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FURTHER EXTENSION OF EXTENDED FRACTIONAL DERIVATIVE
OPERATOR OF RIEMANN-LIOUVILLE

GAUHAR RAHMAN, SHAHID MUBEEN, KOTTAKKARAN SOOPPY NISAR*

ABSTRACT. The main objective of this present paper is to establish the extension of
an extended fractional derivative operator by using an extended beta function recently
defined by Parmar et al. by considering the Bessel functions in its kernel. Also, we give
some results related to the newly defined fractional operator such as Mellin transform

and relations to extended hypergeometric and Appell’s function via generating functions.

1. INTRODUCTION

Recently, the application and importance of fractional calculus have been paid more
attention. In the field of mathematical analysis, the fractional calculus is a more helpful
tool to find out differentials and integrals with the real numbers or with the complex num-
bers powers of the fractional calculus. Various extensions and generalization of fractional
derivative operators are recently investigated by the researchers (see [6, 8, 12, 16, 17]).

We begin with the definition of Euler’s beta function

B(oy,09) = /t”l_l(l — )27 1dt, (R(oq) > 0,R(02) > 0), (1.1)
0
and its relation with gamma function is given by
I'(01)I'(02)
5(0'1, 0'2) = m
The Gauss hypergeometric and the confluent hypergeometric functions which are respec-
tively defined by(see [15])

~ (01)n(09)n 2
o Fi(01,02;03; 2) ;%—, (J2] < 1), (1.2)
<a1,02,03 eCand o3z #0,—1,-2,-3,- ..>7

and
o0

l\z

(2] < 1), (1.3)

191(09; 03; 2

3

n=0

(02,03 € C and 037&0,—1,—2,—3,---)
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The Appell’s series or bivariate hypergeometric series is defined by

o _ S (01)mtn(02)m(03)nz™y"
Fl (017 092,03,04;, y) - mzn;() (0_4)m+nm!n! ) (]‘4>
for all 0'1,0'2,0'370'4E(C,O’47é07—]_7—2’—3’... , |.7)| < 17|y| < 1.

The integral representation of (1.2), (1.3) and (1.4) are respectively defined by

['(03) 1 o2=1(] _ $)os—02=1(] _ L4}~
F(U2)F(U3—Jz)/0 =1 (1= 2t)™"dt, (1.5)

(5)?(03) > R(oq) > 0, |arg(l — 2)| < 7r),

oF\(01,09;03;2) =

and
(o) /1 -1 —o2—1 2t
by (0y;03;2) = 1727 (1 —t)737 72 edt 1.6
1 1(027 03, Z) F(O'Q)F(O'g _ 0_2) 0 ( ) e ) ( )
(?R(Ug) > R(ow) > o)
F(O‘4)
r ( )02, 03,043 T, ) =
1(01,02,03,04;Z,Y F(Ul)F(U4 _0_1)
1
x /t”l_l(l 1ty (gt (L)
0
Chaudhry et al. [2] introduced the extended beta function which is defined by
B(o1,09;p) = By(o1,02) = /t"l_l(l - t)"rle_t(lp%t)dt (1.8)
0

(where R(p) > 0,R(01) > 0, R(02) > 0). When p = 0, then 3(01, 09;0) = (01, 02).

The extended hypergeometric and confluent hypergeometric functions is defined in [3] as

follows:
Fy(0, 09 05; 2) = f: By(o2 +n, 05 — 09) (Ul)ni (1.9)
“—~  B(02,03—02) n!
and
> 09+ n,03 —0y) 2"
o) =3 o - (1.10)
where p > 0.

Also, in [3] authors defined the following integral representations of extended hypergeo-
metric and confluent hypergeometric functions as
1
B (U 2,03 — 0 2)
1

X / 7271 (1 — )72 (1 — 2¢) ™" exp ( - >dt, (1.11)
0

F,(01,00;03;2) =

<p > 0,R(03) > RN(o2) >0, arg(l — 2)| < 7r>,

do0i:10.20944/preprints201712.0013.v1
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and

D, (09,03;7; 2) =

1 1
) / t72 11 — )72 Lexp <zt —
0

Blog, 03 — 02
(p > 0,R(03) > R(0) > o).
The extended Appell’s function is defined by (see [10])

ﬁ)dt, (1.12)

m, n

L +m+n,o4—o0y) T

Y
Blo1,04 — 01) (02)m(03)n

mlin!

Fi(01,00,03;04;2,y;p) = Z s

n=0

(1.13)

where p > 0 and its integral representation by

) /O t7 N1 = )7 N (1 — )7 (1 — yt)

ﬁ(017<74—01

X exp (t(l_f t)>dt, (1.14)

(p > 0,R(04) > R(oy) > 0, | arg(1 — 2)| <, |arg(1 — y)| < w).

F1(01,02,03;04;3:,y;p) =

It is clear that when p = 0, then the equations (1.9)-(1.14) reduce to the well known hyper-
geometric, confluent hypergeometric and Appell’s series and their integral representation
respectively.

For various extensions and generalization the readers may follow the recent work of
researchers (see e.g., [1, 4, 9]). Parmar et al. [14] introduced the following extended beta

2p 1, s s
Bo(01,09;p) = \/g/o 7172 (1 — t)y_EKer% (ﬁ)dt, (1.15)

where K +%(.) is the modified Bessel function of order v + 3. Clearly, when v = 0 then

(1.15) reduces to (1.8) by using the fact that Ky (z) = /5.¢7 % Also, the following
extended hypergeometric and confluent hypergeometric functions and their integral rep-

function as

resentation respectively as (see, [14]):

e}

By(09 +n,03 — 095 p) 2"
FU<U,0';O';Z>: E 01)n —, 1.16
AN n:O( 2 B(oa, 03 —09)  n! (1.16)

<p7UZO,§R(03 > 09 >0,z < 1).

- By(09 +n, 05 — 023 p) 2"
o ( . 74 ): c 1.17
Db, 02,03 z ; B(O'Q,O'g . 0_2) n' ( )

(P,UZO,%(03>U2 >0>.

2 ( ) 2p 1
v\ 01,002,032 | =\ — 57— _~
P R ™ 5(02,03 —02)

! 3 3 P
1923 (1 — )87 (1 — 24) K ( )dt, 1.18
< [t -k (s (1.18)
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<p,v20,3?(03>02>0,|arg(1—z)| <7T).

and
2p 1
® v( ; 03; >= D
po\72 932 7 B(0g, 03 — 09)
[ P OEK P \at 1.19
X ; ( - ) exp(z) U+§<t(1—t>> ’ ( ’ )

(P,UZO,%(03>02 >0>.

They also obtained the following transformation formula for extended confluent hyperge-

ometric function
D, (09, 05;7;2) = 2P, <03 — 09;03; —z). (1.20)

It is clear that, when v = 0 then the equations (1.16)-(1.19) reduce to the extended hyper-
geometric, confluent hypergeometric functions and their integral representations defined
n (1.9)-(1.12) respectively by using the fact that K (z) = /5
Recently Dar and Paris [5] have introduced the following Appell’s hypergeometric function
by

e—Z

Fl,p,v (017 02,03,04,T, y> = Fl,v (01, 02,03,04,7, y;p)

B oy +m+n,04 —op) 2MY"
N Z (02)m(73)n B(o1,04 — 01) nlm!’ (1.21)

m,n=0
where |z| < 1, ly| <1, 01,09,03,04 € C, 04 #=0,—1,-2,-3,---

In the same paper, they [5] defined its integral representation as:

FLZL <Ul7 02,03,04,7, y \/ /8 0_ p o / t01_§<]‘ - t)0'4_0'1_%<1 - tx)_o'Z(l - ty)_0'3
1,04 — 1
dt, 1.22
(t(l - t)) (1.22)

where R(p) > 0, v > 0, R(o4) > R(oy) > 0, |arg(l — )| < 7 and |arg(l — y)| < 7.
Obviously, when v = 0 in (1.21) and (1.22) then we get the extended Appell function
and its integral representation (see , (1.13) and (1.14)) by using the fact that K (z) =

\/5-€ 7. Similarly, when v = p = 0 then (1.21) and (1.22) reduce to the well-known
classical Appell’s function and its integral representation.

2. EXTENSION OF FRACTIONAL DERIVATIVE OPERATOR

In this section, we define further extension of extended Riemann-Liouville fractional

derivative.

Definition 2.1. The well-known Riemann-Liouville fractional derivative of order p is
defined by

QL)) = s [ T — )7 Rp) > 0 (21)
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For the case m — 1 < R(pu) < m where m =1,2,---, it follows

dm
0L/} = e { F)}
. ddm 1 * —p+m—1
_ {r<— ) /O £ —1) at} R >0, (22)

dx™ w+m

Definition 2.2. (see [10]) The extended Riemann-Liouville fractional derivative of order
W 1s defined by

2

DL f(2); p} = (z — t) ™ Lexp ( (555_ t))dt,%(u) 0. (23)
For the case m — 1 < §R(,u) < m where m = 1,2,---, it follows
UL f(2):p} = D))
d™ 1 r e p;(;2
= T / JO@ =07 exp (= s )| R0 > 0

Definition 2.3. (see [1])

DS @)ipat = ¢ !

)(z — )" L exp ( - ’% - (xqj’ t)>dt, R(u) > 0. (2.5)

For the case m — 1 < R(u) < m where m = 1,2,---, it follows

D f(2)ip,q} = Czc—mm%“m{f(x);p,q}
- dcf:; { r(—u1+ m) /Ox B =7

X exp ( — % — (xqf t)>dt}, R(u) > 0. (2.6)

Recently Rahman et al. [16] defined a new extension Riemann-Liouville fractional

derivative of order u as:

Definition 2.4. The extension of extended Riemann-Liouville fractional derivative of
order | as

L f) .\ = 1

t)(@—1)7"

x1 Fy [A;p; —?} 1 Fy [A;p; - ]dt?ﬁ(u) > 0. (2.7)

qr
(z — 1)
For the case m — 1 < R(pu) < m where m =1,2,---, it follows
dm
Dif(2)ip,q. A p} = - 205" m{f(x);nq,k,p}

_ dcf::n{f‘(—ul—i—m) /Ozf(t)(:c_t)f”m‘lﬂ oA [A;p;—(wqm )}dt} (2.8)

where R(p) > 0, R(p) > 0 and R(q) >0
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Next, we give an extension of extended Riemann-Liouville fractional derivative operator
(2.2) of order pu as:

Definition 2.5. The extension of extended Riemann-Liouville fractional derivative of

order |t as

D f(x);p, 0} = /f Yo —t) K, (t<5aj_t)>dt,%(p)>0. (2.9)

For the case m — 1 < §R( ) < m where m = 1,2,---, it follows

0L f(a)p 0} = o] fa)p, 0]}

_ ﬁm /Oxm)(x_t)_ﬁm-gm(t(ijt)>dt}, (2.10)

where R(p) >0, R(p) > 0 and v > 0.

Remark 2.1. Clearly

(i) If v =0, then definition 2.5 reduces to extended fractional derivative defined in defini-
tion 2.2 by using the fact that K% <z> = /€ =

(ii) If v =p =0, then definition 2.5 reduces to the Riemann-Liouville fractional deriva-
tive defined in definition 2.1.

Now, we prove some theorem involving the extension of fractional derivative.

Theorem 2.1. The following formula hold true,

ﬁp,v(n + %7 _:u) 2777“,1

DT p,v} = N 2, R(pn) > 0. (2.11)

Proof. From (2.9), we have

2
g, N, _ \—h—3 (P2
D" p,v} = \/ (s — 1) Kv+2(t(2_t>>dt. (2.12)

Substituting ¢t = uz in (2.12), we get

DU pv} = %ﬁ /l(uz)"(z — uz)_“_% Ky (uz(f—zjuz))du
= i 2\/>/ ul(1—u)” 2K (ﬁ)du,

by applying definition (1.15) to the above equation, we get the desired result. ([l

Theorem 2.2. Let R(p) > 0 and suppose that the function f(z) is analytic at the origin
with its Maclaurin expansion given by f(z) =Y a,2" where |z| < 0 for some 6 € RT.
Then

D f(2);p,v} = ZanQ“{z D, U} (2.13)
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Proof. Using the series expansion of the function f(z) in (2.7) gives

DU f(2);p, v} = \/?ﬁ /Oziant"(z - t)*“*%Kw% (%)dt

As the series is uniformly convergent on any closed disk centered at the origin with its
radius smaller then ¢, therefore the series so does on the line segment from 0 to a fixed z

for |z| < d. Thus it guarantee terms by terms integration as follows

DU f(2);p,0} = ian{ %F(iﬂ) /Ozt”(z—t)“SKH;(t(fit))dt}

- Z an©5{2n7pa U}a

n=0

which is the required proof. O

Theorem 2.3. The following result holds true:

3 r
DI (1 - 2)Pipv} = FEZ; AP AN (ﬁ,n; 1; z) (2.14)

where R(p) > R(n) >0 and |z| < 1.

Proof. By direct calculation, we have

2p 1 z 3 3
30 131 — 2 _’B;p,v = ——/ 2 (1 — )Pz — )2
{z"72(1 = 2) } Th=m /), (L=t (z=1)
2
pz
<Koy (t(z — t))dt

op 23 / s B to s
/[ E—— (1 —t) P = )
Vet “ 00
2
Pz
Kooy (22 ar
BREERD)

z—1

Substituting t = zu in the above equation, we get

p2 2p ! 3 3
S3)(a z"’gl—zfﬁ;p,v - —/ w2 (1 —uz) Pl — w2
R et il A LR B (Y
p

X Kv—i—% (m>du

Using (1.16) and after simplification we get the required proof. ([l

Theorem 2.4. The following result holds true:

; T
D1 #{z"2(1 — az) (1 — bz) Fip,v} = ng; 2 (n, o, B; p; az, bz p, v>, (2.15)

where R(p) > R(n) >0, R(a) >0, R(B) >0, |az| <1 and |bz| < 1.

do0i:10.20944/preprints201712.0013.v1
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Proof. To prove(2.15), we use the following power series expansion

(1—a2) (1 =b2)" = 3 3 (@(B),

m=0 n=0

Now, applying Theorem 2.3, we obtain

D1 {13 (1 — az) (1 — bz) % p, v}

=SS @@L O e imint )

m! nl

NN, ()™ (O)" Bpo(n+m A1t = 1) s
=22 (@n(B= = T .

r
DI {13 (1 — az) (1 — bz) P;p,0} = () R (n, o, B; w; az, bz p, v)-

IN(D
O
Theorem 2.5. The following Mellin transform formula holds true:
SN—H— 5T 1F(;)F(M)
DL o ";p—H“} 2 2 _2B(n+rr— ), 2.16
m{D, () NCTem ( ) (210

where R(n) > —1, R(u) >0, R(r) >0

Proof. Applying the Mellin transform on definition (2.9), we have

{Q’z‘pu( ”);p—H“} :/0 o, (2" dp

: f [ L[t <ﬁ>}
z’“”f [ [ ooty (oY
:Z” QW/um_u ([T,

1\3\0-1

1
2

(ﬁ)dp) du. (2.17)

1—u

* 1 p il e [T 1
/0 p ZK”Jr;(t(l—t))dp = u'"z(1—u) +2/0 w 2Kv+%<w>dw

_ ur+;(1—u)r+52rSF(T;U)F(T+;+1

). (2.18)

do0i:10.20944/preprints201712.0013.v1
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where w = 7, R(r—v) >0, R(r+wv) > —1 (see [14] and [12]). Using (2.18) in (2.17),
we obtain

M{@“ (z");p — 7’} =

Z;p,v

which completes the proof. 0

Theorem 2.6. The following Mellin transform formula holds true:

27"711"(%)1“(7’-&-12)-&-1 )Zﬁﬂi?

Val(—p)
X B(r,r — p) o Fy (a,r;r — z), (2.19)

where R(a) > 0, R(p) <0, R(r) >0, R(r) >0 and |z| < 1.

M{De, (1= 2))p v} =

Proof. Using the power series for (1 — z)~® and applying Theorem 2.5 with n = n, we can
write

M {1 = 2w b =3 Do, ()

2r—1r r—o\ r+v+41 00 L
B \</7T2F()—§~L) 2 )Z (i)u Bl —p)2" 7z
n=0
2 & 0),"
N NevE flatrr—w)=)

2r—1r(u)r(r+v+1)z—u—%
T R s oh (i — 2).

which is the required proof. 0

3. GENERATING RELATIONS AND SOME FURTHER RESULTS

In this section, we derive some generating relations of linear and bilinear type for the
extended (p, v)-hypergeometric functions.

Theorem 3.1. The following generating relation holds true:

z

i (@) 2Frpo (a +n,B8;7; Z) t" = (1 =) 2 Fip (oz, B:7; 1T) (3.1)

n! t

n=0

where |z| < min(|1,1 —¢]), R(a) > 0, R(y) > R(G) > 0.

Proof. Consider the following series identity

Xz

(A=2) =t =0 -1 -7

7.

do0i:10.20944/preprints201712.0013.v1
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Thus, the power series expansion yields

) (i)!n(l_z)_a<1iz>n: (1=l - 1it]_a' (3:2)

n=0

Multiplying both sides of (3.2) by 2#~% and then applying the operator D%-7** on both

Zip,q
sides, we have

02,1 [ 3 e - ae(

n! — 2
n=0

I R ]

Interchanging the order of summation and the operator ’Df;;j), we have

i (a)ngﬂw [zﬁ*%(l — z)fo‘*"} " = (1 . t)fagg,,y [Zﬁfg (1 I )—a].

TL' Z;p,v Z;p,v 1 —t
n=0

Thus by applying Theorem 2.3, we obtain the required result. 0

Theorem 3.2. The following generating relation holds true:

n=0

where |t| < —, R(5) > 0, R(B) > 0, R(y) > R(a) > 0.

1+(t]7

Proof. Consider the series identity

t 1-8
[1—(1—z)t]_5:(1—t)_’3[1+ 1Z J .
Using the power series expansion to the left sides, we have
g — zymn = (1— ¢ [1— } . 3.4
D U [ (3.4)

Multiplying both sides of (3.4) by 2973 (1—2)7% and applying the operator -7 on both

Z;p?”

sides, we have

o0

o[ et e = - [t -0 (- ) T,
n=0

where R(a) > 0 and |zt| < |1 — ¢|, thus by Theorem 2.2, we have

ni;o D[4 2y )i = 1 - oo [+ - 70 (1= =) 7).

Applying Theorem 2.4 on both sides, we get the desired result. 0

Theorem 3.3. The following result holds true:

22

QZ;% [znigEf;,&(’z)} = P(NJ _ 77) ; P(’}(/z):— 5) ﬁp,v(n + n, pu— 77)%7 (35>

do0i:10.20944/preprints201712.0013.v1
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where 7,6, u € C, R(p) >0, R(qg) > 0, R(p) > R(n) >0, R(A) >0, R(p) >0 and EL 5(2)
is Mittag-Leffler function (see [13]) defined as:

- HZ:O T(yn +6) nl” (36)
Proof. Using (3.6) in (3.5), we have
on e ()] = onn [{i%g}]
By Theorem 2.2, we have
ot [ ] = 3 s fona 4]}
Applying Theorem 2.1, we get the required proof. O
Theorem 3.4. The following result holds true:
o M{ . (s Ai)1m; } n2
Zipy m¥n z =T
v (55, By)un | NV
Z L 1F<Og]iéklzﬁ £(n+k,p—mn) ,j
(3.7)

where R(p) > 0, R(q) > 0, R(p) > R(n) > 0, RK(A) > 0, R(p) > 0 and ,,V,,(2) denotes
Fox-Wright function defined by (see [7], pp. 56-58)

(Oéz', Ai)l,m;

H Doy + Aik) 2%
m\Ijn = m‘Ijn l .
(2) |2 Z REES AT (3:8)
(/Bj) )1 n;
Proof. Applying Theorem 2.1 and followed the same procedure used in Theorem 3.3, we
get the desired result. 0

4. CONCLUDING REMARKS

In this paper, we established the extension of extended fractional derivative operator.
We conclude that when v = 0 and using the fact that K 1 (2) = \/ge_z then all the
results established in this paper will reduce to the results obtained by Kiymaz et al. see
[6].Also, when p = v = 0 then we get the results related to the classical Reimann-Liouville

fractional derivative operator.
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