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Abstract: The mental workload induced by a Web page is essential for improving the user’s 12 
browsing experience. However, continuously assessing the mental workload during a browsing 13 
task is challenging. In order to face this issue, this paper leverages the correlation between stimuli 14 
and physiological responses, which are measured with high-frequency, non-invasive 15 
psychophysiological sensors during very short span windows. An experiment was conducted to 16 
identify levels of mental workload through the analysis of pupil dilation measured by an 17 
eye-tracking sensor. In addition, a method was developed to classify real-time mental workload by 18 
appropriately combining different signals (electrodermal activity (EDA), electrocardiogram, 19 
photoplethysmography (PPG), electroencephalogram (EEG), temperature and eye gaze) obtained 20 
with non-invasive psychophysiological sensors. The results show that the Web browsing task 21 
involves on average four levels of mental workload. Also, by combining EEG with the PPG and 22 
EDA, the accuracy of the classification reaches 95.73 %. 23 
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1. Introduction 26 
Although Web applications are often justified in terms of increasing the productivity of human 27 

tasks, they sometimes have the opposite effect, interrupting, reducing the performance of, or 28 
increasing the mental workload of the user [1–4]. A typical task in which this phenomenon may 29 
occur is Web browsing. In this task, the user fixes her/his gaze on and between Web elements, i.e., 30 
graphic or textual areas of a Web page, such as news, commercial advertisements, and menus [5–7]. 31 
In cognitive psychology, mental workload refers to the total amount of perceived mental effort used 32 
for learning or processing new information [8–11]. 33 

An important factor in measuring the effectiveness of a Web page is the user's browsing 34 
experience. It has been shown that the higher the level of user's browsing experience is, the lower the 35 
mental workload [3,4,12]. Every Web page has both an intrinsic and an extrinsic mental workload 36 
[3,13–15]. The former is related to the natural effort required to absorb new information, to the 37 
process of learning to navigate around the page, and to the process of becoming accustomed to the 38 
design of the page. The latter consists of the mental workload caused by the inclusion of unnecessary 39 
details or external interruptions, such as font styles that convey no meaning, commercial 40 
advertisement pop-ups, and irritating recommendations, which may have a negative effect on user's 41 
browsing experience. 42 

Continuously assessing, at any moment, the mental workload involved in browsing tasks 43 
entails measuring it either when the user fixes her attention on a Web element or when her gaze 44 
switches from one element to another. This assessment of mental workload can enhance the user's 45 
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browsing experience in many ways: for instance, avoiding extrinsic mental workload by 46 
automatically identifying the most suitable moments to proactively deliver content to the user or 47 
preventing irritating intrusions from the environment; reducing intrinsic mental workload by 48 
keeping the Web page support interventions on stand-by and adapting graphic user interfaces in 49 
real time; and evaluating the likelihood of user's abandonment, frustration or techno stress, among 50 
other benefits. In addition, instantaneous classification of mental workload into intrinsic or extrinsic 51 
to the Web elements of a Web page would make it possible to detect short time windows of reduced 52 
cognitive burden to activate the delivery of different types of recommendations in a timely, 53 
unobtrusive manner, such as contextual news in newspaper portals or commercial advertisement 54 
pop-ups on various Web sites. In addition, it may be possible to enhance search tasks, for instance, 55 
for restaurants, flight tickets, or retail products, by providing relevant feedback to the search engine 56 
based on the user's cognitive status [6]. 57 

To realize the above requirements, it is essential to address the challenge of automatically 58 
assessing the mental workload in a continuous fashion while the user is engaged in browsing, that is, 59 
in real time, with high frequency and using very short time windows. 60 

Many studies have focused on classifying mental workload in general by capturing and 61 
processing data using ever less invasive psychophysiological sensors [16–20]. This method is 62 
founded on the empirical demonstration of the correlation existing between psychological stimuli 63 
and physiological responses triggered by the nervous system. Moreover, mental workload has been 64 
shown to vary frequently within a short time span [21,22].  65 

Although considerable research has been devoted to assessing mental workload on the scale of 66 
hours and minutes by using data extracted from psychophysiological sensors, less attention has 67 
been paid to time windows lasting seconds or less, such as when a user fixes her gaze on a Web 68 
element. Indeed, Bailey et al. [23] have recently proved that moments of reduced mental workload 69 
occur while the user's attention is transiting from one task to another. However, this was shown only 70 
for coarse-grained tasks, such as selecting a travel route among alternatives presented in a graphic 71 
interface or classifying a list of emails into various categories [23]. 72 

In this paper, the capabilities of psychophysiological sensors are leveraged to research the 73 
possibility of assessing mental workload in real time during a browsing task. This paper thus 74 
attempts to answer the following research questions: 75 

 76 
• RQ1: Is it possible to identify levels with regard to a user's mental workload within very short 77 

time windows (order of milliseconds) based on psychophysiological signals recorded during a 78 
Web browsing task? 79 

• RQ2: Is it possible to accurately classify in real time a user's mental workload, both when her gaze 80 
is fixed on a Web element and when her gaze is transiting from one Web element to another, by 81 
combining different non-invasive psychophysiological sensors? 82 

 83 
In addition, based on the findings of Bailey et al. [23], this paper attempts to prove the following 84 

hypothesis: 85 
 86 

• H1: Mental workload is significantly smaller when the user's attention is switching from one Web 87 
element to another than when she is focused on a Web element. 88 

 89 
To answer these research questions and prove the stated hypothesis, an experiment was 90 

conducted in which 61 users performed a normal Web browsing task in front of a computer screen 91 
while their psychophysiological responses were measured by different sensors and recorded in a 92 
database. The gold standard with regard to answering RQ1 is pupil diameter because several 93 
previous studies have shown that, under controlled illumination conditions, this 94 
psychophysiological response is a valid and reliable indicator of mental workload [23–29]. Using 95 
clustering methods, this paper shows that, by processing the pupil dilation response, four levels of 96 
mental workload can be identified per user on average. 97 
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However, measuring pupil dilation with an eye tracker is not a realistic and practical method to 98 
classify mental workload, for example, in the open air, because it requires constant and controlled 99 
illumination conditions. Thus, in this paper, more practical and less invasive sensors are assessed to 100 
measure other psychophysiological responses, such as heart rate (HR), electrodermal activity (EDA), 101 
body temperature, and electrocardiogram (ECG). The electroencephalogram (EEG) sensor is also 102 
assessed because there have been important advances in the construction of portable EEGs and in 103 
algorithms to reduce motion-related artifacts [30] [31]. It is expected that before long, there will be 104 
EEG devices that only capture brain waves from the areas of the brain relevant to the assessment of 105 
mental workload, making them less invasive [32]. 106 

This paper shows that, using all the sensors and efficiently processing their signals using 107 
artificial neural networks, mental workload can be classified as proposed in RQ2, with 68.94 % 108 
accuracy, 66.62 % recall, and 76.92 % precision. However, using all the sensors and a multi-layer 109 
perceptron, it is possible to achieve 88.46 % accuracy, 88.84 % recall, and 88.85 % precision. 110 
Ultimately, the best performance is obtained by combining EDA, HR, and EEG, achieving 95.73 % 111 
accuracy, 94.25 % recall, and 95.6 % precision in the classification of mental workload. Furthermore, 112 
the hypothesis that mental workload is significantly smaller when the user's attention is switching 113 
from one Web element to another than when she is focused on a Web element is confirmed 114 ሺܧܵܯ = 1.7829; ݌	 − ݁ݑ݈ܽݒ = 0.00184 < 0.05ሻ.  115 

The contributions of this paper include (i) identifying different levels of mental workload 116 
required for Web browsing through the processing and analysis of pupil dilation measured by an 117 
eye-tracking sensor; (ii) developing a method for appropriately combining non-invasive 118 
psychophysiological sensors to classify real-time mental workload in small time windows with high 119 
accuracy (mean=99.1%, SD = 0.2772%) based on the behavior of the user's gaze in a Web browsing 120 
task; and (iii) leaving open the possibility of using gaze shifts from one Web element to another as 121 
the most appropriate time to provide the user with recommendations, for example. 122 

This paper is organized as follows. Section 2 provides the background required to understand 123 
this research. Section 3 presents the related literature. The experiment conducted is described in 124 
Section 4, as well as the data processing and the machine learning methods applied to the data. The 125 
results are presented in Section 5 and are discussed in Section 6, while Section 7 concludes the paper. 126 

2. Background 127 

2.1 Assessment Methods 128 
Cognitive resources are assets used by cognition to think, remember, make decisions, solve 129 

problems, or coordinate movements, such as perception, attention, short- and long-term memory, 130 
and motor control [33,34]. According to Navon et al. [35], these resources underlying human 131 
learning and information processing are limited [36]. 132 

Wickens [9], in his multiple resource theory, suggests that these resources can be used in 133 
parallel for multiple tasks, using several resources at once. However, when task demand is high, the 134 
resources allocated to that task are not available for another task if the same mental resources are 135 
required at the same stage of processing. Excessive use, moreover, can cause a state of overload 136 
known as cognitive resource depletion [37]. This overload means that the brain is unable to process 137 
new information, resulting in processing and/or execution errors [38]. 138 

Mental workload results from the different levels of resource demand, depending on the 139 
parallel tasks that the person is performing [8,9,21,22]. Excessive resource demand can cause 140 
distraction, increase errors, generate stress and frustration, and reduce the ability to undertake 141 
mental planning, problem solving, or decision-making [39,40]. One example is the distraction caused 142 
by unwelcome advertisements on a Web page while the user is browsing. In this case, the 143 
intermingling of the browsing task with the intrusion of commercial advertisements forces the user 144 
to divide attention and allocate cognitive resources to the new stimulus. 145 

Traditionally, mental workload has been assessed in different situations using subjective 146 
methods [16] based on surveys, auto-perception scales, or think-aloud protocols [41–43]. These 147 
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methods are applied after the user has already finished the task, and the assessment of the mental 148 
workload depends of the user's final perception [44]. Therefore, these methods are constrained by 149 
the reporting bias introduced by relying on past memories and by the problem of ecological validity 150 
based on observing responses to hypothetical scenarios rather than behaviors in a real setting [45]. In 151 
addition, the static nature of these methods makes them unfit for real-time evaluation. The most 152 
widespread example of this method is the NASA Task Load Index, which measures the mental and 153 
physical performance, as well as the effort and frustration, of the user [46].  154 

Performance-based methods have also been used, which measure indicators generated during 155 
task execution, such as the percentage of correct responses or execution time [3,16,17]. In this 156 
method, the user needs to be engaged in only one task. Its major restriction is the difficulty of 157 
assessing mental workload in near real time. 158 

The attempts to find objective indicators to measure mental workload in real time are based on 159 
collecting contextual information, which can be captured mainly using psychophysiological sensors 160 
[47–49]. Indeed, there is ample empirical evidence in psychophysiology showing that some 161 
physiological responses are directly related to psychological factors such as stress, mental workload, 162 
and emotions [50–52]. That is, there is a correlation between the physiological responses triggered by 163 
the nervous system and psychological stimuli. 164 

Psychophysiological responses are controlled by the autonomic nervous system (ANS), which 165 
regulates and coordinates bodily processes such as digestion, temperature, blood pressure, and 166 
many aspects of emotional behavior [53]. These actions occur independently of the conscious control 167 
of the individual. The ANS includes the sympathetic nervous system (SNS) and parasympathetic 168 
nervous system (PNS). The SNS controls actions required in emergency situations, such as stress and 169 
movement. It can cause heart rate acceleration, pupil dilation, and increased blood flow to the 170 
muscles, sweating, and muscle tension. The PNS controls the functions related to rest, repair, and 171 
relaxation of the body. The responses elicited by this system include a decrease in heart rate and 172 
blood pressure, stimulation of the digestive system, and pupillary contraction, among others [50,51]. 173 

2.2 Psychophysiological measurements 174 
There are different types of methods to measure psychophysiological responses elicited 175 

complementarily by the SNS and PNS [54]. For instance, the device for tracking gaze is the eye 176 
tracker. It consists of a camera on the computer screen that works according to the "corneal-reflection 177 
/ pupil-center" method [55]. It also allows the measurement of the variation of the pupil diameter. 178 
The pupillography measures changes in pupil size, which can be attributed to both parasympathetic 179 
inhibition, which explains the first dilation phase, and sympathetic activation, which explains the 180 
subsequent contraction phase [56,57]. Although pupil dilation can be triggered by a light reflex 181 
caused by changes in environment illumination or by a proximity or accommodation reflex to 182 
improve visual focus, it can also be caused by a psychosensory reflex associated with the cognitive 183 
or emotional engagement of the person while exposed to any sensory stimulus [58]. In contrast to 184 
changes in the two previous reflexes, changes in pupil size in this case are subtler, so a 185 
high-precision device or eye tracker is required for their detection [59]. 186 

The eye tracker is also used for tracking the eye to determine gaze position or movements 187 
within a scene, including two relevant measurements: 188 

 189 
• Fixations: moments during which the gaze is relatively fixed or focused. They occur because 190 

sharp vision is only possible within a small area in the human eye called the fovea. It is useful to 191 
determine when eye fixation occurs because, in most cases, it coincides with attention. 192 

• Saccades: rapid eye movements or jumps from one fixation point to another. Saccades follow a 193 
pattern (or trajectory) depending on several factors: what is currently being looked at, visual 194 
target tracking, experience, and emotions. 195 

 196 
Another set of psychophysiological measurements is obtained by electroencephalography. This 197 

is based on recording the electrical activity of the brain measured on the scalp. The device used is the 198 
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EEG, which measures the voltage resulting from changes in ionic current flow within the neurons of 199 
the brain, produced by the brain's synaptic activity. There are five major brain waves: delta (1-4 Hz), 200 
theta (4-8 Hz), alpha (8-12 Hz), beta (12-25 Hz), and gamma (approximately 25 Hz). Fritz et al. [16] 201 
indicate that a decrease in the activity of the alpha band in conjunction with an increase in the 202 
activity of the theta band is associated with greater attentional demand and memory workload. 203 
Moreover, other studies have concluded that theta and delta bands are sensitive to stimuli involving 204 
difficult manipulation. 205 

EDA is a psychophysiological response that can be assessed by measuring changes in the 206 
electrical properties of the skin. Skin conductivity varies with changes in skin moisture (sweat) and 207 
may reveal changes in the SNS. EDA is also known as galvanic skin response (GSR), and it is 208 
inexpensive to assess, easily captured, and robust. It is measured by attaching one or two electrodes 209 
usually to the fingers or toes. It is an indicator of psychological and physiological arousal. In 210 
addition, it serves to identify emotional states. EDA has two components: (1) a phasic component 211 
that changes rapidly and is related to external stimuli or a non-specific activity and (2) a tonic 212 
component or base signal that varies slowly and sets basic skin conductance. A classic behavior is 213 
that when arousal increases, there is an increase in sweat gland activity, decreasing electrical 214 
resistance, and thus increasing conductivity. 215 

The cardiovascular system is particularly interesting for psychophysiology because it is highly 216 
sensitive to neurological processes and psychological factors such as stress. It is regulated by the 217 
ANS, which produces patterns of electrical activity that are fundamental for psychophysiological 218 
measurements [50]. Several studies associate changes in cardiac activity with psychological 219 
phenomena, such as mental work, perception, attention, problem solving, and signal detection [60]. 220 

An ECG is used to measure the electrical activity of the heart, using at least three electrodes 221 
attached to the chest. The electrodes collect the necessary data with regard to the electric waves that 222 
describe the cardiac cycle, based on which the HR or its variation (HRV) are obtained. 223 

The human body constantly exchanges heat with the environment as part of the process of 224 
self-regulation to maintain homeostasis (internal balance of the body). Body temperature increases 225 
and decreases in relation to the energy exchanged. The regulation of blood flow to the skin and 226 
thermal radiation is considered a function of the ANS [61]. Studies conducted in this field, according 227 
to Genno et al. (1997) [62], suggest that skin temperature has potential as a psychophysiological 228 
measure of the individual. 229 

3. Literature Review 230 
This paper focuses on the measurement of mental workload while the user browses a Web site 231 

in front of her personal computer. However, the literature in this regard is scant. Thus, to start 232 
studying the measurement of mental workloads in various domains and to help understand the 233 
methodology associated with this type of research, this section focuses on two main points: the 234 
assessment of mental workload using psychophysiological sensors in general and the measurement 235 
of mental workload in Web environments. 236 

3.1 Assessment of Mental Workload with Psychophysiological Sensors 237 
A relevant study for this paper is that by Bailey et al. [23] who develop psychophysiological 238 

measures to assess the effect of interruptions on the performance of a person executing a task. They 239 
establish that interruption involves considerable negative effects, such as increased time to complete 240 
the task [63], a wider range of errors [64], additional efforts in decision-making [65] and mood 241 
changes such as increased frustration and anxiety [66–68]. For example, when an interruption occurs 242 
at a random time while performing a major task, the time to completion can increase by up to 30 %, 243 
up to twice as many errors can be committed, and user displeasure doubles, in contrast to when the 244 
interruption occurs at a pre-programmed time. Therefore, Bailey et al. empirically find that 245 
interruptions may have a lower cost if they occur at a time of low mental workload, hypothesizing 246 
that this may occur at the boundaries between subtasks when executing the general task [69]. As a 247 
test method, they assess mental workload by pupil dilation in three different tasks that include 248 
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respective subtasks. The first task consists of assessing two different routes between two cities on a 249 
monitor; the user must measure the distance and cost of the routes, tabulate the data, and, finally, 250 
discriminate and choose the shortest and most economical route. In the second task, the user must 251 
edit a document and correct spelling at three levels of complexity (editing a word, editing two 252 
words, and editing a complete sentence). The third task entails classifying nine emails involving 253 
explicit issues (low complexity) and ambiguous issues (high complexity) into four categories. Each 254 
of these scenarios is applied to 24 people (seven women) between 19 and 50 years of age. The main 255 
conclusions of the study are as follows: (i) mental workload varies during the execution of the three 256 
tasks, (ii) the mental workload decreases when performing subtasks compared to the general task, 257 
and (iii) different subtasks demand different levels of mental workload based on their complexity. 258 

Other studies focus on training classifiers to process psychophysiological signal data in a time 259 
window in order to predict whether the load associated with a specific task is high or low [70]. For 260 
example, Haapalainen et al. [17] measure the mental workloads of basic tasks such as the resolution 261 
of problems on a monitor, visual perception, and cognitive speed by using an eye-tracking device, 262 
EEG, ECG, heat flow, and rate measurements. As a result, they find that ECG and heat flow together 263 
distinguish between tasks of high and low cognitive demand with 80 % precision. 264 

Fritz et al. [16] seek to verify whether psychophysiological sensors are useful in measuring the 265 
difficulty of a computer code comprehension task with various levels of difficulty. The tasks are 266 
performed by software developers, who are monitored using an eye tracker and an 267 
electroencephalogram. Fritz et al. use the ܽݐ݁ܤ ሺ݌݈ܣℎܽ + ܶℎ݁ܽݐሻ⁄  ratio based on the evidence that 268 
beta increases with task execution, theta is deleted, and alpha is blocked. The models obtained 269 
classify task difficulty with 85 % accuracy. 270 

Shi et al. [71] assess stress and arousal levels by measuring EDA for increasing levels of 271 
difficulty. The experiment consists of a transition interface in which the participants must respond to 272 
the requirements in three scenarios: (1) using gestures and speaking, (2) only speaking, and (3) only 273 
using gestures. The difficulty varies depending on level of visual complexity, number of entities, 274 
number of distractors, time limit, and number of actions to complete. The results indicate that there 275 
is a significant increase in the EDA signal as task difficulty increases. 276 

Nourbakhsh et al. [72] confirm the effectiveness of EDA in discriminating between the difficulty 277 
of eight arithmetic tasks with four levels of difficulty. In addition, as an extension of the previous 278 
study, Nourbakhsh et al. measure mental workload using EDA changes and the number of blinks 279 
obtained from an eye-tracking device. The experiment is the same as in the previous study. This 280 
time, by combining both sensors, 75 % precision is achieved for the lowest level of difficulty. 281 

Xu et al. [73] show that mental workload can be measured by pupil dilation if illumination 282 
changes. The experiment consists of arithmetic tasks that vary in difficulty depending on the 283 
number of digits. 284 

In Ikehara et al. [18], an eye-tracking device, a pressure sensor for the mouse, an EDA sensor, 285 
and a pulse oximeter (for measuring HR and level of oxygen in the blood) are used. The experiment 286 
consists of selecting on a screen the fractions whose value is less than 1/3. There are two levels of 287 
difficulty in the experiment. The results indicate that EDA and pupil dilation have the greatest 288 
statistical significance in terms of detecting task difficulty. 289 

Using an elastic neural network, Hogervost et al. [19] find that the best performance is obtained 290 
when EEG is combined with pupil dilation (91% accuracy) and when EEG is combined with 291 
peripheral physiology (89 %); with EEG alone, they obtain 86 % accuracy. In addition, using only the 292 
measurement of the electrode located in the Pz position (central parietal area of the head), they 293 
obtain 88 % accuracy. 294 

3.2 Assessment of Mental Workload in Web Environments 295 
Although the study of users' cognitive responses during Web browsing is an intriguing area, it 296 

remains little explored. Indeed, one of the few studies on the topic is that by Albers [3], who 297 
examines how mental workload theory applies to the design of Web sites using the tapping test 298 
method, which measures mental workload by focusing on performance. As in all the examples using 299 
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this approach, the tapping test adds an additional secondary task to the main one, measuring the 300 
performance of the participant to determine the level of mental workload induced. In this case, the 301 
main task is to browse two Web sites sequentially—with implicit mental workload controlled by 302 
design—and answer questions aloud in relation to the Web pages, while the secondary task is to 303 
rhythmically keep tapping per second. As mental workload increases, tapping begins to fall slowly 304 
and lose the rhythm, even losing it completely when there is cognitive overload. However, 305 
implementing a secondary task as required by this method prevents from generating a realistic 306 
scenario for the user and does not allow real-time measurement. 307 

The most recent research regarding the observation of Web users' experience involves the 308 
measurement of their behavior as a reaction to different stimuli, such as notifications, and allows us 309 
to predict the user's response according to Navalpakkam & Churchill [74]. By comparing mouse 310 
pointer movement to eye tracking, they are able to determine a more user-friendly layout for a Web 311 
site, which improves the effectiveness of the notification. Finally, they conclude that gaze and mouse 312 
movement patterns contain important information in terms of assessing the user's status, 313 
determining if they are distracted from the assigned task or striving to fulfill it. The correlation 314 
between eye movements and mouse pointer movement predicts a Web user's different 315 
psycho-emotional states. They also conclude that the user is more likely to pay attention to 316 
notifications when they vary in position on the Web site rather than when they are fixed. 317 

As summarized in Table 1, the measurement of mental workload using psychophysiological 318 
signals has been tested for a varied set of tasks. In addition, studies have investigated how mental 319 
workload is related to the design of a Web page. However, the abovementioned research provides 320 
no evidence regarding assessment of mental workload while browsing a Web site using multiple 321 
psychophysiological measures. There is also no reference to time overhead to determine how 322 
feasible it is to implement real-time measurement. Partial. Time Windows average length for classification 323 
of 23.7 s. 324 

4. Materials and Methods 325 

4.1 Participants 326 
The initial experimental group includes 61 participants (19 women and 42 men), aged between 327 

19 and 35 years (mean age = 23.8 years, SD = 3.2 years), all engineering students at the University of 328 
Chile, recruited through the institutional news Web application. None of them suffered from 329 
cardiovascular diseases or was taking medications that could have affected their normal behavior. 330 
All of them were familiar with browsing tasks. Each session had a duration of approximately 60 min. 331 
The final experimental group is composed of 53 people. Eight participants were discarded due to 332 
various problems during signal measurement and processing. 333 

This research has the approval of the Research Ethics Committee at the Faculty of Physical and 334 
Mathematical Sciences at the University of Chile. In addition, all of the participants read an informed 335 
consent and agreed on signing it. The consent contained information about the procedure, purpose 336 
of the experiments, voluntary participation, right to decline to participate at any moment, how to 337 
access the research results and researchers’ information. 338 

4.2 Psychophysiological Sensors 339 
Psychophysiological sensors have the advantage that measurements do not depend on the 340 

user's perception and are not under the control of the user.  341 
  342 
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Table 1. Related work analysis 343 

 344 
In addition, they are becoming less intrusive and allow tasks to be performed in various 345 

scenarios, giving greater ecological validity to the experiments. They also allow real-time data 346 
capture [16,50].  347 

Ref. Small Time Windows 
Real 
Time 

Web Browsing Tasks 
Multiple 

Psychophysiological 
Sensors 

[15] Partial. Time window average 
length for classification of 23.7 s. 

Fulfills Fails. Desktop-based 
tasks of visual 
perception and 
cognitive speed. 

Fulfills. Eye tracker, EEG, 
ECG, heat flux and HR. 

[14] Partial. Sliding time windows of 
sizes from 5 seconds to 60 seconds, 
sliding 5 seconds between 
intervals. 
 

Fulfills Fails. Comprehension 
tasks of computer code. 

Fulfills. Eye tracker, EEG 

[34], 
[37] 

Partial. Three silent reading tasks 
were performed. Each task 
consisted of four text slides and 
each slide was presented for 30 
seconds. 
 

Fulfills Fails. Arithmetic tasks Partial. EDA and blink. 

[16] Fails. Duration of tasks between 60 
and 70 seconds. 

Fulfills Fails. Select the fraction 
whose value is less than 
1/3. 

Fulfills. Eye tracker, EDA, 
pulse-oximeter, mouse 
pressure sensor. 
 

[17] Fails. Classification in 2 minutes 
windows. 

Fulfills Fails. N-back task. Fulfills. EEG; peripherals 
(EDA, respiration, ECG) 
and eye measures (eye 
tracker). 
 

[18] Fulfills. The average overall 
duration of the limits was 550 ms. 

Fulfills Partial. Measures the 
cost of interruptions in 
tasks such as: choosing a 
route, correcting 
spelling and classifying 
emails. 
 

Partial. Only the pupillary 
dilation. 

[3] Not applicable. Fails Fulfills. Measure the 
cognitive load on a 
website. 

Fails. Measurement of 
mental workload by 
performance: tapping test. 
 

[36] Fails. The participants interacted 
with each page for about 100-120 
seconds. 

Fulfills Fulfills. Study the 
design of websites in a 
way that improves the 
effect of a notification. 
 

Partial. Compare the 
tracking of the mouse with 
eye tracking. 

[38] Fulfills. Windows between 300 and 
600 ms. 

Fulfills Fulfills. Predict the 
intention of clicking on 
a website. 
 

Partial. Only the pupillary 
dilation. 
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 348 
Figure 1. Participant with the sensors runs the experiment. The sensors are: (1) ECG, (2) axillary 349 

temperature, (3) EEG, (4) EDA, (5) PPG and (6) eye tracker. 350 
 351 
For data acquisition, the following sensors were used: GSR+, optical pulse sensor, and Bridge 352 

Amplifier + unit, all from the Shimmer [75]; ECG BITalino [76] ; EEG Emotiv Epoc [77]; and Tobii 353 
T120 Eye Tracker [78]. Figure 1 shows an example of a volunteer outfitted with all the sensors. 354 

To measure the EDA and HR signals, the Shimmer GSR+ unit sensor was used with a sampling 355 
frequency of 120 Hz. The position of the electrodes for measuring the EDA was the palm area of the 356 
proximal phalanx of the index and ring fingers of the left hand [79]. The optical sensor that functions 357 
as a photoplethysmograph (PPG) was attached to the lobe of the right ear [80]. The Shimmer Bridge 358 
Amplifier + unit sensor with a sampling frequency of 50 Hz was used to measure body temperature. 359 
The sensor was applied under the right armpit. This sensor was synchronized with the EDA and 360 
pulse sensors using a base provided by Shimmer together with Consensys software. 361 

The BITalino BioMedical Development All-in-One Board with a sampling frequency of 1000 Hz 362 
was used to measure the ECG. The configuration of the three electrodes followed the lead II 363 
standard [81,82]. Before applying the electrodes, the skin was prepared by wiping it with alcohol to 364 
remove grease and impurities to reduce noise. In addition, an ECG gel was used. OpenSignals 365 
evolution software provided by the manufacturer was used [83]. 366 

To measure the EEG, the Emotiv EPOC EEG sensor with a sampling frequency of 128 Hz was 367 
used. The sensor was attached to the head, positioning the reference sensors first. To improve the 368 
conduction of the electrical signals of the brain, each electrode was previously hydrated. To capture 369 
the data and verify that the sensor was properly applied, the Emotiv Xavier Testbench software 370 
provided by the manufacturer was used. 371 

The Tobii T120 Eye Tracker with a sampling frequency of 120 Hz was used to measure pupil 372 
dilation and for eye tracking. Tobii Studio software was used for calibration and to perform data 373 
collection [84]- 374 

4.3 Experimental Procedure 375 
A fictitious Web site was created whose basic configuration is shown in Figure 2. This layout of 376 

the Web elements was maintained through all the experiment. The elements within the Web site 377 
were seven news headings with their respective representative image, four rectangular 378 
advertisements, a typical navigation bar with a menu, the logo of the page in the upper left corner, 379 
and a bar at the bottom of the page. 380 

 381 
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 382 
Figure 2. Example of a dummy Web page for the experiment. 383 

 384 
Each participant was tested individually at the laboratory. A physically isolated experimental 385 

room was used to maintain the experimental configuration and the environment constant for all 386 
participants. In addition, the room did not receive any sunlight, to avoid the effects of infrared light 387 
on measurements and to maintain constant illumination conditions that do not affect pupil diameter 388 
measurements [85]. 389 

As soon as the participant arrived in the experimental room, the experiment was explained to 390 
her, and she was asked to read and sign the informed consent, as well as a questionnaire to get her 391 
basic anonymous information. The participant seated in front of the screen, and the sensors were 392 
connected in the following order: ECG, axillary temperature, EEG, EDA, and PPG; then the eye 393 
tracker was calibrated with the help of the participant (Figure 1).  394 

Prior to the tests, each user underwent a relaxation period consisting of the visualization of 395 
three four-minute videos of landscapes with background instrumental music. Then, the participant 396 
was asked to take deep breaths for one minute with eyes closed and with soft background 397 
instrumental music. This procedure aimed to eliminate the Hawthorne effect – modification in the 398 
behavior of the subjects due to their awareness of being studied – and physiological effects similar to 399 
the "white coat" effect in measured signals [86]. Next, the participant was asked to maintain a fixed 400 
posture, sitting in front of the computer, without moving the head or the left hand, where the 401 
sensors were connected. The instructions were that the user could freely browse the Web site for as 402 
long as they wanted and indicate when they wanted to finish. Finally, all sensors were removed 403 
from the participant, while she was asked do not tell others the experimental procedure. 404 

4.4 Data Analysis 405 

4.4.1 Time Window Definition 406 
Bailey (2008) [23] shows that mental workload decreases during transitions between subtasks. 407 

For this paper, the analysis of each Web element is considered a specific subtask and the passage 408 
between them as the transition period between subtasks. Thus, in this study, mental workload is 409 
assessed during two time windows: 410 

 411 
 412 
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 413 
Figure 3. Example of active window and transition window. 414 

 415 
• Active window: Time during which the user fixes her gaze on a specific area of interest (AoI), 416 

which may correspond to a news headline, an advertisement, or the menu bar of the Web site. 417 
• Transition window: Time that elapses while the user is not fixing her gaze on any of the areas of 418 

interest. It can be a transition between two elements or towards the same element. 419 
 420 

As illustrated in Figure 3, the red rectangles represent the studied AoIs; the blue circles 421 
represent fixations, which size varies in accordance with the fixation time and the blue lines 422 
represent the saccades. Thus, the time a fixation is into an AoI pertains to an active window. The 423 
time between two fixations, such as fixation one and fixation two, pertains to a transition window. 424 
Note that the transition window between fixation two and four add the fixation three, which does 425 
not fall into any AoI.     426 

To discriminate between types of windows, the data file exported from the Tobii Studio 427 
program generates a column showing the AoI that the participant is inspecting for each sample. It 428 
discriminates between 3 values: when the user is not looking at the screen – inactive –, when the user 429 
is looking at a certain AoI – active window –, and when the user's gaze is directed outside the AoI – 430 
which is considered a transition window. 431 

A long minimum time of 500 milliseconds is set to define a valid time window. This is based on 432 
the research of Loyola et al. [87], who assesses the identification of key Web elements in a Web site 433 
using eye tracking. This time span is selected to avoid possible contamination of the pupil signal by 434 
the analysis of a previous object. Time windows below the threshold are not considered for analysis 435 
and are therefore deleted. When the same Web element is analyzed before and after a deleted 436 
window, the two segments are joined, generating a window of greater length. 437 

 438 
 439 
 440 
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4.4.2 Data Preprocessing 441 
The data exported from Tobii Studio contains the diameter of the left pupil, the diameter of the 442 

right pupil (both in millimeters), and the validation of the reliability of the capture of each pupil 443 
between 0 – high reliability – and four – the eye was not detected. On average for all participants and 444 
considering only valid windows, the reliability of the capture of the left pupil is 0.2469, and that of 445 
the right pupil is 0.22036; these are reliable values to validate the capture of pupil diameter data. As 446 
these values are an average for all the participants, the pupil data with the highest level of reliability 447 
are selected for each sample [16]. 448 

Next, signal distortion artifacts, such as saccades and blinks, are eliminated. A column in the 449 
extracted data shows if the sample is a fixation or a saccade, and this information is used to filter 450 
saccades. Furthermore, a linear interpolation between the values of the blinks detected is used. In 451 
addition, a Blackman window with a cut-off frequency of 2 Hz is applied as a low-pass filter. 452 

EDA raw data provides the values of electric resistance of the skin in Kilohms [݇Ω]. To reduce 453 
noise and eliminate motion artifacts, two procedures are performed: first, a strict instruction is given 454 
to each participant not to move the hand or fingers where the electrodes are attached, and second, 455 
the signal is filtered with a low-pass cut-off frequency of 5 Hz. Furthermore, on the recommendation 456 
of the literature [88], capture resolution is reduced without risk of data loss. The EDA signal 457 
measured with a sampling frequency of 120 Hz is reduced to 10 samples per second. The phasic 458 
component is extracted by applying a median filter with a window width of -4/+4 and subtracting 459 
the average of the current sample [88]. This component allows the detection of peaks of the EDA 460 
signal. With slow transitions, the phasic component does not show major variations. 461 

Regarding the electrocardiogram, the raw data yield values that must be transformed to 462 
millivolts [mV]. The processing of this signal consists of using a low-pass filter with a cut-off 463 
frequency of 100 Hz and applying the fast Fourier transform to obtain the characteristic shape. 464 

The raw data of the PPG yield signal values in millivolts [mV]. From this signal, it is possible to 465 
obtain the HR. Previously, the PPG signal is processed using a low-pass filter with a cut-off 466 
frequency of 16 Hz with a Blackman window, obtaining a cleaner signal. Then, HR is obtained via 467 
the following steps: first, the peaks must be found; second, the time between them is substracted (∆468 ݐ 
in [miliseconds / pulse]); third, they are converted from hundredths to seconds and from [seconds / 469 
pulse] to [pulses / second], which is then multiplied by 60 to convert to [beats/minute]. This is 470 
resume in the Equation (1): 471 

ܴܪ  = ݐ∆60 ⋅ 100 ൤  .൨ (1)݁ݐݑ݊݅݉ݏݐܾܽ݁
 472 
The raw data yield body temperature values in degrees Celsius. The processing of this signal 473 

consists of using a low-pass filter with a cut-off frequency of 1 Hz, as concluded based on the data 474 
collection in Haapalainen et al. [17]. 475 

The EEG signal is subject to a wide variety of artifacts and noise [89,90]. Among the elements 476 
that cause artifacts are blinking, oculomotor activity, head movements, facial expressions that add 477 
noise due to the muscle electrical signal, and movement of the electrodes, among others. To 478 
eliminate the effect of head swinging, a high-pass filter with a cut-off frequency of 0.5 Hz is used. In 479 
addition, a low-pass filter with a cut-off frequency of 40 Hz is used to eliminate noise from the 480 
electrical grid (50 - 60 Hz). To eliminate outliers and decrease the effect of the blinking artifact a 481 
Hampel filter is used [91]. 482 

4.4.3 Feature Extraction 483 
Feature extraction is performed based on time windows. Since signals have different scales, to 484 

be comparable objects, it is necessary to standardize them before extracting characteristics from 485 
them, as proposed by Guyon et al. [92]. To perform standardization, the classical ሺݔ − ሻߤ ⁄ߪ   form is 486 
used, where ݔ  is the vector corresponding to the signal, and ߤ  and ߪ  are the mean and the 487 
standard deviation of the signal, respectively.  488 

 489 
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Table 2. Characteristics extracted by each signal. 490 
 491 

Signals Extracted Characteristics 

Pupil mean, standard deviation 

EDA Accumulated data, average as a function of time and spectral power 

Phasic  average, absolute value of the maximum, number of peaks 

ECG   mean, median, variance of ECGMAD (average absolute deviation) 

PPG(HR)  mean, standard deviation, RMS of HR 

T  mean, median 

EEG  power and phase of the analytical signal obtained with the Transf. of Hilbert 

 492 
 493 
A total of 44 characteristics pertaining to the different signals are extracted: two from pupil 494 

dilation, six from EDA, two from body temperature, three from ECG, three from PPG-HR, and two 495 
from each of the 14 EEG channels. Table 2 shows a summary of the characteristics, following which 496 
the obtained characteristics are presented in more detail. 497 

Because it has been proven that pupillary response is an important indicator of the mental effort 498 
required to solve a task, it is selected as the gold standard by which to cluster windows and generate 499 
labels for cognitive levels. There are clustering cases in the literature regarding the development of 500 
Web tasks such as the study of Loyola et al. [87]. The selected characteristics are the mean and 501 
variance of the pupil diameter of the eye that displays greater reliability in its measurement. 502 

Based on the findings of Nourbakhsh [72] and Shi et al. [71], the following characteristics are 503 
extracted from the processed EDA signal: accumulated normalized data, mean as a function of 504 
normalized time, and spectral power without normalized continuous component. Equation (2) 505 
shows the calculation of the normalized EDA signal. Each point in time ݐ  is added, where ݅ 506 
corresponds to the participant, ݇ and ݉ is the total number of tasks; ݉ = 3 in this case:  507 

 508 

,௡௢௥௠௔௟௜௭௘ௗሺ݅ܣܦܧ  ݇, ሻݐ = ,ሺ݅ܣܦܧ ݇, ሻ1݉ݐ ∑ ∑ ,ሺ݅ܣܦܧ ݆, ሻ்೔ೕ௧ୀଵ௠௝ୀଵݐ  (2). 

 509 
Therefore, the data for each participant are normalized by dividing the task signal by the mean 510 

value of all the tasks for the subject. Then, the accumulated EDA characteristics are calculated as 511 
shown in Equation (3) and mean EDA is calculated according to Equation (4), where ܶ is the total 512 
time for all the tasks: 513 

 514 
,௔௖௖௨௠௨௟௔௧௘ௗሺ݅ܣܦܧ  ݇ሻ =෍ ,௡௢௥௠௔௟௜௭௘ௗሺ݅ܣܦܧ ݇, ሻ௧ݐ  (3), 

 515 
 516 

,௔௩௘௥௔௚௘ሺ݅ܣܦܧ  ݇ሻ = ∑ ,௡௢௥௠௔௟௜௭௘ௗሺ݅ܣܦܧ ݇, ሻ௧ݐ ܶ  (4). 
 517 
 518 
The following characteristics are extracted from the phasic component obtained: number of 519 

peaks, maximum modulus, and average of the phasic component of the window [16]. 520 
Based on the proposal by Haapalainen et al. [17], the following characteristics are selected for 521 

the ECG signal: median, mean, and variance of the ECG median absolute deviation (ECG_MAD), 522 
calculated using Equation (5):  523 

 524 
ܦܣܯ_ܩܥܧ  = ௜ܩܥܧ| − ݉݁݀݅ܽ݊ሺܩܥܧሻ| (5). 
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 525 
The characteristics of the heart rate obtained from the PPG signal are selected based on the time 526 

domain characteristics used in Betella [93]. These are the mean, standard deviation, and root mean 527 
square of HR. Based on the proposal by Haapalainen et al. [17], the median and mean of the 528 
temperature are selected. 529 

For the EEG signal, there are two main approaches: event-related potential (ERP) analysis and 530 
time-frequency signal analysis. The latter is selected because it is more closely related to the 531 
psychophysiological and structural processes of the brain [89]. It is used to study 532 
emotional-cognitive states in particular and is more advisable when studying a limited period or a 533 
relatively low amount of data, as is the case of the time-window study of this paper [94].  Among 534 
the different ways of analyzing the EEG signal in time-frequency are frequency bands with Fourier 535 
transform, Morlet wavelets, and Hilbert transform. All three show similar results according to 536 
Cohen [95]. Thus, the option of the Hilbert Transform (࣢ሼ݁݁݃ሽሺݐሻ) is selected, which has the 537 
advantage of greater control over frequency filtering. The Equation (6) shows this transform: 538 

 539 

 ݁݁ෞ݃ = 	࣢ሼ݁݁݃ሽሺݐሻ = ሺℎ ∗ ݁݁݃ሻሺݐሻ = ߨ1 න ݁݁݃ሺ߬ሻݐ − ߬ ݀߬ஶ
ିஶ  

(6), 

 540 
where	ℎሺݐሻ = 1 ⁄ݐߨ , ݁݁݃ is the EEG signal and ݁݁ෞ݃  is the resulting analytic signal. Before applying 541 
this transform, a bandpass filter between 2 and 15 Hz is used to center the study in the theta (4 - 8 542 
Hz) and alpha (8 - 12 Hz) frequency bands. These are related to states of mental activity and 543 
relaxation, respectively, where theta increases and alpha is suppressed when there is mental 544 
workload [94]. A complex signal called the "analytical signal" is then obtained, from which two 545 
characteristics are extracted. This is performed for each of the 14 channels of the EEG signal. 546 

4.4.4 Clustering 547 
Clustering is performed per participant to determine how many levels of mental workload the 548 

user presents based on the measurement of pupil diameter in order to label the database after 549 
ascertaining these levels. In Loyola et al. [87], the k-means method is used. Because an 550 
overestimation or underestimation of the number K of clusters affects the quality of the cluster, the 551 
optimal value of clusters is sought. The K value is tested from two onwards to obtain two curves. 552 
The index of Calinski & Harabasz (CH) and the internal measure of cohesion of the sum of the 553 
squares within the group (WSS) are selected to this end [96–98]. The stop rule is the value closest to 554 
the area where the curves interact. Figure 4 shows an example of this methodology for participant 555 
59, where the intersection is generated at ܭ = 3. Visually, the grouping can be validated considering 556 
Figure 5. 557 

The Jaccard coefficient obtained using the bootstrap method is used as an external criterion for 558 
validating clusters, which assesses how stable the cluster is [96,97] . Values between 0.6 and 0.75 559 
indicate that the group is measuring a pattern in the data, but there is no certainty as to which points 560 
should be grouped. Groups with stability values above approximately 0.85 can be considered highly 561 
stable (real clusters). There are participants who present well-defined clusters with Jaccard 562 
coefficients very close to one, and others with values far from acceptable.  563 

On average, the coefficients are over 0.75, so clustering is accepted as valid. For example, for the 564 
clusters in Figure 5, the Jaccard indices are 0.6288 (cluster 1), 0.9024 (cluster 2), and 0.8517 (cluster 3). 565 
Considering all the valid participants, the number of clusters varies between three and six levels of 566 
mental workload, and on average, there are approximately four levels of mental workload validated 567 
with acceptable cohesion indices (RQ1). 568 

 569 
 570 
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 571 
Figure 4. Optimal number of clusters according to the intersection method of CH and WSS curves 572 

for participant 59. 573 
 574 
 575 

 576 
Figure 5. Optimal grouping of time windows according to their level of cognitive load for the 577 

participant 59. 578 

4.4.5 Machine Learning Models and Feature Selection 579 
To perform the classification, a training set is first generated with 70 % of the observations and 580 

then a test set with the remaining 30 %. To avoid biases, a 10-fold cross validation is performed in 581 
which the classes are distributed uniformly within each set. In addition, they are randomly selected 582 
while maintaining the proportions. Because clustering generates some classes containing very few 583 
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elements, sometimes just one or two, time windows that would not make sense to classify because 584 
they would only be in the training set and not in the test set, are deleted. 585 

Two classification models are applied: artificial neural networks and recursive feature 586 
elimination (NN and RFE respectively) and two-layer multi-layer perceptron (MLP). Each 587 
classification result is obtained from the average resulting from executing each algorithm 100 times. 588 
Next, the implementation of each model is described. 589 

An artificial neural network with a hidden layer is implemented, with all the artificial neurons 590 
completely interconnected and trained with the algorithm backpropagation. To calculate the 591 
number of neurons in the hidden layer (h), the heuristic method of the geometric pyramid rule is 592 
used with the expression ℎ = 	√݉	 ⋅ ݊, which consists in calculating the square root of the product 593 
between the number of inputs (m) – number of characteristics – and the number of outputs (n) – 594 
number of classes. Therefore, the number of neurons in the hidden layer changes per participant. 595 
This classifier is combined with the RFE method for feature selection. 596 

There is evidence in the literature regarding the use of the random forest and recursive feature 597 
elimination (RF-RFE) method for the selection of characteristics with good results when applied to 598 
the classification of mental fatigue with EEG signals [99]. This combines recursive elimination with 599 
random forest, that is, a set of decision trees that assesses features and generates a ranking following 600 
a score criterion. This method of feature selection is implemented with the Caret and Random Forest 601 
packages in R. The algorithm is executed using Matlab's Neural Network Toolbox with the toolbox's 602 
Neural Net Pattern Recognition nprtool. It is executed once the characteristics have been obtained – 603 
per participant – with the RFE method. Table 3 shows the characteristics selected for six participants 604 
as an example. 605 

To test another way of improving the artificial neural network without using feature selection, a 606 
different neural network configuration is tested: MLP. For the implementation of the MLP neural 607 
network, the H2O package in R is used [100]. The programmed neural network has two hidden 608 
layers with 100 neurons each, with a rectified linear activation function, as used by Hinton [101]. The 609 
key, according to Hinton, to reducing overfitting is to include a 50 % dropout for each layer, which 610 
prevents artificial neurons from co-adapting to training data. 611 

 612 
Table 3. Selected features with the RFE method for different participants. 613 

 614 
Participant Selected features 

1 
maxPhasic, meanECGMAD, meanHR, powerEEG channel1, phaseEEG channel1, powerEEG 

channel3, phaseEEG channel12 

2 
medianTemp, avgGSR, powerEEG channel7, phaseEEG channel7, powerEEG channel1, 

powerEEG channel11 

3 

meanHR, meanPhasic, phaseEEG channel8, meanECGMAD, maxPhasic, rmsHR, accGSR, 

powerEEG channel5, phaseEEG channel4, phaseEEG channel6, phaseEEG channel12, avgGSR, 

stdHR, phaseEEG channel2, phaseEEG channel7, meanTemp, phaseEEG channel5, phaseEEG 

channel13, powerEEG channel13, phaseEEG channel1, medianECGMAD, powerEEG channel2, 

phaseEEG channel14, varECGMAD 

4 

meanHR, avgGSR, powerEEG channel1, phaseEEG channel9, powerEEG channel13, phaseEEG 

channel14, medianTemp, varECGMAD, phaseEEG channel2, rmsHR, mean-Phasic, phaseEEG 

channel8, medianECGMAD, phaseEEG channel1, phaseEEG channel12, numpksPhasic, 

phaseEEG channel11, phaseEEG channel13, maxPhasic, powerEEG channel8 

5 avgGSR, meanTemp 

6 medianTemp, powerEEG channel6, powerEEG channel5, meanPhasic 
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Thus, each neuron in the hidden layers is omitted at random from the network with a 615 
probability of 0.5. In addition, another method added to avoid model overfitting is the ܮଵ and ܮଶ 616 
regularization method as a linear combination, as shown in Equation (7)Error! Reference source not 617 
found.. For this, the objective function for the artificial neural network is defined as ܮሺࢃ,  ሻ, 618݆|࡮	
where ࢃ represents the weight matrix and ࡮ the column of bias vectors for each training example. 619 

 620 
ሻ݆|࡮,ࢃሺ′ܮ  = ሻ݆|࡮,ࢃሺܮ + ሻ݆|࡮,ࢃଵܴଵሺߣ +  ,ሻ (7)݆|࡮,ࢃଶܴଶሺߣ

 621 
where the values of ߣଵ and ߣଶ are parameters that weight the relative contribution of the penalty 622 
terms ܴଵ and ܴଶ (rule ܮଵ and ܮଶ, respectively) in relation to the objective function ܮሺ࡮,ࢃ|݆ሻ. The 623 
values of ߣଵ = 10ିହ and ߣଶ = 10ିହ are determined as recommended in the H20 manual [100]. 624 

5. Results 625 

5.1 Statistical Analysis 626 
Based on Bailey (2008) [23], who showed a decrease in mental workload between subtask 627 

boundaries, the hypothesis that there is a decrease in mental workload in the transition time 628 
windows between the analysis time windows of one Web element and another is proposed. To 629 
verify the hypothesis, the mean pupil diameter within each window is selected as our gold standard. 630 
The objective is to determine if mean pupil diameter varies depending on whether it is in an active 631 
window or in a transition object. An analysis of variance with repeated measures (ANOVA-RM) is 632 
performed since the factors to be studied are within-subjects. For the analysis, the complete universe 633 
of windows of all the participants is considered.  634 

As a result, a ݌ − ݁ݑ݈ܽݒ = 0.00184 is obtained with a 95 % confidence interval, so the null 635 
hypothesis is rejected. In addition, as shown in Table 4, mean pupil diameter in the transition 636 
windows is smaller than in the active windows. Therefore, it is concluded for the data as a whole 637 
that the difference between mean pupil diameter in the active windows and the transition windows 638 
is statistically significant and that the diameter is smaller in the transition windows (H1). 639 

5.2 Classification 640 
Table 5 shows that the worst accuracy measure obtained with the NN-RFE is 45.24 % 641 

(participant 48) with five classes, and the best result is 95.24 % (participant 23) with two classes. The 642 
classification mean including all 53 participants yields the result of 68.94 % accuracy with a standard 643 
deviation of 11.54 %. The results of the classification according to the number of final classes are also 644 
analyzed. As shown in Table 6, there is a tendency for the classification percentage to decrease as the 645 
number of classes increases. In particular, an accuracy of 90.61 % is obtained for the classification of 646 
two classes, 73.34 % for three classes and acceptable values are obtained for four and five classes. 647 

Regarding the MLP, in Table 7, the worst measure of accuracy obtained is 72.16 % (participant 648 
17) with four classes, and the best result is 99.9 % (participant 9) with three classes. The classification 649 
mean including all 53 participants is 88.46 % with a standard deviation of 7.94 % for the accuracy 650 
measure (RQ2). The classification analysis is performed according to the number of final classes. As 651 
shown in Table 8, the trend observed for NN-RFE is maintained such that the higher the number of 652 
classes is, the lower the classification percentage, but with a break in the case of four and five classes. 653 

 654 
 655 

Table 4. Standardized means of pupillary diameter for transition and active windows. 656 
 657 

Factor Mean Standard Deviation 
Transition 0.01924 0.97 

Active 0.10737  0.84 
 658 
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Table 5. Results of classification using NN-RFE. 659 
 660 

- Accuracy (%) Recall (%) Precision (%) 

Mean 68.94 66.62 76.92 

Standard Deviation 11.54 13 11.62 

Maximum 95.24 95.45 95.45 

Minimum 45.24 39.99 46.29 

 661 
 662 

Table 6. Average classification using NN-RFE by quantity of classes. 663 
 664 

Number of classes Accuracy (%) Recall (%) Precision (%) 

2 90.61 89.99 92.15 

3 73.34 71.69 83.56 

4 63.29 59.57 70.75 

5 57.94 54.92 64.35 

6 53.85 53.61 66.31 

 665 
 666 

Table 7. Results of classification using MLP. 667 
 668 

- Accuracy (%) Recall (%) Precision (%) 

Mean 99.1 98.99 99.27 

Standard Deviation 0.2722 0.3325 0.2174 

Maximum 100 100 100 

Minimum 98.26 97.96 98.64 

 669 
Table 8. Average classification using MLP by quantity of classes. 670 

 671 
Number of classes Accuracy (%) Recall (%) Precision (%) 

2 99.03 98.92 99.22 

3 99.14 99.05 99.31 

4 99.06 98.93 99.25 

5 99.06 98.96 99.24 

6 99.22 99.15 99.36 

 672 

5.3 Evaluating Psychophysiological Sensors 673 
To assess the performance of each sensor, the MLP neural network that obtains the best results 674 

with all the sensors is selected as a supervised learning model. Table 9 shows the results of assessing 675 
the performance of each sensor separately. The sensor with the best performance is EEG, with 88.78 676 
% accuracy in the classification, slightly superior to the classification using all the sensors. The other 677 
sensors separately have a very low level of classification accuracy. 678 

 679 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 December 2017                   doi:10.20944/preprints201712.0021.v1

Peer-reviewed version available at Sensors 2018, 18, 458; doi:10.3390/s18020458

http://dx.doi.org/10.20944/preprints201712.0021.v1
http://dx.doi.org/10.3390/s18020458


19 of 26 

 

Table 9. Summary of sensor classification results for MLP with 100 neurons in each hidden layer and 680 
400 epochs. 681 

 682 
Sensors Accuracy (%) Recall (%) Precision (%) 

All 99.1 98.99 99.27 

EDA 53.28 63.18 53.52 

ST 42.37 76.41 35.7 

ECG 46.22 66.81 45.55 

PPG 46.69 76.58 43.88 

EEG 92.27 94.74 94.94 

EDA+PPG 63.36 68.33 66.5 

EDA+EEG 96.23 97.44 97.73 

PPG+EEG 95.89 96.78 96.56 

EDA+PPG+EEG 97.29 98.01 98.36 

 683 
Then, combinations of the three sensors with higher performance are tested: EEG, EDA, and 684 

PPG (HR). As shown in Table 9, the combinations with EEG provide the best results. The 685 
combination with the highest performance is EDA, PPG (HR), and EEG, with 95.73 %. 686 

An important difference between the EEG sensor and the others is that it allows the extraction 687 
of a greater number of characteristics because the 14 electrodes contribute two characteristics each, 688 
for a total of 28 characteristics. This factor may explain the superior performance of this sensor 689 
compared to the rest. Therefore, it is concluded that it is possible to obtain good classification results 690 
for this experimental design with less than 5 sensors, even only with the EEG. The temperature 691 
sensor and the ECG can thus be discarded. 692 

5.4 Evaluating Time Overhead 693 
For mental workload classification in Web site browsing to lead to a real application, processing 694 

must be sufficiently fast, given that the time windows considered have a minimum length of 500 695 
milliseconds. Table 10 shows the classification time for the algorithms used that yielded the best 696 
results. 697 

The results show that, for the artificial neural networks and RFE model, the time window is 698 
very small at 0.0083 seconds on average, which ensures that this model can be implemented in real 699 
time with an acceptable classification mean of 68.94 % (see Table 5). 700 

 701 
Table 10. Testing time for models. 702 

 703 
  Mean [sec] Standard Deviation [sec] 

NN-RFE 0.0083 0.001 

MLP 0.109 0.023 

MLP EEG 0.1218 0.0041 

MLP EDA+PPG 0.1056 0.0091 

MLP EDA+EEG 0.1207 0.0098 

MLP PPG+EEG 0.107 0.0037 

MLP EDA+PPG+EEG 0.126 0.007 

 704 
 705 
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On the other hand, for the model based on MLP, the effect of its parameters given by the 100 706 
neurons in the two hidden layers increases the processing time to an average of 0,1 seconds. So, this 707 
model can be implemented in real time as well with a classification average of 99.1 % accuracy for all 708 
sensors and a reasonable 63.36% for more portable sensors (PPG and EDA, see Table 9). 709 

6. Discussion 710 
The results of the statistical analysis determine that pupil diameter in the transition time 711 

windows is statistically and significantly lower than in the active windows of Web element analysis. 712 
Given the proven correlation between pupil dilation and mental workload, it is determined that 713 
there is a decrease in mental workload in the time windows between the analysis of one Web 714 
element and another (H1). 715 

A possible application of the demonstration of this hypothesis (H1) is the generation of 716 
recommendation systems that support the user in during Web browsing according to her interest, 717 
that is, when she is not cognitively overloaded with new content. This is applicable, for example, to 718 
retail applications or advertisement. 719 

Regarding the assessment of the psychophysiological sensors to estimate mental workload, 720 
with the exception of the EEG, the signals of the sensors used do not provide an appropriate level of 721 
classification by themselves for this type of task, although the combinations of signals with EEG 722 
stand out, obtaining very good results. One of the reasons may be the time constant of each signal; 723 
that is, signals such as skin temperature or conductivity take longer to react compared to electrical 724 
signals from the brain. 725 

However, despite the fact that the combination of EDA and PPG (HR) does not provide better 726 
results than EEG alone, a reasonable level of accuracy (63.36 %) is obtained for its use in practice, 727 
even before portable EEG technology is available. The advantage of the EDA and PPG sensors is that 728 
they are non-invasive, portable, cheaper, and easily integrated into a board that transmits via 729 
Bluetooth or other wireless means to a gateway, such as a smartphone, from a wearable such as a 730 
smartwatch, a wristband, or a textile [88]. In addition, considering that the time overhead of the 731 
classification in each time window is very small (on average 0.1056 s, with a standard deviation of 732 
0.0091 s), EDA and PPG are considered feasible alternatives for the first practical applications of the 733 
real-time assessment of mental workload in users browsing Web pages. 734 

7. Conclusion 735 
The study of human behavior and physiology when performing human-computer interactions 736 

activities is complex due to the multiple factors that affect each person in their performance and 737 
behavior with regard to this class of tasks. This research assesses the behavior of a user in the simple 738 
task of browsing freely through a fictitious Web page created specifically for this study, using 739 
psychophysiological sensors. 740 

It is shown that for the complete data set, that is, considering the complete universe of windows 741 
of all the participants, pupil diameter – as a measure of mental workload – is significantly lower in 742 
the transition windows than in the active windows, with a significance of ݌ − ݁ݑ݈ܽݒ = 0.00184 for a 743 
95 % confidence interval. Therefore, patterns of low mental workload states are identified, and the 744 
hypothesis (H1) that it is indeed possible to measure mental workload in Web browsing activities 745 
and, moreover, that the mental workload of the user decreases in the transition from the analysis of 746 
one Web element to another while browsing freely is verified. 747 

The unsupervised model of k-means analysis as a data mining technique is applied to the mean 748 
and variance of pupil dilation, based on which the Web browsing task involves on average four 749 
levels of mental workload. Thus, it is concluded that there are several mental workload states that 750 
can be determined (RQ1). 751 

To classify levels of mental workload, the MLP neural network is used, which obtains a result of 752 
88.46 % accuracy on average (RQ2). In addition, the electroencephalogram is the sensor that obtains 753 
the best results, classifying with 88.78 % accuracy. If the EEG is combined with the PPG and EDA, 754 
the accuracy of the classification rises to 95.73 %. 755 
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In terms of future lines of research, it is proposed to use the data to study Web users' mood 756 
behavior together with their cognitive behavior. In addition, it is proposed to focus the research on 757 
the EEG sensor, which showed superior performance, using other analytical approaches, such as 758 
wavelets and/or ERP, to determine the most relevant involved brain areas. 759 

Supplementary Materials: The following dataset was submitted as supplementary material: “dataset_Sensors”. 760 
It contains all the preprocessed, gathered sensor data for each participant.  761 
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