Preprint
Article

Using Psychophysiological Sensors to Assess Mental Workload in Web Browsing

Altmetrics

Downloads

813

Views

478

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

04 December 2017

Posted:

04 December 2017

You are already at the latest version

Alerts
Abstract
The mental workload induced by a Web page is essential for improving the user’s browsing experience. However, continuously assessing the mental workload during a browsing task is challenging. In order to face this issue, this paper leverages the correlation between stimuli and physiological responses, which are measured with high-frequency, non-invasive psychophysiological sensors during very short span windows. An experiment was conducted to identify levels of mental workload through the analysis of pupil dilation measured by an eye-tracking sensor. In addition, a method was developed to classify real-time mental workload by appropriately combining different signals (electrodermal activity (EDA), electrocardiogram, photoplethysmography (PPG), electroencephalogram (EEG), temperature and eye gaze) obtained with non-invasive psychophysiological sensors. The results show that the Web browsing task involves on average four levels of mental workload. Also, by combining EEG with the PPG and EDA, the accuracy of the classification reaches 95.73 %.
Keywords: 
Subject: Computer Science and Mathematics  -   Information Systems
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated