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12 Abstract: The mental workload induced by a Web page is essential for improving the user’s
13 browsing experience. However, continuously assessing the mental workload during a browsing
14 task is challenging. In order to face this issue, this paper leverages the correlation between stimuli
15 and physiological responses, which are measured with high-frequency, non-invasive
16 psychophysiological sensors during very short span windows. An experiment was conducted to
17 identify levels of mental workload through the analysis of pupil dilation measured by an
18 eye-tracking sensor. In addition, a method was developed to classify real-time mental workload by
19 appropriately combining different signals (electrodermal activity (EDA), electrocardiogram,
20 photoplethysmography (PPG), electroencephalogram (EEG), temperature and eye gaze) obtained
21 with non-invasive psychophysiological sensors. The results show that the Web browsing task
22 involves on average four levels of mental workload. Also, by combining EEG with the PPG and
23 EDA, the accuracy of the classification reaches 95.73 %.
24 Keywords: psychophysiological sensors; mental workload; Web browsing tasks; signal processing
25

26  1.Introduction

27 Although Web applications are often justified in terms of increasing the productivity of human
28  tasks, they sometimes have the opposite effect, interrupting, reducing the performance of, or
29  increasing the mental workload of the user [1-4]. A typical task in which this phenomenon may
30 occur is Web browsing. In this task, the user fixes her/his gaze on and between Web elements, i.e.,
31 graphic or textual areas of a Web page, such as news, commercial advertisements, and menus [5-7].
32 In cognitive psychology, mental workload refers to the total amount of perceived mental effort used
33 forlearning or processing new information [8-11].

34 An important factor in measuring the effectiveness of a Web page is the user's browsing
35  experience. It has been shown that the higher the level of user's browsing experience is, the lower the
36  mental workload [3,4,12]. Every Web page has both an intrinsic and an extrinsic mental workload
37 [3,13-15]. The former is related to the natural effort required to absorb new information, to the
38  process of learning to navigate around the page, and to the process of becoming accustomed to the
39  design of the page. The latter consists of the mental workload caused by the inclusion of unnecessary
40  details or external interruptions, such as font styles that convey no meaning, commercial
41  advertisement pop-ups, and irritating recommendations, which may have a negative effect on user's
42 browsing experience.

43 Continuously assessing, at any moment, the mental workload involved in browsing tasks
44  entails measuring it either when the user fixes her attention on a Web element or when her gaze
45  switches from one element to another. This assessment of mental workload can enhance the user's
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46  browsing experience in many ways: for instance, avoiding extrinsic mental workload by
47  automatically identifying the most suitable moments to proactively deliver content to the user or
48  preventing irritating intrusions from the environment; reducing intrinsic mental workload by
49  keeping the Web page support interventions on stand-by and adapting graphic user interfaces in
50 real time; and evaluating the likelihood of user's abandonment, frustration or techno stress, among
51 other benefits. In addition, instantaneous classification of mental workload into intrinsic or extrinsic
52 to the Web elements of a Web page would make it possible to detect short time windows of reduced
53 cognitive burden to activate the delivery of different types of recommendations in a timely,
54 unobtrusive manner, such as contextual news in newspaper portals or commercial advertisement
55  pop-ups on various Web sites. In addition, it may be possible to enhance search tasks, for instance,
56  for restaurants, flight tickets, or retail products, by providing relevant feedback to the search engine
57  based on the user's cognitive status [6].

58 To realize the above requirements, it is essential to address the challenge of automatically
59  assessing the mental workload in a continuous fashion while the user is engaged in browsing, that is,
60  inreal time, with high frequency and using very short time windows.

61 Many studies have focused on classifying mental workload in general by capturing and
62  processing data using ever less invasive psychophysiological sensors [16-20]. This method is
63  founded on the empirical demonstration of the correlation existing between psychological stimuli
64  and physiological responses triggered by the nervous system. Moreover, mental workload has been
65  shown to vary frequently within a short time span [21,22].

66 Although considerable research has been devoted to assessing mental workload on the scale of
67  hours and minutes by using data extracted from psychophysiological sensors, less attention has
68  been paid to time windows lasting seconds or less, such as when a user fixes her gaze on a Web
69  element. Indeed, Bailey et al. [23] have recently proved that moments of reduced mental workload
70 occur while the user's attention is transiting from one task to another. However, this was shown only
71 for coarse-grained tasks, such as selecting a travel route among alternatives presented in a graphic
72 interface or classifying a list of emails into various categories [23].

73 In this paper, the capabilities of psychophysiological sensors are leveraged to research the
74  possibility of assessing mental workload in real time during a browsing task. This paper thus
75  attempts to answer the following research questions:

76

77 e RQLI:Is it possible to identify levels with regard to a user's mental workload within very short
78 time windows (order of milliseconds) based on psychophysiological signals recorded during a
79 Web browsing task?

80 e RQ2:Isit possible to accurately classify in real time a user's mental workload, both when her gaze
81 is fixed on a Web element and when her gaze is transiting from one Web element to another, by
82 combining different non-invasive psychophysiological sensors?

83

84 In addition, based on the findings of Bailey et al. [23], this paper attempts to prove the following
85  hypothesis:

86

87 e HI1: Mental workload is significantly smaller when the user's attention is switching from one Web
88 element to another than when she is focused on a Web element.

89

90 To answer these research questions and prove the stated hypothesis, an experiment was

91  conducted in which 61 users performed a normal Web browsing task in front of a computer screen
92 while their psychophysiological responses were measured by different sensors and recorded in a
93  database. The gold standard with regard to answering RQ1 is pupil diameter because several
94 previous studies have shown that, under controlled illumination conditions, this
95  psychophysiological response is a valid and reliable indicator of mental workload [23-29]. Using
96  clustering methods, this paper shows that, by processing the pupil dilation response, four levels of
97  mental workload can be identified per user on average.
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98 However, measuring pupil dilation with an eye tracker is not a realistic and practical method to

99  classify mental workload, for example, in the open air, because it requires constant and controlled
100 illumination conditions. Thus, in this paper, more practical and less invasive sensors are assessed to
101 measure other psychophysiological responses, such as heart rate (HR), electrodermal activity (EDA),
102 body temperature, and electrocardiogram (ECG). The electroencephalogram (EEG) sensor is also
103 assessed because there have been important advances in the construction of portable EEGs and in
104 algorithms to reduce motion-related artifacts [30] [31]. It is expected that before long, there will be
105  EEG devices that only capture brain waves from the areas of the brain relevant to the assessment of
106  mental workload, making them less invasive [32].
107 This paper shows that, using all the sensors and efficiently processing their signals using
108 artificial neural networks, mental workload can be classified as proposed in RQ2, with 68.94 %
109 accuracy, 66.62 % recall, and 76.92 % precision. However, using all the sensors and a multi-layer
110 perceptron, it is possible to achieve 88.46 % accuracy, 88.84 % recall, and 88.85 % precision.
111 Ultimately, the best performance is obtained by combining EDA, HR, and EEG, achieving 95.73 %
112 accuracy, 94.25 % recall, and 95.6 % precision in the classification of mental workload. Furthermore,
113 the hypothesis that mental workload is significantly smaller when the user's attention is switching
114 from one Web element to another than when she is focused on a Web element is confirmed
115 (MSE = 1.7829; p — value = 0.00184 < 0.05).
116 The contributions of this paper include (i) identifying different levels of mental workload
117  required for Web browsing through the processing and analysis of pupil dilation measured by an
118  eye-tracking sensor; (ii) developing a method for appropriately combining non-invasive
119  psychophysiological sensors to classify real-time mental workload in small time windows with high
120 accuracy (mean=99.1%, SD = 0.2772%) based on the behavior of the user's gaze in a Web browsing
121 task; and (iii) leaving open the possibility of using gaze shifts from one Web element to another as
122 the most appropriate time to provide the user with recommendations, for example.
123 This paper is organized as follows. Section 2 provides the background required to understand
124 this research. Section 3 presents the related literature. The experiment conducted is described in
125 Section 4, as well as the data processing and the machine learning methods applied to the data. The
126  results are presented in Section 5 and are discussed in Section 6, while Section 7 concludes the paper.

127 2. Background

128 2.1 Assessment Methods

129 Cognitive resources are assets used by cognition to think, remember, make decisions, solve
130 problems, or coordinate movements, such as perception, attention, short- and long-term memory,
131 and motor control [33,34]. According to Navon et al. [35], these resources underlying human
132 learning and information processing are limited [36].

133 Wickens [9], in his multiple resource theory, suggests that these resources can be used in
134 parallel for multiple tasks, using several resources at once. However, when task demand is high, the
135 resources allocated to that task are not available for another task if the same mental resources are
136  required at the same stage of processing. Excessive use, moreover, can cause a state of overload
137  known as cognitive resource depletion [37]. This overload means that the brain is unable to process
138  new information, resulting in processing and/or execution errors [38].

139 Mental workload results from the different levels of resource demand, depending on the
140 parallel tasks that the person is performing [8,9,21,22]. Excessive resource demand can cause
141  distraction, increase errors, generate stress and frustration, and reduce the ability to undertake
142 mental planning, problem solving, or decision-making [39,40]. One example is the distraction caused
143 by unwelcome advertisements on a Web page while the user is browsing. In this case, the
144 intermingling of the browsing task with the intrusion of commercial advertisements forces the user
145  to divide attention and allocate cognitive resources to the new stimulus.

146 Traditionally, mental workload has been assessed in different situations using subjective
147  methods [16] based on surveys, auto-perception scales, or think-aloud protocols [41-43]. These
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148  methods are applied after the user has already finished the task, and the assessment of the mental
149 workload depends of the user's final perception [44]. Therefore, these methods are constrained by
150  the reporting bias introduced by relying on past memories and by the problem of ecological validity
151  based on observing responses to hypothetical scenarios rather than behaviors in a real setting [45]. In
152 addition, the static nature of these methods makes them unfit for real-time evaluation. The most
153 widespread example of this method is the NASA Task Load Index, which measures the mental and
154  physical performance, as well as the effort and frustration, of the user [46].

155 Performance-based methods have also been used, which measure indicators generated during
156  task execution, such as the percentage of correct responses or execution time [3,16,17]. In this
157  method, the user needs to be engaged in only one task. Its major restriction is the difficulty of
158  assessing mental workload in near real time.

159 The attempts to find objective indicators to measure mental workload in real time are based on
160 collecting contextual information, which can be captured mainly using psychophysiological sensors
161  [47-49]. Indeed, there is ample empirical evidence in psychophysiology showing that some
162 physiological responses are directly related to psychological factors such as stress, mental workload,
163  and emotions [50-52]. That is, there is a correlation between the physiological responses triggered by
164 the nervous system and psychological stimuli.

165 Psychophysiological responses are controlled by the autonomic nervous system (ANS), which
166  regulates and coordinates bodily processes such as digestion, temperature, blood pressure, and
167  many aspects of emotional behavior [53]. These actions occur independently of the conscious control
168  of the individual. The ANS includes the sympathetic nervous system (SNS) and parasympathetic
169  nervous system (PNS). The SNS controls actions required in emergency situations, such as stress and
170 movement. It can cause heart rate acceleration, pupil dilation, and increased blood flow to the
171 muscles, sweating, and muscle tension. The PNS controls the functions related to rest, repair, and
172 relaxation of the body. The responses elicited by this system include a decrease in heart rate and
173 blood pressure, stimulation of the digestive system, and pupillary contraction, among others [50,51].

174 2.2 Psychophysiological measurements

175 There are different types of methods to measure psychophysiological responses elicited
176  complementarily by the SNS and PNS [54]. For instance, the device for tracking gaze is the eye
177  tracker. It consists of a camera on the computer screen that works according to the "corneal-reflection
178  / pupil-center" method [55]. It also allows the measurement of the variation of the pupil diameter.
179  The pupillography measures changes in pupil size, which can be attributed to both parasympathetic
180  inhibition, which explains the first dilation phase, and sympathetic activation, which explains the
181  subsequent contraction phase [56,57]. Although pupil dilation can be triggered by a light reflex
182  caused by changes in environment illumination or by a proximity or accommodation reflex to
183 improve visual focus, it can also be caused by a psychosensory reflex associated with the cognitive
184  or emotional engagement of the person while exposed to any sensory stimulus [58]. In contrast to
185  changes in the two previous reflexes, changes in pupil size in this case are subtler, so a
186  high-precision device or eye tracker is required for their detection [59].

187 The eye tracker is also used for tracking the eye to determine gaze position or movements
188  within a scene, including two relevant measurements:

189

190 e Fixations: moments during which the gaze is relatively fixed or focused. They occur because
191 sharp vision is only possible within a small area in the human eye called the fovea. It is useful to
192 determine when eye fixation occurs because, in most cases, it coincides with attention.

193 e Saccades: rapid eye movements or jumps from one fixation point to another. Saccades follow a
194 pattern (or trajectory) depending on several factors: what is currently being looked at, visual
195 target tracking, experience, and emotions.

196

197 Another set of psychophysiological measurements is obtained by electroencephalography. This

198  isbased on recording the electrical activity of the brain measured on the scalp. The device used is the
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EEG, which measures the voltage resulting from changes in ionic current flow within the neurons of
the brain, produced by the brain's synaptic activity. There are five major brain waves: delta (1-4 Hz),
theta (4-8 Hz), alpha (8-12 Hz), beta (12-25 Hz), and gamma (approximately 25 Hz). Fritz et al. [16]
indicate that a decrease in the activity of the alpha band in conjunction with an increase in the
activity of the theta band is associated with greater attentional demand and memory workload.
Moreover, other studies have concluded that theta and delta bands are sensitive to stimuli involving
difficult manipulation.

EDA is a psychophysiological response that can be assessed by measuring changes in the
electrical properties of the skin. Skin conductivity varies with changes in skin moisture (sweat) and
may reveal changes in the SNS. EDA is also known as galvanic skin response (GSR), and it is
inexpensive to assess, easily captured, and robust. It is measured by attaching one or two electrodes
usually to the fingers or toes. It is an indicator of psychological and physiological arousal. In
addition, it serves to identify emotional states. EDA has two components: (1) a phasic component
that changes rapidly and is related to external stimuli or a non-specific activity and (2) a tonic
component or base signal that varies slowly and sets basic skin conductance. A classic behavior is
that when arousal increases, there is an increase in sweat gland activity, decreasing electrical
resistance, and thus increasing conductivity.

The cardiovascular system is particularly interesting for psychophysiology because it is highly
sensitive to neurological processes and psychological factors such as stress. It is regulated by the
ANS, which produces patterns of electrical activity that are fundamental for psychophysiological
measurements [50]. Several studies associate changes in cardiac activity with psychological
phenomena, such as mental work, perception, attention, problem solving, and signal detection [60].

An ECG is used to measure the electrical activity of the heart, using at least three electrodes
attached to the chest. The electrodes collect the necessary data with regard to the electric waves that
describe the cardiac cycle, based on which the HR or its variation (HRV) are obtained.

The human body constantly exchanges heat with the environment as part of the process of
self-regulation to maintain homeostasis (internal balance of the body). Body temperature increases
and decreases in relation to the energy exchanged. The regulation of blood flow to the skin and
thermal radiation is considered a function of the ANS [61]. Studies conducted in this field, according
to Genno et al. (1997) [62], suggest that skin temperature has potential as a psychophysiological
measure of the individual.

3. Literature Review

This paper focuses on the measurement of mental workload while the user browses a Web site
in front of her personal computer. However, the literature in this regard is scant. Thus, to start
studying the measurement of mental workloads in various domains and to help understand the
methodology associated with this type of research, this section focuses on two main points: the
assessment of mental workload using psychophysiological sensors in general and the measurement
of mental workload in Web environments.

3.1 Assessment of Mental Workload with Psychophysiological Sensors

A relevant study for this paper is that by Bailey et al. [23] who develop psychophysiological
measures to assess the effect of interruptions on the performance of a person executing a task. They
establish that interruption involves considerable negative effects, such as increased time to complete
the task [63], a wider range of errors [64], additional efforts in decision-making [65] and mood
changes such as increased frustration and anxiety [66—68]. For example, when an interruption occurs
at a random time while performing a major task, the time to completion can increase by up to 30 %,
up to twice as many errors can be committed, and user displeasure doubles, in contrast to when the
interruption occurs at a pre-programmed time. Therefore, Bailey et al. empirically find that
interruptions may have a lower cost if they occur at a time of low mental workload, hypothesizing
that this may occur at the boundaries between subtasks when executing the general task [69]. As a
test method, they assess mental workload by pupil dilation in three different tasks that include

do0i:10.20944/preprints201712.0021.v1
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249  respective subtasks. The first task consists of assessing two different routes between two cities on a
250 monitor; the user must measure the distance and cost of the routes, tabulate the data, and, finally,
251 discriminate and choose the shortest and most economical route. In the second task, the user must
252 edit a document and correct spelling at three levels of complexity (editing a word, editing two
253  words, and editing a complete sentence). The third task entails classifying nine emails involving
254  explicit issues (low complexity) and ambiguous issues (high complexity) into four categories. Each
255  of these scenarios is applied to 24 people (seven women) between 19 and 50 years of age. The main
256  conclusions of the study are as follows: (i) mental workload varies during the execution of the three
257  tasks, (ii) the mental workload decreases when performing subtasks compared to the general task,
258  and (iii) different subtasks demand different levels of mental workload based on their complexity.
259 Other studies focus on training classifiers to process psychophysiological signal data in a time
260  window in order to predict whether the load associated with a specific task is high or low [70]. For
261  example, Haapalainen et al. [17] measure the mental workloads of basic tasks such as the resolution
262 of problems on a monitor, visual perception, and cognitive speed by using an eye-tracking device,
263  EEG, ECG, heat flow, and rate measurements. As a result, they find that ECG and heat flow together
264  distinguish between tasks of high and low cognitive demand with 80 % precision.

265 Fritz et al. [16] seek to verify whether psychophysiological sensors are useful in measuring the
266  difficulty of a computer code comprehension task with various levels of difficulty. The tasks are
267  performed by software developers, who are monitored using an eye tracker and an
268  electroencephalogram. Fritz et al. use the Beta/(Alpha + Theta) ratio based on the evidence that
269 beta increases with task execution, theta is deleted, and alpha is blocked. The models obtained
270  classify task difficulty with 85 % accuracy.

271 Shi et al. [71] assess stress and arousal levels by measuring EDA for increasing levels of
272  difficulty. The experiment consists of a transition interface in which the participants must respond to
273 the requirements in three scenarios: (1) using gestures and speaking, (2) only speaking, and (3) only
274  using gestures. The difficulty varies depending on level of visual complexity, number of entities,
275 number of distractors, time limit, and number of actions to complete. The results indicate that there
276  isasignificant increase in the EDA signal as task difficulty increases.

277 Nourbakhsh et al. [72] confirm the effectiveness of EDA in discriminating between the difficulty
278  of eight arithmetic tasks with four levels of difficulty. In addition, as an extension of the previous
279  study, Nourbakhsh et al. measure mental workload using EDA changes and the number of blinks
280  obtained from an eye-tracking device. The experiment is the same as in the previous study. This
281  time, by combining both sensors, 75 % precision is achieved for the lowest level of difficulty.

282 Xu et al. [73] show that mental workload can be measured by pupil dilation if illumination
283  changes. The experiment consists of arithmetic tasks that vary in difficulty depending on the
284  number of digits.

285 In Ikehara et al. [18], an eye-tracking device, a pressure sensor for the mouse, an EDA sensor,
286  and a pulse oximeter (for measuring HR and level of oxygen in the blood) are used. The experiment
287  consists of selecting on a screen the fractions whose value is less than 1/3. There are two levels of
288  difficulty in the experiment. The results indicate that EDA and pupil dilation have the greatest
289  statistical significance in terms of detecting task difficulty.

290 Using an elastic neural network, Hogervost et al. [19] find that the best performance is obtained
291  when EEG is combined with pupil dilation (91% accuracy) and when EEG is combined with
292 peripheral physiology (89 %); with EEG alone, they obtain 86 % accuracy. In addition, using only the
293  measurement of the electrode located in the Pz position (central parietal area of the head), they
294 obtain 88 % accuracy.

295 3.2 Assessment of Mental Workload in Web Environments

296 Although the study of users' cognitive responses during Web browsing is an intriguing area, it
297  remains little explored. Indeed, one of the few studies on the topic is that by Albers [3], who
298  examines how mental workload theory applies to the design of Web sites using the tapping test
299  method, which measures mental workload by focusing on performance. As in all the examples using
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300 this approach, the tapping test adds an additional secondary task to the main one, measuring the
301  performance of the participant to determine the level of mental workload induced. In this case, the
302  main task is to browse two Web sites sequentially —with implicit mental workload controlled by
303  design—and answer questions aloud in relation to the Web pages, while the secondary task is to
304  rhythmically keep tapping per second. As mental workload increases, tapping begins to fall slowly
305 and lose the rhythm, even losing it completely when there is cognitive overload. However,
306  implementing a secondary task as required by this method prevents from generating a realistic
307  scenario for the user and does not allow real-time measurement.

308 The most recent research regarding the observation of Web users' experience involves the
309 measurement of their behavior as a reaction to different stimuli, such as notifications, and allows us
310  to predict the user's response according to Navalpakkam & Churchill [74]. By comparing mouse
311  pointer movement to eye tracking, they are able to determine a more user-friendly layout for a Web
312 site, which improves the effectiveness of the notification. Finally, they conclude that gaze and mouse
313  movement patterns contain important information in terms of assessing the user's status,
314  determining if they are distracted from the assigned task or striving to fulfill it. The correlation
315  between eye movements and mouse pointer movement predicts a Web user's different
316  psycho-emotional states. They also conclude that the user is more likely to pay attention to
317  notifications when they vary in position on the Web site rather than when they are fixed.

318 As summarized in Table 1, the measurement of mental workload using psychophysiological
319  signals has been tested for a varied set of tasks. In addition, studies have investigated how mental
320  workload is related to the design of a Web page. However, the abovementioned research provides
321  no evidence regarding assessment of mental workload while browsing a Web site using multiple
322 psychophysiological measures. There is also no reference to time overhead to determine how
323 feasible it is to implement real-time measurement. Partial. Time Windows average length for classification
324 of237s.

325 4. Materials and Methods

326 4.1 Participants

327 The initial experimental group includes 61 participants (19 women and 42 men), aged between
328 19 and 35 years (mean age = 23.8 years, SD = 3.2 years), all engineering students at the University of
329  Chile, recruited through the institutional news Web application. None of them suffered from
330  cardiovascular diseases or was taking medications that could have affected their normal behavior.
331  All of them were familiar with browsing tasks. Each session had a duration of approximately 60 min.
332 The final experimental group is composed of 53 people. Eight participants were discarded due to
333 various problems during signal measurement and processing.

334 This research has the approval of the Research Ethics Committee at the Faculty of Physical and
335  Mathematical Sciences at the University of Chile. In addition, all of the participants read an informed
336  consent and agreed on signing it. The consent contained information about the procedure, purpose
337  of the experiments, voluntary participation, right to decline to participate at any moment, how to
338  access the research results and researchers’ information.

339 4.2 Psychophysiological Sensors

340 Psychophysiological sensors have the advantage that measurements do not depend on the
341  user's perception and are not under the control of the user.

342


http://dx.doi.org/10.20944/preprints201712.0021.v1
http://dx.doi.org/10.3390/s18020458

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2017

343

344
345
346
347

8 of 26

[14]

[16]

(3]

[38]

Table 1. Related work analysis

Small Time Windows

Partial. Time window average
length for classification of 23.7 s.

Partial. Sliding time windows of
sizes from 5 seconds to 60 seconds,
sliding 5 seconds between
intervals.

Partial. Three silent reading tasks
were performed. Each task
consisted of four text slides and
each slide was presented for 30
seconds.

Fails. Duration of tasks between 60

and 70 seconds.

Fails. Classification in 2 minutes
windows.

Fulfills. The average overall
duration of the limits was 550 ms.

Not applicable.

Fails. The participants interacted
with each page for about 100-120
seconds.

Fulfills. Windows between 300 and
600 ms.

Real
Time

Fulfills

Fulfills

Fulfills

Fulfills

Fulfills

Fulfills

Fails

Fulfills

Fulfills

Web Browsing Tasks

Fails. Desktop-based
tasks of visual
perception and
cognitive speed.

Fails. Comprehension
tasks of computer code.

Fails. Arithmetic tasks

Fails. Select the fraction
whose value is less than
1/3.

Fails. N-back task.

Partial. Measures the
cost of interruptions in
tasks such as: choosing a
route, correcting
spelling and classifying
emails.

Fulfills. Measure the
cognitive load on a
website.

Fulfills. Study the

design of websites in a
way that improves the
effect of a notification.

Fulfills. Predict the
intention of clicking on
a website.

do0i:10.20944/preprints201712.0021.v1

Multiple
Psychophysiological
Sensors
Fulfills. Eye tracker, EEG,
ECG, heat flux and HR.

Fulfills. Eye tracker, EEG

Partial. EDA and blink.

Fulfills. Eye tracker, EDA,
pulse-oximeter, mouse
pressure sensor.

Fulfills. EEG; peripherals
(EDA, respiration, ECG)
and eye measures (eye
tracker).

Partial. Only the pupillary
dilation.

Fails. Measurement of
mental workload by
performance: tapping test.

Partial. Compare the
tracking of the mouse with
eye tracking.

Partial. Only the pupillary
dilation.

In addition, they are becoming less intrusive and allow tasks to be performed in various
scenarios, giving greater ecological validity to the experiments. They also allow real-time data
capture [16,50].
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348 .
349 Figure 1. Participant with the sensors runs the experiment. The sensors are: (1) ECG, (2) axillary
350 temperature, (3) EEG, (4) EDA, (5) PPG and (6) eye tracker.
351
352 For data acquisition, the following sensors were used: GSR+, optical pulse sensor, and Bridge

353 Amplifier + unit, all from the Shimmer [75]; ECG BITalino [76] ; EEG Emotiv Epoc [77]; and Tobii
354 T120 Eye Tracker [78]. Figure 1 shows an example of a volunteer outfitted with all the sensors.

355 To measure the EDA and HR signals, the Shimmer GSR+ unit sensor was used with a sampling
356  frequency of 120 Hz. The position of the electrodes for measuring the EDA was the palm area of the
357  proximal phalanx of the index and ring fingers of the left hand [79]. The optical sensor that functions
358  asa photoplethysmograph (PPG) was attached to the lobe of the right ear [80]. The Shimmer Bridge
359  Amplifier + unit sensor with a sampling frequency of 50 Hz was used to measure body temperature.
360  The sensor was applied under the right armpit. This sensor was synchronized with the EDA and
361  pulse sensors using a base provided by Shimmer together with Consensys software.

362 The BITalino BioMedical Development All-in-One Board with a sampling frequency of 1000 Hz
363  was used to measure the ECG. The configuration of the three electrodes followed the lead II
364  standard [81,82]. Before applying the electrodes, the skin was prepared by wiping it with alcohol to
365 remove grease and impurities to reduce noise. In addition, an ECG gel was used. OpenSignals
366  evolution software provided by the manufacturer was used [83].

367 To measure the EEG, the Emotiv EPOC EEG sensor with a sampling frequency of 128 Hz was
368  used. The sensor was attached to the head, positioning the reference sensors first. To improve the
369  conduction of the electrical signals of the brain, each electrode was previously hydrated. To capture
370  the data and verify that the sensor was properly applied, the Emotiv Xavier Testbench software
371  provided by the manufacturer was used.

372 The Tobii T120 Eye Tracker with a sampling frequency of 120 Hz was used to measure pupil
373  dilation and for eye tracking. Tobii Studio software was used for calibration and to perform data
374  collection [84]-

375 4.3 Experimental Procedure

376 A fictitious Web site was created whose basic configuration is shown in Figure 2. This layout of
377  the Web elements was maintained through all the experiment. The elements within the Web site
378  were seven news headings with their respective representative image, four rectangular
379  advertisements, a typical navigation bar with a menu, the logo of the page in the upper left corner,
380  and a bar at the bottom of the page.

381
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383 Figure 2. Example of a dummy Web page for the experiment.
384
385 Each participant was tested individually at the laboratory. A physically isolated experimental

386  room was used to maintain the experimental configuration and the environment constant for all
387  participants. In addition, the room did not receive any sunlight, to avoid the effects of infrared light
388  on measurements and to maintain constant illumination conditions that do not affect pupil diameter
389  measurements [85].

390 As soon as the participant arrived in the experimental room, the experiment was explained to
391  her, and she was asked to read and sign the informed consent, as well as a questionnaire to get her
392  basic anonymous information. The participant seated in front of the screen, and the sensors were
393 connected in the following order: ECG, axillary temperature, EEG, EDA, and PPG; then the eye
394 tracker was calibrated with the help of the participant (Figure 1).

395 Prior to the tests, each user underwent a relaxation period consisting of the visualization of
396  three four-minute videos of landscapes with background instrumental music. Then, the participant
397  was asked to take deep breaths for one minute with eyes closed and with soft background
398  instrumental music. This procedure aimed to eliminate the Hawthorne effect — modification in the
399  behavior of the subjects due to their awareness of being studied — and physiological effects similar to
400  the "white coat" effect in measured signals [86]. Next, the participant was asked to maintain a fixed
401  posture, sitting in front of the computer, without moving the head or the left hand, where the
402  sensors were connected. The instructions were that the user could freely browse the Web site for as
403  long as they wanted and indicate when they wanted to finish. Finally, all sensors were removed
404  from the participant, while she was asked do not tell others the experimental procedure.

405 4.4 Data Analysis

406  4.4.1 Time Window Definition

407 Bailey (2008) [23] shows that mental workload decreases during transitions between subtasks.
408  For this paper, the analysis of each Web element is considered a specific subtask and the passage
409 between them as the transition period between subtasks. Thus, in this study, mental workload is
410  assessed during two time windows:

411
412
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414 Figure 3. Example of active window and transition window.
415
416 o Active window: Time during which the user fixes her gaze on a specific area of interest (Aol),
417 which may correspond to a news headline, an advertisement, or the menu bar of the Web site.
418 e Transition window: Time that elapses while the user is not fixing her gaze on any of the areas of
419 interest. It can be a transition between two elements or towards the same element.
420
421 As illustrated in Figure 3, the red rectangles represent the studied Aols; the blue circles

422 represent fixations, which size varies in accordance with the fixation time and the blue lines
423 represent the saccades. Thus, the time a fixation is into an Aol pertains to an active window. The
424 time between two fixations, such as fixation one and fixation two, pertains to a transition window.
425  Note that the transition window between fixation two and four add the fixation three, which does
426  not fall into any Aol.

427 To discriminate between types of windows, the data file exported from the Tobii Studio
428  program generates a column showing the Aol that the participant is inspecting for each sample. It
429  discriminates between 3 values: when the user is not looking at the screen — inactive —, when the user
430  islooking at a certain Aol - active window —, and when the user's gaze is directed outside the Aol —
431  which is considered a transition window.

432 A long minimum time of 500 milliseconds is set to define a valid time window. This is based on
433 the research of Loyola et al. [87], who assesses the identification of key Web elements in a Web site
434  using eye tracking. This time span is selected to avoid possible contamination of the pupil signal by
435  the analysis of a previous object. Time windows below the threshold are not considered for analysis
436  and are therefore deleted. When the same Web element is analyzed before and after a deleted
437  window, the two segments are joined, generating a window of greater length.

438

439

440
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441  4.4.2 Data Preprocessing

442 The data exported from Tobii Studio contains the diameter of the left pupil, the diameter of the
443 right pupil (both in millimeters), and the validation of the reliability of the capture of each pupil
444  between 0 - high reliability — and four — the eye was not detected. On average for all participants and
445  considering only valid windows, the reliability of the capture of the left pupil is 0.2469, and that of
446  the right pupil is 0.22036; these are reliable values to validate the capture of pupil diameter data. As
447  these values are an average for all the participants, the pupil data with the highest level of reliability
448  are selected for each sample [16].

449 Next, signal distortion artifacts, such as saccades and blinks, are eliminated. A column in the
450 extracted data shows if the sample is a fixation or a saccade, and this information is used to filter
451  saccades. Furthermore, a linear interpolation between the values of the blinks detected is used. In
452  addition, a Blackman window with a cut-off frequency of 2 Hz is applied as a low-pass filter.

453 EDA raw data provides the values of electric resistance of the skin in Kilohms [k€]. To reduce
454  noise and eliminate motion artifacts, two procedures are performed: first, a strict instruction is given
455  to each participant not to move the hand or fingers where the electrodes are attached, and second,
456  thesignal is filtered with a low-pass cut-off frequency of 5 Hz. Furthermore, on the recommendation
457  of the literature [88], capture resolution is reduced without risk of data loss. The EDA signal
458  measured with a sampling frequency of 120 Hz is reduced to 10 samples per second. The phasic
459  component is extracted by applying a median filter with a window width of -4/+4 and subtracting
460  the average of the current sample [88]. This component allows the detection of peaks of the EDA
461  signal. With slow transitions, the phasic component does not show major variations.

462 Regarding the electrocardiogram, the raw data yield values that must be transformed to
463  millivolts [mV]. The processing of this signal consists of using a low-pass filter with a cut-off
464  frequency of 100 Hz and applying the fast Fourier transform to obtain the characteristic shape.

465 The raw data of the PPG yield signal values in millivolts [mV]. From this signal, it is possible to
466  obtain the HR. Previously, the PPG signal is processed using a low-pass filter with a cut-off
467  frequency of 16 Hz with a Blackman window, obtaining a cleaner signal. Then, HR is obtained via
468 the following steps: first, the peaks must be found; second, the time between them is substracted (At
469  in [miliseconds / pulse]); third, they are converted from hundredths to seconds and from [seconds /
470  pulse] to [pulses / second], which is then multiplied by 60 to convert to [beats/minute]. This is
471  resume in the Equation (1):

HR = 60 beats ] 1)
~ At-100 |lminute '

472
473 The raw data yield body temperature values in degrees Celsius. The processing of this signal

474  consists of using a low-pass filter with a cut-off frequency of 1 Hz, as concluded based on the data
475  collection in Haapalainen et al. [17].

476 The EEG signal is subject to a wide variety of artifacts and noise [89,90]. Among the elements
477  that cause artifacts are blinking, oculomotor activity, head movements, facial expressions that add
478  noise due to the muscle electrical signal, and movement of the electrodes, among others. To
479  eliminate the effect of head swinging, a high-pass filter with a cut-off frequency of 0.5 Hz is used. In
480  addition, a low-pass filter with a cut-off frequency of 40 Hz is used to eliminate noise from the
481  electrical grid (50 - 60 Hz). To eliminate outliers and decrease the effect of the blinking artifact a
482  Hampel filter is used [91].

483 4.4.3 Feature Extraction

484 Feature extraction is performed based on time windows. Since signals have different scales, to
485  be comparable objects, it is necessary to standardize them before extracting characteristics from
486  them, as proposed by Guyon et al. [92]. To perform standardization, the classical (x —p)/o form is
487  used, where x is the vector corresponding to the signal, and y and o are the mean and the

488  standard deviation of the signal, respectively.
489
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490 Table 2. Characteristics extracted by each signal.
491
Signals Extracted Characteristics
Pupil mean, standard deviation
EDA Accumulated data, average as a function of time and spectral power
Phasic average, absolute value of the maximum, number of peaks
ECG mean, median, variance of ECGMAD (average absolute deviation)
PPG(HR) mean, standard deviation, RMS of HR
T mean, median
EEG power and phase of the analytical signal obtained with the Transf. of Hilbert
492
493
494 A total of 44 characteristics pertaining to the different signals are extracted: two from pupil

495 dilation, six from EDA, two from body temperature, three from ECG, three from PPG-HR, and two
496  from each of the 14 EEG channels. Table 2 shows a summary of the characteristics, following which
497  the obtained characteristics are presented in more detail.

498 Because it has been proven that pupillary response is an important indicator of the mental effort
499  required to solve a task, it is selected as the gold standard by which to cluster windows and generate
500  labels for cognitive levels. There are clustering cases in the literature regarding the development of
501  Web tasks such as the study of Loyola et al. [87]. The selected characteristics are the mean and
502  variance of the pupil diameter of the eye that displays greater reliability in its measurement.

503 Based on the findings of Nourbakhsh [72] and Shi et al. [71], the following characteristics are
504  extracted from the processed EDA signal: accumulated normalized data, mean as a function of
505  normalized time, and spectral power without normalized continuous component. Equation (2)
506  shows the calculation of the normalized EDA signal. Each point in time t is added, where i
507  corresponds to the participant, k and m is the total number of tasks; m = 3 in this case:

508
_ EDA(, k, t)
EDAnormatizea (L ke, t) = 1 T — 2).
m i .2 EDA(, j,t)
509
510 Therefore, the data for each participant are normalized by dividing the task signal by the mean

511  value of all the tasks for the subject. Then, the accumulated EDA characteristics are calculated as
512 shown in Equation (3) and mean EDA is calculated according to Equation (4), where T is the total
513  time for all the tasks:

514
EDAaccumulated (i: k) = ZtEDAnormalized(i: k, t) (3)/
515
516
EDA i ik, t
EDAgyerage i ) = 22D Anormatizea 1o 1) (@)
517
518
519 The following characteristics are extracted from the phasic component obtained: number of

520  peaks, maximum modulus, and average of the phasic component of the window [16].

521 Based on the proposal by Haapalainen et al. [17], the following characteristics are selected for
522 the ECG signal: median, mean, and variance of the ECG median absolute deviation (ECG_MAD),
523  calculated using Equation (5):

524

ECG_MAD = |ECG; — median(ECG)| ).
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The characteristics of the heart rate obtained from the PPG signal are selected based on the time
domain characteristics used in Betella [93]. These are the mean, standard deviation, and root mean
square of HR. Based on the proposal by Haapalainen et al. [17], the median and mean of the
temperature are selected.

For the EEG signal, there are two main approaches: event-related potential (ERP) analysis and
time-frequency signal analysis. The latter is selected because it is more closely related to the
psychophysiological and structural processes of the brain [89]. It is used to study
emotional-cognitive states in particular and is more advisable when studying a limited period or a
relatively low amount of data, as is the case of the time-window study of this paper [94]. Among
the different ways of analyzing the EEG signal in time-frequency are frequency bands with Fourier
transform, Morlet wavelets, and Hilbert transform. All three show similar results according to
Cohen [95]. Thus, the option of the Hilbert Transform (#{eeg}(t)) is selected, which has the
advantage of greater control over frequency filtering. The Equation (6) shows this transform:

[ee)

1
e = H{eeg)©) = (h+ee)® == |

—00

eeg(t) e (6),
t—1

where h(t) = 1/nt, eeg is the EEG signal and eeg is the resulting analytic signal. Before applying
this transform, a bandpass filter between 2 and 15 Hz is used to center the study in the theta (4 - 8
Hz) and alpha (8 - 12 Hz) frequency bands. These are related to states of mental activity and
relaxation, respectively, where theta increases and alpha is suppressed when there is mental
workload [94]. A complex signal called the "analytical signal" is then obtained, from which two
characteristics are extracted. This is performed for each of the 14 channels of the EEG signal.

4.4.4 Clustering

Clustering is performed per participant to determine how many levels of mental workload the
user presents based on the measurement of pupil diameter in order to label the database after
ascertaining these levels. In Loyola et al. [87], the k-means method is used. Because an
overestimation or underestimation of the number K of clusters affects the quality of the cluster, the
optimal value of clusters is sought. The K value is tested from two onwards to obtain two curves.
The index of Calinski & Harabasz (CH) and the internal measure of cohesion of the sum of the
squares within the group (WSS) are selected to this end [96-98]. The stop rule is the value closest to
the area where the curves interact. Figure 4 shows an example of this methodology for participant
59, where the intersection is generated at K = 3. Visually, the grouping can be validated considering
Figure 5.

The Jaccard coefficient obtained using the bootstrap method is used as an external criterion for
validating clusters, which assesses how stable the cluster is [96,97] . Values between 0.6 and 0.75
indicate that the group is measuring a pattern in the data, but there is no certainty as to which points
should be grouped. Groups with stability values above approximately 0.85 can be considered highly
stable (real clusters). There are participants who present well-defined clusters with Jaccard
coefficients very close to one, and others with values far from acceptable.

On average, the coefficients are over 0.75, so clustering is accepted as valid. For example, for the
clusters in Figure 5, the Jaccard indices are 0.6288 (cluster 1), 0.9024 (cluster 2), and 0.8517 (cluster 3).
Considering all the valid participants, the number of clusters varies between three and six levels of
mental workload, and on average, there are approximately four levels of mental workload validated
with acceptable cohesion indices (RQ1).
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577 Figure 5. Optimal grouping of time windows according to their level of cognitive load for the
578 participant 59.
579  4.4.5 Machine Learning Models and Feature Selection
580 To perform the classification, a training set is first generated with 70 % of the observations and

581 then a test set with the remaining 30 %. To avoid biases, a 10-fold cross validation is performed in
582  which the classes are distributed uniformly within each set. In addition, they are randomly selected
583  while maintaining the proportions. Because clustering generates some classes containing very few
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584  elements, sometimes just one or two, time windows that would not make sense to classify because
585  they would only be in the training set and not in the test set, are deleted.

586 Two classification models are applied: artificial neural networks and recursive feature
587  elimination (NN and RFE respectively) and two-layer multi-layer perceptron (MLP). Each
588  classification result is obtained from the average resulting from executing each algorithm 100 times.
589  Next, the implementation of each model is described.

590 An artificial neural network with a hidden layer is implemented, with all the artificial neurons
591  completely interconnected and trained with the algorithm backpropagation. To calculate the
592 number of neurons in the hidden layer (h), the heuristic method of the geometric pyramid rule is
593 used with the expression h = vm -n, which consists in calculating the square root of the product
594  between the number of inputs (m) — number of characteristics — and the number of outputs (n) —
595  number of classes. Therefore, the number of neurons in the hidden layer changes per participant.
596  This classifier is combined with the RFE method for feature selection.

597 There is evidence in the literature regarding the use of the random forest and recursive feature
598  elimination (RF-RFE) method for the selection of characteristics with good results when applied to
599  the classification of mental fatigue with EEG signals [99]. This combines recursive elimination with
600  random forest, that is, a set of decision trees that assesses features and generates a ranking following
601  ascore criterion. This method of feature selection is implemented with the Caret and Random Forest
602  packages in R. The algorithm is executed using Matlab's Neural Network Toolbox with the toolbox's
603  Neural Net Pattern Recognition nprtool. It is executed once the characteristics have been obtained —
604  per participant — with the RFE method. Table 3 shows the characteristics selected for six participants
605  asanexample.

606 To test another way of improving the artificial neural network without using feature selection, a
607  different neural network configuration is tested: MLP. For the implementation of the MLP neural
608  network, the H20 package in R is used [100]. The programmed neural network has two hidden
609  layers with 100 neurons each, with a rectified linear activation function, as used by Hinton [101]. The
610  key, according to Hinton, to reducing overfitting is to include a 50 % dropout for each layer, which
611  prevents artificial neurons from co-adapting to training data.

612
613 Table 3. Selected features with the RFE method for different participants.
614
Participant Selected features
maxPhasic, meanECGMAD, meanHR, powerEEG channell, phaseEEG channell, powerEEG
! channel3, phaseEEG channel12
) medianTemp, avgGSR, powerEEG channel?, phaseEEG channel7, powerEEG channell,

powerEEG channelll

meanHR, meanPhasic, phaseEEG channel8, meanECGMAD, maxPhasic, rmsHR, accGSR,

powerEEG channel5, phaseEEG channel4, phaseEEG channel6, phaseEEG channel12, avgGSR,
3 stdHR, phaseEEG channel2, phaseEEG channel7, meanTemp, phaseEEG channel5, phaseEEG

channell3, powerEEG channell3, phaseEEG channell, medianECGMAD, powerEEG channel2,

phaseEEG channel14, varECGMAD

meanHR, avgGSR, powerEEG channell, phaseEEG channel9, powerEEG channel13, phaseEEG

channel14, medianTemp, varECGMAD, phaseEEG channel2, rmsHR, mean-Phasic, phaseEEG

4
channel8, medianECGMAD, phaseEEG channell, phaseEEG channel12, numpksPhasic,
phaseEEG channelll, phaseEEG channell3, maxPhasic, powerEEG channel8

5 avgGSR, meanTemp

6 medianTemp, powerEEG channel6, powerEEG channel5, meanPhasic
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615 Thus, each neuron in the hidden layers is omitted at random from the network with a
616  probability of 0.5. In addition, another method added to avoid model overfitting is the L, and L,
617  regularization method as a linear combination, as shown in Equation (7)Error! Reference source not
618 found.. For this, the objective function for the artificial neural network is defined as L(W, B|j),
619  where W represents the weight matrix and B the column of bias vectors for each training example.

620

L'(W,B|j) = L(W,Bl)) + 1,R,(W, Bj) + 2,R,(W, B|}) (7),
621
622  where the values of 1; and A, are parameters that weight the relative contribution of the penalty
623  terms R, and R, (rule L, and L,, respectively) in relation to the objective function L(W, B|j). The
624  valuesof 1; = 1075 and A, = 107> are determined as recommended in the H20 manual [100].

625  5.Results

626 5.1 Statistical Analysis

627 Based on Bailey (2008) [23], who showed a decrease in mental workload between subtask
628  boundaries, the hypothesis that there is a decrease in mental workload in the transition time
629  windows between the analysis time windows of one Web element and another is proposed. To
630  verify the hypothesis, the mean pupil diameter within each window is selected as our gold standard.
631  The objective is to determine if mean pupil diameter varies depending on whether it is in an active
632  window or in a transition object. An analysis of variance with repeated measures (ANOVA-RM) is
633 performed since the factors to be studied are within-subjects. For the analysis, the complete universe
634 of windows of all the participants is considered.

635 As a result, a p — value = 0.00184 is obtained with a 95 % confidence interval, so the null
636  hypothesis is rejected. In addition, as shown in Table 4, mean pupil diameter in the transition
637 windows is smaller than in the active windows. Therefore, it is concluded for the data as a whole
638  that the difference between mean pupil diameter in the active windows and the transition windows
639 s statistically significant and that the diameter is smaller in the transition windows (H1).

640 5.2 Classification

641 Table 5 shows that the worst accuracy measure obtained with the NN-RFE is 45.24 %
642  (participant 48) with five classes, and the best result is 95.24 % (participant 23) with two classes. The
643  classification mean including all 53 participants yields the result of 68.94 % accuracy with a standard
644  deviation of 11.54 %. The results of the classification according to the number of final classes are also
645  analyzed. As shown in Table 6, there is a tendency for the classification percentage to decrease as the
646  number of classes increases. In particular, an accuracy of 90.61 % is obtained for the classification of
647  two classes, 73.34 % for three classes and acceptable values are obtained for four and five classes.

648 Regarding the MLP, in Table 7, the worst measure of accuracy obtained is 72.16 % (participant
649  17) with four classes, and the best result is 99.9 % (participant 9) with three classes. The classification
650  mean including all 53 participants is 88.46 % with a standard deviation of 7.94 % for the accuracy
651  measure (RQ2). The classification analysis is performed according to the number of final classes. As
652 shown in Table 8, the trend observed for NN-RFE is maintained such that the higher the number of
653 classes is, the lower the classification percentage, but with a break in the case of four and five classes.

654
655
656 Table 4. Standardized means of pupillary diameter for transition and active windows.
657
Factor Mean Standard Deviation
Transition 0.01924 0.97
Active 0.10737 0.84

658
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Table 5. Results of classification using NN-RFE.

- Accuracy (%) Recall (%) Precision (%)
Mean 68.94 66.62 76.92
Standard Deviation 11.54 13 11.62
Maximum 95.24 95.45 95.45
Minimum 45.24 39.99 46.29

Table 6. Average classification using NN-RFE by quantity of classes.

Number of classes Accuracy (%) Recall (%) Precision (%)
2 90.61 89.99 92.15
3 73.34 71.69 83.56
4 63.29 59.57 70.75
5 57.94 54.92 64.35
6 53.85 53.61 66.31
Table 7. Results of classification using MLP.
- Accuracy (%) Recall (%) Precision (%)
Mean 99.1 98.99 99.27
Standard Deviation 0.2722 0.3325 0.2174
Maximum 100 100 100
Minimum 98.26 97.96 98.64

Table 8. Average classification using MLP by quantity of classes.

Number of classes Accuracy (%) Recall (%) Precision (%)
2 99.03 98.92 99.22
3 99.14 99.05 99.31
4 99.06 98.93 99.25
5 99.06 98.96 99.24
6 99.22 99.15 99.36

5.3 Evaluating Psychophysiological Sensors

To assess the performance of each sensor, the MLP neural network that obtains the best results
with all the sensors is selected as a supervised learning model. Table 9 shows the results of assessing
the performance of each sensor separately. The sensor with the best performance is EEG, with 88.78
% accuracy in the classification, slightly superior to the classification using all the sensors. The other

sensors separately have a very low level of classification accuracy.
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Table 9. Summary of sensor classification results for MLP with 100 neurons in each hidden layer and

400 epochs.
Sensors Accuracy (%) Recall (%) Precision (%)

All 99.1 98.99 99.27
EDA 53.28 63.18 53.52
ST 42.37 76.41 35.7
ECG 46.22 66.81 45.55
PPG 46.69 76.58 43.88
EEG 92.27 94.74 94.94
EDA+PPG 63.36 68.33 66.5
EDA+EEG 96.23 97.44 97.73
PPG+EEG 95.89 96.78 96.56
EDA+PPG+EEG 97.29 98.01 98.36

Then, combinations of the three sensors with higher performance are tested: EEG, EDA, and
PPG (HR). As shown in Table 9, the combinations with EEG provide the best results. The
combination with the highest performance is EDA, PPG (HR), and EEG, with 95.73 %.

An important difference between the EEG sensor and the others is that it allows the extraction
of a greater number of characteristics because the 14 electrodes contribute two characteristics each,
for a total of 28 characteristics. This factor may explain the superior performance of this sensor
compared to the rest. Therefore, it is concluded that it is possible to obtain good classification results
for this experimental design with less than 5 sensors, even only with the EEG. The temperature
sensor and the ECG can thus be discarded.

5.4 Evaluating Time Overhead

For mental workload classification in Web site browsing to lead to a real application, processing
must be sufficiently fast, given that the time windows considered have a minimum length of 500
milliseconds. Table 10 shows the classification time for the algorithms used that yielded the best
results.

The results show that, for the artificial neural networks and RFE model, the time window is
very small at 0.0083 seconds on average, which ensures that this model can be implemented in real
time with an acceptable classification mean of 68.94 % (see Table 5).

Table 10. Testing time for models.

Mean [sec] Standard Deviation [sec]
NN-RFE 0.0083 0.001
MLP 0.109 0.023
MLP EEG 0.1218 0.0041
MLP EDA+PPG 0.1056 0.0091
MLP EDA+EEG 0.1207 0.0098
MLP PPG+EEG 0.107 0.0037
MLP EDA+PPG+EEG 0.126 0.007

do0i:10.20944/preprints201712.0021.v1


http://dx.doi.org/10.20944/preprints201712.0021.v1
http://dx.doi.org/10.3390/s18020458

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2017 d0i:10.20944/preprints201712.0021.v1

20 of 26

706 On the other hand, for the model based on MLP, the effect of its parameters given by the 100
707  neurons in the two hidden layers increases the processing time to an average of 0,1 seconds. So, this
708  model can be implemented in real time as well with a classification average of 99.1 % accuracy for all
709 sensors and a reasonable 63.36% for more portable sensors (PPG and EDA, see Table 9).

710 6. Discussion

711 The results of the statistical analysis determine that pupil diameter in the transition time
712 windows is statistically and significantly lower than in the active windows of Web element analysis.
713 Given the proven correlation between pupil dilation and mental workload, it is determined that
714 there is a decrease in mental workload in the time windows between the analysis of one Web
715  element and another (H1).

716 A possible application of the demonstration of this hypothesis (H1) is the generation of
717  recommendation systems that support the user in during Web browsing according to her interest,
718  thatis, when she is not cognitively overloaded with new content. This is applicable, for example, to
719  retail applications or advertisement.

720 Regarding the assessment of the psychophysiological sensors to estimate mental workload,
721  with the exception of the EEG, the signals of the sensors used do not provide an appropriate level of
722 classification by themselves for this type of task, although the combinations of signals with EEG
723 stand out, obtaining very good results. One of the reasons may be the time constant of each signal;
724 that is, signals such as skin temperature or conductivity take longer to react compared to electrical
725  signals from the brain.

726 However, despite the fact that the combination of EDA and PPG (HR) does not provide better
727  results than EEG alone, a reasonable level of accuracy (63.36 %) is obtained for its use in practice,
728  even before portable EEG technology is available. The advantage of the EDA and PPG sensors is that
729  they are non-invasive, portable, cheaper, and easily integrated into a board that transmits via
730  Bluetooth or other wireless means to a gateway, such as a smartphone, from a wearable such as a
731 smartwatch, a wristband, or a textile [88]. In addition, considering that the time overhead of the
732 classification in each time window is very small (on average 0.1056 s, with a standard deviation of
733 0.0091 s), EDA and PPG are considered feasible alternatives for the first practical applications of the
734 real-time assessment of mental workload in users browsing Web pages.

735  7.Conclusion

736 The study of human behavior and physiology when performing human-computer interactions
737  activities is complex due to the multiple factors that affect each person in their performance and
738  behavior with regard to this class of tasks. This research assesses the behavior of a user in the simple
739  task of browsing freely through a fictitious Web page created specifically for this study, using
740  psychophysiological sensors.

741 It is shown that for the complete data set, that is, considering the complete universe of windows
742 of all the participants, pupil diameter — as a measure of mental workload - is significantly lower in
743 the transition windows than in the active windows, with a significance of p — value = 0.00184 fora
744 95 % confidence interval. Therefore, patterns of low mental workload states are identified, and the
745  hypothesis (H1) that it is indeed possible to measure mental workload in Web browsing activities
746 and, moreover, that the mental workload of the user decreases in the transition from the analysis of
747  one Web element to another while browsing freely is verified.

748 The unsupervised model of k-means analysis as a data mining technique is applied to the mean
749  and variance of pupil dilation, based on which the Web browsing task involves on average four
750 levels of mental workload. Thus, it is concluded that there are several mental workload states that
751  can be determined (RQ1).

752 To classify levels of mental workload, the MLP neural network is used, which obtains a result of
753 88.46 % accuracy on average (RQ2). In addition, the electroencephalogram is the sensor that obtains
754 the best results, classifying with 88.78 % accuracy. If the EEG is combined with the PPG and EDA,
755 the accuracy of the classification rises to 95.73 %.
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756 In terms of future lines of research, it is proposed to use the data to study Web users' mood
757  behavior together with their cognitive behavior. In addition, it is proposed to focus the research on
758  the EEG sensor, which showed superior performance, using other analytical approaches, such as
759 wavelets and/or ERP, to determine the most relevant involved brain areas.

760 Supplementary Materials: The following dataset was submitted as supplementary material: “dataset_Sensors”.
761 It contains all the preprocessed, gathered sensor data for each participant.
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