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SERIES REPRESENTATION OF POWER FUNCTION

KOLOSOV PETRO

ABSTRACT. In this paper we discuss a problem of generalization of binomial
distributed triangle, that is sequence A287326| in OEIS. The main property
of |[A287326| that it returns a perfect cube n as sum of n-th row terms over
k, 0 <k <n—1lorl <k <n,bymeans of its symmetry. In this paper we have
derived a similar triangles in order to receive powers m = 5,7 as row items
sum and generalized obtained results in order to receive every odd-powered
monomial n2™+1 m > 0 as sum of row terms of corresponding triangle.
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1. STRUCTURE OF THE MANUSCRIPT

The problem of finding expansions of monomials, binomials, trinomials, etc. is
classical and a lot of theorems have been found, the most prominent examples
are Binomial Theorem [2], Multinomial theorem, Wozpitsky Identity [30], Stirling
numbers of second kind identity, etc. In this paper we try to solve the classical
problem of finding expansions of monomials. We start from binomial distributed
triangle A287326 [I1] in OEIS. The main property of A287326 that it returns a
perfect cube n as n-th row sum, starting from 0,...,n — 1 or from 1,...,n by means
of its symmetry. Therefore, the following question stated:

e Can we find similar to A287326 triangles in order to receive monomial
nt, t > 3 as sum of row terms? In other words, can A287326 be generalized
in order to receive monomial n, ¢t > 3 as sum of row terms?
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2 KOLOSOV PETRO

Finding an analogs for ¢ = 5,7 in section 3, we answer to above questions positively.
Could this process be continued for each ¢t = 1, 3,5, 7... similarly? Positive answer
to this question is given by theorem (3.29).

2. INTRODUCTION

Let describe the derivation of the sequence A287326|in |(OEIS. Sequence |A287326
returns the perfect cube n as row sum over k, 0 < k < n — 1, as well as sum over
1 < k < n, by means of its symmetry. First, consider a difference table of perfect

cubes ([4], eq. 7)

n [ A"(n3) [ Al(n3) [ A%2(n?) | A3(n3)
0 0 1 6 6
1 1 7 12 6
2 8 19 18 6
3 27 37 24 6
4 64 61 30 6
(2.1) ) 125 91 36 6
6 216 127 42 6
7 343 169 48 6
8 512 217 54
9 729 271
10 | 1000

Table 1: Difference table of perfect cubes n, 0 < n < 10 up to 3'¢ order.
Reviewing above table, we have noticed that

(22) A% = 1+6-0=6(})+(})
A(1}) = 146-046-1=6(3)+ ()
A% = 146-046-1+6-2=6()+ (%)
A(3%) = 1+6~0+6-1—|—6-2+6.3:6(;&)+(§)
A(n3) = 1+6.O—|—6-1-|-6.2_|_...+6.n:6(n;rl)+(n8r1)

Above difference identity is closely related to Faulhaber’s sum of cubes, where
nd = 6(”;:1) + ("), see (211, p. 9). Note that A?(n?) could be found similarly

using above identity A2(n%) = 6(572) + (171).
Property 2.3. (Generalized finite difference of power using Faulhaber’s formula).
Consider the identities, ([21], p. 9).

= ()
w = 6+ ()
n = 120("F%) +30(") + ()
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We can find the first order finite difference of odd power as decreasing the variable
of corresponding binomial coefficients by 1, for example

An' = (7)
A= 6("3") +(3)
An® = 120("1%) +30("3") + (7)

Continue similarly, we can express each difference of order t > 1. The coefficients
{1,6,1,120,30, 1} in above identities are generated by

1< (2r o

2.4 Vor = - 07 (7o

7=0

where r = n—k+1, this formula was provided by Peter Luschny in [27]. Therefore,
for every odd t > 0 and m > 0, we have

—k
Abp2m+1l — Z Vink <n+77 )7 if t >0 and odd
0<k<m
1<2(m—k)+1—t
l is even

Let be m >0, t > 1 and even, then

Atp2m+l _ Z Vink (” tm= k), if £>1 and even

l
0<k<m
1<2(m—k)+1—t
I is odd

Let show finite differences, set m > 1, ¢ > 1, then we have finite difference
identity

1 —k
A= S SV (" tm > if +> 0 and odd
n

l
0<k<m
1<2(m—k)+1—t
l is even

1 -k
Atp2m — Z ~Vink <n tm >, if £>1 and even
n

l
0<k<m
1<2(m—k)+1—t
! is odd

By the identity ZZ;S An™ = n" we have right to represent perfect cube n as
(25)  nP=6(y)+ (o) +6() + () +6() + () +---+6("3) + ("5)
Let rewrite it again and display every binomial coefficient as summation (";1) =
14+24---+n, then
n*=(14+6-00+(1+6-0+6-1)+--+(1+6-0+---+6-(n—1))
Particularizing above expression, we get
(26) n*=n+®m—-0)-6-0+(n—-1)-6-1+---+(n—(n—1))-6-(n—1)
Provided that n is natural. Now we apply a compact sigma notation on , thus
(2.7) n® =n+ Z 6k(n — k)

1<k<n
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As sum ), ;, 6k(n — k) consists of n terms, we have right to move n in (2.7)
under sigma notation, we get

(2.8) n® = Z 6k(n —k)+1
1<k<n

Property 2.9. (Proof of symmetry). Let be a sets A(n) := {1, 2, ..., n}, B(n):=
{0, 1, ..., n}, C(n):={0, 1, ..., n— 1}, let be expression (2.§) defined as

M(n, C(n)) € 5" 6k(n—k)+1

keC(n)

where x is natural-valued variable and C(n) is iteration set of (@, then we have
equality
(2.10) M(n, A(n) = M(n, C(n))
Let review and define expression @) as

Uln, C(n)) € n+6- > k(n—k)

keC(n)

then
(2.11) U(n, A(n)) =U(n, B(n))=U(n, C(n))

Other words, changing of iteration sets of (2.6) and (2.8) by A(n), B(n), C(n) and
A(n), C(n), respectively, doesn’t change resulting value for each natural z.
Proof. Let be a plot y(n,k) =6k(n—k)+1, ke R, 0<k <10, given n =10

150 |- N

100 N

6k(n — k) +1

50 1

y(n, k)

0 2 4 6 8 10
keR, 0< k<10

Figure 2. Plot of 6k(n — k) + 1, k € R, 0 <k < n, where n = 10.

Obviously, being a parabolic function, it’s symmetrical over 7, hence equivalent
M(n, A(n)) = M(n, C(n)) follows. Reviewing (2.6) and denote u(n,k) = kn —
k2, we can conclude, that u(n,0) = u(n,n) = 0, then equality of U(n, A(n)) =

U(n, B(n)) =U(n, C(n)) immediately follows. This completes the proof. O
Review above property (2.9). Let be an example of triangle built using
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Definition 2.12. For every n >0

(2.13) Litn,k) < 6k(n—k)+1, 0<k<n

over n from 0 to n = 4, where n denotes corresponding row and k shows the
item of row n.

Row 0: 1

Row 1: 1 1

Row 2: 1 7 1

Row 3: 1 13 13 1
(2.14) Row 4: 1 19 25 19 1

Figure 3. Triangle generated by Li(n, k) from 0 to n = 4, sequence A287326 in
OEIS, [11].
Note that n-th row sum of Triangle over 0 < k < n — 1 returns perfect
cube n. We can see that each row with respect to variable n =0, 1, 2, 3, 4, ...,
has Binomial distribution of row terms. One could compare Triangle with
Pascal’s triangle [I], [12]

Row 0: 1

Row 1: 1 1

Row 2: 1 2 1

Row 3: 1 3 3 1
Row 4: 1 4 6 4 1

Figure 4. Pascal’s triangle read by rows, sequence A007318 in OEIS, [I].
Let us approach to show a few properties of triangle (2.14) and L;(n, k).

Properties 2.15. Properties of triangle .
(1) Summation of items Li(n,k) of n-th row of triangle over k from 0
to n — 1 returns perfect cube n > 0 as follows
(2.16) > Li(n,k) =n?
1<k<n
(2) Relation between o, and a1,
Qo+l = Q1p, N 2>1
(3) First item of each row’s number corresponding to central polygonal numbers
sequence a(n) = % (sequence | A000124 in |OFIS, [13]) returns finite
difference of consequent perfect cubes. For example, let be a k-th row of
2
triangle , such that k = %"4'2, n=20,1,2,..., then item

2 2
L (n+2n+1> (41—

(4) Items of have Binomial distribution over rows.

(2.17)
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(5) Linear recurrence, for every k and n > 0

This linear recurrence is direct result of second order binomial transform of
Li(n, k) over n.
(6) Linear recurrence, for each n >k

(219) 214 (’I’L, k) = L1(2n —k, k‘) + L1(27’L — k, 0)
(7) From for every n > 0 follows

(2.20) o Link) = Y L <M1> =3

1<k<n 1<k<n
(8) Triangle is symmetric, i.e
(2.21) Li(n,k) = Li(n,n — k)

Property 2.22. (Generalized binomial series by means of identity . Let
review identity in sense of

Z Li(n, k) = agn — Bo

1<k<t

By property (@) we rewrite above expression as

Z Li(n,k) = a1,m — Biy
0<k<t
where subscripts 0,t and 1,t denote the ranges of summation, respectively. Running
over t > 0 above identities produce sets of coefficients {cot}e, {Boste, {a1,ehe and
{B1,t}. Below table shows initial terms of these sequences
Q¢ 50,1: o1t Bl,t
1 0 6 5
6 4 18 28
18 27 36 81
36 80 60 176
60 175 90 325
90 32/ 126 540
126 539 168 833
168 832 216 | 1216
216 | 1215 | 270 | 1701
10| 270 | 1700 | 330 | 2300

Table 5. Array of coefficients agy ., Bgi,, given n=1,...,10.

| | 3| | |t cof vo| ~| =+

Therefore, perfect cube n could be rewritten as binomials of the form
o3 — ) 0on—1n = Bon-1, ift=n—1;
Q] pn — ﬂl’n, ift=n
By the main power property, for every m € N

m—2 m—3
m 00, n—1M — Bon—1n

no= m—2 m—3
a1 pn — Bian
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SERIES REPRESENTATION OF POWER FUNCTION 7

We denote above equation as

m_ . .m—=2 _ 5 _ .m—3
no =051 =1, 50,1,n71,nn

Let rewrite the right part of above expression regarding to itself as recursion

m _ - __.om—4 5 . m—5
n = CV0,1,nfl,n(040,1,7171,71” /BO,I,nfl,nn )
m—>5 m—6
= Boiptaldoiaran™ T ~ Boinmtan" )
_ 2 m—4 o - m—>5 2 m—6
A Tn — 2051 n=TnPo1,n=Ta" + 851 7

We can observe corresponding binomial coefficient present before each Q=T
times 6ﬁ,m' Continuous j-times recursion gives

m > j j—k m—2j— .
n" = Z(‘l)k<k)a3,1,wﬂm,n-1,nn R >0
k>0
Sequences a1, a1 are generated by 3n? + 3n, sequence|A028896 in OEIS, [23].
Sequence P14 is generated by 2n3 + 3n?, sequence A275709 in OEIS, [20].

In this section we have reached binomial distributed triangle (2.14)), such that
perfect cube n could be found as sum of n-th row terms of (2.14]). Therefore, the
follow question is stated

Question 2.23. Can we find similar to|A287326 triangles in order to receive mono-
mial nt, t > 3 as sum of row terms? Is it exist L,(n, k), v # 1, such that

n' = Z Ly(n,k), v#t7?

1<k<n
3. GENERALIZATION OF SEQUENCE A287326

In order to get analogs of Triangle (2.14)) one should solve a system of equations,
where unknowns are coefficients of polynomial and variable of polynomial is k(n—k).

Let show a triangle generated by La(n, k), such that sum of n-th row terms returns

nb.

Example 3.1. We suspect that n-th row of triangle is generated by
(32) Lg(n, k) = A272(n — k)2k2 + Ag,l(n — k)k + AQ’O

where Ag 2, A2 1, Az ¢ are unknown coefficients and n > 0, 0 < k < n. Assume that
for every n > 0, m > 0 holds

(3.3) > La(nk) = 0P

1<k<n
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In more explicit view

(3.4) Az Z k*(n —k)* + Azq Z k(n —k) + Az on

1<k<n 1<k<n
= Ay > K0’ —2nk+ k%) + Ay1 Y kn— K+ Agon
1<k<n 1<k<n
= Agp Y Kn® -2k + k' + Ay > kn— K+ Agon
1<k<n 1<k<n
= A272n2 Z k2 — 2A2,2n Z K3 + A272 Z E* + A2,17’L Z k
1<k<n 1<k<n 1<k<n 1<k<n
— A271 Z k2 + AQ,UTL
1<k<n

Thus, we have received expression containing sums of powers of successive natural
numbers, where powers are {1,2,3,4}. By the Faulhaber’s formula [7], the following
identities hold

(3.5) 3 i

1<k<n 2
2n? +3n% +n
(3.6) Z BP="
1<k<n 6
n* + 2n3 4+ n?
(3.7) Z =
1<k<n 4
(3 8) Z ]{74 - 6n5 + 15714 + 10n3 —n
1<k<n 30
Now we substitute above identities to ([3.4)), respectively, we get
3+ 3n2+n nt 4+ 2n3 + n? 6n° + 15n* +10n3 —n
A272n2— — 2A272n— + A272
6 4 30
n®+n 2n® +3n2 +n
+ Axin — Ay ———— + Ay

6
Particularizing the elements of above expression and moving them under the com-
mon divisor, we get

Agon® — A 30A 3 —
(39) 2,2M ;gn+ 2,0 +A271 (’fl . Tl>

We have to remember that expression (3.9)) is the left side of the input equation
(2.2). Therefore,

A272n5_A§gn+30A2’0 7 <n36—n> :ns’ n>0

(3.10) + Az

In order to satisfy (3.10) for each natural n, coefficients As o, A2 1, A2 2 should be
a solutions of following system of equations

35 42,2 =1

Az =1

30A270 — A272 =0
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The only solution of above system is Aso = 30, As1 = 0, Ao = 1. Hereby,
Lo(n, k) takes the form

(3.11) Lay(n, k) = 30k*(n — k)? + 1

And for each natural n holds

(3.12) > 30k (n—k)’+1 = n’
1<k<n

Let show initial rows of triangle built by La(n, k)

1
1 1
1 31 1
(3.13) 1 121 121 1
1 271 481 271 1
1 480 1081 1081 481 1

Figure 6. Triangle generated by La(n, k), 0 < k < n, sequence A300656 in OEIS,
[15].
Similarly, finding the coefficients A3, Az 1, A3 2, A3 3 in
(3.14) Ly(n, k) = Az 3k3(n — k) + Az ok*(n — k)? + Az 1k(n — k) + Az 0
we get Az 3 =140, A3 o = —14, A3z =0, Az o = 1, therefore, for each n > 0 holds
(3.15) > 10K (n—k)® =14k (n —k)* +1 = 0
1<k<n

Below we show a few initial rows of triangle built by Ls(n, k)

1
1 1
1 127 1
(3.16) 1 1093 1093 1
1 3793 8905 3793 1
1 8905 30157 30157 8905 1

Figure 7. Triangle generated by Ls(n, k), 0 < k < n, sequence A300785 in OEIS,
[16].

We assume now that generalization of A287326 holds for odd powers only. To gen-

eralize our sequences A287326, A300656, A300785 for every odd power 2m+1, m =

0,1, 2... we have to review the generating functions of corresponding sequences, that

is

(3.17) S0> 0 AnE(n—kY =0 m=1,2,3

1<k<n 0<j<m
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Where A, ; are unknown coefficients of polynomials (2.1) and (2.13).

Definition 3.18. Let define the part of (2.1]) as
Z Am,jkj(n - k)] déf Lm(n7 k) déf Z Am,jTj (n7 k)
0<j<m 0<j<m

where
T(n, k) < k(n— k).
Note that Ly, (n, k) is generalization of definitions (2.12)) for m = 1 and (3.11)) for
m = 2, respectively.

For example, generating functions of sequences A287326, A300656, A300785 are

Li(n, k) =1+ 6k(n —k), for | A287326
Lo(n, k) =1 — 0k(n — k) + 30k?(n — k)2, for | A300656
L3(n,k) =1 — 14k(n — k) — 0k?(n — k)% + 140k3(n — k)3, for |A300785
Where coefficients Ay, j, for m = 1,2,3 are {A1;}i_o = {1,6}, {A2;}7 =
{1,0,30}, {Ag,j}?zo = {1,-14,0,140} in definitions of generating functions of
A287326, A300656, A300785, respectively. To generalize above result in order to
receive monomial " as 37, o Lin(n, k) = n**1 m = 0,1,2, ... one has to
solve the system of equations. Complete set of coefficients {A,, 0, ..., Am,m} such
that >, <, Lm(n, k) = n®™ 1 m > 0 holds can be found solving follow system
of equations
L(1,0) = 12m+1
Lin(2,0) + L (2,1) = 22m+1
L

(3.19) m(3,0) + Lyn(3,1) + L (3,2) = 37!

m(,0) + Ly (r,1) + -+ Ly (ryr — 1) = 721 >m

List of solutionsEl of system is split and assigned to OEIS under the numbers
A302971 (numerators of A,, ;) and A304042 (denominators of A, ;). To reach
recurrent formula of A,, ;, first let fix the unused values A,, ; =0, for j <O or j >
m, so we don’t need to care about the summation range for j, then by expanding
(n — k)7 and using Faulhaber’s formula [7], we get

n—1 n—1 oo .
(320) S (n— kyiH = Zz()naz gt
k=0 k=0 =<
P\ pimi GDY AN~ (I g it g
<z)” i+j+1 zt: ¢ e GEAR
N_CD (441, s oo (7)) (L i
) B,n2 _ ) B onl
<i)i+j+1< t e Z i)y 1

(%) ()

>
>

1One can produce a list of solutions of system (2.4) up to ¢ = 11 using Mathematica code
solutions_system_2_4.txt, [24].
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where B, are Bernoulli numbers [I4]. Now, we notice that

(3.21) §§<UVJ)C+J+1)_ i+ (%)’ if t = 0;
. . . . = 71‘7 ) .
—\iJi+j+1 t (t) (2j—]t+1)’ £i>0

In particular, the last sum is zero for 0 < ¢ < j. Now we substitute the terms from
right part of (3.25) into (), thus

ot

Therefore, (3.24) takes the form
1

* N n—kYE = ; (—1)? J p2i+1-t
" k:o( o <2j+1>(2j)+t>z0 t ( )Bt

o0 . ;

7\ (=1 i
E — 2 BiioandT?
: (z’)i+j+1 i

(o)
Now, we keep our attention to () and we have to remember that if the sum over
some variable i contains (Z), then instead of limiting its summation range to i =

0,...,7, we can let ¢ = —o0, ..., +00 since (Z) = 0 for ¢ outside the range i =0, ..., j
(i.e., when ¢ < 0 or ¢ > j). It’s much easier to review such sum as summing from
—00 to +oo (unless specified otherwise), where only a finite number of terms are
nonzero, this fact is discussed in [28] as well. To combine or cancel identical terms
across the two sums in (%) more easily, we introduce ¢ = 25 + 1 — ¢ to (*) and
{=7j—1to (0), we get

n—1 e} ; .
- Ly (-1 (] .
(322) Y (n—kyk = ——— ¥ty > < >sz+1en
P (2J+1)(3‘J) = 27 4+1—-4\/4

- j) (=1 ¢
oy ()
z_—oo(é 2j4+1—-4
1 n2i+1 (=1) () ¢

= — +2 —_— Boji1_m'.
EETO KA L

Now, using the definition of A,, ;, we obtain the following identity for polynomials
inn

. _l)j
2 2J+1 2 J (73 L l
(3.23) Z m,J o 1)(2J) + ) % g (€ 57 41— g -

= n2m+1.

Taking the coefficient of n?™*1 in above expression, we get A, , = (2m + 1)(27;"),

and taking the coefficient of z2?*! for an integer d in the range m/2 < d < m we
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get Ay, q = 0. Taking the coefficient of n?4*! in (2.8) for m/4 < d < m/2 , we get
1 2m m (=1)™

3.24 Apda—— +2(2 1 ————Bom—24 =0,

(324 ’d(2d+1)(2j)+ (2m + )<m)<2d+1)2m—2d am—2d

i.e

_ 2m + 1)! 1

3.25 Apag=(—1)m"1 (

(3:25) a=(=1) didim!(m —2d—1)!m—d

Continue similarly, we can express A,,; for each integer j in range m/25T1 <
j < m/2% (iterating consecutively s = 1,2,...) via previously determined values of
A, d < j as follows

. 27\ & d N\ (-1)?1
(3.26) A j = (2;+1)<j> > Am7d<2j+1> g Bu-a

d=2j+1

Boym—24.

The same formula holds also for m = 0. Note that in above sum m have to be
m > 2j + 1 to return nonzero term A,, ;.

Definition 3.27. We define here a generalized sequence of coefficients A,, ;, such
that ZZ;S Z;n:[) A j(n—k) kI =n**l n>0, m=0,12,..

0, if j<Oorj>m
. _1yd—1 . .
Am,j = (2] + 1)(2]‘7) E?:2j+1 Am,d (2],?_1)%32(1_2]', if 0 S J <m
(2j+1)(2j3), if j=m

Five initial rows of triangle generated by A,, ; are

1
1 6
1 0 30
(3.28) 1 -14 0 140
1 -120 0 0 630
1 -1386 660 0 0 2772

Figure 8. Triangle generated by A,, ;, 0 < j < m, sequences |A302971
(numerators of A,, ;) and |A304042/ (denominators of A,, ;).

Note that starting from row m > 11 the terms of Triangle consist fractional
numbers, for example, A;1; = 800361655623,6. One can find complete list of
the numerators and denominators of A,, ; in OEIS under the identifiers A302971
and A304042, respectively, see [17],[18]. To verify the terms that definition
produces one should refer to Mathematica codeﬂ Hereby, let be theorem

Theorem 3.29. For every positive integers n and m holds

Z ZAm,jkj(n — k)7 =np2mtt

1<k<n j

2def_2_12.txt} [25]


https://oeis.org/A302971
https://oeis.org/A304042
https://kolosovpetro.github.io/mathematica_codes/def_2_12.txt
http://dx.doi.org/10.20944/preprints201711.0157.v5
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One can verify results concerning above theorem via Mathematica codd”] There-

fore, [theorem (3.29)| answers to the question |question (2.23)| positively, since for

every m > 0 exists a triangle, generated by Zj A j ki (n — k)7 = n®>m*1 such that

odd power n2™*! can be reached as sum of n-th row of corresponding triangle over

k and |A287326| is partial case for m = 1.
3.1. Properties of L,,(n, k) and A,, ;. Here we show a few properties of definition
Ly, (n, k), some of them correlates with properties of partial case Ly (n, k) in[2.15
(1) Sum of A,, j, m > 0 gives
Do Amy = 22 1
j=0
(2) Similarly to particular property (1.28), items of {L,(n,k)}}_,, m > 0 is
symmetric, i.e
Lyn(n,k)=Lyp(n,n—4%k), n>0,0<k<n
(3) From for every n > 0, m > 0 immediately follows
> 2 An T k) = > Y AniTI(nk)
1<k<n j>0 0<k<n—13>0

(4) Apm, m=0,1,2,... are terms of A002457.
(5) For every m >0

Am,O =1
(6) For each m >0

S A, = Z(W“) 9

>0 o\
SN A k) = nt DD AT (0, k)
1<k<n j>0 2<k<n j>1

(7) For each even power 2m, m > 0 and n € Z we have
1 .
S Y oA T (0 k) = nPm
1<k<n j>0

(8) Forward and inverse summation identity

Z Z Am»jTj (n, k) = Z Z Am7m—ij_j (n, k)

1<k<n j=0 1<k<n j=0

3expression,2,1.txt, [26].


https://oeis.org/A287326
https://oeis.org/A002457
https://kolosovpetro.github.io/mathematica_codes/expression_2_1.txt
http://dx.doi.org/10.20944/preprints201711.0157.v5
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3.2. Example of use. Recall existing pattern

1
1 6
1 0 30
(3.30) 1 -14 0 140
1 -120 0 0 630
1 -1386 660 0 0 2772

Figure 9. Triangle generated by A,, ;, 0 <7 < m.
By received formula Z;& >i50 A ;T (n, k) = n*™T! each line of above triangle
being multiplied by 77(n, k) and summed up to n or n — 1 over k from 0 or 1,
respectively, will result odd power of n, depending on which row of 4., ;, 0 <5 <m
is applied. Consider the case n = 3, m = 2, we introduce triangle built using
T(n,k), 1 <k<n,

(3.31)

Figure 10. Triangle generated by T'(n, k), 1 < k < n, sequence A094053, [29] in
OEIS.

Then,

¥ = 140-2'430-2?
1+0-2'+30-22
14+0-0'430-0?
= 121+ 121 +1 =243

We’ve highlighted the terms of Ay ; and T'(3, k) with different colors to be more
easily to see regularity. Result we received are terms of the third row of triangle
A300656.

+
+
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5. CONCLUSION

In this paper particular pattern, that is binomial distributed triangle [A287326|in
OEIS, which shows perfect cube n as sum of row termsover 0 < k <n—1lorl <k <
n is generalized. Firstly, we discussed analogs of |A287326 for powers 2m+1 = 15,7,
sequences A300656, A300785, respectively, then we derived coefficients A, ;, such
that for every n > 0 and m > 0 holds

Do D) AnyT (0 k) = n*mt

1<k<n j>0
where A,, ; is defined by |definition (3.27)l Therefore, question
is answered positively. Section [3|is totally dedicated to complete and extended
derivation of identity 35, pcp, 250 Am,;T7 (0, k) = n®™ 1. Properties of triangle
and L,,(n, k) are shown in [properties 2.15| and [subsection 3.1} respectively.
Relation between Faulhaber’s sum > n"™ and finite differences of power are shown

in 2.3
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