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1 Abstract: The increased availability of high resolution remote sensor data for precision agriculture
:  applications permits users to aquire deeper and more relevant knowledge about crops states that lead
s inevitably to better decisions. The algorithm libraries being developed and evolved around these
s applications rely on multi-spectral or hyper-spectral data acquired by using manned or unmanned
s platforms. The current state of the art makes thorough use of vegetational indicies to guide the
s  operational management of agricultural land plots. One of the most challenging sub-problems is
7 to correctly identify and separate crop from soil. Thresholding techniques based on Normalized
s Difference Vegetation Index (NDVI) or other such similar metrics have the advantage of being simple,
s  easy toread transformations of the data packed with useful information. Obvious difficulties arise
10 when crop/tree and soil have similar spectral responses as in case of grass filled areas in vineyards.
u  In this case grass and canopy are close in terms of NDVI values and thresholding techniques will
1z generally fail. Radiometric approaches could be integrated or replaced by a geometric approach that
1z is based on terrain data like Digital Surface Models (DSMs). These models are one of the ouputs
1« of orthorectification engines usually present in data acquired by using unmanned platforms. In
s this paper we present two approaches based on DSM that are able to segment crop/tree from soil
16 while over gradient terrain. The DSM data are processed through a two dimensional data slicing or
1z reduction technique. Each slice is separately processed as a one dimensional time series to derive the
1= terrain and tree structures separately, here interpreted as object probability densities. In particular
1o the first approach is a Cartesian grid rasterization (CARSCAN) of the terrain and the second is its
20 immediate generalisation or radial grid rasterization of the DSM model (FANSCAN). The FANSCAN
21 recovers information from the original image at greater frequencies on the Fourier plane. These
22 approaches enable the identification of crop/tree from soil in case of slopes or hilly terrain without
23 any constraint on the displacement / direction of plant/tree row. The proposed algorithm uses pure
2« DSM information even if it is possible to fuse its output with other classifiers.

s Keywords: Segmentation; multi-spectral camera; soil: tree; raster scanning; UAV application

s« 1. Introduction

N

2z The acquisition of high resolution imagery for precision agriculture applications is a common task
2e  for a large variety of users as agronomists, big-data specialists and researchers. Unmanned system
20 are able to capture data with ultra high resolution (up to 1 cm of terrain) also by using multi-spectral
30 or hyper-spectral payloads. Typically data are acquired by a large set of overlapping images that are
a1 post-processed to derive a single global ortho-photo of the region of interest. The main advantages
52 of such platforms is data aquisition in presence of cloud overlay which a satellite cannot do. On the
33 contrary the cost of surveying can increase despite the availablility several low cost flight platforms
s« and payloads [1]. In this new high-resolution era, due in part to Unmanned Aerial Systems (UASs)
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s [2], opens new ways to analyze the fields, crops and trees during the growing process for proper
e management of all operations (e.g. applied, tilling,...) in order to maximize yield, quality and
sz optimize costs [3]. In this sense, UAS platforms stand ready to overcome the main limitations of
ss  satellite platforms, ensuring very high resolution spectral, spatio-temporal data aquisition systems [4].
3o In this scenario, the data play a key role in feature extraction where the manipulation of spectral bands
20 is the classical methodological tool to start an analysis - possibly as an input feed to other methods for
a1 further analysis. Vegetational indices are usually used in a context where machine leaning algorithms
.2 are used to classify data in both pixel and object domains [5]. These become more effective if they are
a3 given access to a proper feature set at the start of their analysis runs. The planning of task (e.g., variable
s rate) requires a deep knowledge of crops and their status [6]. The classical output of an analysis from
«s an expert is a prescription map that will map tractor operations like spraying or treatment application
as over the field. The generation of a prescription map requires the definition of management zones
a7 that reflect areas and their status [7]. The typical case is variable rate Nitrogen fertilizer application
«¢ as discussed in [8]. The generation of management zones and their prescription maps may then be
as automated starting from decision support systems that fuse heterogeneous data as well the soil signal
so and the previous yield together with the vegetation indices [9,10].

51 When performing an analysis based on vegetation indices, it is important to consider only data
sz relevant to the problem. Here by the term relevant we mean pixels related to crop or tree field without
ss considering the soil variation. In this case the segmentation of soil and crop or tree field has a strong
s« impact on the evaluation of region of interest. The segmentation process of crop and tree vs soil could
ss  be considered as an advanced Land Use or Land Cover mapping. The identification of crops could be
ss carried out by using spectral or spatial or indeed both features. Spectral segmentation usually relies
sz on supervised or unsupervised algorithms also including the use of satellite data [11]. One of the
se important requirements, as mentioned above, is that both soil and crops must have a different spectral
s signature. When GSD are of the order of 1 — 2 meters a lot of ground noise is mapped into the pixels
e and the result is that the underlying soil response could be influenced by the crop sgnal just above it.
&1 In this case it is necessary to increase the resolution and UAS platforms are the suitable systems to
ez gather these data.

es High resolution images can cause further problems through the data intrinsic noise signals. An image
ea with a 1 centimeter GSD is quite challenging to analyze considering the high variability of crop and soil
s signals. In this case other than pure spectral features, the spatial and geometric features become useful
s in order to extract further information about the ground truth probability distribution in the data. In
ez particular, the crop height field is an important but simple mathematical variable to indicate crop vs
s soil signal rations. It can also act as a sensor able to measure crop’s growth [12]. Volume estimation is
o also possible and this represents and additional variable to use in the decision making process [13].
7 Synthetic Aperture RADAR (SAR) can also be used to retrieve agricultural crop height from the
n  event space even if the resolution and cost are challenging [14]. A viable solution is the use of UAS
72 platforms that are able to measure height by direct and indirect methods. Such systems are able to
72 host compact multi-spectral and hyper-spectral sensors [15] acquiring images that are orthorectified
7a by using approach as Structure from Motion (SfM) that is a part of the overall processing pipeline [16].
75 The quantification and identification of soil and vegetation is important for several purposes [17] as an
76 estimator for growth [18,19], 3D monitoring [20] and weed identification [21,22]. The identification of
7z weeds is important to ensure uniform growth of the target crop [23] and is also supported by methods
7e able to classify crops, weeds and their foundation soils [24] through the use of Excess Green Index
» (ExG) [25].

so Vineyards and fruit plants are a typical example of complex regions in both detection and study. Slope
a1 in the terrain and also the presence of grassed soil substantially influence the overall terrain statistics.
s2 Detection can be carried out by using algorithms based on frequency analysis [26], Hough Space
es Clustering or Total Least Squares as in [27].
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s« In this paper we propose a novel method named FANSCAN that extend our previous methods [28]
ss  (also CARSCAN) to segment canopy/tree coverage vs the underlying soil. The segmented image
ss is fundamental to correctly performing an analysis that requires the exact knowledge of the canopy
sz position. FANSCAN is also related to our previous research to extract objects from complex data-set as
se the case of Lidar-Multispectral as described in [29,30]. Previous work proposed a slicing approach
s that fuses adaptive thresholding and 1D scan of the images. The FANSCAN approach instead tries to
%0 improve the segmentation also in case of heterogeneous fields with tree / crops displaces over several
o1 directions.

92 The CARSCAN and FANSCAN rely only on Digital Surface Model (DSM) of the study area. This is
93 not an hard constraint considering that orthorectification engines produce orthophoto, dense cloud
9« and also DSM. However it is possible to integrate the results of the above mentioned approaches with
os others based on radiometric classification.

9 The paper is structured as it follows. Section 2 presents the proposed approaches. Section 3 presents
oz the results of CARSCAN and FANSCAN on two data-set in Section 4 the conclusions and future works
e are outlined.

9 2. Methodology

wo The correct tree and crop segmentation plays a key role in the domain of precision agriculture as
11 outlined in Section 1. In this paper we outline and develop algorithms based on pure terrain based
w2 features and if possible their subsequent fusion with pure spectral approaches as in [28].

103 Radiometric and spectral features derived from multi/hyper-spectral images can be used by
1a unsupervised or supervised algorithms to classify data and then select only the classes of interest
s to evaluate the vegetation status. Unsupervised algorithms (e.g., hierarchical clustering, ISODATA,
ws k-means) require that the area contains objects (e.g., tree, crop, soil) that are spectrally separable. Soil
w7 response in the presence of grass could produce incorrect results considering the spectral response
s Of bare soil with respect to one grassed over. A standard thresholding algorithm usually fails when
1o applied to the grassed over terrain problem due to a reduction in the crop to soil area signal to noise
uo ratio. As has already been mentioned, the presence of grass on the ground therefore strongly influences
w1 the accuracy of classification. Supervised algorithms, if properly trained are able to capture grassed
u2 soil, bare soil and tree/canopy but a common problem is the definition of a precise training set that
us  will not underfit the problem. This requires a photo-interpretation of the area and the typical use-case
us for precision agriculture are small areas (from 1 — 1000 hectares). A reliable training set is usually
us defined by a human user that should take into account local variability including spurious areas like
1ue shadows [31].

u7 To get around this, one can use information inherent in the data itself. In this second approach, soil
us and tree detection is carried out by using purely mathematical features of the height field in the DSM
ue Obtained during the orthophoto generation. The effectiveness of this technology depends strongly
120 on the scanning technique used. We investigate this dependency in detail by using a Cartesian grid
121 scanning method to compare to a radial scanning technique over the image coordinate space. The
122 results are theoretically connected to the object Fourier transform and this relationship is used to
123 develop a quality index for comparing the two types of scan.

12a  This type of analysis provides a powerful basis for precision agriculture applications that require an
s accurate and precise detection of crops in order to properly support decisions based on vegetational
126 indexes that must be evaluated only on not soil areas.

1z The pure radiometric approach becomes challenging when the spectral response of canopy is close to
s the soil response. This is indeed the case for vineyards and fruit plants where the soil can be with or
120 without grass overlay.
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1o 2.1. One dimensional rasterization theory

11 The DSM is the output of an orthorectification engine that processes high-resolution images (with a
12 typical GSD in the 10 — 50 centimeter range). Many land areas are covered by foliage and trees, T,
13 which obscure the underlying terrain or soil signal o. The overall image signal is the algebraic sum of
s these two quantities:

y(x,z)=1(x,2)+0(x,2) (1)

15 Bach signal is a valuable source of information and it is useful in the context of object detection to be
s able to separate them efficiently and accurately. For a test image like the one in Figure 1, we develop a
1z simple and general mathematical procedure that separates the soil and tree signals into two separate
e digital vector fields.

130 The combined terrain and foliage signal y is raster scanned (see Figure 1) along a coordinate direction
o such as z. Separating out the original surface / into a series of sample points in the z-direction obtains
11 a set of ‘unrelated” one dimensional images ready to be processed independently.

w2 Taking an arbitrary section z = const across the image in Figure 1 one can reduce the soil extraction
13 problem into a series of one dimensional sub-problems which are in theory at least, easier and faster to
144 Process.

s Therefore, at some fixed z:

y(x) =1(x) +0(x) €

us  where T and ¢ are the tree and soil fields across some given z-coordinate respectively.

1z The function y is never in C 1 (the set of all one-fold differentiable functions). Therefore, differential
us methods are not general enough without significant pre-processing and a potential loss of data. The
o digital nature of the data does however permit the use of efficient set filters designed to separate a
10 slow digital derivative from a relatively fast one. We will show below that this observation can be
12 linked to statistical integral methods for solving the general problem.

12 One might argue that Fourier methods are also relevant here. They can be for specific cases. However,
sz the instability of the FFT when the signal is contaminated with any significant level of noise outweighs
15« any potential advantage a low pass filter would have. The main reason is that any attempt to control
155 noise through expedients like Weiner or spectral filters will tend to remove high frequency detail from
156 the image ad-lib, rendering the quickly-varying tree or contoured terrain signals inaccurate or even
157 omitting them completely. We will show below that the use of a direct method can recover information
1ss from the Fourier space in a non-destructive fashion.

1o As already hinted above a more stable method is to use statistics: trees on the ground can be defined
10 by their scatter probability density p (x, z) function. The importance of this function is in defining
11 the nearest neighbor distance from any given point (x, z). Idealizing, at some such point, the tree
12 population probability density function maximizes locally over some differential (x 4 dx, z + dz). The
13 associated probability density maximum is therefore constrained over some nearest neighbor contour
1sa on the xz-plane:

Vp(x,z)-d(x,z) =0 ©)]

1ss The nearest neighbor (generally non-differentiable) probability contour serves to define a correlation
s distance or integral of a tree or other object class T to its nearest neighbors. Every point on the nearest
1z neighbor contour will tend to satisfy a maximum of this correlation integral:

O—d{//r(x’, 2yt (X +x, 2 +z)dx'dZ @)

s In the one dimensional language of Figure 3 this equation simplifies to:
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Oz/r(x’)%(x’—kx)dx’ (5)

1o over the object separation w. In other words, when this integral is at a stationary maximum, it
o corresponds to a local probability maximum in one dimension which dictates the local distance w to a
i1 nearest neighbor for the object class 7. The local spatial frequency of the object class T at the point x is:

o

Wy = w (6)

12 and corresponds to the Fourier or correlation frequency of the object class T embedded into the signal
w3 Y. The frequency distribution of object classes on the ground gives rise to a curious relative symmetry:
1z when the solution of equation 3 is a correlation minimum, from equation 2, the cross-correlation
s function of the soil will be a maximum instead:

/y(x/)T(x'+x) dx' = /U(x’) T (x' +x)dx’ )

17 At such points y is a local minimum since there is no object field, by replacing 7 (x' + x) with a
17z normalised window k of integration width w:

(f(x,w) = Ymin < ny(xl)k(xl—l—x)dxl =
Jy ()T (¥ +x)dx'

s for some constant c. If the integration window width is made equal to the correlation distance less the
170 object width b in the field at x then the inequality is removed on the left and we have:

®)

o(x,w—"b)= inf/y(x')k(x’—i—x) dx' = (w — b) miny (x) )

10 for any point x that is inside the window of integration but outside the object T (x). Applying a spline
11 Operator S to the set of all points

{(x,mino (x))} (10)

12 smooths the soil field data to a resolution of wy:

os (x) = (w—b)"'S [{inf/y (x) k (" +x) dx’}] (x) (11)

1z where inf represents the greatest lower bound. From equation 2

T(x) =y (x) =05 (%) (12)
1« In practice the dimension b of a local object is not essential knowledge if one manipulates equation 7
185 into:
miny (x) = l}im (w—b)"? inf/y (") k (x' +x)dx’ = o (x) (13)
—w

1ss  Where the integral is taken over the range (x, x + nw) where n > 2 and x € [0, Xax — nw).

1z The resulting set of points are solutions to equation 5 and are exactly where the correlation integral
s 4 of the T object class minimises. In what follows we generalise these results over the plane in two
1o different implementations of varying geometric complexity. The first is a Cartesian grid rasterization
10 of the terrain and the second is its immediate generalisation or radial grid rasterization of the DSM
11 model. The second, we will see, does indeed recover information from the original image at greater
12 frequencies on the Fourier plane.
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Figure 1. Gaussian test image generated artificially with a rapidly varying stochastic object field over
the z-x pixel plane. The y height field is in arbitrary test units.

13 2.2. CARSCAN: Cartesian soil field extraction

e To demonstrate the operation of these mathematical results over the DSM plane, we generate a stochastic
105 Object set (a tree field) over a Gaussian hill profile as shown in figure 1 and extract the soil and object
we surfaces from it. The test field image is 1024 x 1024 and has a rapidly varying tree or object field over
1z the gaussian hill soil profile varying along the 45 degree z + x = 0 diagonal (see figure 1).

s Repeatedly extracting a sections of the field along the z axis generates an array of y,(x) vectors along x.
100 Each vector in this array can be operated on with Equation 13 to develop the soil profile at some value
200 Of z as a function of x. Used in this way on the the entire profile array, equation 13 will generate a surface
201 soil field at some integration window width w (see equation 13). Here, instead of applying the spline
202 Operator S to the one dimensional Equation 9, it is faster and more expedient from a computational
203 point of view to apply a grid interpolation operator G (written in c++ and accessed via Python’s Numpy
20a  framework for example) to the soil surface data, o(x,z). Algorithm 1 codifies this methodology.

Algorithm 1 Pseudocode description of a Cartesian soil field extraction

pI‘Oﬁ re CARSC ge shce
t % 1ma e om 1ma
(f e w1 from ima
vert%ca sca

or i eggthez ht} do

raster sc
Por 7' 10, wzdth do
q te = raster Uo (i, ], w)
en
%(1]3 temrr = rasterarr U raster

i3 — G(rasterarr, y;i,j
13: end r(;cedty <eZ (rasterarr,y;i,j)

VRN TEWNE

20s  The 0(x, z) field that results from algorithm 1 is shown in figure 2. This functional representation of
206 the soil signal is then used to extract the object field variation over the terrain using Equation 1 directly,
207 resulting in the object field 7(x, z) which is shown in Figure 3.

206 Due to the integral nature of the filter (equation 13), algorithm 1 is quite noise resistant. It is also easy
200 to set for a variety of surfaces: for example, w can be set manually or automatically to some fixed
210 percentage of the total number of points. It is usually a good idea to set w as large as the image size
an will permit.

212 Defining the characteristic function of the T signal:
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Figure 2. Soil field o(x, z) extraction from the original Gaussian test field image.
wen = {1 ARG

213 allows a quick graphical appreciation of the object detection/classification area in the DSM model.
21a This is calculated in Figure 4 when the threshold level is set to the mean object field height.

as 2.3. FANSCAN: Moving radial soil field extraction

216 The integration method when generalised over many rasters line provides a convenient recipe for
21z separating the aerial image into object and soil fields as was shown in the Carscan algorithm above.
212 This Cartesian strategy can infact be envisaged along any direction in the image to yield information
219 particular to that orientation. The advantage of such rasterised vectoring (or radial scanning) of the
20 image is that it produces more information about the image frequencies in an off axis direction and is
2 therefore akin to a high resolution Fourier sampling of the ground object frequencies wy, along some
222 line L. The essential difference is that this is a direct and hence more stable methodology for sampling,
223 with the advantage that the numerical errors commonly associated with passages into and out of
22¢ transform spaces can be avoided while collecting information on those frequencies. An algorithm
225 designed around this principle would in theory be capable of obtaining the most complete directional
26 frequency scan of an image in direct space.

22z One method of achieving this is to make the series of direct horizontal rasters across the image in
22s  the CARSCAN algorithm act as seeds for such a strategy. A given raster at (x = 0,z) can be rotated
220 along any direction v in the image and rasterized to develop a one dimensional picture of the object
230 distribution along that line. Equation 14 would then develop the object and soil extractions for the
a1 raster as planned earlier but in the direction v. Fanning the original raster (x = 0,z) along all the
232 possible directions v forms a basis for the FANSCAN algorithm presented here (see algorithm 2 and
23 figure 5).

23e FANSCAN delivers, therefore, the entire image surface as a series of raw data points classified along
235 their raster directions through the fan or direction vector v (we take this symbol to mean both a
236 direction or discretization set of vectors as will be apparent from the context). Equation 13 applied
23z along any of these directions extracts the soil component of the raster and can be used to develop a
238 directionally sensitive picture of the soil structure at any point in the image. The data that contains this
230 information is a three dimensional point cloud which can be interpolated to fit the original point cloud
200 Of the raw image to extract a directionally rich soil field oy (x, z).
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Figure 3. Object field 7(x, z) derived from equation 3. Notice that the correlation frequency for these
objects is constant everywhere along z + x = 0.
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Figure 4. The results of applying equation thresholding to 7(x, z) in figure 3 at the mean object field
height is the membership function 7y (x, z). Notice that the correlation frequency for these objects is
constant everywhere along z + x = 0.

Algorithm 2 Pseudocode description of FANSCAN

1: procedure FA AN(G e,slices

2: P 5 < an u C terxgalpta %m slice:

3: <— 1rn om 1mage

gf vert caTs ew1 rom image

9 %orz h do

8 raster s%an t9

9: n -1

10: nt raster a le from k, dO
11: 9 zo a{ s ) ge on raster 6
12: or x Dl

13: r = asp Ulmage x,Y)

o gt

16: de ?

17 endp procedure
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Figure 5. Geometry of the FANSCAN algorithm (see algorithm 2). The white arrows are the raster
vectors v across an extracted object field DSM. The dotted horizontal line is the current vertical scan
position. Negative pixels on the z axis are an artefact of matrix to image reflection. The vertical colorbar
is in metres.

2a1 Once the DSM source oy (x, z) has been extracted from the FANSCAN algorithm in this way, the
22 original image and it can be subtracted over the plane to extract the three dimensional point cloud that
2a3 is in fact a high resolution object field 7y (x, z) of the image in direct space.

2aa  In the context of this paper, we monitor the efficiency of the the algorithm as a function of the
25 discretization of the vector sets v to derive a relative extraction metric for the algorithm. Since the
a6 theoretical benefit of using a radial scan in this manner is to provide more information on directional
2az - Object frequencies, such a metric can be naturally specified in terms of Fourier space frequencies
2e¢  already introduced in equation 6 for the direction x.

20 Defining the Fourier space efficiency (or frequency reach) of a FANSCAN extraction # over some set of
250 discrete vectors v as:

|FFTo — FFTy ||

15
[FFT]2 (15)

NV, Vo) =1—

21 where FFT, is the fast fourier transform of the original image and FFTy is the computed fast Fourier
2 transform of oy (x,z) + Ty(x,z), provides one such method for measuring the performance of the
253 extraction algorithm.

2sa  Equation 15 is a theoretical construct that is difficult to calculate since algorithm 2 extracts the object
25 field by computing the soil surface first. That is to say, the efficiency of the operation can only be
26 measured if the true soil surface were known, which it is not. However, there is a way around that
27 problem if we rewrite equation 15 as a sequence for the extracted object field only:

|EFTy, ||2
. . = 1
1(vi, Vig1) |FFTy, . |2 -

ase  If the sequence of images generated by the FANSCAN algorithm is convergent in the space of images
20 (easy to prove) then:

lim 7 (v;, vitq) =1 (17)

i—00
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260 This relationship is dependent on the asymptotic convergence of the sequence of Fourier transforms
261 and is related to the convergence efficiency #(vy, Vo) at the endpoints by:

ﬂ(VO/ VOO) = Hﬂ(vir Vi+1) (18)

)
=0

262 A similar line of reasoning shows that the following general condition, where vy is the simple
203 CARSCAN algorithm across the image, will be observed:
lim 877 (Vo, V)

Nvooo ONV =0 (19)

26 Where the algorithm has converged and by Nv we mean the resolution or number of vectors in set v.
26s It is therefore clear that d7(v, v) measures the quality of the processing operation between the initial
266 (CARSCAN) image result and the FANSCAN results when i > 0.

26z 3. Results and Discussion

268 3.1. Data-set

260 The study areas are located on a hilly farmland area. The acquisition campaigns were performed with
20 an AscTec Pelican equipped with the Sequoia multi-spectral camera. Figure 6 shows the study areas
an and the related DSM. The final ortho products have a final Ground Sampling Distance (GSD) of 4
2z centimeters with 0.5 meters of horizontal accuracy.In both data-sets we planned to have a lateral and
23 longitudinal overlap above the 70%.

27 The quality of acquired data reflects on both orthophoto and DSM. Quality is mainly influenced by
275 the attitude of vehicle during the acquisition, height above the ground. This last aspect plays a key
are  T0le especially in hilly areas. If the mission was planned with a constant height each single image will
27 have a different GSD especially in areas with high slopes. We tried to set-up the acquisition by using a
27e  constant height above the ground even if this required an a priori knowledge of the DEM of area.

Figure 6. Left. Study area 1 Top: derived orthophoto of vineyard area with false color (left) and derived
DSM (right; black represents low height). Study area 2 Top: derived orthophoto of plant fruit area with
false color (left) and derived DSM (right; black represents low height).
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ars Study area 1 represents a hilly area of vineyards where several rows of trees are present also with
200 different displacement in the top area. Trees have an average height above the ground of 2 meters with
2e1  a small canopy at the top (0.7m).

202 Study area 2 represents an area covered by fruit plants with a small and constant slope over the area.
203 Trees have an average height above the ground of 2.5 metres with a large canopy at the top (up to 3m).
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Figure 7. The first study area data set for testing the scanning algorithms; DSM Field at 2604 x 4381
pixels. The object field plantation ridges are barely visible to eye without segmentation. Equation 14
can extract them efficiently nonetheless.
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Figure 8. The second study area data set for testing the scanning algorithms; DSM at 4645 x 3465 pixels.
This is a simple terrain map whose orientation exposes a flaw in the FANSCAN algorithm design.

28a 3.2. FANSCAN vs CARSCAN

2es  Using the same image DSM image as in Figure 6 and applying algorithm 2 obtains the interpolated
28 s0il surface oy (x, z) as shown in figure 11. The extracted object field 7y (x, z) is given in figure 12. The
207 extraction metric for this image can be seen in figure 14.

2ss 1o test and illustrate the method further we include a second DSM data-set seen in figure 8.

280 Running FANSCAN on this data shows the theoretical consistency of the method and at the same time
200 an apparent weakness in its design.

200 When a raster vector v falls directly upon a row of trees, the soil extraction as developed in equation
202 13 will fail. This aspect is nicely illustrated in figure 17 for the second dataset in figure 8 where part of
203 the object field gets extracted out with the soil field at around Nv = 100 fans.
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Figure 9. The result of the FANSCAN soil extraction applied to figure 7 at Nv = 1 fan rasters per
horizontal seed point. This corresponds to the vg CARSCAN algorithm in the example above. The
colour scale is in meters and negative pixel numbers are an artifact of the image to matrix conversion.
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Figure 10. The result of the FANSCAN object extraction applied to figure 7 at Nv = 1 fan rasters per
horizontal seed point. This corresponds to the vg CARSCAN algorithm in the example above. The
colour scale is in meters and negative pixel numbers are an artifact of the image to matrix conversion.

2o There are several solutions to this problem and all of them involve avoiding an encounter with such a
205 situation in the first place. The first possibility is to limit the maximum resolution (discretization of
206 the fanscan) manually. The second is to randomize both the horizontal seeding and the FANSCAN
207 rasterization. A combination of both of these measures can produce good results for the simple test
20¢  images as studied here but will fail in places for complex object field extractions.

200 The most costly, but a guaranteed solution, is to search successive soil field approximations for
30 competing minima and to reject any outliers from the soil field sequence. There are however
so1  considerable difficulties in achieving this: the main one being that the physical number of points in
sz each extracted image is different and therefore extensive use of back interpolation needs to be made
;03 to coregister the entire sequence being considered for correction. That can require lots of memory
s (gigabytes) for even the most modest of images.
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Figure 11. The result of the FANSCAN soil extraction applied to figure 7 at Nv = 100 fan rasters per
horizontal seed point. The colour scale is in meters and negative pixel numbers are an artifact of the
image to matrix conversion.
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Figure 12. The result of the FANSCAN object extraction applied to figure 7 at Nv = 100 fan rasters per
horizontal seed point. The colour scale is in meters and negative pixel numbers are an artifact of the
image to matrix conversion.

sos  While a fully automated solution can take time, in essence all that is actually required is one artifact
306 free image from the sequence so that artifacts in the sequence can be automatically recognized and then
sz removed. Following the discussion above, a good candidate for that image is the very first (CARSCAN)
sos iteration : vg. The logical matrix operation:

/
UVH—I

= (UVO 2 U'Vi+1)o-vi+l + (UVO < O-Vi-%—l)U'VO (20)
s00  Will quickly post process and correct the artifacts from the soil field. Figure 21 shows this correction
a0 process applied to get back the corrected soil field for the FANSCAN at Nv = 100. The multiplicity
su  of rasters across the object field make it highly unlikely that the object field is adversely affected by
a1z this phenomenon, so no correction need be applied. However, should one be necessary, it is easily

s13 generated along with the soil field correction itself as shown in figure 22.
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Figure 13. The FANSCAN object characteristic applied to figure 7 at Nv = 100 fan rasters per horizontal
seed point. The colour scale is in meters and negative pixel numbers are an artifact of the image to
matrix conversion.
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Figure 14. Equation 19 in practice for the DSM data of figure 7: the closer the points are to the abscissa,
the better the quality (convergence) of the image. The solid blue line is a power law nonlinear regression
for the measured data and shows the likely value of the quality metric as a continuous function of Nv.

a1 The theoretical basis of all these considerations is demonstrated by Equation 19 in the form of plots
ais  of 97 shown for both data sets (see figures 14, 20). Moving backwards along the abcissa and hence
a6 reducing the raster discretization to zero (that is towards the CARSCAN rasterization) shows an
a1z accompanying depreciation in the Fourier space reach of the algorithm. In both cases the overall
a1e accuracy evaluated over a ground truth as described in [28] is above the 95%.

s10 4. Conclusions

320 In this paper we have presented two algorithms to segment crops and/or tree objects over soil by
sz using high-resolution images starting from Digital Surface Models that are usually available when the
;22 data have been acquired by using unmanned platforms.

sz The approach is based on a two dimensional data slicing or reduction technique. Each slice is separately
32 processed as a one dimensional time series to derive the terrain and tree structures separately, here
s2s  interpreted as object probability densities. The results demonstrate that the method potentially enables
a6 the correct segmentation of soil and can thus offer insights into the geometric distribution of surface
327 Objects upon it.

322 A more sophisticated variant of this idea is the FANSCAN algorithm introduced above (see figure 5
s20  and algorithm 2). It uses vector or radial raster scanning across the image to increase the frequency
330 resolution of the scanned data. The results are a generated sequence of images that converge onto the
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Figure 15. The result of the FANSCAN soil extraction applied to figure 8 at Nv = 1 fan rasters per
horizontal seed point. This corresponds to the vg CARSCAN algorithm in the example above. The
colour scale is in meters and negative pixel numbers are an artifact of the image to matrix conversion.
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Figure 16. The result of the FANSCAN object extraction applied to figure 8 at Nv = 1 fan rasters per
horizontal seed point. This corresponds to the vo CARSCAN algorithm in the example above. The
colour scale is in meters and negative pixel numbers are an artifact of the image to matrix conversion.

s original image. The frequency performance of the derived object field sequence was measured using a
;2 Fourier efficiency metric which vanishes at infinite time.

333 Due to real world considerations it would be prudent to ally the quality metric with a measure of the
33 number of processor cycles at time ¢ to define an overall functional of performance. The unique limit
335 point of the image sequence in direct and Fourier spaces means that such a functional would be a
336 global optimizer for the algorithm.

sz An apparent drawback of the FANSCAN algorithm is that it will run into trouble when it encounters
s3e  a coincident object field line (such as an avenue of trees) as has been seen in figure 17. If a raster
330 line lies on top of one of these arrays then the soil extractor will suddenly reduce its efficiency and
a0 Treal objects will tend to creep into the soil field. A costly, but accurate method for dealing with these
sa1  situations is to post process the image against a lower resolution image soil field construction where
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Figure 17. The result of the FANSCAN soil extraction applied to figure 8 at Nv = 100 fan rasters
per horizontal seed point. Note how certain parts of the object field have been included in the soil
extraction. The colour scale is in meters and negative pixel numbers are an artifact of the image to
matrix conversion.
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Figure 18. The result of the FANSCAN object extraction applied to figure 8 at Nv = 100 fan rasters per
horizontal seed point. The colour scale is in meters and negative pixel numbers are an artifact of the
image to matrix conversion.

sz raster discretization avoids this situation. Cross elimination of coincident maxima then removes the
.3 artifacts and both the object and soil fields can thus be corrected at higher resolution scans. Equation
;s 20 is an example of one such measure. Of course, a fairly convergent low resolution FANSCAN lowers
a5 the probability of this occurring. An added bonus is that the same strategy lowers the runtime for the
;a6 algorithm. For these reasons, a high resolution FANSCAN is not in general recommended.

sz For upcoming research we will perform more tests also evaluating a pure random approach in terms
sas  Of radial direction and radial ray’s start that tries to mix the advantages of CARSCAN and FANSCAN.

sa0  Acknowledgments: The authors would like to thank Carlo Alberto Bozzi of EVE S.r.1. for his valuable support
sso  during the preparation of this article.
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Figure 19. The FANSCAN object characteristic applied to figure 8 at Nv = 100 fan rasters per horizontal
seed point. The colour scale is in meters and negative pixel numbers are an artifact of the image to
matrix conversion.

an

Figure 20. Equation 19 in practice for the DSM data of figure 8: the closer the points are to the abcissa,
the better the quality (convergence) of the image. The solid blue line is a power law nonlinear regression
for the measured data and shows the likely value of the quality metric as a continuous function of Nv.
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Figure 21. The result of the FANSCAN soil field correction applied to figure 17 at Nv = 100 fan rasters
per horizontal seed point. The correction eliminates the parts of the object field included into the image
from figure 18. The colour scale is in meters and negative pixel numbers are an artifact of the image to
matrix conversion.

0 - 40
i5
=1000 1
30
=2000 17 25
20
—3000 14
15
—4000 14 10
05

0 1000 2000 3000

Figure 22. The result of the FANSCAN object field correction applied to figure 8 at Nv = 100 fan
rasters per horizontal seed point. The correction adds the parts of the object field included into the
image from figure 18. The colour scale is in meters and negative pixel numbers are an artifact of the
image to matrix conversion.
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