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Abstract: The increased availability of high resolution remote sensor data for precision agriculture1

applications permits users to aquire deeper and more relevant knowledge about crops states that lead2

inevitably to better decisions. The algorithm libraries being developed and evolved around these3

applications rely on multi-spectral or hyper-spectral data acquired by using manned or unmanned4

platforms. The current state of the art makes thorough use of vegetational indicies to guide the5

operational management of agricultural land plots. One of the most challenging sub-problems is6

to correctly identify and separate crop from soil. Thresholding techniques based on Normalized7

Difference Vegetation Index (NDVI) or other such similar metrics have the advantage of being simple,8

easy to read transformations of the data packed with useful information. Obvious difficulties arise9

when crop/tree and soil have similar spectral responses as in case of grass filled areas in vineyards.10

In this case grass and canopy are close in terms of NDVI values and thresholding techniques will11

generally fail. Radiometric approaches could be integrated or replaced by a geometric approach that12

is based on terrain data like Digital Surface Models (DSMs). These models are one of the ouputs13

of orthorectification engines usually present in data acquired by using unmanned platforms. In14

this paper we present two approaches based on DSM that are able to segment crop/tree from soil15

while over gradient terrain. The DSM data are processed through a two dimensional data slicing or16

reduction technique. Each slice is separately processed as a one dimensional time series to derive the17

terrain and tree structures separately, here interpreted as object probability densities. In particular18

the first approach is a Cartesian grid rasterization (CARSCAN) of the terrain and the second is its19

immediate generalisation or radial grid rasterization of the DSM model (FANSCAN). The FANSCAN20

recovers information from the original image at greater frequencies on the Fourier plane. These21

approaches enable the identification of crop/tree from soil in case of slopes or hilly terrain without22

any constraint on the displacement / direction of plant/tree row. The proposed algorithm uses pure23

DSM information even if it is possible to fuse its output with other classifiers.24

Keywords: Segmentation; multi-spectral camera; soil: tree; raster scanning; UAV application25

1. Introduction26

The acquisition of high resolution imagery for precision agriculture applications is a common task27

for a large variety of users as agronomists, big-data specialists and researchers. Unmanned system28

are able to capture data with ultra high resolution (up to 1 cm of terrain) also by using multi-spectral29

or hyper-spectral payloads. Typically data are acquired by a large set of overlapping images that are30

post-processed to derive a single global ortho-photo of the region of interest. The main advantages31

of such platforms is data aquisition in presence of cloud overlay which a satellite cannot do. On the32

contrary the cost of surveying can increase despite the availablility several low cost flight platforms33

and payloads [1]. In this new high-resolution era, due in part to Unmanned Aerial Systems (UASs)34
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[2], opens new ways to analyze the fields, crops and trees during the growing process for proper35

management of all operations (e.g. applied, tilling,. . . ) in order to maximize yield, quality and36

optimize costs [3]. In this sense, UAS platforms stand ready to overcome the main limitations of37

satellite platforms, ensuring very high resolution spectral, spatio-temporal data aquisition systems [4].38

In this scenario, the data play a key role in feature extraction where the manipulation of spectral bands39

is the classical methodological tool to start an analysis - possibly as an input feed to other methods for40

further analysis. Vegetational indices are usually used in a context where machine leaning algorithms41

are used to classify data in both pixel and object domains [5]. These become more effective if they are42

given access to a proper feature set at the start of their analysis runs. The planning of task (e.g., variable43

rate) requires a deep knowledge of crops and their status [6]. The classical output of an analysis from44

an expert is a prescription map that will map tractor operations like spraying or treatment application45

over the field. The generation of a prescription map requires the definition of management zones46

that reflect areas and their status [7]. The typical case is variable rate Nitrogen fertilizer application47

as discussed in [8]. The generation of management zones and their prescription maps may then be48

automated starting from decision support systems that fuse heterogeneous data as well the soil signal49

and the previous yield together with the vegetation indices [9,10].50

When performing an analysis based on vegetation indices, it is important to consider only data51

relevant to the problem. Here by the term relevant we mean pixels related to crop or tree field without52

considering the soil variation. In this case the segmentation of soil and crop or tree field has a strong53

impact on the evaluation of region of interest. The segmentation process of crop and tree vs soil could54

be considered as an advanced Land Use or Land Cover mapping. The identification of crops could be55

carried out by using spectral or spatial or indeed both features. Spectral segmentation usually relies56

on supervised or unsupervised algorithms also including the use of satellite data [11]. One of the57

important requirements, as mentioned above, is that both soil and crops must have a different spectral58

signature. When GSD are of the order of 1− 2 meters a lot of ground noise is mapped into the pixels59

and the result is that the underlying soil response could be influenced by the crop sgnal just above it.60

In this case it is necessary to increase the resolution and UAS platforms are the suitable systems to61

gather these data.62

High resolution images can cause further problems through the data intrinsic noise signals. An image63

with a 1 centimeter GSD is quite challenging to analyze considering the high variability of crop and soil64

signals. In this case other than pure spectral features, the spatial and geometric features become useful65

in order to extract further information about the ground truth probability distribution in the data. In66

particular, the crop height field is an important but simple mathematical variable to indicate crop vs67

soil signal rations. It can also act as a sensor able to measure crop’s growth [12]. Volume estimation is68

also possible and this represents and additional variable to use in the decision making process [13].69

Synthetic Aperture RADAR (SAR) can also be used to retrieve agricultural crop height from the70

event space even if the resolution and cost are challenging [14]. A viable solution is the use of UAS71

platforms that are able to measure height by direct and indirect methods. Such systems are able to72

host compact multi-spectral and hyper-spectral sensors [15] acquiring images that are orthorectified73

by using approach as Structure from Motion (SfM) that is a part of the overall processing pipeline [16].74

The quantification and identification of soil and vegetation is important for several purposes [17] as an75

estimator for growth [18,19], 3D monitoring [20] and weed identification [21,22]. The identification of76

weeds is important to ensure uniform growth of the target crop [23] and is also supported by methods77

able to classify crops, weeds and their foundation soils [24] through the use of Excess Green Index78

(ExG) [25].79

Vineyards and fruit plants are a typical example of complex regions in both detection and study. Slope80

in the terrain and also the presence of grassed soil substantially influence the overall terrain statistics.81

Detection can be carried out by using algorithms based on frequency analysis [26], Hough Space82

Clustering or Total Least Squares as in [27].83
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In this paper we propose a novel method named FANSCAN that extend our previous methods [28]84

(also CARSCAN) to segment canopy/tree coverage vs the underlying soil. The segmented image85

is fundamental to correctly performing an analysis that requires the exact knowledge of the canopy86

position. FANSCAN is also related to our previous research to extract objects from complex data-set as87

the case of Lidar-Multispectral as described in [29,30]. Previous work proposed a slicing approach88

that fuses adaptive thresholding and 1D scan of the images. The FANSCAN approach instead tries to89

improve the segmentation also in case of heterogeneous fields with tree / crops displaces over several90

directions.91

The CARSCAN and FANSCAN rely only on Digital Surface Model (DSM) of the study area. This is92

not an hard constraint considering that orthorectification engines produce orthophoto, dense cloud93

and also DSM. However it is possible to integrate the results of the above mentioned approaches with94

others based on radiometric classification.95

The paper is structured as it follows. Section 2 presents the proposed approaches. Section 3 presents96

the results of CARSCAN and FANSCAN on two data-set in Section 4 the conclusions and future works97

are outlined.98

2. Methodology99

The correct tree and crop segmentation plays a key role in the domain of precision agriculture as100

outlined in Section 1. In this paper we outline and develop algorithms based on pure terrain based101

features and if possible their subsequent fusion with pure spectral approaches as in [28].102

Radiometric and spectral features derived from multi/hyper-spectral images can be used by103

unsupervised or supervised algorithms to classify data and then select only the classes of interest104

to evaluate the vegetation status. Unsupervised algorithms (e.g., hierarchical clustering, ISODATA,105

k-means) require that the area contains objects (e.g., tree, crop, soil) that are spectrally separable. Soil106

response in the presence of grass could produce incorrect results considering the spectral response107

of bare soil with respect to one grassed over. A standard thresholding algorithm usually fails when108

applied to the grassed over terrain problem due to a reduction in the crop to soil area signal to noise109

ratio. As has already been mentioned, the presence of grass on the ground therefore strongly influences110

the accuracy of classification. Supervised algorithms, if properly trained are able to capture grassed111

soil, bare soil and tree/canopy but a common problem is the definition of a precise training set that112

will not underfit the problem. This requires a photo-interpretation of the area and the typical use-case113

for precision agriculture are small areas (from 1− 1000 hectares). A reliable training set is usually114

defined by a human user that should take into account local variability including spurious areas like115

shadows [31].116

To get around this, one can use information inherent in the data itself. In this second approach, soil117

and tree detection is carried out by using purely mathematical features of the height field in the DSM118

obtained during the orthophoto generation. The effectiveness of this technology depends strongly119

on the scanning technique used. We investigate this dependency in detail by using a Cartesian grid120

scanning method to compare to a radial scanning technique over the image coordinate space. The121

results are theoretically connected to the object Fourier transform and this relationship is used to122

develop a quality index for comparing the two types of scan.123

This type of analysis provides a powerful basis for precision agriculture applications that require an124

accurate and precise detection of crops in order to properly support decisions based on vegetational125

indexes that must be evaluated only on not soil areas.126

The pure radiometric approach becomes challenging when the spectral response of canopy is close to127

the soil response. This is indeed the case for vineyards and fruit plants where the soil can be with or128

without grass overlay.129
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2.1. One dimensional rasterization theory130

The DSM is the output of an orthorectification engine that processes high-resolution images (with a131

typical GSD in the 10− 50 centimeter range). Many land areas are covered by foliage and trees, τ,132

which obscure the underlying terrain or soil signal σ. The overall image signal is the algebraic sum of133

these two quantities:134

y (x, z) = τ (x, z) + σ (x, z) (1)

Each signal is a valuable source of information and it is useful in the context of object detection to be135

able to separate them efficiently and accurately. For a test image like the one in Figure 1, we develop a136

simple and general mathematical procedure that separates the soil and tree signals into two separate137

digital vector fields.138

The combined terrain and foliage signal y is raster scanned (see Figure 1) along a coordinate direction139

such as z. Separating out the original surface h into a series of sample points in the z-direction obtains140

a set of ’unrelated’ one dimensional images ready to be processed independently.141

Taking an arbitrary section z = const across the image in Figure 1 one can reduce the soil extraction142

problem into a series of one dimensional sub-problems which are in theory at least, easier and faster to143

process.144

Therefore, at some fixed z:145

y (x) = τ (x) + σ (x) (2)

where τ and σ are the tree and soil fields across some given z-coordinate respectively.146

The function y is never in C1 (the set of all one-fold differentiable functions). Therefore, differential147

methods are not general enough without significant pre-processing and a potential loss of data. The148

digital nature of the data does however permit the use of efficient set filters designed to separate a149

slow digital derivative from a relatively fast one. We will show below that this observation can be150

linked to statistical integral methods for solving the general problem.151

One might argue that Fourier methods are also relevant here. They can be for specific cases. However,152

the instability of the FFT when the signal is contaminated with any significant level of noise outweighs153

any potential advantage a low pass filter would have. The main reason is that any attempt to control154

noise through expedients like Weiner or spectral filters will tend to remove high frequency detail from155

the image ad-lib, rendering the quickly-varying tree or contoured terrain signals inaccurate or even156

omitting them completely. We will show below that the use of a direct method can recover information157

from the Fourier space in a non-destructive fashion.158

As already hinted above a more stable method is to use statistics: trees on the ground can be defined159

by their scatter probability density p (x, z) function. The importance of this function is in defining160

the nearest neighbor distance from any given point (x, z). Idealizing, at some such point, the tree161

population probability density function maximizes locally over some differential (x + dx, z + dz). The162

associated probability density maximum is therefore constrained over some nearest neighbor contour163

on the xz-plane:164

∇p (x, z) · d (x, z) = 0 (3)

The nearest neighbor (generally non-differentiable) probability contour serves to define a correlation165

distance or integral of a tree or other object class τ to its nearest neighbors. Every point on the nearest166

neighbor contour will tend to satisfy a maximum of this correlation integral:167

0 = d
[∫ ∫

τ
(
x′, z′

)
τ
(
x′ + x, z′ + z

)
dx′dz′

]
(4)

In the one dimensional language of Figure 3 this equation simplifies to:168
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0 =
∫

τ
(
x′
) dτ

dx
(
x′ + x

)
dx′ (5)

over the object separation w. In other words, when this integral is at a stationary maximum, it169

corresponds to a local probability maximum in one dimension which dictates the local distance w to a170

nearest neighbor for the object class τ. The local spatial frequency of the object class τ at the point x is:171

ωx =
2π

w
(6)

and corresponds to the Fourier or correlation frequency of the object class τ embedded into the signal172

y. The frequency distribution of object classes on the ground gives rise to a curious relative symmetry:173

when the solution of equation 3 is a correlation minimum, from equation 2, the cross-correlation174

function of the soil will be a maximum instead:175 ∫
y
(
x′
)

τ
(
x′ + x

)
dx′ =

∫
σ
(
x′
)

τ
(
x′ + x

)
dx′ (7)

At such points y is a local minimum since there is no object field, by replacing τ (x′ + x) with a176

normalised window k of integration width w:177

σ (x, w) = ymin < c
∫

y (x′) k (x′ + x) dx′ =∫
y (x′) τ (x′ + x) dx′

(8)

for some constant c. If the integration window width is made equal to the correlation distance less the178

object width b in the field at x then the inequality is removed on the left and we have:179

σ (x, w− b) = inf
∫

y
(
x′
)

k
(
x′ + x

)
dx′ = (w− b)min y (x) (9)

for any point x that is inside the window of integration but outside the object τ (x). Applying a spline180

operator S to the set of all points181

{(x, min σ (x))} (10)

smooths the soil field data to a resolution of ωx:182

σS (x) = (w− b)−1S
[{

inf
∫

y
(
x′
)

k
(
x′ + x

)
dx′
}]

(x) (11)

where inf represents the greatest lower bound. From equation 2183

τ (x) = y (x)− σS (x) (12)

In practice the dimension b of a local object is not essential knowledge if one manipulates equation 7184

into:185

min y (x) = lim
b→w

(w− b)−1 inf
∫

y
(
x′
)

k
(
x′ + x

)
dx′ = σ (x) (13)

where the integral is taken over the range (x, x + nw) where n ≥ 2 and x ∈ [0, xmax − nw].186

The resulting set of points are solutions to equation 5 and are exactly where the correlation integral187

4 of the τ object class minimises. In what follows we generalise these results over the plane in two188

different implementations of varying geometric complexity. The first is a Cartesian grid rasterization189

of the terrain and the second is its immediate generalisation or radial grid rasterization of the DSM190

model. The second, we will see, does indeed recover information from the original image at greater191

frequencies on the Fourier plane.192
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Figure 1. Gaussian test image generated artificially with a rapidly varying stochastic object field over
the z-x pixel plane. The y height field is in arbitrary test units.

2.2. CARSCAN: Cartesian soil field extraction193

To demonstrate the operation of these mathematical results over the DSM plane, we generate a stochastic194

object set (a tree field) over a Gaussian hill profile as shown in figure 1 and extract the soil and object195

surfaces from it. The test field image is 1024× 1024 and has a rapidly varying tree or object field over196

the gaussian hill soil profile varying along the 45 degree z + x = 0 diagonal (see figure 1).197

Repeatedly extracting a sections of the field along the z axis generates an array of yz(x) vectors along x.198

Each vector in this array can be operated on with Equation 13 to develop the soil profile at some value199

of z as a function of x. Used in this way on the the entire profile array, equation 13 will generate a surface200

soil field at some integration window width w (see equation 13). Here, instead of applying the spline201

operator S to the one dimensional Equation 9, it is faster and more expedient from a computational202

point of view to apply a grid interpolation operator G (written in c++ and accessed via Python’s Numpy203

framework for example) to the soil surface data, σ(x, z). Algorithm 1 codifies this methodology.204

Algorithm 1 Pseudocode description of a Cartesian soil field extraction

1: procedure CARSCAN(image,slices)
2: height← image height from image
3: width← image width from image
4: vertical scan at h:
5: for i ∈ {0, height} do
6: raster scan at z = i:
7: for j ∈ {0, width} do
8: raster = raster∪ σ(i, j, w)
9: end for

10: rasterarr = rasterarr∪ raster
11: end for
12: τ(i, j) = y(i, j)− G(rasterarr, y; i, j)
13: end procedure

The σ(x, z) field that results from algorithm 1 is shown in figure 2. This functional representation of205

the soil signal is then used to extract the object field variation over the terrain using Equation 1 directly,206

resulting in the object field τ(x, z) which is shown in Figure 3.207

Due to the integral nature of the filter (equation 13), algorithm 1 is quite noise resistant. It is also easy208

to set for a variety of surfaces: for example, w can be set manually or automatically to some fixed209

percentage of the total number of points. It is usually a good idea to set w as large as the image size210

will permit.211

Defining the characteristic function of the τ signal:212
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Figure 2. Soil field σ(x, z) extraction from the original Gaussian test field image.

τχ (x, z) =

{
0, τ (x, z) ≤ 〈τ (x, z)〉
1, τ (x, z) > 〈τ (x, z)〉 (14)

allows a quick graphical appreciation of the object detection/classification area in the DSM model.213

This is calculated in Figure 4 when the threshold level is set to the mean object field height.214

2.3. FANSCAN: Moving radial soil field extraction215

The integration method when generalised over many rasters line provides a convenient recipe for216

separating the aerial image into object and soil fields as was shown in the Carscan algorithm above.217

This Cartesian strategy can infact be envisaged along any direction in the image to yield information218

particular to that orientation. The advantage of such rasterised vectoring (or radial scanning) of the219

image is that it produces more information about the image frequencies in an off axis direction and is220

therefore akin to a high resolution Fourier sampling of the ground object frequencies ωL along some221

line L. The essential difference is that this is a direct and hence more stable methodology for sampling,222

with the advantage that the numerical errors commonly associated with passages into and out of223

transform spaces can be avoided while collecting information on those frequencies. An algorithm224

designed around this principle would in theory be capable of obtaining the most complete directional225

frequency scan of an image in direct space.226

One method of achieving this is to make the series of direct horizontal rasters across the image in227

the CARSCAN algorithm act as seeds for such a strategy. A given raster at (x = 0, z) can be rotated228

along any direction v in the image and rasterized to develop a one dimensional picture of the object229

distribution along that line. Equation 14 would then develop the object and soil extractions for the230

raster as planned earlier but in the direction v. Fanning the original raster (x = 0, z) along all the231

possible directions v forms a basis for the FANSCAN algorithm presented here (see algorithm 2 and232

figure 5).233

FANSCAN delivers, therefore, the entire image surface as a series of raw data points classified along234

their raster directions through the fan or direction vector v (we take this symbol to mean both a235

direction or discretization set of vectors as will be apparent from the context). Equation 13 applied236

along any of these directions extracts the soil component of the raster and can be used to develop a237

directionally sensitive picture of the soil structure at any point in the image. The data that contains this238

information is a three dimensional point cloud which can be interpolated to fit the original point cloud239

of the raw image to extract a directionally rich soil field σv(x, z).240
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Figure 3. Object field τ(x, z) derived from equation 3. Notice that the correlation frequency for these
objects is constant everywhere along z + x = 0.

Figure 4. The results of applying equation thresholding to τ(x, z) in figure 3 at the mean object field
height is the membership function τχ(x, z). Notice that the correlation frequency for these objects is
constant everywhere along z + x = 0.

Algorithm 2 Pseudocode description of FANSCAN

1: procedure FANSCAN(image,slices)
2: dθ ← angular interval from slices
3: h← image height from image
4: w← image width from image
5: vertical scan at h:
6: for i ∈ {0, h} do
7: i0 ← i
8: raster scan at θ:
9: for k ∈ {0, n− 1} do

10: θ ← the current raster angle from k, dθ
11: L(θ, i0)← all points ∈ image on raster θ
12: for x, y ∈ L(θ, i0) do
13: raster = raster∪ image(x, y)
14: end for
15: end for
16: end for
17: end procedure
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Figure 5. Geometry of the FANSCAN algorithm (see algorithm 2). The white arrows are the raster
vectors v across an extracted object field DSM. The dotted horizontal line is the current vertical scan
position. Negative pixels on the z axis are an artefact of matrix to image reflection. The vertical colorbar
is in metres.

Once the DSM source σv(x, z) has been extracted from the FANSCAN algorithm in this way, the241

original image and it can be subtracted over the plane to extract the three dimensional point cloud that242

is in fact a high resolution object field τv(x, z) of the image in direct space.243

In the context of this paper, we monitor the efficiency of the the algorithm as a function of the244

discretization of the vector sets v to derive a relative extraction metric for the algorithm. Since the245

theoretical benefit of using a radial scan in this manner is to provide more information on directional246

object frequencies, such a metric can be naturally specified in terms of Fourier space frequencies247

already introduced in equation 6 for the direction x.248

Defining the Fourier space efficiency (or frequency reach) of a FANSCAN extraction η over some set of249

discrete vectors v as:250

η(v, v∞) = 1− ‖FFT∞ − FFTv‖2

‖FFT∞‖2
(15)

where FFT∞ is the fast fourier transform of the original image and FFTv is the computed fast Fourier251

transform of σv(x, z) + τv(x, z), provides one such method for measuring the performance of the252

extraction algorithm.253

Equation 15 is a theoretical construct that is difficult to calculate since algorithm 2 extracts the object254

field by computing the soil surface first. That is to say, the efficiency of the operation can only be255

measured if the true soil surface were known, which it is not. However, there is a way around that256

problem if we rewrite equation 15 as a sequence for the extracted object field only:257

η(vi, vi+1) =
‖FFTvi‖2

‖FFTvi+1‖2
(16)

If the sequence of images generated by the FANSCAN algorithm is convergent in the space of images258

(easy to prove) then:259

lim
i→∞

η(vi, vi+1) = 1 (17)
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This relationship is dependent on the asymptotic convergence of the sequence of Fourier transforms260

and is related to the convergence efficiency η(v0, v∞) at the endpoints by:261

η(v0, v∞) =
∞

∏
i=0

η(vi, vi+1) (18)

A similar line of reasoning shows that the following general condition, where v0 is the simple262

CARSCAN algorithm across the image, will be observed:263

lim
Nv→∞

∂η(v0, v)
∂Nv

= 0 (19)

where the algorithm has converged and by Nv we mean the resolution or number of vectors in set v.264

It is therefore clear that ∂η(v0, v) measures the quality of the processing operation between the initial265

(CARSCAN) image result and the FANSCAN results when i > 0.266

3. Results and Discussion267

3.1. Data-set268

The study areas are located on a hilly farmland area. The acquisition campaigns were performed with269

an AscTec Pelican equipped with the Sequoia multi-spectral camera. Figure 6 shows the study areas270

and the related DSM. The final ortho products have a final Ground Sampling Distance (GSD) of 4271

centimeters with 0.5 meters of horizontal accuracy.In both data-sets we planned to have a lateral and272

longitudinal overlap above the 70%.273

The quality of acquired data reflects on both orthophoto and DSM. Quality is mainly influenced by274

the attitude of vehicle during the acquisition, height above the ground. This last aspect plays a key275

role especially in hilly areas. If the mission was planned with a constant height each single image will276

have a different GSD especially in areas with high slopes. We tried to set-up the acquisition by using a277

constant height above the ground even if this required an a priori knowledge of the DEM of area.278

Figure 6. Left. Study area 1 Top: derived orthophoto of vineyard area with false color (left) and derived
DSM (right; black represents low height). Study area 2 Top: derived orthophoto of plant fruit area with
false color (left) and derived DSM (right; black represents low height).
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Study area 1 represents a hilly area of vineyards where several rows of trees are present also with279

different displacement in the top area. Trees have an average height above the ground of 2 meters with280

a small canopy at the top (0.7m).281

Study area 2 represents an area covered by fruit plants with a small and constant slope over the area.282

Trees have an average height above the ground of 2.5 metres with a large canopy at the top (up to 3m).283

Figure 7. The first study area data set for testing the scanning algorithms; DSM Field at 2604× 4381
pixels. The object field plantation ridges are barely visible to eye without segmentation. Equation 14
can extract them efficiently nonetheless.

Figure 8. The second study area data set for testing the scanning algorithms; DSM at 4645× 3465 pixels.
This is a simple terrain map whose orientation exposes a flaw in the FANSCAN algorithm design.

3.2. FANSCAN vs CARSCAN284

Using the same image DSM image as in Figure 6 and applying algorithm 2 obtains the interpolated285

soil surface σv(x, z) as shown in figure 11. The extracted object field τv(x, z) is given in figure 12. The286

extraction metric for this image can be seen in figure 14.287

To test and illustrate the method further we include a second DSM data-set seen in figure 8.288

Running FANSCAN on this data shows the theoretical consistency of the method and at the same time289

an apparent weakness in its design.290

When a raster vector v falls directly upon a row of trees, the soil extraction as developed in equation291

13 will fail. This aspect is nicely illustrated in figure 17 for the second dataset in figure 8 where part of292

the object field gets extracted out with the soil field at around Nv = 100 fans.293

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 November 2017                   doi:10.20944/preprints201711.0142.v1

http://dx.doi.org/10.20944/preprints201711.0142.v1


12 of 20

Figure 9. The result of the FANSCAN soil extraction applied to figure 7 at Nv = 1 fan rasters per
horizontal seed point. This corresponds to the v0 CARSCAN algorithm in the example above. The
colour scale is in meters and negative pixel numbers are an artifact of the image to matrix conversion.

Figure 10. The result of the FANSCAN object extraction applied to figure 7 at Nv = 1 fan rasters per
horizontal seed point. This corresponds to the v0 CARSCAN algorithm in the example above. The
colour scale is in meters and negative pixel numbers are an artifact of the image to matrix conversion.

There are several solutions to this problem and all of them involve avoiding an encounter with such a294

situation in the first place. The first possibility is to limit the maximum resolution (discretization of295

the fanscan) manually. The second is to randomize both the horizontal seeding and the FANSCAN296

rasterization. A combination of both of these measures can produce good results for the simple test297

images as studied here but will fail in places for complex object field extractions.298

The most costly, but a guaranteed solution, is to search successive soil field approximations for299

competing minima and to reject any outliers from the soil field sequence. There are however300

considerable difficulties in achieving this: the main one being that the physical number of points in301

each extracted image is different and therefore extensive use of back interpolation needs to be made302

to coregister the entire sequence being considered for correction. That can require lots of memory303

(gigabytes) for even the most modest of images.304
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Figure 11. The result of the FANSCAN soil extraction applied to figure 7 at Nv = 100 fan rasters per
horizontal seed point. The colour scale is in meters and negative pixel numbers are an artifact of the
image to matrix conversion.

Figure 12. The result of the FANSCAN object extraction applied to figure 7 at Nv = 100 fan rasters per
horizontal seed point. The colour scale is in meters and negative pixel numbers are an artifact of the
image to matrix conversion.

While a fully automated solution can take time, in essence all that is actually required is one artifact305

free image from the sequence so that artifacts in the sequence can be automatically recognized and then306

removed. Following the discussion above, a good candidate for that image is the very first (CARSCAN)307

iteration : v0. The logical matrix operation:308

σ′vi+1
= (σv0 ≥ σvi+1)σvi+1 + (σv0 < σvi+1)σv0 (20)

will quickly post process and correct the artifacts from the soil field. Figure 21 shows this correction309

process applied to get back the corrected soil field for the FANSCAN at Nv = 100. The multiplicity310

of rasters across the object field make it highly unlikely that the object field is adversely affected by311

this phenomenon, so no correction need be applied. However, should one be necessary, it is easily312

generated along with the soil field correction itself as shown in figure 22.313
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Figure 13. The FANSCAN object characteristic applied to figure 7 at Nv = 100 fan rasters per horizontal
seed point. The colour scale is in meters and negative pixel numbers are an artifact of the image to
matrix conversion.

Figure 14. Equation 19 in practice for the DSM data of figure 7: the closer the points are to the abscissa,
the better the quality (convergence) of the image. The solid blue line is a power law nonlinear regression
for the measured data and shows the likely value of the quality metric as a continuous function of Nv.

The theoretical basis of all these considerations is demonstrated by Equation 19 in the form of plots314

of ∂η shown for both data sets (see figures 14, 20). Moving backwards along the abcissa and hence315

reducing the raster discretization to zero (that is towards the CARSCAN rasterization) shows an316

accompanying depreciation in the Fourier space reach of the algorithm. In both cases the overall317

accuracy evaluated over a ground truth as described in [28] is above the 95%.318

4. Conclusions319

In this paper we have presented two algorithms to segment crops and/or tree objects over soil by320

using high-resolution images starting from Digital Surface Models that are usually available when the321

data have been acquired by using unmanned platforms.322

The approach is based on a two dimensional data slicing or reduction technique. Each slice is separately323

processed as a one dimensional time series to derive the terrain and tree structures separately, here324

interpreted as object probability densities. The results demonstrate that the method potentially enables325

the correct segmentation of soil and can thus offer insights into the geometric distribution of surface326

objects upon it.327

A more sophisticated variant of this idea is the FANSCAN algorithm introduced above (see figure 5328

and algorithm 2). It uses vector or radial raster scanning across the image to increase the frequency329

resolution of the scanned data. The results are a generated sequence of images that converge onto the330

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 November 2017                   doi:10.20944/preprints201711.0142.v1

http://dx.doi.org/10.20944/preprints201711.0142.v1


15 of 20

Figure 15. The result of the FANSCAN soil extraction applied to figure 8 at Nv = 1 fan rasters per
horizontal seed point. This corresponds to the v0 CARSCAN algorithm in the example above. The
colour scale is in meters and negative pixel numbers are an artifact of the image to matrix conversion.

Figure 16. The result of the FANSCAN object extraction applied to figure 8 at Nv = 1 fan rasters per
horizontal seed point. This corresponds to the v0 CARSCAN algorithm in the example above. The
colour scale is in meters and negative pixel numbers are an artifact of the image to matrix conversion.

original image. The frequency performance of the derived object field sequence was measured using a331

Fourier efficiency metric which vanishes at infinite time.332

Due to real world considerations it would be prudent to ally the quality metric with a measure of the333

number of processor cycles at time t to define an overall functional of performance. The unique limit334

point of the image sequence in direct and Fourier spaces means that such a functional would be a335

global optimizer for the algorithm.336

An apparent drawback of the FANSCAN algorithm is that it will run into trouble when it encounters337

a coincident object field line (such as an avenue of trees) as has been seen in figure 17. If a raster338

line lies on top of one of these arrays then the soil extractor will suddenly reduce its efficiency and339

real objects will tend to creep into the soil field. A costly, but accurate method for dealing with these340

situations is to post process the image against a lower resolution image soil field construction where341
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Figure 17. The result of the FANSCAN soil extraction applied to figure 8 at Nv = 100 fan rasters
per horizontal seed point. Note how certain parts of the object field have been included in the soil
extraction. The colour scale is in meters and negative pixel numbers are an artifact of the image to
matrix conversion.

Figure 18. The result of the FANSCAN object extraction applied to figure 8 at Nv = 100 fan rasters per
horizontal seed point. The colour scale is in meters and negative pixel numbers are an artifact of the
image to matrix conversion.

raster discretization avoids this situation. Cross elimination of coincident maxima then removes the342

artifacts and both the object and soil fields can thus be corrected at higher resolution scans. Equation343

20 is an example of one such measure. Of course, a fairly convergent low resolution FANSCAN lowers344

the probability of this occurring. An added bonus is that the same strategy lowers the runtime for the345

algorithm. For these reasons, a high resolution FANSCAN is not in general recommended.346

For upcoming research we will perform more tests also evaluating a pure random approach in terms347

of radial direction and radial ray’s start that tries to mix the advantages of CARSCAN and FANSCAN.348
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Figure 19. The FANSCAN object characteristic applied to figure 8 at Nv = 100 fan rasters per horizontal
seed point. The colour scale is in meters and negative pixel numbers are an artifact of the image to
matrix conversion.

Figure 20. Equation 19 in practice for the DSM data of figure 8: the closer the points are to the abcissa,
the better the quality (convergence) of the image. The solid blue line is a power law nonlinear regression
for the measured data and shows the likely value of the quality metric as a continuous function of Nv.
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