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SERIES REPRESENTATION OF POWER FUNCTION

KOLOSOV PETRO

ABSTRACT. In this paper described numerical expansion of natural-valued
power function z", in point z = zo, where n,zo - positive integers. Applying
numerical methods, that is calculus of finite differences, particular pattern,
that is sequence |A287326|in OEIS, which shows us necessary items to expand
23, € N is reached and generalized, obtained results are applied to show
expansion of power function f(z) = z™, (z,n) € N. Additionally, in section
4 exponential functions Exp(z), = € N representation is shown. In subsection
(2.1) obtained results are applied to show finite difference of power.
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1. INTRODUCTION AND MAIN RESULTS

In this paper particular pattern, that is sequence A287326| in OEIS, [7], which
shows us necessary items to expand z?, € N will be generalized and obtained
results will be applied to show expansion of power function f(z) = 2™, (z,n) € N.In
Section 3 received results are used to obtain finite differences of power function f(x).
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2 KOLOSOV PETRO

Also, in this paper coefficient % (n, k) is introduced and its properties are shown.
Note that coefficient % (n, k) is k-th item of n-th row of triangle A287326. First,
let review and basically describe Newtons Binomial Theorem, since our coefficient
U (n, k) is derived from finite difference of perfect cubes, which is taken regarding
Binomial expansion. In elementary algebra, the Binomial theorem describes the
algebraic expansion of powers of a binomial. The theorem describes expanding of
the power of (z + y)" into a sum involving terms of the form az’y® where the
exponents b and ¢ are nonnegative integers with b + ¢ = n, and the coefficient a of
each term is a specific positive integer depending on n and b. The coefficient a in
the term of axby¢ is known as the Binomial coefficient. The main properties of the
Binomial Theorem are next

Properties 1.1. Binomial Theorem properties

(1) The powers of x go down until it reaches xo = 1 starting value is n (the n
in (z+y)")

(2) The powers of y go up from 0 (y° = 1) until it reaches n (also n in (x+y)")

(3) The n-th row of the Pascal’s Triangle (see [3], [14]) will be the coefficients
of the expanded binomial.

(4) For each line, the number of products (i.e. the sum of the coefficients) is
equal to x + 1

(5) For each line, the number of product groups is equal to 2"

According to the Binomial theorem, it is possible to expand any power of x + y
into a sum of the form (see [3], [14])

(1.2) (@ +y)" = kz: (:) gk

Let expand monomial 2™ such that (z, n) € N applying finite differences, that are
reached by means of Binomial theorem (|1.2)

Lemma 1.3. Power function could be represented as discrete integral of its first
order finite difference

x—1

(14) 2" = > Apa")

k=0

= an"‘1h+(n>k"‘2h2+---+< " )kh”‘1+h"
2 n—1

Aplzn]=(z+h)" —z"

z—1 n

N\ n—kyk
= h R
> ()t e

§=0 k=1
Or, by means of Fundamental Theorem of Calculus

rz—1

y z=1 k41
(1.5) " = /nt"*ldt = Z/ nt"tdt =Y (k+1)" — k"
d k=0"F

k=0
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SERIES REPRESENTATION OF POWER FUNCTION 3

Lemma 1.6. From lemma follows that finite difference of power x™, n € N
could be reached by Binomial expansion of the form

(1.7) Ap(z™)=(x+h)" —2" = Z (Z) " kpk
k=1

Otherwise, let be a difference table of perfect cubes (see also [15], eq. 7)

x| 23 A | A%(2%) [ A3(2?)
0 0 1 6 6
1 1 7 12 6
2 8 19 18 6
3| 27 37 24 6
4 | 64 61 30 6
(18) 5| 125 91 36 6
6 | 216 127 42 6
7| 343 | 169 48 6
8 | 512 217 54
9| 729 | 271
10 | 1000

Table 1: Difference table of 23, x € N up to third order, [15], eq. 7

Note that increment h is set to be h = 1 and k > 2-order difference is taken
regarding to [10], [§]. Review Figure (1.8)), then we can see thatﬂ

(1.9) A% = 1430
A1) = 1+431-0+3!-1
A2} = 1+431-0+3-1+3!-2
A% = 1+43-0+3-1+3-243!-3
Az®) = 14+3-04+3-14+31-2+3!-3+---4+3!-2
Obviously, the perfect cube = could written as
2 = (14300 +(1+3-0+3-1)+(1+3-0+3-143-2)+--.

(1.10)  + (1431-0+31-1+31-24---+3!-(z—1))
Generalizing above expression, we have
(1.11) 2* = 2+ (x—0)-3-0+(x—1)-31-1+(x—2)-31- 24
+z—(x—-1))-3-(z—-1)
Provided that x is natural. Particularizing expression (1.11), one could have
z—1

(1.12) 28 =3 "3l mw—3l-m’+1

m=0

IThe sequence A008458, [4] in (OEIS, [LI] is observed, the first order finite difference of conse-
quent perfect cubes equals to 1 4 a(n), where a(n) is generating function of sequence |A008458|
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4 KOLOSOV PETRO
Property 1.13. Let be a sets A(x) := {1, 2, ..., z}, B(zx) :={0, 1, ..., x},
C(z) :=A{0, 1, ..., © — 1} let be expression written as
T(xz, C(z)) := Z 3l-ma —3l-m?+1
meC(x)
where © € N is variable and U(z) is iteration set of , then we have equality
(1.14) T(xz, A(z)) =T(z, C(z))

Let be expression denoted as
Uz, C(z)):=x+3! Z max — m?
meC(z)
then
(1.15) U(z, A(z)) =U(z, B(z)) =U(z, C(x))
Other words, changing of iteration sets of(1.11) and by A(z), B(x), C(x)

and A(zx), C(x), respectively doesn’t change resulting value for each x € N.

Proof. Let be a plot y(k) =3!-kr —3!-k*+1, k€ R, 0 <k < 10, given x = 10
T T T T T T

150 |- N

100 |- N

y(z, k) =3 kr —3!- k2 +1

0 2 4 6 8 10
keR, 0< k<10

Figure 2. Plot of y(k) =3!-kz —3!- k> +1, k€ R, 0 <k < 10, given x = 10

Obviously, being a parabolic function, it’s symmetrical over %, hence equivalent
T(x, A(x)) = T(z, C(x)), z € N follows. Reviewing and denote u(t) =
tz" =2 — 22773 we can conclude, that u(0) = u(x), then equality of U(z, A(z)) =
U(z, B(z)) = U(z, C(z)) immediately follows. This completes the proof. O

Review above property (1.13]). Let be an example of triangle built using
(1.16) y(n,k) =3l kn—3-k*+1, 0<k<n, (n,k) €N

over n from 0 to n = 4, where n denotes corresponding row and k shows the item
of row n.

d0i:10.20944/preprints201711.0157.v3
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Row 0: 1
Row 1: 1 1
Row 2: 1 7 1
Row 3: 1 13 13 1

(1.17) Row 4: 1 19 25 19 1

Figure 3. Triangle generated by (1.16|) from 0 to n = 4, sequence |A287326 in
OEIS| [7].
We can see that for each row according to variable n = 0, 1, 2, 3, 4,..., we

have Binomial distribution of row items. One could compare Triangle (1.17) with
Pascal’s triangle [3], [14]

Row 0: 1

Row 1: 1 1

Row 2: 1 2 1

Row 3: 1 3 3 1
Row 4: 1 4 6 4 1

Figure 4. Pascal’s triangle up to forth row, sequence |A007318 in |OEIS, [3], [14].

Note that n-th row sum of Triangle (1.17) returns us perfect cube n®. Hereby, the
follow question is stated

Question 1.18. Has the Triangle any connection with Pascal’s Triangle
or others like Stirling or Euler, and is it exist similar patterns in order to receive
expansion of v¥ j > 37

2. ANSWER TO THE QUESTION (1.18)

In section particular pattern (1.17)), that is sequence A287326 in | OEIS, [7], which
shows us necessary items to expand z3, z € N will be generalized and obtained
results will be applied to show expansion of power function f(x) =", (z,n) € N.

To answer to the question (1.18)), let review our Triangle (1.17) again. Next, let
(.17

take away from each item k, such that 0 < k < n of Triangle (1.17) the value of n?,
then we have

3-kn—3-k2+1-n% 0<k<n

Figure 5. Triangle generated b
& §e s y{l,ke{o,n}
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6 KOLOSOV PETRO

We can observe that summation of n-th row of Triangle over k from 0 ton —1
returns us the n2. It’s very easy to see that removing n' from each item %, such
that 0 < k < n of Triangle and summing up received n-th rows over k from 0
to n — 1 will result n', let show it

1
1 1
(2.2) 1 1 1
1 1 1 1
1 -1 5 -1 1

3 kn—-3"k4+1-n’ —n', 0<k<n

1, k€ {0, n}

Review the Triangle (2.2]), we can say that above statement holds. Reviewing our
Triangles (2.1), (2.2)), let define generalized item Vis(n, k)

Definition 2.3.

(2.4) Var(n, k) == {

Figure 6. Triangle generated by {

n4nt+ 4nM 0<k<n

1, k€ {0, n}

Property 2.5. From definition follows the equality between items Vs (n, k)
in range k € {1, n— 1}

(26) Vke{l,n—-1}: Vy(n, k) = Vyn, E+1<n-1)

= VM(n,k—|—2§n—1)

= Vuln, k+5j<n-1), jeN
Note that k-th items of Triangles (2.1)), (2.2), such that 0 < k& < n are Vi(n, k), Va(n, k),
2.1), (2.2

respectively. Reviewing our Triangles ( 2.2)), we could observe the identity
n—1

(2.7) M=% Via(n, k),  Me{1,2,3}
k=0

Example 2.8. Review (2.7)), let be n =4, M = 3, then
T4+1+4+42+14+4+424+1+4+42
—_— Y Y~
Va(4, 1) Va(4, 2) Va(4, 3)
= 1434 +4' +4) =1+21+21+21
Hereby, let be Theorem

Theorem 2.9. Each power function f(x) = z" such that (z,n) € N could be
expanded next way

—

T—

(2.10) 2" =" Voa(z, k)
k=

0
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Proof. Recall Triangle, consisting of items Vy(x, k), that is analog of ([2.2)

(2.11) 1 1 1

Figure 7. Triangle generated by Vy(z, k), sequence A000012 in |OEIS, [12].

Obviously, summation over rows of triangle (2.11]) from 0 to  — 1 gives us the x!.
Let show a second power by means of Vy(x, k), we have accordingly

(212) 2 =1+ (Volw, 1)+ )+ (Volw, 2)+2)+ -+ (Volw, 2 — 1) +2)
Vi(z, 1) Vi(z, 2) Vi(z, z—1)

For example, consider the sum of third row of triangle (2.11]), then we receive 3.
Hence, by power property

r—1
(2.13) at = gt
k=0

we have to add twice by 3! to receive 32, i.e
3Z=1+B+1)+B+1)

Generalizing above result, for each (x,n) € N we have identity

(2.14) mi Vii(z, k) =
k=0

= 14+@+z' ++2" )+ + @+ 2™

z—1 times
= 1+@-DE"+2' +22 4+ +2"h
= z4+(@—Dr+(@x-D2*+(@x—-Dz3+- +(x—1)z"!
= 1+ (z—1)Vu_1(z, k)

= l+a"—2"=2"

This completes the proof. (I
Also, (2.14) could be rewritten as
(2.15) " = 1+@-D+@-Dz4+-+(x—1)z"!
n times
n—1
= 1+ (z—1)zF
k=0
n—1
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8 KOLOSOV PETRO

Define the power function f(x) = z™, such that (z, n) € N and exponential
function g(x, k) = 2%, 2 € N, then expression (2.15]) shows us the relation between
exponential and power functions with natural base and exponent

n—1
(2.16) fl@)=1+4> gz, k+1) - g(x, k)

k=0
Reader could also notice the connection between Maclaurin expansion ﬁ =%+
ol 2?4+ 23+, —1 <2 <1and (2.14), that is

" 1

r—1 x-—1
N——

(2.17) =24t 4+ 42" Yz, n) €N

1
11—z

Next, let review and apply our results on Binomial Related expansion of monomial

f(z) = 2™, (z, n) € N. Recall
(2.18) = Y Apa”]

z—1
= ) nk"'+ [ 1 TR (L | A
2 n—1

Apzn]=(z+h)"—z™

r—1n+1 z—1 n
n+l __ n n+l—k __ Y\ .k n
(219) = = 2); _ZZ<2)3 +a
7=0 k=1 7=0 k=1
x—1

xn-‘rm — <727‘>]n—k + " + mn—i—l N xn-i—m—l’ reN

(2.20) 1 3 1

Figure 8. Triangle generated by Va(n, k) over n from 0 to 9.
Reviewing above triangle, we could observe that summation of intermediate column
gives us well known identity,

|| —1
(2.21) 2?=> 2%k+1, €
k=0
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SERIES REPRESENTATION OF POWER FUNCTION 9
Applying Va(n, k), we receive analog of above identity

n—1
(2.22) 2> =Y "Va(2k, k), ¥(z, n) €N

k=0

Note that upper expression (2.22) is partial case of (2.19), when n+m = 2. Recall
the Binomial (z + y)™, by means of (2.14]) we have expansion
(2.23) (+y)"=14+(@+y—-DVooi(z+y, k)

Hereby, let be lemma

Lemma 2.24. Relation between binomial expansion and Vy,_1(x, k)

(2.25)(z +y)" Z (Z) 2"y =14 (et y - D)V (z+y, k)
k=0

I+ (@z+y—Da+y)°’+@+y—D+y)' +- -
H(x+y—D(z+y)"!
I+a((@+y)°+@+y)' + @+ ++(@+y" )
+ Y(@+y)’+@+y)' + @+’ + @+

- (+ )’ +@+y)'+ @+’ + @+

+

Multinomial case could be built as well as Binomial, hereby

(1 + 22+ + 1)
(2.26) = 14 (xy+ao4 - Fap—D(xy +zo+ - +a3)°
(w1 + a0+ +xp—1)(zy + 20+ 4 a3)"
(1 + a0+ +ap — 1) (21 + 22 + -+ 2p)?

+ +

+ (@t ao+ A ap—D(TF a2t o)

2.1. Finite Differences. In this subsection let apply received in previous section
results to show finite differences of power function f(x) = 2™, such that (z, n) € N.

From we know identity
(227) f(x) =14+ (-1 +2' +22+  F2" =1+ (z -1V, _1(z, k) = 2"
Then, its finite difference A f(z) suppose to be
(2.28) Af(z) = fla+1)—f(z)=
= N+a(@+)°+@+D +-- 4 (z+ 1))
@Vi_1(z+1, k)
— [T+ @-1)@E+a' +22+ -+ 2" )
(2—1)Vp_1(z, k)=z7—1
2Vo_1(x+1, k) — (x — 1)V,_1(z, k)
aVo_i(x+1, k) —a™ —1
Vo1 +1, k) —aVu_1(z, k) + Vaoi1(x, k)
= z[Vaoi(x+1, k) = Vooi(z, )]+ Vaoi(z, k)
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Example 2.29. Consider the example for f(z) = 2", © = 3, n = 3, then applying

, we have
(2.30) Af3) = f4)-fB3)
L+3(B+1D°+ B+ +(3+1)%)
[1+(3—1)(3°+ 3" +3%)]
= BB+D°+E+1)'+(B+1)%)
[(3—1)(3° +3'+3%)]
= 63—-26=37

Let generalize (2 and show high order finite difference of power f(z) = 2™

by means of V,,_ 1(1‘, k), that is

m—1

(2.31) Vici(x+m—k,t) = Vo_1(x+m —k+1,1)],

where t # 0. Derlvatlve of f(x) = 2™ could be written regarding to
df(x) = lim an—l(x + hv k) — (:L‘ _ h)vn—l(xv k)
dx - h—0 h

(2.32)

3. PROPERTIES OF TRIANGLE (1.17) AND OTHER EXPANSIONS

Review the triangle (1.17)), define the k-th, 0 < k < n, item of n-th row of
triangle as

Definition 3.1.

(3.2) U(n,k):=3"nk—3-k*+1, 0<k<n
Note that definition (3.1)) also could be rewritten as
(3.3) U (n,k)=3-nk—3-n"k2+n° 0<k<n

Let us approach to show a few properties of triangle (/1

Properties 3.4. Properties of triangle .
(1) Summation of items % (n, k) of n-th row of triangle over k from 0

to n — 1 returns perfect cube n® as binomial of the form
(3.5) Z U (n, k) = Aonn — By, = n3,

Since the property_ holds, could be rewritten as
(3.6) En: U (n,k) = Ay on — By, =n®,

where Agz,, and Bgg, - integers depending on variable n € N and on
sets U(n), S(n), respectively.
(2) Recurrence relation between A, and A;
Apnt1 = A1 p, n>1

(3) Induction by power. Summation of items of n-th row of triangle ,
multiplied by n™ =2, from 0 to n — 1 returns n™
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Summation of items % (n,k) of n-th row of triangle over k from 0

to n returns n® + nd

Z@/(n,k)zrﬁ—l—l
k=0

Induction by power. Summation of each n-th row of triangle multi-

plied by n™ ™3 from 0 to n returns n™ +n™ 3

First item of each row’s number corresponding to central polygonal num-
bers sequence a(n) (sequence|A000124 in|OEIS, [13] returns finite difference
A[n3] of consequent perfect cubes. For example, let be the k-th row of tri-

angle , such that k is central polygonal number, i.e k =

0, 1, 2,..., N, then item
2 2
% <%’1> =Ap(n®), h=1

Items of have Binomial distribution over rows
The linear recurrence, for any k and n > 0

2% (n, k) =« (n+ 1, k) +%(n—1,k)
Linear recurrence, for each n >k
2% (n, k) = % (2n — k, k) + % (2n — k,0)
From (@ follows that
3:”‘1 :”‘1 <n2+n+21)
n kzzo U (n, k) kzzo U —
Triangle is symmetric, i.e

U (n,k) =% (n,n—k)

2
—=, n

Relation between Rascal Triangle A077028 and Triangle A287326
A287826(nk) = 6 * |A07T7028(n,k) - 5
In (3.5)) is noticed, that summation of each n-th row of Triangle (1.17) from 0

to n — 1 returns perfect cube n3, then, by properties (3.8)), (3.9), (3.10), for each
given number z € N the 2™ could be easy found via multiplication of each term of
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by ™~
r—1 1 x—1

(3.12) 2" = U (x,k)a" 3 = 3 SN+ 1,k)+U(x—1,k)]a"°
k=0 k=0
r—1

(% (2x — k, k) + % (2z — k,0)] 23

% (l‘2+m+2,1> wn_3

I

iT
=]

|

2

2 2
{OZ/ (x ;x,l)—i-%(m —|—213+4’1)] L3

ey n+1 n+1 2 o3
- a2 ) )= (02 () )
k=0
To show other way of representation of power, let move the x from (1.12), = +
35" mx — m?, under the sum operator and change iteration set from {0, z —

1} to {1, = — 1}, then we get

i1
= o

I
LIt
=]

N |

rz—1

(3.13) =Y 3 me-3-m*+ ——, c#l z€N
m=1 (.T - 1)
Review right part of , let be item —Z- written as %5 = #H=l =14 L
given the power n > 3, multiplying each term of by "3 we can observe
that
r—1
(3.14) " —1= Z%(az,m)x”*B+x"*4+x”*5—|—~-~+z~|—1
m=1
Applying properties , , , we can rewrite as
r—1
o1 o= S Yk k) 4 U Cr— k)P 2 a1
k=1 2
z—1 1
(3.15) = 3 @@+ 1L k)+ % (x—1,k)] A IR L R RV |
k=1
r—1

I
(]

{% (””2”,1) +U (—z2+2w+4,1)} I SRR |

3
]
o

8
|
-

= %(%’1)1'”73_1_‘1”744_4_1

=
=

Moving 1 from left part of l} under sum operator, we add a term ﬁ to
initial function % (z,m)x" =3 + 2"~ % 4+ 2""% + ... + 2 + 1. By means of expansion

A =——t=1+z+z*+2%4 - the (3.14) could be rewritten accordingly

z—1
(3.16) " = Z%(x,m)x"_3+x”_4+-~-+x+1—1—332—3:3—-~-
m=1
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Generalizing (3.16)) we have

rz—1
(3.17) 2" = Z (% (x,m) — 1] a™™3 — 2" 2 — g™t —
m=1
rz—1 2
2
= Z {% <x—|—2x+,1) — 1} a3 g2 gl
m=1

3.1. Generalized Binomial Series by means of properties (3.5), (3.6). Re-
viewing properties (3.5)), (3.6) we can say that for each x = xg € N holds

(3.18) " = A(ﬁ’wx"_Q - Bﬁ’zwn_3
Rewrite the right part of (3.18) regarding to itself as recursion

et = Agyo(Agi.t" ! = Briat" ) — Boo(Ag1ee™ " — By a0
(319) = Afq ="' 2457 By ,a" 0 + Big a0

Reviewing above expression we can observe Binomial coefficients before each Ag -
Bg1 .- Continuous j-times recursion of right part of (3.18) gives us

] .
(3.20) = Z ( ) O;k B(% 20—k
Suppose that we want to repeat action (3.19) infinite-many times, then

n o __ -] j 0 n—2j .] j—1 1 n—2j5—1
(3.21) 2" = <0>Ag),1,xB(L1,zx J_ (1>A(]),17xB,1,wx J-l L.

— k n—2j5—k
7 +Z ()03096 ik

We know the solutions of above equation 1D for all A(ﬁw Bgs , that present
in follow table. The table arranged next way

xr = AO,a: = BO,I — Al,w = Bl,a: =
1 1 0 6 5
2 6 4 18 28
3 18 25 36 81
4 36 80 60 176
5 60 175 90 325
6 90 324 126 540
7 126 539 168 833
8 168 832 216 1216
9 216 1215 270 1701
10 270 1700 330 2300

Table 9. Array of coefficients Ag7 ,, By, over z from 1 to 10.

Sequence Bj , is generated by 22% + 322, = € N, sequence A275709 in OEIS, [5].
Sequence A;; is generated by 322 4 3z, x € N, sequence A028896 in OEIS, [6].
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4. EXPONENTIAL FUNCTION REPRESENTATION

Since the exponential function f(z) = e*, x € N is defined as infinite summation

of %, n=0, 1, 2, ..., oo over n (see [9]). Then 1) could be applied, hereby
[e%s} rz—1
1
(4.1) e’ = Z - (% (x,m) — 1] 2™ ™3 — 2" 2 — g™t — ...
n=0 s m=1
[e%e} x—1
1 2 2
- LaX v (FFR e et
n=0 n: m=1
e’} 1 x—1 1
= 2 [5 [%(xﬂ,k)w(w—l,kn—l] AR e
=0 " k=1
e’} 1 z—1 1
= Z—' [5[%(Qx—k,k)—l—%(Qx—k,O)]—l]x"_g—x"_Q—
=0 " k=1
From (4.1) for each 2 € N we get
[e%s} rz—1
1
(4.2) egﬂ—ezzmZ%(w,m)x"‘g—f—x”_‘l—i—'u—l—w—l—l
" m=1

Los
]
o

8

(% (x+1,m) + % (z = 1,m)]| 2" + 2" - a4 1

I
]2
S|
™

n=0 m=1
o) x—1
1 22 +z+2 _ _
= L a (T e
n=0 n: m=1
z—1

[dz/ ($22+g:’1)+% <z2+2z+471)i| xn—3+$n—4+”._’_1

I
]2
S|
N[ =

S
I
—
3
I
_

5. RELATION BETWEEN PASCAL’S TRIANGLE AND VOLUME OF HYPERCUBES

In this section let review and generalize well known fact about connection be-
tween row sums of Pascal triangle and 2—dimension Hypercube, recall property

(5.1) zn: (Z) —on

k=0
Now, let multiply each k-th term of of n-th row of Pascal’s triangle [3] by 2*

1
1 2
1 4 4
1 6 12 8
1 8 24 32 16

Figure 10. Triangle built by (Z) 2k 0<k<n<Ad.
‘We can notice that

(5.2) i(")-zkz?ﬁ, 0<k<n, (n, k)N

k
k=0
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Hereby, let be theorem

Theorem 5.3. Volume of n-dimension hypercube with length m could be calculated
as

(5.4 =33 (1) (%)t

k=0 j=0

where m and n - positive integers.

Proof. Recall induction over m, in (5.1]) is shown a well-known example for m = 2.

(5.5) on — zn: (:) (2 - 1)*

k=0
Review (5.5) and suppose that

" n
5.6 2+ 1)" = ((2=1)+ 1)k
5.6 @ > (1) @z+y

m—1
And, obviously, this statement holds by means of Newton’s Binomial Theorem [I],
[2] given m = 3, more detailed, recall expansion for (z + 1)™ to show it.

(5.7) (z+1)" = Zn: <Z) a*

k=0

Substituting = 2 to (5.7)) we have reached (5.6)).
Next, let show example for each m € N. Recall Binomial theorem to show this

n

(5.5) wt =3 () - m =1

k=0
Hereby, for m + 1 we receive Binomial theorem again
" /n
5.9 H" = -m¥
(5:9) m1r =3 () -
k=0
Review result from 1} and substituting Binomial expansion Z?:o (l;) (—1)nFkmJ
instead (m — 1)* we receive desired result

oot = £() o BB (e

= o () ks =

J=0 \J
n k
= 23 () ()
, k) \Jj
k=0 j=0
This completes the proof. O

The (5.5) is analog of MacMillan Double Binomial Sum (see equation 13 in [16]).

Lemma 5.11. Number of elements k—face elements &,(YE) of Generalized Hy-
percube YP equals to

(5.12) A =3 (1) (§)ve-1y

=0 J
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We also can observe that

(5.13) 2" -1 = é (Z) +an = kzr:l ((Z) +kzn:1 [(Z) +x"—2D

S0+

>

k

n—times continued summation

In sense of Gauss Continued fraction operator K, we can receive

[0 RIE )

k=1 k=1
6. CONCLUSION AND FUTURE RESEARCH

In this paper particular pattern, that is sequence |A287326| in (OEIS, [7], which
shows us necessary items to expand z3, 2 € N will be generalized and obtained
results will be applied to show expansion of power function f(z) =", (z,n) € N.
The coefficient % (n, k) was introduced in definition (B.1]), its properties are shown
in (3.4). Power function’s ", (z,n) € N expansion firstly shown in and
other versions are shown below. In section [f] we show a various representations
of exponential function e, z € N. We attach a Wolfram Mathematica codes of
most important equations in [Application 1l Extended version of Triangle is
attached in |Application 2l Future research should be done in % (n™, k%), m,j € N
to verify its properties. A research on finding difference and consequently derivative
using and extend it over real functions applying Taylor’s theorem also could
be done. In subsection (2.1) finite differences by means of Vis(n, k) are shown. The
difference of received method from Binomial theorem lays in fact that for Binomial
expansion n-th row of Pascal’s triangle denotes the power of x, but in case of
Triangle n-th row denotes variable to power, corresponding to Vis(n, k).
Reviewing MacMillan Double Binomial Sum [16], we can observe that it reached
by means of Stirling Numbers of Second Kind.
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7. APPLICATION 1. WOLFRAM MATHEMATICA CODES OF SOME EXPRESSIONS

In this section Wolfram Mathematica codes of most expressions are shown. Note
that Mathematica .cdf-file of all mentioned expressions is available for download at
this link. The .txt-file reader could find |here. Define coefficient % (n, k), definition

(3.1)
Uln., k] := 3lxnxk — 3lxk"2 4+ 1
Check of property
Ul(n"2 + n + 2)/2, 1]
Check of expression (3.12), 2"
1/2+Sum[(U[2+x — k, k] + U[2xx — k, 0])*x"(n — 3), {k, 0, x — 1}]
1/2«Sum[(U[x + 1, k] + Ulx — 1, k])*x"(n — 3), {k, 0, x — 1}]

1/2+Sum|[(U[(k"2 + k)/2, 1] + U[(k"2 + k + 4)/2, 1])*x"(n — 3),
{k, 0, x — 1}]

Sum[U[x, k]*x"(n—3), {k, 0, x — 1}]
Sum([U[(k"2 + k + 2)/2, 1]+x"(n — 3), {k, 0, x — 1}]
Generating formula of Triangle , Figure 3
Column|Table[U[n, k|, {n, 0, 5}, {k, 0, n}], Center]
Expression , " —1

Sum[U[x, m]*x"(n — 3) + Sum[x"(n — t), {t, 4, n}], {m, 1, x — 1}]


https://oeis.org/
https://oeis.org/A000012
https://oeis.org/A000124
http://oeis.org/A007318
http://mathworld.wolfram.com/FiniteDifference.html
http://mathworld.wolfram.com/FiniteDifference.html
http://mathworld.wolfram.com/Power.html
https://goo.gl/8NN1Zy
https://goo.gl/t22zuk
http://dx.doi.org/10.20944/preprints201711.0157.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 February 2018 d0i:10.20944/preprints201711.0157.v3

18 KOLOSOV PETRO
Expression (3.15)), ™ — 1 using properties (3.8)), (3.9), (3.10)

Sum|[1/2x(U[2xx — k, k] + U[2xx — k, 0])*x"(n — 3) +
Sum[x"(n — t), {t, 4, n}], {k, 1, x — 1}]

Sum[1/2%x(U[x + 1, k] + Ulx — 1, k])*x"(n — 3) +
Sum[x"(n — t), {t, 4, n}], {k, 1, x — 1}]

Sum[1/2+(U[(k*2 + k)/2, 1] + U[(k*2 + k + 4)/2, 1])sx"(n — 3) +
Sumlx"(n — t), {t, 4, n}], {k, 1, x — 1}]

Sum([U[(k"2 + k + 2)/2, 1]+x"(n — 3) + Sum[x"(n — t), {t, 4, n}],
k, 1, x — 1}]

Expression (3.16)), ="

Sum[U[x, m]*x"(n — 3) + Sum(x"(n — t), {t, 4, n}] —
Sum[x"j, {j, 0, Infinity }|, {m, 1, x — 1}]

Expression (3.17]), generalized version of (3.16[), ="

Sum[(Ulx, m] — 1)xx"(n — 3) —
Sum[x"(n — 3 +j), {j, 1, Infinity }], {m, 1, x — 1}]

Sum[(U[(m"2 + m + 2)/2, 1] — 1)xx"(n — 3) —
Sum[x(a — 3 + ), {i, 1, Infintty ], m, 1, = — 1]

Section 4, Expression (4.1)), e* representation

Sum|[1/n!*Sum|[(U[x, m] — 1)xx"(n — 3) — Sum[x"(n — 3 + j),
{j, 1, Infinity}], {m, 1, x — 1}], {n, 0, Infinity}]

Sum[l/n+Sum[(U[(m"2 + m + 2)/2, 1] — 1)*x"(n — 3) —
Sum[x"(n — 3 +j), {j, 1, Infinity }], {m, 1, x — 1}],
{n, 0, Infinity}]

Sum|[1/n!+*Sum[(1/2%(Ulx + 1, m] + Ulx — 1, m]) — 1)*x"(n — 3) —
Sum[x"(n — 3 +j), {j, 1, Infinity }], {m, 1, x — 1}],
{n, 0, Infinity}]

Sum|[1/n!*Sum[(1/2%(U2x—m, m] + U[2x—m, 0]) — 1)*x"(n — 3) —
Sum[x"(n — 3 +j), {j, 1, Infinity }], {m, 1, x — 1}],
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{n, 0, Infinity}]
Section 4, Expression (4.2)), e* — e representation

Sum|[1/n!*Sum[U[x, mj*x"(n — 3) +
S G Al G Lm0 Tt

Sum[1/n!+«Sum(1/2%(Ux + 1, m] + U[x — 1, m])*x"(n — 3) +
Sum[x"(n — t), {t, 4, n}], {m, 1, x — 1}, {n, 0, Infinity}]

Sum[l/n!+*Sum[U[(m"2 + m + 2)/2, 1]*x"(n — 3) +
Sum[x"(n — t), {t, 4, n}], {m, 1, x — 1}], {n, 0, Infinity}]

Sum|[1/(n!)*

Sum(1/2%(U[(m"24+m+1)/2, 1] + U[(m"24+m+3)/2, 1])*x"(n — 3) +
Sum[x"(n — t), {t, 4, n}], {m, I, x — 1}], {n, 0, Infinity}]

Expression (5.10]), Binomial identity

Sum[Sum|Binomial[n k]*Binomial[k,j]x(—1)" (k—j)*m"},
{i, 0, k}].{k, 0, n}]

8. APPLICATION 2. AN EXTENDED VERSION OF TRIANGLE (1.17)

Row 0: 1

Row 1: 1 1

Row 2: 1 7 1

Row 3: 1 13 13 1

Row 4: 1 19 25 19 1

Row 5: 1 25 37 37 25 1

Row 6: 1 31 49 55 49 31 1

Row T: 1 37 61 73 73 61 37 1
Row 8: 1 43 73 91 97 91 73 43 1

Row 9: 1 49 8 109 121 121 109 8 49 1
Row 10: 1 55 97 127 145 151 145 127 97 55 1

Figure 11. Extended version of Triangle (|1.17]) generated from given n = 3 over x
from 0 to 10, sequence |A287326 in OEIS, [7], [11].
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