaction between cerium and

382 zirconium atoms, which led to the reduction of gold species. In the case of pure ceria or zirconia
 383 modified with sulfur and gold, the distribution of anionic gold species on the external surface of
 384 metallic gold particles ($(Au^0)^{\delta-}$) was higher than in the mixed cerium-zirconium oxides (Tables 5 and
 385 6). It is worth to note, that in earlier study [24], gold loading on the external surface of ceria, zirconia
 386 and mixed cerium-zirconium oxides was in the form of metallic (Au^0) and cationic species ($Au^{\delta+}$).
 387 The anionic species ($(Au^0)^{\delta-}$) were current only in the bimetallic copper-gold catalysts [24].
 388

389

390 **Fig. 3.** XP spectra recorded for O 1s species for selected Ce-Zr oxides before and after modification
 391 with Au.

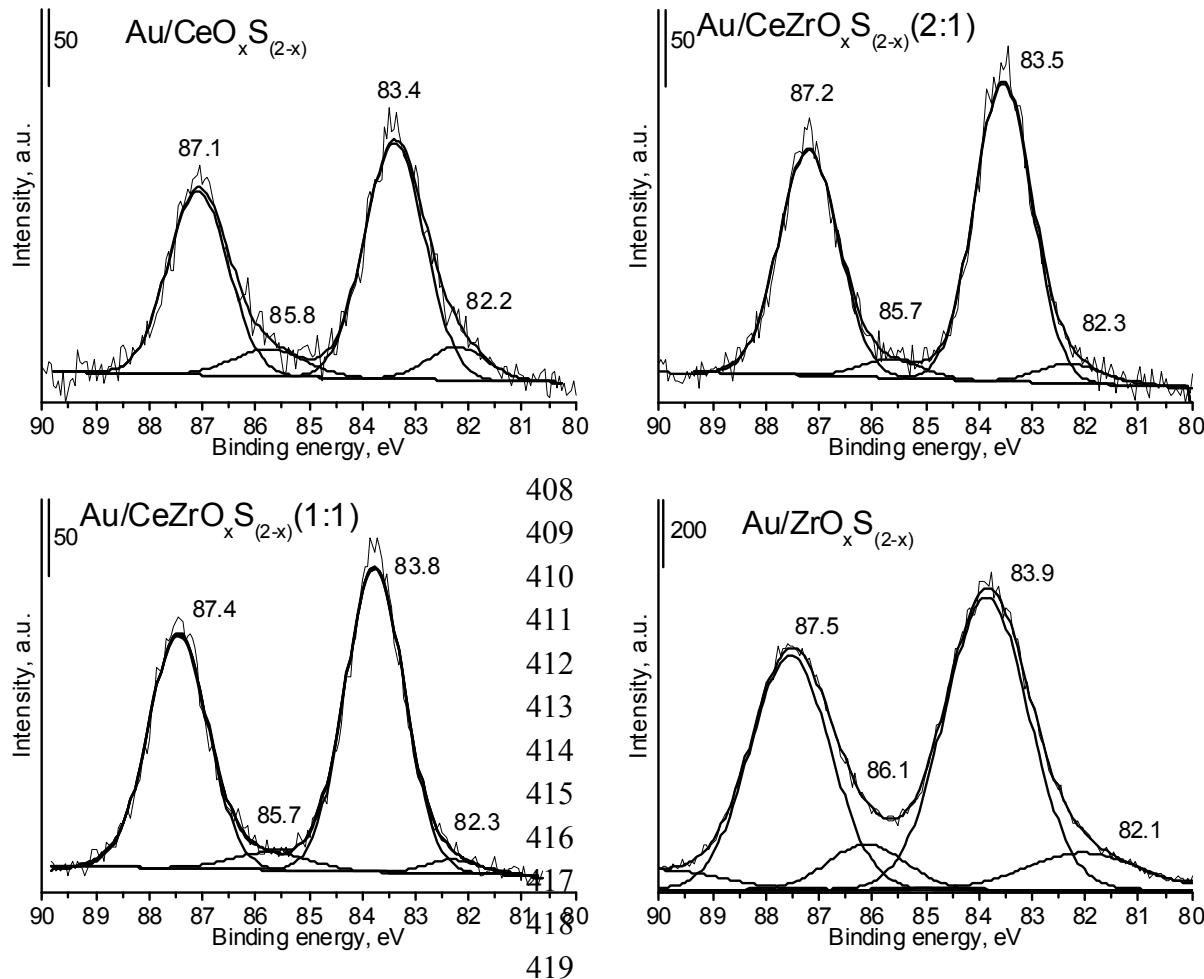
392 It suggests that the sulfur species can play the same role as copper species in the bimetallic
 393 copper-gold catalysts. Sulfur species (e.g. as thiol groups -SH) can reduce gold species and they are
 394 oxidized to sulfate groups (e.g. as like sulfonic groups -SO₃). The results of TG-DTA, XPS and
 395 ATR-FTIR measurements confirmed the presence of both groups in the materials modified with
 396 hydrogen sulfide.

397 The mixed oxides modified with sulfur were characterised also by the lower values of
 398 stoichiometric coefficient of oxygen in chemical formulas estimated using XPS than pure ceria or
 399 zirconia (Table 4). The low value of stoichiometric coefficient of oxygen could suggest the presence
 400 of vacancies in external surface.

401

402
403**Table 5.** Distribution of species from XPS study and the binding energy (BE) and the form of species on the external surface of samples.

catalyst	distribution of species, %						binding energy (BE) and form of species, eV						
	Ce species		Au species		S species		Au species		S species		Zr species		
	Ce ³⁺	Ce ⁴⁺	(Au ⁰) ^{δ-}	Au ⁰	-SH	-SO	H	(Au ⁰) ^{δ-}	Au ⁰	-SH	-SO	H	Zr ⁴⁺ (3d _{5/2} /3d _{3/2})
CeO ₂	n.d. ¹	n.d. ¹	-	-	-	-	-	-	-	-	-	-	-/-
CeO _x S _(2-x)	48	52	-	-	7	93	-	-	-	-	168.8	-	-/-
Au/CeO _x S _(2-x)	27	73	12	88	21	79	82.2	83.4	166.0	169.4	-	-/-	
Au/CeO _x S _(2-x) ²	31	69	17	83	26	74	82.4	83.4	166.1	168.2	-	-/-	
CeZrO _x (4:1)	29	71	-	-	-	-	-	-	-	-	-	181.9/184.2	
CeZrO _x S _(2-x) (4:1)	26	74	-	-	11	89	-	-	166.9	169.0	182.4/184.9	-	
Au/CeZrO _x S _(2-x) (4:1)	36	64	3	97	29	71	82.4	84.2	165.4	169.6	182.6/184.8	-	
Au/CeZrO _x S _(2-x) (4:1) ²	37	63	0	100	6	94	-	84.3	165.5	168.7	182.6/184.9	-	
CeZrO _x (2:1)	22	78	-	-	-	-	-	-	-	-	-	181.9/184.2	
CeZrO _x S _(2-x) (2:1)	33	67	-	-	11	89	-	-	165.0	168.6	182.0/184.4	-	
Au/CeZrO _x S _(2-x) (2:1)	25	75	7	93	24	76	82.3	83.5	165.0	168.2	181.9/184.4	-	
Au/CeZrO _x S _(2-x) (2:1) ²	32	68	7	93	8	92	82.5	83.5	164.9	168.2	181.9/194.4	-	
CeZrO _x (1:1)	31	69	-	-	-	-	-	-	-	-	-	181.9/184.3	
CeZrO _x S _(2-x) (1:1)	34	66	-	-	20	80	-	-	163.4	168.3	181.9/184.3	-	
Au/CeZrO _x S _(2-x) (1:1)	32	68	4	96	28	72	82.3	83.8	162.7	168.9	182.3/184.6	-	
Au/CeZrO _x S _(2-x) (1:1) ²	32	68	0	100	15	85	-	83.7	165.2	168.8	182.2/184.6	-	
CeZrO _x (1:2)	26	74	-	-	-	-	-	-	-	-	-	181.9/184.2	
CeZrO _x S _(2-x) (1:2)	30	70	-	-	20	80	-	-	166.6	168.4	181.9/184.3	-	
Au/CeZrO _x S _(2-x) (1:2)	38	62	10	90	20	80	82.9	83.8	166.0	168.4	182.1/184.5	-	
Au/CeZrO _x S _(2-x) (1:2) ²	36	64	0	100	13	87	-	83.7	166.2	168.4	182.1/184.5	-	
CeZrO _x (1:4)	31	69	-	-	-	-	-	-	-	-	-	182.6/185.0	
CeZrO _x S _(2-x) (1:4)	36	64	-	-	18	82	-	-	165.7	167.3	181.7/184.1	-	
Au/CeZrO _x S _(2-x) (1:4)	37	63	8	92	19	81	82.4	83.9	167.0	169.2	182.4/184.7	-	
Au/CeZrO _x S _(2-x) (1:4) ²	32	68	16	84	7	93	82.9	83.9	167.1	168.9	182.4/184.8	-	
ZrO ₂	-	-	-	-	-	-	-	-	-	-	-	n.d. ¹ / n.d. ¹	
ZrO _x S _(2-x)	-	-	-	-	30	70	-	-	162.4	167.2	182.0/184.4	-	
Au/ZrO _x S _(2-x)	-	-	14	86	51	49	82.1	83.9	163.4	169.4	182.3/185.0	-	
Au/ZrO _x S _(2-x) ²	-	-	9	91	39	61	82.3	84.0	162.6	169.6	182.5/185.0	-	


¹n.d. – no data² after glycerol oxidation at 333 K for 5 h at basic conditions

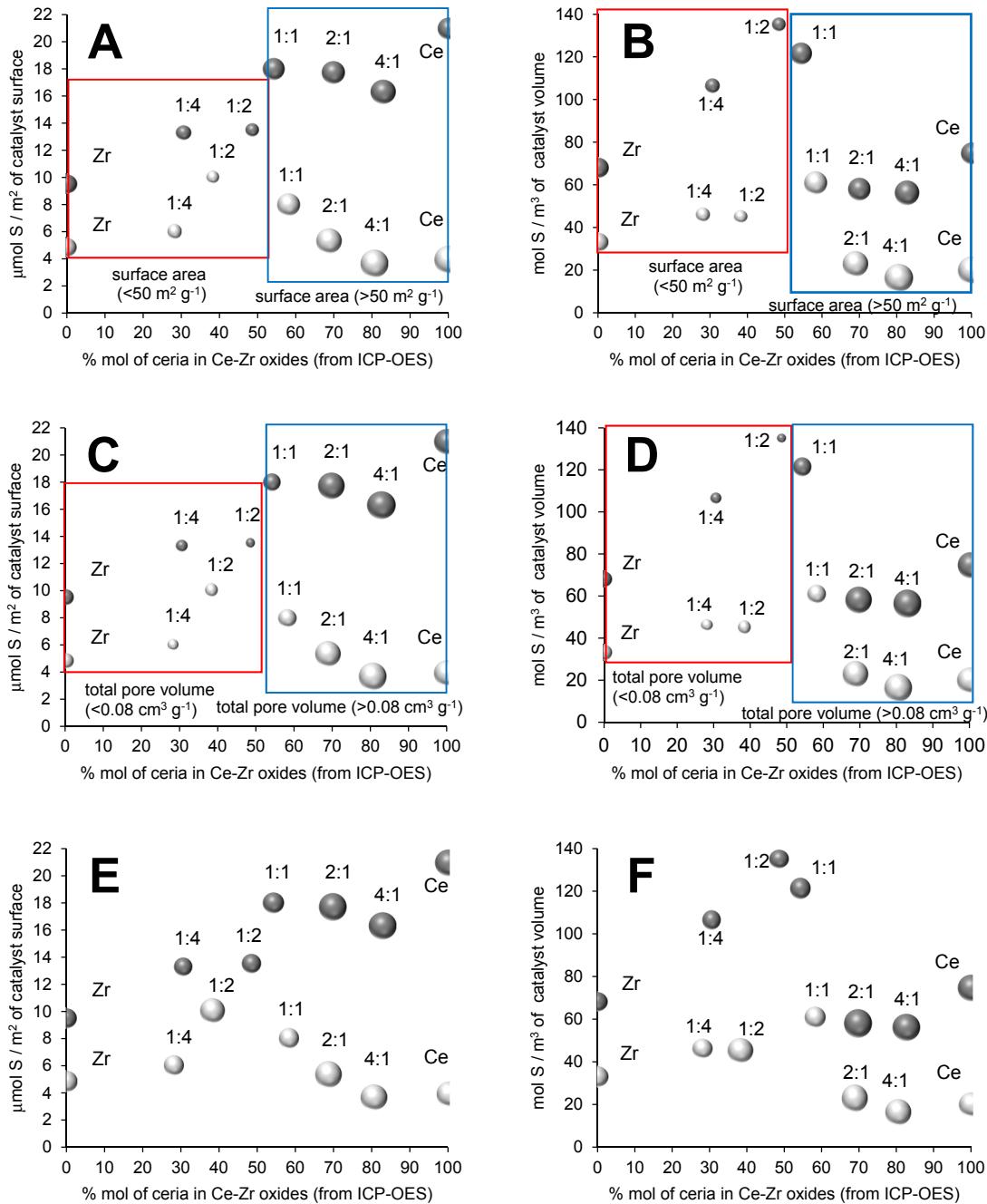
404

405

406

407

420 **Fig. 4.** XP spectra recorded for Au 4f species for selected Ce-Zr oxides modified with S and Au.


421 **Table 6.** The content of chemical elements on external surface before and after the modification of
422 supports with gold species.

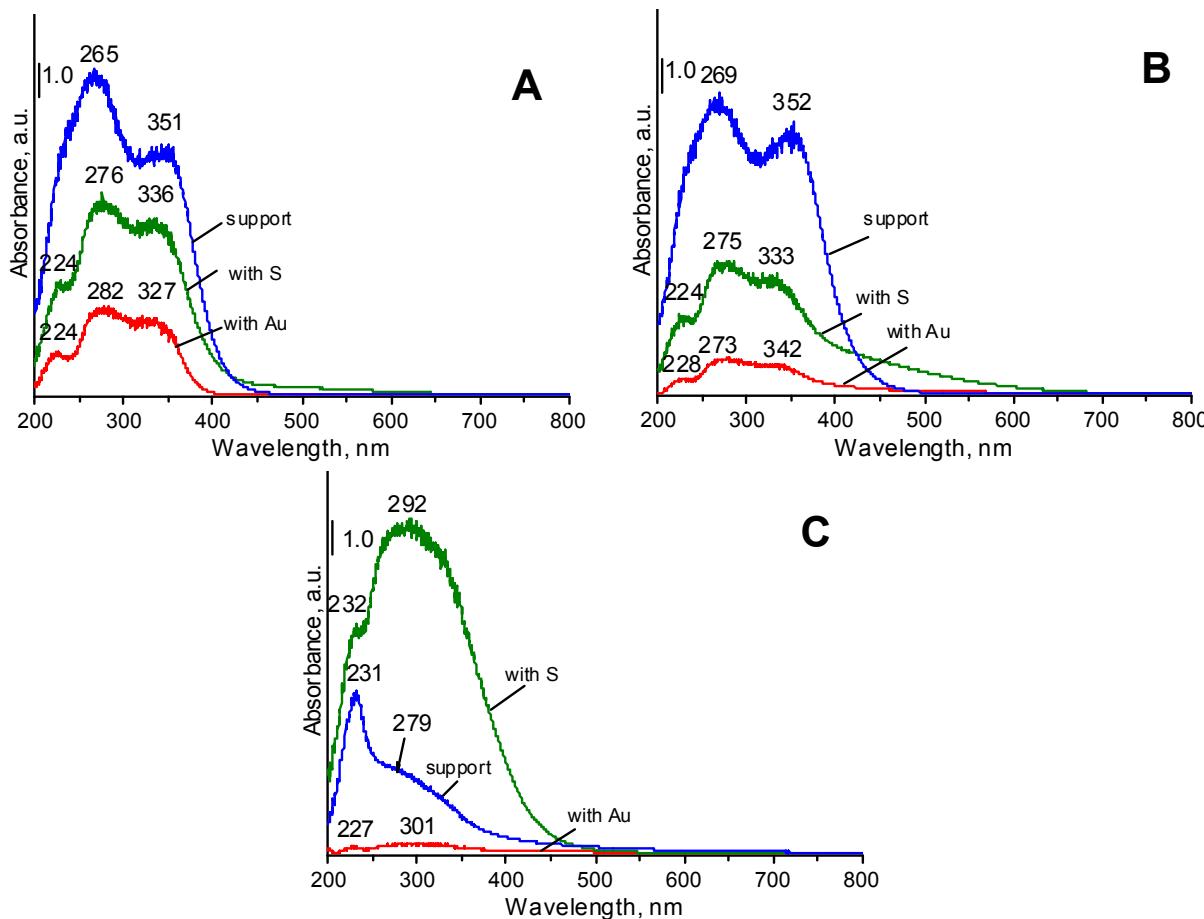
support	element content, at % ¹									
	Au		S		Ce		Zr		O	
	before	after	before	after	before	after	before	after	before	after
CeO _x S _(2-x)	-	1.2	8.9	4.4	35.9	47.0	-	-	55.1	47.3
CeZrO _x S _(2-x) (4:1)	-	2.4	6.4	6.1	42.3	37.0	3.2	2.7	48.1	51.7
CeZrO _x S _(2-x) (2:1)	-	1.3	6.3	6.8	29.6	32.4	18.4	20.9	45.6	38.6
CeZrO _x S _(2-x) (1:1)	-	1.6	5.5	4.5	23.5	23.7	21.4	20.6	49.5	49.6
CeZrO _x S _(2-x) (1:2)	-	4.4	3.2	3.1	25.0	25.4	23.3	12.7	48.6	54.4
CeZrO _x S _(2-x) (1:4)	-	3.9	1.6	2.2	9.2	9.5	34.8	33.9	54.5	50.5
ZrO _x S _(2-x)	-	5.6	2.1	5.9	-	-	41.7	36.0	56.2	52.5

423 ¹the element content (at %) calculated estimated using XPS analysis

424

425 The XPS spectra (Figures 2-4 and S2-S5) were recorded for the assessment of oxidation state of
426 chemical elements, and proved the changes in the contents of oxygen and sulfur. The increase of
427 sulfur content (Table 3) led to the decrease of gold content on external surface (Table 2).

428
429
430
431
432
433
434
435


Fig. 5. The correlation between sulphur content (as $\mu\text{mol m}^{-2}$ of catalyst surface or mol m^{-3} of catalyst volume) and the contents of metals in oxides (as % mol of ceria in Ce-Zr oxides estimated using ICP-OES, when was assumed that 100% of Ce was in the form of CeO_2) for selected surface parameters ([A] and [B] for surface area, [C] and [D] for total pore volume, [E] and [F] for average pore size). The size of points is correlated to the values of the surface parameters. Dark points are described to the catalysts modified with sulphur and light points are due to the catalyst with sulphur and gold species and the ratios mean the nominal molar ratio $\text{CeO}_2:\text{ZrO}_2$ of supports, Ce, Zr stand for CeO_2 , ZrO_2 , respectively.

436
437 The comparison of zirconium and sulfur contents showed that the growth of zirconium concentration on external surface led to the decrease of sulfur on the surface of materials. The

438 correlations between sulfur content on square meter of materials or cubic meter of pore volume of
 439 catalysts and the molar ratio of oxides for selected surface parameters were shown in Figure 5.

440 The molar ratio between ceria and zirconia around 1 in mixed oxides led to the highest sulfur
 441 content (on the external surface) on square meter of materials modified with gold species. The lack of
 442 linear correlation between sulfur content and cerium or zirconium content proved that the chemical
 443 composition of supports influenced on the surface parameters. This parameter could play a crucial
 444 role in the possibility of the migration of gold species to the bulk of materials and the agglomeration
 445 of sulfur species on the external surface during the thermal adsorption of hydrogen sulfide.

446 The largest surface specific area of materials were measured for the materials based on pure
 447 ceria CeO_2 and mixed oxide CeZrO_x (4:1). The decrease of specific surface area below $30 \text{ m}^2 \text{ g}^{-1}$ and
 448 the average pore size below 9.0 nm (in the case of $\text{CeZrO}_x\text{S}_{(2-x)}$ (1:2) and $\text{CeZrO}_x\text{S}_{(2-x)}$ (1:4)) led to the
 449 increase of gold content (above 3.0 at. % and sulfur below 3.5 at. %). If the specific surface area was
 450 around $40 \text{ m}^2 \text{ g}^{-1}$ and the average pore size was around 6.0 nm (in $\text{ZrO}_{x,y}\text{S}_{(2-x)}$), the gold and sulfur
 451 contents on the external surface were higher. It can suggest that the presence of zirconium species
 452 had positive effect on the migration of gold and sulfur species on the external surface. The XP
 453 spectra for O 2p region showed that the chemical composition of supports influenced
 454 on the distribution of the bands due to oxygen species (Fig. 3). The high cerium content
 455 in the mixed cerium-zirconium oxides led to the shift of a main band to the lower values
 456 of binding energy (BE) and the lower distribution of the area of band at 531-532 eV.

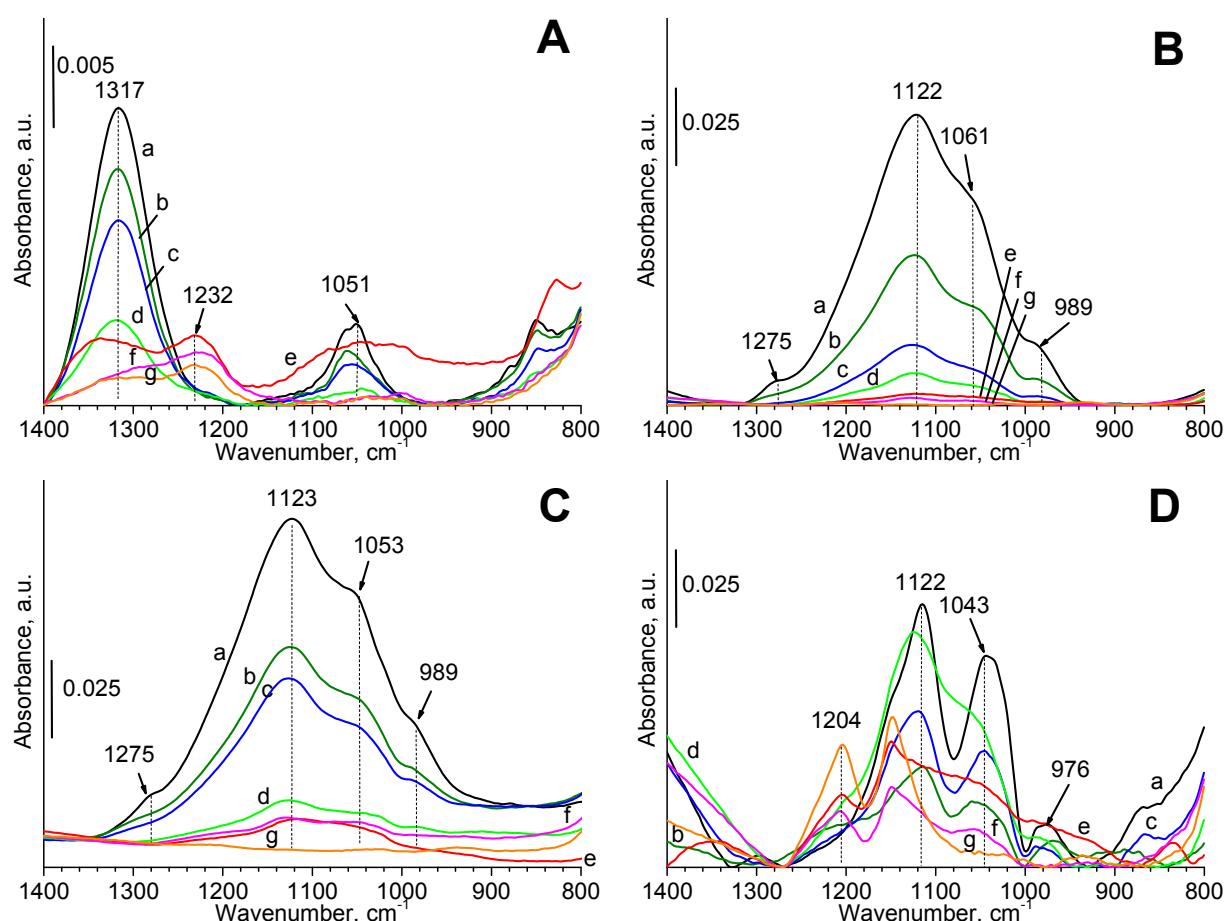
457 **Fig. 6.** UV-vis spectra of selected materials ([A] ceria CeO_2 , [B] ceria-zirconia CeZrO_x (1:1),
 458 [C] zirconia ZrO_2) before and modification of H_2S and after Au deposition.

459 It can suggest stronger interaction between oxygen and zirconium species and easier removal
 460 from the crystal structure of oxygen atoms which were in the neighborhood of cerium atoms. The

461 stoichiometric formulas (estimated using XPS study) confirmed the easier creation of oxygen
462 vacancies in the oxides with higher cerium content (Table 4). The XP spectra of Au 4f region
463 recorded for selected gold catalysts (Fig. 4) showed that presence of cerium can lead to the shift of
464 the bands in the XP spectra to the lower values of binding energy (Table 6). It can be explained by the
465 stronger interaction between cerium and gold species and easier reducibility of cerium species
466 confirmed by TPR by H₂ study.

467 UV-vis spectroscopy is a method, which can be used to the estimation of oxidation state and
468 the coordination of metals. Figures 6 and S6 display the UV-vis spectra of selected calcined catalysts
469 studied in this work. In the case of samples with cerium species, the bands in the range of 200-400
470 nm can be due to the ligand-metal charge transfer (LMCT) between oxygen ions (O²⁻) to cerium
471 cations (Ce⁴⁺). An according to the literature data [13,44] the position of a band coming from ligand
472 to metal charge transfer depends on the ligand field symmetry surrounding the cerium center.
473 It can explain why the charge transfer from oxygen ions to cerium cations requires higher energy of
474 tetra-coordinated cerium cations than that of e.g. hexa-coordinated or octa-coordinated species. In
475 the UV-vis spectra recorded for the materials with cerium species are seen tree bands at around 225,
476 265 and 350 nm in the UV-vis spectra recorded for the catalysts with cerium (Fig. 6A and 6B) can be
477 assigned to the different LMCT: in crystalline ceria (from O²⁻ to Ce⁴⁺), from oxygen species O²⁻ to
478 cerium cations Ce⁴⁺ in tetrahedral coordination and with a higher coordination number than four,
479 respectively. The shape of the UV-vis spectra recorded for samples with cerium species after
480 modification with hydrogen sulfide changed and the intensity of the bands decreased, but the band
481 at around 225 nm is not covered by the band at around 265 nm.

482 The UV-vis spectra recorded for samples based on zirconia (Fig. 6C) show a band around 230
483 and 280 nm which can be due to the LMCT from oxygen ions (O²⁻) to zirconium ions (Zr⁴⁺) with
484 octahedral configuration in zirconia crystallites. In the case of catalysts based on pure zirconia, after
485 its modification with sulfur species, the intensity of band at around 292 nm increased significantly.
486 For support with sulfur, the band at ca. 220 nm is visible. It can suggest the presence of the new kind
487 of coordination of zirconium species by sulfur and/or oxygen atoms.


488 The discussed UV-vis region (200-400 nm) is also typical of the LMCT of gold species (Au³⁺ and
489 Au⁺ ions) with ligands [45-51] or for the absorption bands due to the transition of electrons between
490 molecular orbitals of the few-atomic clusters Au_n (n < 10). It means that this region cannot be used to
491 the identification of the form of cationic gold species. The range of 500-580 nm can be applied to the
492 estimation of metallic gold nanoparticles (Fig. S6). The bands in this region can be due to the optical
493 absorption of the light excited oscillating conductivity electrons of metallic gold particles [52,53]. The
494 positions of bands above 500 nm can give information about the kind of metallic gold species, e.g. a
495 band at 567 nm (Fig. S6) can be due to the d-d electron transfer in metallic gold particles [54-56]. This
496 band was found only in the catalyst modified with gold based on pure ceria. It can suggest that the
497 composition of the support determines the presence and the position of this band.
498 It is worth to note that the modification of the catalysts with gold led to the decrease of the intensity
499 of these bands, which were assigned to cerium species. It can confirm the decrease of cerium species
500 contents on the external surface upon the modification of catalysts with gold, which was
501 documented by XPS study.

502 3.2.3. The form of sulfuric species

503 The XPS, TG-DTA, TPR by H₂ and ATR-FTIR measurements were applied to the identification
504 of the form of sulfuric species.

505 The comparison of selected XP spectra recorded for the region of sulfur species (S 2p) (Fig. S1)
506 showed the shift of binding energy (BE) to higher values after the modification
507 of samples with gold species (Table 5). An according to the literature data [57], the bands of XPS
508 spectra at around 168 eV could be correspond to sulfur species as oxidized sulfur groups. It was
509 reported [58] that the bands at 167.4 and 168.7 eV can be attributed to sulfur in sulfonyl (S-O) and/or
510 sulfate (S=O) groups, respectively and these groups are generated in the presence of oxygen. It was
511 published in [59-61] that the band at 168.1 eV can be assigned to the binding energy of sulfur in

512 sulfonic groups ($-\text{SO}_3\text{H}$). The results of BE present in Table 5 showed that after the modification of
 513 oxides with hydrogen sulfide, sulfonyl and/or sulfonic groups could be located on the external
 514 surface of materials. The increase of zirconium content favored the presence of sulfonyl groups ($\text{S}-\text{O}$)
 515 and higher cerium content led to the growth of the distribution of sulfate groups ($\text{S}=\text{O}$). These
 516 differences can be explained by the changes in the coordination of metal (cerium and zirconium)
 517 species and the oxidation state of cerium species. The loading of gold on the surface of samples with
 518 high zirconium content changed the main form sulfonyl groups ($\text{S}-\text{O}$) to sulfate groups ($\text{S}=\text{O}$). In the
 519 mixed oxides [$\text{CeZrO}_{x}\text{S}_{(2-x)}$ (2:1); $\text{CeZrO}_{x}\text{S}_{(2-x)}$ (1:1); $\text{CeZrO}_{x}\text{S}_{(2-x)}$ (1:2)] before and after their modification
 520 with gold, sulfonic groups were the main form of sulfur species on the external surface. These
 521 materials were characterised by the molar ratio between CeO_2 and ZrO_2 in the range 0.62 and 2.20
 522 (according to the XPS study) and it suggests the positive effect of interaction between cerium and
 523 zirconium species on the creation of sulfonic groups.
 524

525 **Fig. 7.** ATR-FTIR spectra recorded for oxides: [A] before and [B] after adsorption of H_2S on the
 526 surface, [C] after adsorption of H_2S on the surface and the heating the supports with sulphur at 373 K
 527 for 24 h in air, [D] with sulphur species after their modification with gold species. The ATR-FTIR
 528 spectra were recorded for samples based on the supports: a) CeO_2 , b) CeZrO_{x} (4:1), c) CeZrO_{x} (2:1),
 529 d) CeZrO_{x} (1:1), e) CeZrO_{x} (1:2), f) CeZrO_{x} (1:4) and g) ZrO_2 .

530 The oxides before and after their modification with hydrogen sulfide and gold species were
 531 studied using TG-DTA in the flow of air in the order to know the form of sulfur species on the
 532 surface of catalysts and to estimate their thermal stability. The analysis of TGA and DTA profiles of
 533 samples modified with sulfur showed that this chemical element was in several forms (Fig. S7). In
 534 the supports modified with sulfur, in which the nominal (assumed) content of ceria was higher than
 535 zirconia [$\text{CeO}_{x}\text{S}_{(2-x)}$, $\text{CeZrO}_{x}\text{S}_{(2-x)}$ (4:1) and $\text{CeZrO}_{x}\text{S}_{(2-x)}$ (2:1)] were observed two peaks. The first peak at

536 lower temperature was more intense than the second at higher temperature. The first peak at around
537 500 K could be described to thiol groups (-SH) and the second peak at around 850 K could be due to
538 sulfonic groups (-SO₃H). In the case of samples with higher amount of zirconium after the catalysts
539 modification with sulfur species (CeZrO_xS_(2-x)(2:1), (CeZrO_xS_(2-x)(1:1), (CeZrO_xS_(2-x)(1:2) and
540 CeZrO_xS_(2-x)(1:4) were observed two peaks at around 500 and 600 K, which could be due to two forms
541 of thiol groups located on the external surface and in the bulk of samples, respectively. In the case of
542 ZrO_xS_(2-x), only one intense peak in the DTA profile was seen, which could be due to sulfonic groups
543 on the external surface. The results of DTA confirmed that the chemical composition of supports had
544 influence on the chemical adsorption of hydrogen sulfide.

545 The samples were heated in the flow of inert gas (helium) before the adsorption of hydrogen
546 sulfur and then the modification of sulfur species was performed in the flow of the mixture of gases
547 (helium and hydrogen sulfur). The lack of oxygen in the flow of gases before and during the
548 modification of samples can suggest that the mechanism of modification thiol groups to sulfonic
549 groups which was based on the exchanging between hydrogen atoms from hydrogen sulfide and
550 oxygen atoms from the structure of oxides. This mechanism assumes the presence of oxygen
551 vacancies in the structure of materials created during the activation of materials in the flow of inert
552 gas and it is according to the literature data [24]. The comparison of the stoichiometric formulas of
553 oxides before and after their modification with sulfur species confirms lower oxygen distribution on
554 the external surface after the adsorption of hydrogen sulfur (Table 4). The increase of signals in the
555 temperature range of 500-1000 K with the maximum at around 700 K was observed in the case of
556 selected TGA profiles. These wide peaks were seen for CeZrO_xS_(2-x)(2:1), CeZrO_xS_(2-x)(1:1),
557 CeZrO_xS_(2-x)(1:2) and CeZrO_xS_(2-x)(1:4). For the same samples were observed peaks at around 600 K in
558 the DTA profiles which can be due to the thiol groups in the bulk materials (Fig. S7).

559 The catalysts were characterised using a temperature programmed reduction (TPR) by
560 hydrogen in the order to know the redox properties of samples. The TPR profiles were shown in
561 Figure S8. The maximums of hydrogen consumption depend on the chemical composition of
562 samples and the size of crystals. The TPR profile of pure ceria shows the consumption of hydrogen
563 in the wide temperature range of 450-700 K with the maximum at 522 K, which can be due to the
564 reduction of cerium species (from Ce⁴⁺ to Ce³⁺). The consumption of hydrogen at this temperature
565 can prove the presence of small cerium oxides particles which are smaller than in the mixed
566 cerium-zirconium oxides. The broad temperature range of hydrogen consumption suggests that the
567 crystals of ceria are characterised of the broad range of sizes. The modification of ceria with
568 hydrogen sulfide led to the disappearance of hydrogen consumption at lower temperature. After
569 medication of ceria with gold and sulfur species, a very weak peak is observed in the broad
570 temperature range (500-900 K). It can suggest that sulfur and gold species covered the external
571 surface of supports and the oxidized cerium species (Ce⁴⁺) were not able to reduce to the reduced
572 form of cerium (Ce³⁺). The addition of zirconium led to the increase of temperature in which
573 hydrogen is consumed or the disappearance of this process. It means that the presence of zirconium
574 leads to the protection of cerium species against their reduction at lower temperature.

575 The ATR-FTIR spectra were recorded at room temperature in the atmosphere of air for all
576 samples (Fig. 7). In the case of samples modified with hydrogen sulfide, four bands in the region of
577 1400-800 cm⁻¹ were observed. The most intense band at 1122 cm⁻¹ was not observed on the spectra of
578 pure oxides. The intensity of this band was also smaller in the case of samples modified with sulfur
579 and gold. The increase of cerium content had positive effect on the increase of intensity of this band.
580 The sulfur content increased with the growth of cerium content, so it can suggest that the band at
581 1122 cm⁻¹ can be assigned to the sulfur species. It has been reported [62] that this band can be
582 assigned to the symmetric stretching band of the sulphone groups as like (-O-SO₂).

583 3.3. Catalytic activity – glycerol oxidation

584 Catalytic glycerol oxidation was performed at 600 rpm, because a physical diffusion did not
585 have crucial influence on the catalytic reaction at this stirring speed (this value was set on the base of
586 earlier study [63]). Therefore, further experiments were carried out using this stirring speed. The

587 results of the catalytic oxidation of glycerol at 333 K in a basic aqueous solution under pure oxygen
 588 for gold catalysts with sulfur species are shown in Table 7. All gold catalysts achieved high yield to
 589 gaseous products, which could not be analyzed using a HPLC device. According to the literature
 590 data [64,65], the changes of gold dispersion and its electronic state can play a role in the increasing of
 591 catalyst activity and selectivity to glyceric acid. The correlation between the increase of glycerol
 592 conversion, the increase of gold dispersion and the decrease of selectivity to glyceric acid for small
 593 gold particle size (e.g. 2.7 nm) was observed in [64]. In this work, the higher selectivity to glyceric
 594 acid was achieved over gold loading on supports based on pure ceria [Au/CeO_xS_(2-x)] or with small
 595 amount of zirconia [Au/CeZrO_xS_(2-x)(4:1)]. The selectivities to other oxidation products, such as oxalic
 596 and tartronic were observed, but the values of these selectivities were traces (<0.5%). According to
 597 the literature data [66,67], glycerol can be oxidized to glyceric acid at basic conditions over gold
 598 catalysts by the initial formation of glyceraldehyde, which is rapidly oxidized to glyceric acid. The
 599 presence of tartronic and oxalic acids can be explained by over-oxidation or transformation of
 600 glyceric acid.

601 **Table 7.** The results of glycerol oxidation over gold catalysts at basic conditions at 333 K for 5 h. The
 602 oxides modified with sulphur were not active.

catalyst	conversion, %	GLY ¹			selectivity, %			yield, % ²			TOF, h ⁻¹ ³
		GLA ¹	OA ¹	TA ¹	gaseous products			GLA ¹	OA ¹	TA ¹	
Au/CeO _x S _(2-x)	67	2	<0.5	-	98	95	5	-	-	-	310
Au/CeZrO _x S _(2-x) (4:1)	72	2	<0.5	-	98	94	6	-	-	-	212
Au/CeZrO _x S _(2-x) (2:1)	69	1	<0.5	-	99	92	8	-	-	-	251
Au/CeZrO _x S _(2-x) (1:1)	67	<0.5	<0.5	-	100	54	46	-	-	-	244
Au/CeZrO _x S _(2-x) (1:2)	67	<0.5	<0.5	-	100	42	58	-	-	-	458
Au/CeZrO _x S _(2-x) (1:4)	70	<0.5	-	-	100	100	-	-	-	-	544
Au/ZrO _x S _(2-x)	69	-	-	<0.5	100	-	-	-	-	100	124

603 ¹GLY – glycerol, GLA – glyceric acid, OA – oxalic acid, TA – tartronic acid

604 ²yield was calculated only for liquid products of glycerol oxidation which were in the solution after reaction

605 ³TOF was calculated as the number of glycerol moles reacted on one mole of gold per one hour (after 5 h of the
 606 reaction)

607 The interaction between chemical elements in gold catalysts influences on the activity and
 608 selectivity in glycerol oxidation. It has been reported [68–72] that the chemical nature of the support
 609 and active phase (e.g. palladium-gold, platinum-gold) determine the species formed on the surface
 610 during the oxidation process in the liquid phase. In the case of materials modified with sulfur and
 611 gold, the increase of zirconium content promoted the transformation of glycerol to tartronic acid.
 612 The highest selectivity to glyceric acid was observed for Au/CeZrO_xS_(2-x)(4:1). In this catalyst, the
 613 values of the total pore volume and the specific surface were the biggest (Table 4) and it can suggest
 614 that the parameters of structure can limit the diffusion of glycerol molecules to active sites. The TOFs
 615 were calculated for all samples (Table 7) and higher TOFs values were achieved for gold catalysts
 616 modified with sulfur with high zirconium distribution in the support, because the highest value was
 617 achieved over Au/CeZrO_xS_(2-x)(1:4). It can prove the strong interaction between reagents molecules
 618 and gold, sulfur and zirconium species during glycerol oxidation. The analysis of elemental analysis
 619 of selected gold catalysts confirmed that the sulfur species were present in the studied materials
 620 after glycerol oxidation, because the content of sulfur decreased from 342 to 230 mol g⁻¹ in the case
 621 of Au/CeO_xS_(2-x) and from 199 to 185 mol g⁻¹ in the case of Au/ZrO_xS_(2-x). It confirms that the
 622 composition of support affected on the strength of bonding between transition metal atoms from the
 623 support and sulfur species.

624 The addition of sulfur led to the reduction of gold to in the form of gold with the negative
625 charge on the metallic particles loading on the external surface of catalysts and it was confirmed by
626 XPS study (Table 5). It is worth to note that the increasing of zirconium content in mixed oxides
627 promoted the growth of distribution of sulfonic species, because the highest distribution of sulfonic
628 species measured using XPS study was achieved by $\text{Au}/\text{CeZrO}_x\text{S}_{(2-x)}$ (1:4). It is worth to note that it
629 was observed the increase of metallic gold (excluding $\text{Au}/\text{CeO}_x\text{S}_{(2-x)}$) and sulfonic groups (-SO₃H)
630 (excluding $\text{Au}/\text{CeO}_x\text{S}_{(2-x)}$ and $\text{Au}/\text{CeZrO}_x\text{S}_{(2-x)}$ (1:4)) distribution on the external surface of catalysts
631 after the reaction of glycerol oxidation. The values of binding energies of Au 4f, S 2p and Zr 3d
632 species changed slightly after the reaction. It means that the energy of bonds between atoms with the
633 active phase and supports are similar before and after reaction and these materials are characterised
634 the chemical stability during the reaction of glycerol oxidation in the liquid phase.

635 The main products of glycerol oxidation are gaseous products and it suggests that glycerol
636 molecules were adsorbed strongly on the metallic gold species loading on ceria, zirconia or mixed
637 cerium-zirconium oxides. Additionally, the results of XPS, UV-vis, ATR-FTIR, TPR by H₂ and
638 TG-DTA measurements suggest that these materials were characterised of oxygen vacancies and
639 sulfur species as like sulfonic groups which can promote the adsorption of glycerol molecules
640 during the oxidation process.

641 4. Conclusions

642 The chemical adsorption of hydrogen sulfide on the surface of ceria, zirconia or the mixed
643 cerium-zirconium oxides can be the effective method of modification with sulfur species. The texture
644 properties (specific surface area and average pore volume) and the chemical composition had
645 influence on the effective adsorption and the incorporation of sulfur species in the bulk of oxides.
646 The increase of cerium content in the mixed oxides led to the growth of surface area and average
647 pore diameter and also to the higher sulfur content. It means that the control of molar ratio between
648 cerium and zirconium contents in mixed oxides can be used to the preparation of oxides modified
649 with the assumed sulfur content. The chemical composition, the structure and texture parameters
650 influenced also on the loading and the average size of metallic gold particles on the surface of
651 materials. The increase of cerium content led to increase of average pore diameter and the easier
652 migration of metallic gold particles into the pores of materials and also to the decrease of the average
653 size of gold particles estimated using the Scherer's formula. The chemical composition of supports
654 and their modification with sulfur and gold species influenced on the catalytic activity in glycerol
655 oxidation at basic conditions.

656 It was evidenced that the presence of cerium led to the increase of glycerol conversion in its
657 oxidation and selectivity to glyceric acid. The catalysts obtained mainly selectivity to gaseous
658 products. It means that gold catalysts modified with sulfur species could be applied in the
659 purification of water from the organic waste, which are difficult removed in the presence of alkali
660 media, e.g. in the purification of water during the production of paper [73].

661 **Supplementary Materials:** The following are available online at www.mdpi.com/link, Figure S1: TEM images
662 recorded for the supports without (image on the left) and with (image on the right) S species after modification
663 with Au. Support based on: a) CeO₂, b) CeZrO_x(4:1), c) CeZrO_x(2:1), d) CeZrO_x(1:1), e) CeZrO_x(1:2), f)
664 CeZrO_x(1:4), g) ZrO₂. The lines in the images correspond to 50 nm, Figure S2: XP spectra recorded for S 2p
665 species for samples before and after modification with Au, Figure S3: XP spectra recorded for O 1s species for
666 samples before and after modification with Au, Figure S4: XP spectra recorded for Zr 3d species for selected
667 Ce-Zr oxides and zirconia with S before and after modification with Au, Figure S5: XP spectra recorded for Zr
668 3d species for Ce-Zr oxides, Figure S6: UV-vis spectra of samples before and after their modification of H₂S and
669 after Au deposition for the spectral region of metallic gold species, Figure S7: TG-DTA profiles of the oxides
670 modified with sulfur species without gold species, Figure S8: The TPR H₂ profiles performed for the catalysts.

671 **Acknowledgments:** The author would like to acknowledge the National Science Centre in Cracow in Poland for
672 the financial support of this study (grants No. 2014/13/N/ST5/01282 and 2015/16/T/ST5/00263) and Prof. Maria
673 Ziolek (Adam Mickiewicz University in Poznan, the Faculty of Chemistry) for a fruitful discussion and value
674 remarks.

675 **Author Contributions:** For research articles with several authors, a short paragraph specifying their individual
676 contributions must be provided. The following statements should be used "X.X. and Y.Y. conceived and
677 designed the experiments; X.X. performed the experiments; X.X. and Y.Y. analyzed the data; W.W. contributed
678 reagents/materials/analysis tools; Y.Y. wrote the paper." Authorship must be limited to those who have
679 contributed substantially to the work reported.

680 **Conflicts of Interest:** The author declares no conflict of interest. The founding sponsors had no role in the
681 design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in
682 the decision to publish the results.

683 References

1. Ming, H.; Baker, B.G.; Jasieniak, M. Characterisation of cobalt Fischer-Tropsch catalysts: 2. Rare earth-promoted cobalt-silica gel catalysts prepared by wet impregnation, *Appl. Catal. A: Gen.* **2010**, *381*, 216–225. [[CrossRef](#)]
2. Zeng, S.; Du, Y.; Su, H.; Zhang, Y. Promotion effect of single or mixed rare earths on cobalt-based catalysts for Fischer-Tropsch synthesis, *Catal. Commun.* **2011**, *13*, 6–9. [[CrossRef](#)]
3. Carter, J.H.; Althahban, S.; Nowicka, E.; Freakley, S.J.; Morgan, D.J.; Shah, P.M.; Golunski, S.; Kiely, Ch.J.; Hutchings, G.J. Synergy and Anti-Synergy between Palladium and Gold in Nanoparticles Dispersed on a Reducible Support, *ACS Catal.* **2016**, *6*, 6623–6633. [[CrossRef](#)]
4. Tao, F.; Ma, Z. Water-gas Shift on gold catalysts: catalysts systems and fundamental studies, *Phys. Chem. Chem. Phys.* **2013**, *37*, 15260–15270. [[CrossRef](#)]
5. Rousseau, S.; Marie, O.; Bazin, P.; Daturi, M.; Verdier, S.; Harle, V. Investigation of Methanol Oxidation over Au/Catalysts Using Operando IR Spectroscopy: Determination of the Active Sites, Intermediate/Spectator Species, and Reaction Mechanism, *J. Am. Chem. Soc.* **2010**, *132*, 10832–10841. [[CrossRef](#)]
6. Aboukaïs, A.; Skaf, M.; Hany, S.; Cousin, R.; Aouad, S.; Labaki, M.; Abi-Aad, E. A comparative study of Cu, Ag and Au doped CeO₂ in the total oxidation of volatile organic compounds (VOCs), *Mater. Chem. Phys.* **2016**, *177*, 570–576. [[CrossRef](#)]
7. Wang, J.; Cheng, L.; An, W.; Xu, J.; Men, Y. Boosting soot combustion efficiencies over CuO-CeO₂ catalysts with a 3DOM structure. *Catal. Sci. Technol.* **2016**, *6*, 7342–7350. [[CrossRef](#)]
8. Aneggi, E.; de Leitenburg, C.; Dolcetti, G.; Trovarelli, A. Promotional effect of rare earths and transition metals in the combustion of diesel soot over CeO₂ and CeO₂-ZrO₂. *Catal. Today* **2006**, *114*, 40–47. [[CrossRef](#)]
9. Damyanova, S.; Pawelec, B.; Arishtirova, K.; Martinez Huerta, M.V.; Fierro, J.L.G. The effect of CeO₂ on the surface and catalytic properties of Pt/CeO₂-ZrO₂ catalysts for methane dry reforming, *Appl. Catal. B: Environ.* **2009**, *89*, 149–159. [[CrossRef](#)]
10. Kambolis, A.; Matralis, H.; Trovarelli, A.; Papadopoulou, C. Ni/CeO₂-ZrO₂ catalysts for the dry reforming of methane. *Appl. Catal. A: Gen.* **2010**, *377*, 16–26. [[CrossRef](#)]
11. Kašpar, J.; Di Monte, R.; Fornasiero, P.; Graziani, M.; Bradshaw, H.; Norman, C. Dependency of the Oxygen Storage Capacity in Zirconia-Ceria Solid Solutions upon Textural Properties. *Top. Catal.* **2001**, *16-17*, 83–87. [[CrossRef](#)]
12. Terribile, D.; Trovarelli, A.; de Leitenburg, C.; Primavera, A.; Dolcetti, G. Catalytic combustion of hydrocarbons with Mn and Cu-doped ceria-zirconia solid solutions. *Catal. Today* **1999**, *47*, 133–140. [[CrossRef](#)]
13. Olmos, C.M.; Chinchilla, L.E.; Delgado, J.J.; Hungría, A.B.; Blanco, G.; Calvino, J.J.; Chen, X. CO Oxidation over Bimetallic Au-Pd Supported on Ceria-Zirconia Catalysts: Effects of Oxidation Temperature and Au:Pd Molar Ratio. *Catal. Lett.* **2016**, *146*, 144–156. [[CrossRef](#)]
14. Zhang, X.; Wang, T.; Ma, L.; Zhang, Q.; Hyang, X.; Yu, Y. Production of cyclohexane from lignin degradation compounds over Ni/ZrO₂-SiO₂ catalysts. *Appl. Energy* **2013**, *112*, 533–538. [[CrossRef](#)]
15. Zhang, X.; Zhang, Q.; Chen, L.; Xu, Y.; Wang, T.; Ma, L. Effect of calcination temperature of Ni/SiO₂-ZrO₂ catalyst on its hydrodeoxygenation of guaiacol. *Chinese J. Catal.* **2014**, *35*, 302–309. [[CrossRef](#)]
16. Bui, V.N.; Laurenti, D.; Delichère, P.; Geantet, C. Hydrodeoxygenation of guaiacol: Part II: Support effect for CoMoS catalysts on HDO activity and selectivity. *Appl. Catal. B: Environ.* **2011**, *101*, 246–255. [[CrossRef](#)]
17. Yakovlev, V.A.; Khromova, S.A.; Sherstyuk, O.V.; Dundich, V.O.; Ermakov, D.Y.; Novopashina, V.M.; Lebedev, M.Y.; Bulavchenko, O.; Parmon, V.N. Development of new catalytic systems for upgraded bio-fuels production from bio-crude-oil and biodiesel. *Catal. Today* **2009**, *144*, 362–366. [[CrossRef](#)]

728 18. Morfin, F.; Ait-Chaou, A.; Lomello, M.; Rousset, J.-L. Influence of the partner oxide on the catalytic
729 properties of Au/Ce_xZr_{1-x} highly loaded gold catalysts. *J. Catal.* **2015**, *331*, 210–216. [[CrossRef](#)]

730 19. Liu, L.; Yao, Z.; Liu, B.; Dong, L. Correlation of structural characteristics with catalytic performance of
731 CuO/Ce_xZr_{1-x}O₂ catalysts for NO reduction by CO. *J. Catal.* **2010**, *275*, 45–60. [[CrossRef](#)]

732 20. Baneshi, J.; Haghghi, M.; Jodeiri, N.; Abdollahifar, M.; Ajamein, H. Homogeneous precipitation synthesis
733 of CuO-ZrO₂-CeO₂-Al₂O₃ nanocatalyst used in hydrogen production via methanol steam reforming for
734 fuel cell applications. *Energ. Convers. Manage.* **2014**, *87*, 928–937. [[CrossRef](#)]

735 21. Castellanos, I.; Bazin, P.; Thomas, S.; Marie, O.; Daturi, M. A Relevant Estimation of the TOF for Methanol
736 Oxidation Over Au/CeO₂: A Combined SSITKA and FTIR *Operando* Contribution. *Top. Catal.* **2016**, *59*,
737 337–346. [[CrossRef](#)]

738 22. Kaminski, P.; Ziolek, M. Surface and catalytic properties of Ce-, Zr-, Au-, Cu-modified SBA-15. *J. Catal.*
739 **2014**, *312*, 249–262. [[CrossRef](#)]

740 23. Kaminski, P.; Ziolek, M.; Campo, B.; Daturi, M. FTIR spectroscopic study of CO oxidation on bimetallic
741 catalysts. *Catal. Today* **2015**, *243*, 218–227. [[CrossRef](#)]

742 24. Kaminski, P.; Ziolek, M. Mobility of gold, copper and cerium species in Au, Cu/Ce, Zr-oxides and its
743 impact on total oxidation of methanol. *Appl. Catal. B: Environ.* **2016**, *187*, 328–341. [[CrossRef](#)]

744 25. Kauppi, E.I.; Honkala, K.; Krause, A.O.I.; Kanervo, J.M.; Lefferts, L. ZrO₂ Acting as a Redox Catalyst. *Top.*
745 *Catal.* **2016**, *59*, 823–832. [[CrossRef](#)]

746 26. Tagowska, M.; Mazur, M.; Kryszynski, P. Covalently and ionically immobilised monomers on the gold
747 surface. *Synthetic Met.* **2004**, *140*, 29–35. [[CrossRef](#)]

748 27. Choleva, T.G.; Kappi, F.A.; Tsogas, G.Z.; Vlessidis, A.G.; Giokas, D.L. *In-situ* suspended aggregate
749 microextraction of gold nanoparticles from water samples and determination by electrothermal atomic
750 absorption spectrometry. *Talanta* **2016**, *151*, 91–99. [[CrossRef](#)]

751 28. Contreras, S.; Yalfani, M.S.; Medina, F.; Sueiras, J.E. Effect of support and second metal in
752 catalytic *in-situ* generation of hydrogen peroxide by Pd-supported catalysts: application in the removal of
753 organic pollutants by means of the Fenton process. *Water Sci. Technol.* **2011**, *63*(9), 2017–2024. [[CrossRef](#)]

754 29. Milone, C.; Fazio, M.; Pistone, A.; Galvagno, S. Catalytic wet air oxidation of *p*-coumaric acid on CeO₂,
755 platinum and gold supported on CeO₂ catalysts. *Appl. Catal. B: Environ.* **2006**, *68*, 28–37. [[CrossRef](#)]

756 30. Yu, X.; Huo, Y.; Yang, J.; Chang, S.; Ma, Y.; Huang, W. Reduced graphene oxide supported Au
757 nanoparticles as an efficient catalyst for aerobic oxidation of benzyl alcohol. *Appl. Surf. Sci.* **2013**, *280*, 450–
758 455. [[CrossRef](#)]

759 31. Ayati, A.; Ahmadpour, A.; Bamoharram, F.F.; Tanhaei, B.; Mänttäri, M.; Sillanpää, M. A review on
760 catalytic applications of Au/TiO₂ nanoparticles in the removal of water pollutant. *Chemosphere* **2014**, *107*,
761 163–174. [[CrossRef](#)]

762 32. Andreeva, D.; Petrova, P.; Sobczak, J.W.; Ilieva, L.; Abrashev, M. Gold supported on ceria and ceria-
763 alumina promoted by molybdena for complete benzene oxidation. *Appl. Catal. B: Environ.* **2006**, *67*, 237–
764 245. [[CrossRef](#)]

765 33. Delannoy, L.; Fajerwerg, K.; Lakshmanan, P.; Potvin, C.; Methivier, C.; Louis, C. Supported gold catalysts
766 for the decomposition of VOC: Total oxidation of propene in low concentration as model reaction. *Appl.*
767 *Catal. B: Environ.* **2010**, *94*, 117–124. [[CrossRef](#)]

768 34. Gluhoi, A.C.; Bogdanchikova, N.; Nieuwenhuys, B.E. The effect of different types of additives on the
769 catalytic activity of Au/Al₂O₃ in propene total oxidation: transition metal oxides and ceria. *J. Catal.* **2005**,
770 229, 154–162. [[CrossRef](#)]

771 35. Karakalos, S.; Zugic, B.; Stowers, K.J.; Biener, M.M.; Biener, J.; Friend, C.M.; Madi, R.J. Catalytic production
772 of methyl acrylates by gold-mediated cross coupling of unsaturated aldehydes with methanol. *Surf. Sci.*
773 **2016**, *652*, 58–66. [[CrossRef](#)]

774 36. Skrzynska, E.; Zaid, S.; Girardon, J.-S.; Capron, M.; Dumeignil, F. Catalytic behaviour of four different
775 supported noble metals in the crude glycerol oxidation. *Appl. Catal. A: Gen.* **2015**, *499*, 89–100. [[CrossRef](#)]

776 37. Solsona, B.; Garcia, T.; Murillo, R.; Mastral, A.M.; Ndifor, E.N.; Hetrick, C.E.; Amiridis, M.D.; Taylor, S.H.
777 Ceria and gold/ceria catalysts for the abatement of polycyclic aromatic hydrocarbons: an *in situ* DRIFTS
778 study. *Top. Catal.* **2009**, *52*, 492–500. [[CrossRef](#)]

779 38. Smolentseva, E.; Simakov, A.; Beloshapkin, S.; Estrada, M.; Vargas, E.; Sobolev, V.; Kenzhin, R.; Fuentes,
780 S. Gold catalysts supported on nanostructured Ce-Al-O mixed oxides prepared by organic sol-gel. *Appl.*
781 *Catal. B: Environ.* **2012**, *115-116*, 117–128. [[CrossRef](#)]

782 39. Bergeret, G.; Gallezot, P. *Handbook of Heterogeneous Catalysis*, Ertl, G.; Knözinger, H.; Weitkamp, J., Eds.;
783 Publisher: VCH, Weinheim, Germany, 1997, vol. 2, pp. 439–464, ISBN: 9783527610044.

784 40. Kauppi, E.I.; Rönkkönen, E.H.; Airaksinen, S.M.K.; Rasmussen, S.B.; Bañares, M.A.; Krause, A.O.I.
785 Influence of H₂S on ZrO₂-based gasification gas clean-up catalysts: MeOH temperature-programmed
786 reaction study. *Appl. Catal. B: Environ.* **2012**, *111*–*112*, 605–613. [[CrossRef](#)]

787 41. Kauppi, E.I.; Kanervo, J.M.; Lehtonen, J.; Lefferts, L. Interaction of H₂S with ZrO₂ and its influence on
788 reactivity of surface oxygen. *Appl. Catal. B: Environ.* **2015**, *164*, 360–370. [[CrossRef](#)]

789 42. Toops, T.J.; Crocker, M. New sulfur adsorbents derived from layered double hydroxides: II. DRIFTS study
790 of COS and H₂S adsorption. *Appl. Catal. B: Environ.* **2008**, *82*, 199–207. [[CrossRef](#)]

791 43. Ziolek, M.; Kujawa, J.; Saur, O.; Lavallee, J.C. Influence of hydrogen sulfide adsorption on the catalytic
792 properties of metal oxides. *J. Mol. Catal. A: Gen.* **1995**, *97*, 49–55. [[CrossRef](#)]

793 44. Escamilla-Perea, L.; Nava, R.; Pawelec, B.; Rosmaninho, M.G.; Peza-Ledesma, C.L.; Fierro, J.L.G.
794 SBA-15-supported gold nanoparticles decorated by CeO₂: structural characteristics and CO oxidation
795 activity. *Appl. Catal. A: Gen.* **2010**, *381*, 42–53. [[CrossRef](#)]

796 45. Laha, S.C.; Mukerjee, P.; Sainkar, S.R.; Kumar, R. Cerium containing MCM-41-type mesoporous materials
797 and their acidic and redox catalytic properties. *J. Catal.* **2002**, *207*, 213–223. [[CrossRef](#)]

798 46. Pstryakov, A.N.; Lunin, V.V.; Kharlanov, A.N.; Kochubey, D.I.; Bogdanchikova, N.E.; Stakheev, A.Y.
799 Influence of modifying additives on electronic state of supported gold. *J. Mol. Struct.* **2002**, *642*, 129–136.
800 [[CrossRef](#)]

801 47. Pstryakov, A.N.; Lunin, V.V.; Kharlanov, A.N.; Bogdanchikova, N.E.; Tuzovskaya, I.V. Electronic state of
802 gold in supported clusters. *Eur. Phys. J. D* **2003**, *24*, 307–309. [[CrossRef](#)]

803 48. Simakov, A.; Bogdanchikova, N.; Tuzovskaya, I.; Smolentseva, E.; Pstryakov, A.; Farias, M.; Avalos M. In:
804 *Complex Mediums VI: Light and Complexity*, McCall, M.W.; Dewar, G.; Noginov M.A., Eds. Publisher: Proc.
805 SPIE 5924, the United Kingdom, Bellingham, 2005; pp. 101, ISBN: 9780819459299.

806 49. Smolentseva, E.; Bogdanchikova, N.; Simakov, A.; Pstryakov, A.; Tuzovskaya, I.; Avalos, M.; Farias,
807 M.H.; Diaz, J.A.; Gurin, V. Influence of copper modifying additive on state of gold in zeolites. *Surf. Sci.*
808 **2006**, *600*, 4256–4259. [[CrossRef](#)]

809 50. Smolentseva, E.; Bogdanchikova, N.; Simakov, A.; Pstryakov, A.; Avalos, M.; Farias, M.H.; Tompos, A.;
810 Gurin, V. Catalytic activity of gold nanoparticles incorporated into modified zeolites. *J. Nanosci.
811 Nanotechnol.* **2007**, *7*, 1882–1886. [[CrossRef](#)]

812 51. Tuzovskaya, I.V.; Simakov, A.V.; Pstryakov, A.N.; Bogdanchikova, N.E.; Gurin, V.V.; Farias, M.H.;
813 Tiznado; H.J.; Avalos, M. Co-existence of various active gold species in Au-mordenite catalyst for CO
814 oxidation. *Catal. Commun.* **2007**, *8*, 977–980. [[CrossRef](#)]

815 52. Feldheim, D.L.; Foss, C.A. *Metal Nanoparticles: Synthesis, Characterisation and Applications*, Dekker, B.M.,
816 Ed.; Publisher: Inc., Basel and New York, Switzerland and USA, 2002, ISBN: 9780824706043

817 53. Pstryakov, A.; Tuzovskaya, I.; Smolentseva, E.; Bogdanchikova, N.; Jentoft, F.; Knop-Gericke, A.
818 Formation of gold nanoparticles in zeolites. *Int. J. Mod. Phys. B* **2005**, *19*, 2321–2326. [[CrossRef](#)]

819 54. Costa, V.V.; Estrada, M.; Demidova, Y.; Prosvirin, I.; Kriventsov, V.; Cotta, R.F.; Fuentes, S.; Simakov, A.;
820 Gusevskaya, E.V. Gold nanoparticles supported on magnesium oxide as catalysts for the aerobic oxidation
821 of alcohols under alkali-free conditions. *J. Catal.* **2012**, *292*, 148–156. [[CrossRef](#)]

822 55. Feng, R.; Li, M.; Liu, J. Synthesis of core–shell Au@Pt nanoparticles supported on Vulcan XC-72 carbon
823 and their electrocatalytic activities for methanol oxidation. *Colloids Surf. A: Physicochem. Eng. Asp.* **2012**,
824 *406*, 6–12. [[CrossRef](#)]

825 56. Guzmán, C.; del Ángel, G.; Gómez, R.; Galindo-Hernández, F.; Ángeles-Chavez, C. Degradation of the
826 herbicide 2,4-dichlorophenoxyacetic acid over Au/TiO₂-CeO₂ photocatalysts: effect of the CeO₂ content on
827 the photoactivity. *Catal. Today* **2011**, *166*, 146–151. [[CrossRef](#)]

828 57. Galindo-Hernández, F.; Wang, J.A.; Gómez, R.; Bokhimi, X.; Lartundo, L.; Mantilla, A. Structural
829 modifications in Au/Al₂O₃-CeO₂ mixed oxides as a function of Ce⁴⁺ content and its effects in the
830 mineralization of the herbicide diuron. *J. Photochem. Photobiol. A: Chem.* **2012**, *243*, 23–32. [[CrossRef](#)]

831 58. Quan, B.; Yu, S.-H.; Chung, D.Y.; Jin, A.; Park, J.H.; Sung, Y.-E.; Piao, Y. Single source precursor-based
832 solvothermal synthesis of heteroatom-doped graphene and its energy storage and conversion
833 applications, *Sci. Rep.* **2004**, *4*, 5639. [[CrossRef](#)]

834 59. Gracia-Espino, E.; Hu, G.; Shchukarev, A.; Wågberg, T. Understanding the interface of six-shell
835 cubooctahedral and icosahedral palladium clusters on reduced graphene oxide: experimental and
836 theoretical study. *J. Am. Chem. Soc.* **2014**, *136*, 6626–6633. [[CrossRef](#)]

837 60. Shen, J.G.C.; Kalantar, T.H.; Herman, R.G.; Roberts, J.E.; Klier, K. Synthesis and characterisation of
838 $[\text{NaO}_3\text{SOCH}_2\text{CH}_2\text{OSO}_3\text{Na}]$ and its anchored form: Surface-grafted acid groups on zirconium hydroxide.
839 *Chem. Mater.* **2001**, *13*, 4479–4485. [[CrossRef](#)]

840 61. Shen, J.G.C.; Herman, R.G.; Klier, K. Sulfonic acid-functionalized mesoporous silica: synthesis,
841 characterisation, and catalytic reaction of alcohol coupling to ethers. *J. Phys. Chem. B* **2002**, *106*, 9975–9978.
842 [[CrossRef](#)]

843 62. Petit, C.; Seredysh, M.; Bandosz, T.J. Revisiting the chemistry of graphite oxides and its effect on ammonia
844 adsorption, *J. Mater. Chem.* **2009**, *19*, 9176–9185. [[CrossRef](#)]

845 63. Kaminski, P.; Ziolek, M.; van Bokhoven, J.A. Mesoporous cerium–zirconium oxides modified with gold
846 and copper – synthesis, characterisation and performance in selective oxidation of glycerol. *RSC Adv.* **2017**,
847 *7*, 7801–7819. [[CrossRef](#)]

848 64. Behr, A.; Eilting, J.; Irawadi, K.; Leschinski, J.; Linder, F. Improved utilisation of renewable resources: new
849 important derivatives of glycerol. *Green Chem.* **2008**, *10*, 13–30. [[CrossRef](#)]

850 65. Ketchie, W.C.; Fang, Y.-L.; Wong, M.S.; Murayama, M.; Davis, R.J. Influence of gold particle size on the
851 aqueous-phase oxidation of carbon monoxide and glycerol. *J. Catal.* **2007**, *250*, 94–101. [[CrossRef](#)]

852 66. Rodriguez, A.A.; Williams, C.T.; Monnier, J.R. Selective liquid-phase oxidation of glycerol over Au-Pd/C
853 bimetallic catalysts prepared by electroless deposition. *Appl. Catal. A: Gen.* **2014**, *475*, 161–168. [[CrossRef](#)]

854 67. Zheng, Y.; Chen, X.; Shen, Y. Commodity chemicals derived from glycerol, an important biorefinery
855 feedstock. *Chem. Rev.* **2008**, *108*, 5253–5277. [[CrossRef](#)]

856 68. Demirel, S.; Kern, P.; Lucas, M.; Claus, P. Oxidation of mono-and polyalcohols with gold: Comparison of
857 carbon and ceria supported catalysts. *Catal. Today* **2007**, *122*, 292–300. [[CrossRef](#)]

858 69. Ketchie, W.C.; Murayama, M.; Davis, R.J. Promotional effect of hydroxyl on the aqueous phase oxidation
859 of carbon monoxide and glycerol over supported Au catalysts. *Top. Catal.* **2007**, *44*, 307–317. [[CrossRef](#)]

860 70. Kim, Y.S.; Wang, F.; Hickner, M.; Zawodzinski, T.A.; McGrath, J.E. Fabrication and characterisation of
861 heteropolyacid ($\text{H}_3\text{PW}_{12}\text{O}_{40}$)/directly polymerized sulphonated poly(arylene ether sulphone) copolymer
862 composite membranes for higher temperature fuel cell applications. *J. Membrane Sci.* **2003**, *212*, 263–282.
863 [[CrossRef](#)]

864 71. Ketchie, W.C.; Murayama, M.; Davis, R.J. Selective oxidation of glycerol over carbon-supported AuPd
865 catalysts. *J. Catal.* **2007**, *250*, 264–273. [[CrossRef](#)]

866 72. Villa, A.; Veith, G.M.; Prati, L. Selective oxidation of glycerol under acidic conditions using gold catalysts.
867 *Angew. Chem. Int. Ed.* **2010**, *49*, 4499–4502. [[CrossRef](#)]

868 73. Font, X.; Caminal, G.; Gabarrell, X.; Romero, S.; Vicent, M.T. Black liquor detoxification by laccase of
869 *Trametes versicolor* pellets. *J. Chem. Technol. Biotechnol.* **2003**, *78*, 548–554. [[CrossRef](#)]