
FURTHER EXTENSION OF EXTENDED FRACTIONAL DERIVATIVE
OPERATOR OF RIEMANN-LIOUVILLE

GAUHAR RAHMAN, SHAHID MUBEEN, KOTTAKKARAN SOOPPY NISAR*

Abstract. The main objective of this present paper is to establish the extension of

an extended fractional derivative operator by using an extended beta function recently

defined by Parmar et al. by considering the Bessel functions in its kernel. Also, we give

some results related to the newly defined fractional operator such as Mellin transform

and relations to extended hypergeometric and Appell’s function via generating functions.

1. introduction

Recently, the application and importance of fractional calculus have been paid more

attention. In the field of mathematical analysis, the fractional calculus is a more helpful

tool to find out differentials and integrals with the real numbers or with the complex num-

bers powers of the fractional calculus. Various extensions and generalization of fractional

derivative operators are recently investigated by the researchers (see [6, 8, 12, 16, 17]).

We begin with the definition of Euler’s beta function

β(σ1, σ2) =

∞∫
0

tσ1−1(1− t)σ2−1dt, (<(σ1) > 0,<(σ2) > 0), (1.1)

and its relation with gamma function is given by

β(σ1, σ2) =
Γ(σ1)Γ(σ2)

Γ(σ1 + σ2)
.

The Gauss hypergeometric and the confluent hypergeometric functions which are respec-

tively defined by(see [15])

2F1(σ1, σ2;σ3; z) =
∞∑
n=0

(σ1)n(σ2)n
(σ3)n

zn

n!
, (|z| < 1), (1.2)

(
σ1, σ2, σ3 ∈ C and σ3 6= 0,−1,−2,−3, · · ·

)
,

and

1Φ1(σ2;σ3; z) =
∞∑
n=0

(σ2)n
(σ3)n

zn

n!
, (|z| < 1), (1.3)

(
σ2, σ3 ∈ C and σ3 6= 0,−1,−2,−3, · · ·

)
.
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The Appell’s series or bivariate hypergeometric series is defined by

F1(σ1, σ2, σ3;σ4;x, y) =
∞∑

m,n=0

(σ1)m+n(σ2)m(σ3)nx
myn

(σ4)m+nm!n!
; (1.4)

for all σ1, σ2, σ3, σ4 ∈ C, σ4 6= 0,−1,−2,−3, · · · , |x| < 1, |y| < 1.

The integral representation of (1.2), (1.3) and (1.4) are respectively defined by

2F1(σ1, σ2;σ3; z) =
Γ(σ3)

Γ(σ2)Γ(σ3 − σ2)

∫ 1

0

tσ2−1(1− t)σ3−σ2−1(1− zt)−σ1dt, (1.5)(
<(σ3) > <(σ2) > 0, | arg(1− z)| < π

)
,

and

1Φ1(σ2;σ3; z) =
Γ(σ3)

Γ(σ2)Γ(σ3 − σ2)

∫ 1

0

tσ2−1(1− t)σ3−σ2−1eztdt, (1.6)(
<(σ3) > <(σ2) > 0

)
.

F1

(
σ1, σ2, σ3;σ4;x, y

)
=

Γ(σ4)

Γ(σ1)Γ(σ4 − σ1)

×
1∫

0

tσ1−1(1− t)σ4−σ1−1(1− xt)−σ2(1− yt)−σ3dt (1.7)

Chaudhry et al. [2] introduced the extended beta function which is defined by

β(σ1, σ2; p) = βp(σ1, σ2) =

∞∫
0

tσ1−1(1− t)σ2−1e−
p

t(1−t)dt (1.8)

(where <(p) > 0,<(σ1) > 0,<(σ2) > 0). When p = 0, then β(σ1, σ2; 0) = β(σ1, σ2).

The extended hypergeometric and confluent hypergeometric functions is defined in [3] as

follows:

Fp(σ1, σ2;σ3; z) =
∞∑
n=0

βp(σ2 + n, σ3 − σ2)
β(σ2, σ3 − σ2)

(σ1)n
zn

n!
(1.9)

and

Φp(σ2;σ3; z) =
∞∑
n=0

βp(σ2 + n, σ3 − σ2)
β(σ2, σ3 − σ2)

zn

n!
(1.10)

where p ≥ 0.

Also, in [3] authors defined the following integral representations of extended hypergeo-

metric and confluent hypergeometric functions as

Fp(σ1, σ2;σ3; z) =
1

β(σ2, σ3 − σ2)

×
∫ 1

0

tσ2−1(1− t)σ3−σ2−1(1− zt)−σ1 exp
( −p
t(1− t)

)
dt, (1.11)(

p ≥ 0,<(σ3) > <(σ2) > 0, | arg(1− z)| < π
)
,
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and

Φp(σ2, σ3; γ; z) =
1

β(σ2, σ3 − σ2)

∫ 1

0

tσ2−1(1− t)σ3−σ2−1 exp
(
zt− p

t(1− t)

)
dt, (1.12)(

p ≥ 0,<(σ3) > <(σ2) > 0
)
.

The extended Appell’s function is defined by (see [10])

F1(σ1, σ2, σ3;σ4;x, y; p) =
∞∑
n=0

βp(σ1 +m+ n, σ4 − σ1)
β(σ1, σ4 − σ1)

(σ2)m(σ3)n
xmyn

m!n!
(1.13)

where p ≥ 0 and its integral representation by

F1(σ1, σ2, σ3;σ4;x, y; p) =
1

β(σ1, σ4 − σ1)

∫ 1

0

tσ1−1(1− t)σ4−σ1−1(1− xt)−σ2(1− yt)−σ3

× exp
( −p
t(1− t)

)
dt, (1.14)(

p ≥ 0,<(σ4) > <(σ1) > 0, | arg(1− x)| < π, | arg(1− y)| < π
)
.

It is clear that when p = 0, then the equations (1.9)-(1.14) reduce to the well known hyper-

geometric, confluent hypergeometric and Appell’s series and their integral representation

respectively.

For various extensions and generalization the readers may follow the recent work of

researchers (see e.g., [1, 4, 9]). Parmar et al. [14] introduced the following extended beta

function as

βv(σ1, σ2; p) =

√
2p

π

∫ 1

0

tσ1−
3
2 (1− t)y−

3
2Kv+ 1

2

( p

t(1− t)

)
dt, (1.15)

where Kv+ 1
2
(.) is the modified Bessel function of order v + 1

2
. Clearly, when v = 0 then

(1.15) reduces to (1.8) by using the fact that K 1
2

(
z
)

=
√

π
2z
e−z. Also, the following

extended hypergeometric and confluent hypergeometric functions and their integral rep-

resentation respectively as (see, [14]):

Fp,v

(
σ1, σ2;σ3; z

)
=
∞∑
n=0

(σ1)n
βv(σ2 + n, σ3 − σ2; p)

β(σ2, σ3 − σ2)
zn

n!
, (1.16)

(
p, v ≥ 0 ,<(σ3 > σ2 > 0 , |z| < 1

)
.

Φp,v

(
σ2;σ3; z

)
=
∞∑
n=0

βv(σ2 + n, σ3 − σ2; p)
β(σ2, σ3 − σ2)

zn

n!
, (1.17)

(
p, v ≥ 0 ,<(σ3 > σ2 > 0

)
.

Fp,v

(
σ1, σ2;σ3; z

)
=

√
2p

π

1

β(σ2, σ3 − σ2)

×
∫ 1

0

tσ2−
3
2 (1− t)σ3−σ2−

3
2 (1− zt)−σ1Kv+ 1

2

( p

t(1− t)

)
dt, (1.18)
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4 G. RAHMAN, S. MUBEEN, K.S. NISAR(
p, v ≥ 0 ,<(σ3 > σ2 > 0 , | arg(1− z)| < π

)
.

and

Φp,v

(
σ2;σ3; z

)
=

√
2p

π

1

β(σ2, σ3 − σ2)

×
∫ 1

0

tσ2−
3
2 (1− t)σ3−σ2−

3
2 exp(zt)Kv+ 1

2

( p

t(1− t)

)
dt, (1.19)(

p, v ≥ 0 ,<(σ3 > σ2 > 0
)
.

They also obtained the following transformation formula for extended confluent hyperge-

ometric function

Φp,v(σ2, σ3; γ; z) = ezΦp,v

(
σ3 − σ2;σ3;−z

)
. (1.20)

It is clear that, when v = 0 then the equations (1.16)-(1.19) reduce to the extended hyper-

geometric, confluent hypergeometric functions and their integral representations defined

in (1.9)-(1.12) respectively by using the fact that K 1
2

(
z
)

=
√

π
2z
e−z.

Recently Dar and Paris [5] have introduced the following Appell’s hypergeometric function

by

F1,p,v

(
σ1, σ2, σ3;σ4;x, y

)
= F1,v

(
σ1, σ2, σ3;σ4;x, y; p

)
=
∑
m,n=0

(σ2)m(σ3)n
β(σ1 +m+ n, σ4 − σ1)

β(σ1, σ4 − σ1)
xmyn

n!m!
, (1.21)

where |x| < 1, |y| < 1, σ1, σ2, σ3, σ4 ∈ C, σ4 6== 0,−1,−2,−3, · · · .
In the same paper, they [5] defined its integral representation as:

F1,p,v

(
σ1, σ2, σ3;σ4;x, y

)
=

√
2p

π

1

β(σ1, σ4 − σ1)

∫ 1

0

tσ1−
3
2 (1− t)σ4−σ1−

3
2 (1− tx)−σ2(1− ty)−σ3

×Kv+ 1
2

( p

t(1− t)

)
dt, (1.22)

where <(p) ≥ 0, v ≥ 0, <(σ4) > <(σ1) > 0, | arg(1 − x)| < π and | arg(1 − y)| < π.

Obviously, when v = 0 in (1.21) and (1.22) then we get the extended Appell function

and its integral representation (see , (1.13) and (1.14)) by using the fact that K 1
2

(
z
)

=√
π
2z
e−z. Similarly, when v = p = 0 then (1.21) and (1.22) reduce to the well-known

classical Appell’s function and its integral representation.

2. Extension of fractional derivative operator

In this section, we define further extension of extended Riemann-Liouville fractional

derivative.

Definition 2.1. The well-known Riemann-Liouville fractional derivative of order µ is

defined by

Dµ
x{f(x)} =

1

Γ(−µ)

∫ x

0

f(t)(x− t)−µ−1dt,<(µ) > 0. (2.1)
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For the case m− 1 < <(µ) < m where m = 1, 2, · · · , it follows

Dµ
x{f(z)} =

dm

dxm
Dµ−m
x

{
f(x)

}
=

dm

dxm

{ 1

Γ(−µ+m)

∫ x

0

f(t)(x− t)−µ+m−1dt
}
,<(µ) > 0. (2.2)

Definition 2.2. (see [10]) The extended Riemann-Liouville fractional derivative of order

µ is defined by

Dµ
x{f(x); p} =

1

Γ(−µ)

∫ x

0

f(t)(x− t)−µ−1 exp
(
− px2

t(x− t)

)
dt,<(µ) > 0. (2.3)

For the case m− 1 < <(µ) < m where m = 1, 2, · · · , it follows

Dµ
x{f(z); p} =

dm

dxm
Dµ−m
x

{
f(x); p

}
=

dm

dxm

{ 1

Γ(−µ+m)

∫ x

0

f(t)(x− t)−µ+m−1 exp
(
− px2

t(x− t)

)
dt
}
,<(µ) > 0.

(2.4)

Definition 2.3. (see [1])

Dµ
x{f(x); p, q} =

1

Γ(−µ)

∫ x

0

f(t)(x− t)−µ−1. exp
(
− px

t
− qx

(x− t)

)
dt,<(µ) > 0. (2.5)

For the case m− 1 < <(µ) < m where m = 1, 2, · · · , it follows

Dµ
x{f(z); p, q} =

dm

dxm
Dµ−m
x

{
f(x); p, q

}
=

dm

dxm

{ 1

Γ(−µ+m)

∫ x

0

f(t)(x− t)−µ+m−1

× exp
(
− px

t
− qx

(x− t)

)
dt
}
,<(µ) > 0. (2.6)

Recently Rahman et al. [16] defined a new extension Riemann-Liouville fractional

derivative of order µ as:

Definition 2.4. The extension of extended Riemann-Liouville fractional derivative of

order µ as

Dµ
x{f(x); p, q, λ, ρ} =

1

Γ(−µ)

∫ x

0

f(t)(x− t)−µ−1

×1 F1

[
λ; ρ;−px

t

]
1F1

[
λ; ρ;− qx

(x− t)

]
dt,<(µ) > 0. (2.7)

For the case m− 1 < <(µ) < m where m = 1, 2, · · · , it follows

Dµ
x{f(z); p, q, λ, ρ} =

dm

dxm
Dµ−m
x

{
f(x); p, q, λ, ρ

}
=

dm

dxm

{ 1

Γ(−µ+m)

∫ x

0

f(t)(x− t)−µ+m−11 F1

[
λ; ρ;−px

t

]
1F1

[
λ; ρ;− qx

(x− t)

]
dt
}
, (2.8)

where <(µ) > 0, <(p) > 0 and <(q) > 0.
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Next, we give an extension of extended Riemann-Liouville fractional derivative operator

(2.2) of order µ as:

Definition 2.5. The extension of extended Riemann-Liouville fractional derivative of

order µ as

Dµ
x{f(x); p, v} =

√
2p

π

1

Γ(−µ)

∫ x

0

f(t)(x− t)−µ−
3
2Kv+ 1

2

( px2

t(x− t)

)
dt,<(µ) > 0. (2.9)

For the case m− 1 < <(µ) < m where m = 1, 2, · · · , it follows

Dµ
x{f(x); p, v} =

dm

dxm
Dµ−m
x

{
f(x); p, v

}
=

dm

dxm

{√2p

π

1

Γ(−µ+m)

∫ x

0

f(t)(x− t)−µ+m−
3
2Kv+ 1

2

( px2

t(x− t)

)
dt
}
, (2.10)

where <(µ) > 0, <(p) > 0 and v ≥ 0.

Remark 2.1. Clearly

(i) If v = 0, then definition 2.5 reduces to extended fractional derivative defined in defini-

tion 2.2 by using the fact that K 1
2

(
z
)

=
√

π
2z
e−z.

(ii) If v = p = 0 , then definition 2.5 reduces to the Riemann-Liouville fractional deriva-

tive defined in definition 2.1.

Now, we prove some theorem involving the extension of fractional derivative.

Theorem 2.1. The following formula hold true,

Dµ
z{zη; p, v} =

βp,v(η + 3
2
,−µ)

Γ(−µ)
zη−µ−

1
2 ,<(µ) > 0. (2.11)

Proof. From (2.9), we have

Dµ
z{zη; p, v} =

√
2p

π

1

Γ(−µ)

∫ z

0

tη(z − t)−µ−
3
2Kv+ 1

2

( pz2

t(z − t)

)
dt. (2.12)

Substituting t = uz in (2.12), we get

Dµ
z{zη; p, v} =

√
2p

π

1

Γ(−µ)

∫ 1

0

(uz)η(z − uz)−µ−
3
2 Kv+ 1

2

( pz2

uz(z − uz)

)
du

=
zη−µ−

1
2

√
2p
π

Γ(−µ)

∫ 1

0

uη(1− u)−µ−
3
2 Kv+ 1

2

( p

u(1− u)

)
du,

by applying definition (1.15) to the above equation, we get the desired result. �

Theorem 2.2. Let <(µ) > 0 and suppose that the function f(z) is analytic at the origin

with its Maclaurin expansion given by f(z) =
∑∞

n=0 anz
n where |z| < δ for some δ ∈ R+.

Then

Dµ
z{f(z); p, v} =

∞∑
n=0

anD
µ
z{zn; p, v}. (2.13)
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Proof. Using the series expansion of the function f(z) in (2.7) gives

Dµ
z{f(z); p, v} =

√
2p

π

1

Γ(−µ)

∫ z

0

∞∑
n=0

ant
n(z − t)−µ−

3
2Kv+ 1

2

( pz2

t(z − t)

)
dt.

As the series is uniformly convergent on any closed disk centered at the origin with its

radius smaller then δ, therefore the series so does on the line segment from 0 to a fixed z

for |z| < δ. Thus it guarantee terms by terms integration as follows

Dµ
z{f(z); p, v} =

∞∑
n=0

an

{√2p

π

1

Γ(−µ)

∫ z

0

tn(z − t)−µ−
3
2 Kv+ 1

2

( pz2

t(z − t)

)
dt
}

=
∞∑
n=0

anD
µ
z{zn; p, v},

which is the required proof. �

Theorem 2.3. The following result holds true:

Dη−µ
z {zη−

3
2 (1− z)−β; p, v} =

Γ(η)

Γ(µ)
zµ−2 2F

λ,ρ
1;p,v

(
β, η;µ; z

)
, (2.14)

where <(µ) > <(η) > 0 and |z| < 1.

Proof. By direct calculation, we have

Dη−µ
z {zη−

3
2 (1− z)−β; p, v} =

√
2p

π

1

Γ(µ− η)

∫ z

0

tη−
3
2 (1− t)−β(z − t)µ−η−

3
2

×Kv+ 1
2

( pz2

t(z − t)

)
dt

=

√
2p

π

zµ−η−
3
2

Γ(µ− η)

∫ z

0

tη−
3
2 (1− t)−β(1− t

z
)µ−η−

3
2

×Kv+ 1
2

( pz2

t(z − t)

)
dt.

Substituting t = zu in the above equation, we get

Dη−µ
z {zη−

3
2 (1− z)−β; p, v} =

zµ−2

Γ(µ− η)

√
2p

π

∫ 1

0

uη−
3
2 (1− uz)−β(1− u)µ−η−

3
2

×Kv+ 1
2

( p

u(1− u)

)
du.

Using (1.16) and after simplification we get the required proof. �

Theorem 2.4. The following result holds true:

Dη−µ
z {zη−

3
2 (1− az)−α(1− bz)−β; p, v} =

Γ(η)

Γ(µ)
zµ−2F1

(
η, α, β;µ; az, bz; p, v

)
, (2.15)

where <(µ) > <(η) > 0, <(α) > 0, <(β) > 0, |az| < 1 and |bz| < 1.
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Proof. To prove(2.15), we use the following power series expansion

(1− az)−α(1− bz)−β =
∞∑
m=0

∞∑
n=0

(α)m(β)n
(az)m

m!

(bz)n

n!
.

Now, applying Theorem 2.3, we obtain

Dη−µ
z {zη−

3
2 (1− az)−α(1− bz)−β; p, v}

=
∞∑
m=0

∞∑
n=0

(α)m(β)n
(a)m

m!

(b)n

n!
Dη−µ
z {zη+m+n− 3

2 ; p, v}

=
∞∑
m=0

∞∑
n=0

(α)m(β)n
(a)m

m!

(b)n

n!

βp,v(η +m+ n, µ− η)

Γ(µ− η)
zµ+m+n−2.

Now, applying (1.21), we get

Dη−µ
z {zη−

3
2 (1− az)−α(1− bz)−β; p, v} =

Γ(η)

Γ(µ)
zµ−2F1

(
η, α, β;µ; az, bz; p, v

)
.

�

Theorem 2.5. The following Mellin transform formula holds true:

M
{
Dµ
z;p,v(z

η); p→ r
}

=
zη−µ−

1
2 2r−1Γ( r−v

2
)Γ( r+v+1

2
)

√
πΓ(−µ)

β(η + r, r − µ), (2.16)

where <(η) > −1, <(µ) > 0, <(r) > 0.

Proof. Applying the Mellin transform on definition (2.9), we have

M
{
Dµ
z;p,v(z

η); p→ r
}

=

∫ ∞
0

pr−1Dµ
z;p,v(z

η)dp

=

√
2p

π

1

Γ(−µ)

∫ ∞
0

pr−1
{∫ z

0

tη(z − t)−µ−
3
2 Kv+ 1

2

( pz2

t(z − t)

)
dt
}
dp

=
z−µ−

3
2

√
2p
π

Γ(−µ)

∫ ∞
0

∫ ∞
0

pr−1
{∫ z

0

tη(1− t

z
)−µ−

3
2 ×Kv+ 1

2

( pz2

t(z − t)

)
dt
}
dp

=
zη−µ−

1
2

√
2p
π

Γ(−µ)

∫ ∞
0

pr−1
{∫ 1

0

uη(1− u)−µ−
3
2 Kv+ 1

2

( p

u(1− u)

)
du
}
dp

=
zη−µ−

1
2

√
2
π

Γ(−µ)

∫ 1

0

uη(1− u)−µ−
3
2

(∫ ∞
0

pr−
1
2Kv+ 1

2

( p

u(1− u)

)
dp
)
du. (2.17)

Since ∫ ∞
0

pr−
1
2Kv+ 1

2

( p

t(1− t)

)
dp = ur+

1
2 (1− u)r+

1
2

∫ ∞
0

wr−
1
2Kv+ 1

2

(
w
)
dw

= ur+
1
2 (1− u)r+

1
2 2r−

3
2 Γ(

r − v
2

)Γ(
r + v + 1

2
). (2.18)
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where w = p
u(1−u) , <(r− v) > 0, <(r+ v) > −1 (see [14] and [12]). Using (2.18) in (2.17),

we obtain

M
{
Dµ
z;p,v(z

η); p→ r
}

=
zη−µ−

1
2 2r−1Γ( r−v

2
)Γ( r+v+1

2
)

√
πΓ(−µ)

∫ 1

0

uη+r−1(1− u)r−µ−1du

=
zη−µ−

1
2 2r−1Γ( r−v

2
)Γ( r+v+1

2
)

√
πΓ(−µ)

β(η + r, r − µ),

which completes the proof. �

Theorem 2.6. The following Mellin transform formula holds true:

M
{
Dµ
z;p,v((1− z)−α); p→ r

}
=

2r−1Γ( r−v
2

)Γ( r+v+1
2

)z−µ−
1
2

√
πΓ(−µ)

× β(r, r − µ) 2F1

(
α, r; r − µ; z

)
, (2.19)

where <(α) > 0, <(µ) < 0, <(r) > 0, <(r) > 0 and |z| < 1.

Proof. Using the power series for (1− z)−α and applying Theorem 2.5 with η = n, we can

write

M
{
Dµ
z;p,v((1− z)−α); p→ r

}
=
∞∑
n=0

(α)n
n!

M
{
Dµ
z;p,v(z

n); p→ r
}

=
2r−1Γ( r−v

2
)Γ( r+v+1

2
)

√
πΓ(−µ)

∞∑
n=0

(α)n
n!

β(n+ r, r − µ)zn−µ−
1
2

=
2r−1Γ( r−v

2
)Γ( r+v+1

2
)z−µ−

1
2

√
πΓ(−µ)

∞∑
n=0

β(n+ r, r − µ)
(α)nz

n

n!

=
2r−1Γ( r−v

2
)Γ( r+v+1

2
)z−µ−

1
2

√
πΓ(−µ)

β(r, r − µ) 2F1

(
α, r; r − µ; z

)
,

which is the required proof. �

3. Generating relations and some further results

In this section, we derive some generating relations of linear and bilinear type for the

extended (p, v)-hypergeometric functions.

Theorem 3.1. The following generating relation holds true:

∞∑
n=0

(α)n
n!

2F1;p,v

(
α + n, β; γ; z

)
tn = (1− t)−α 2F1;p,v

(
α, β; γ;

z

1− t

)
, (3.1)

where |z| < min(|1, 1− t|), <(α) > 0, <(γ) > <(β) > 0.

Proof. Consider the following series identity

[(1− z)− t]−α = (1− t)−α[1− x

1− t
]−α.
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Thus, the power series expansion yields

∞∑
n=0

(α)n
n!

(1− z)−α
( t

1− z

)n
= (1− t)−α[1− z

1− t
]−α. (3.2)

Multiplying both sides of (3.2) by zβ−
3
2 and then applying the operator Dβ−γ;λ,ρ

z;p,q on both

sides, we have

Dβ−γ
z;p,v

[ ∞∑
n=0

(α)n
n!

(1− z)−α
( t

1− z

)n
zβ−

3
2

]
= (1− t)−αDβ−γ

z;p,v

[
zβ−

3
2

(
1− z

1− t

)−α]
.

Interchanging the order of summation and the operator Dβ−γ
z;p,v, we have

∞∑
n=0

(α)n
n!

Dβ−γ
z;p,v

[
zβ−

3
2 (1− z)−α−n

]
tn = (1− t)−αDβ−γ

z;p,v

[
zβ−

3
2

(
1− z

1− t

)−α]
.

Thus by applying Theorem 2.3, we obtain the required result. �

Theorem 3.2. The following generating relation holds true:

∞∑
n=0

(β)n
n!

2F1;p,v

(
δ − n, β; γ; z

)
tn = (1− t)−βF1

(
α, δ, β; γ;− zt

1− t
; p, v

)
, (3.3)

where |t| < 1
1+|t| , <(δ) > 0, <(β) > 0, <(γ) > <(α) > 0.

Proof. Consider the series identity

[1− (1− z)t]−β = (1− t)−β
[
1 +

zt

1− t

]−β
.

Using the power series expansion to the left sides, we have

∞∑
n=0

(β)n
n!

(1− z)ntn = (1− t)−β
[
1− −zt

1− t

]−β
. (3.4)

Multiplying both sides of (3.4) by zα−
3
2 (1− z)−δ and applying the operator Dα−γ

z;p,v on both

sides, we have

Dα−γ
z;p,v

[ ∞∑
n=0

(β)n
n!

zα−
3
2 (1− z)−δ+ntn

]
= (1− t)−βDα−γ

z;p,v

[
zα−

3
2 (1− z)−δ

(
1− −zt

1− t

)−β]
,

where <(α) > 0 and |zt| < |1− t|, thus by Theorem 2.2, we have

∞∑
n=0

(β)n
n!

Dα−γ
z;p,v

[
zα−

3
2 (1− z)−δ+n

]
tn = (1− t)−βDα−γ

z;p,v

[
zα−

3
2 (1− z)−δ

(
1− −zt

1− t

)−β]
.

Applying Theorem 2.4 on both sides, we get the desired result. �

Theorem 3.3. The following result holds true:

Dη−µ
z;p,v

[
zη−

3
2Eµ

γ,δ(z)
]

=
zµ−2

Γ(µ− η)

∞∑
n=0

(µ)n
Γ(γn+ δ)

βp,v(η + n, µ− η)
zn

n!
, (3.5)
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where γ, δ, µ ∈ C, <(p) > 0, <(q) > 0, <(µ) > <(η) > 0, <(λ) > 0, <(ρ) > 0 and Eµ
γ,δ(z)

is Mittag-Leffler function (see [13]) defined as:

Eµ
γ,δ(z) =

∞∑
n=0

(µ)n
Γ(γn+ δ)

zn

n!
. (3.6)

Proof. Using (3.6) in (3.5), we have

Dη−µ
z;p,v

[
zη−

3
2Eµ

γ,δ(z)
]

= Dη−µ
z;p,v

[
zη−

3
2

{ ∞∑
n=0

(µ)n
Γ(γn+ δ)

zn

n!

}]
.

By Theorem 2.2, we have

Dη−µ
z;p,v

[
zη−

3
2Eµ

γ,δ(z)
]

=
∞∑
n=0

(µ)n
Γ(γn+ δ)

{
Dη−µ
z;p,v

[
zη+n−

3
2

]}
.

Applying Theorem 2.1, we get the required proof. �

Theorem 3.4. The following result holds true:

Dη−µ
z;p,v

{
zη−

3
2 mΨn

 (αi, Ai)1,m;

|z
(βj, Bj)1,n;

} =
zµ−2

Γ(µ− η)

×
∞∑
k=0

∏m
i=1 Γ(αi + Aik)∏n
j=1 Γ(βj +Bjk

βλ,ρp,v (η + k, µ− η)
zk

k!
,

(3.7)

where <(p) > 0, <(q) > 0, <(µ) > <(η) > 0, <(λ) > 0, <(ρ) > 0 and mΨn(z) denotes

Fox-Wright function defined by (see [7], pp. 56-58)

mΨn(z) = mΨn

 (αi, Ai)1,m;

|z
(βj, Bj)1,n;

 =
∞∑
k=0

∏m
i=1 Γ(αi + Aik)∏n
j=1 Γ(βj +Bjk

zk

k!
. (3.8)

Proof. Applying Theorem 2.1 and followed the same procedure used in Theorem 3.3, we

get the desired result. �

4. Concluding remarks

In this paper, we established the extension of extended fractional derivative operator.

We conclude that when v = 0 and using the fact that K 1
2

(
z
)

=
√

π
2z
e−z then all the

results established in this paper will reduce to the results obtained by Kiymaz et al. see

[6].Also, when p = v = 0 then we get the results related to the classical Reimann-Liouville

fractional derivative operator.
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