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12 Abstract: The aim of this paper is to introduce a new methodology for the fault diagnosis of
1z induction machines working in transient regime, when time-frequency analysis tools are used. The
1« proposed method relies on the use of the optimized Slepian window for performing the short time
15 Fourier transform (STFT) of the stator current signal. It is shown that for a given sequence length of
e  finite duration the Slepian window has the maximum concentration of energy, greater than can
17 be reached with a gated Gaussian window, which is usually used as analysis window. In this
1s  paper the use and optimization of the Slepian window for fault diagnosis of induction machines
1o is theoretically introduced and experimentally validated through the test of a 3.15 MW induction
20 motor with broken bars during the start-up transient. The theoretical analysis and the experimental
a1 results show that the use of the Slepian window can highlight the fault components in the current’s
22 spectrogram with a significant reduction of the required computational resources.

23 Keywords: fault diagnosis; condition monitoring; short time Fourier transform ; Slepian
2« window; prolate spheroidal wave functions; discrete prolate spheroidal sequences; time-frequency
25 distributions

26 1. Introduction

Rotating electrical machines cover a broad range of applications in modern industrial
installations. Particularly, cage induction machines are the most widely used due to its robustness and
low maintenance requirements. Ensuring their proper functioning is essential to keep the production
processes running [1]. Thus, the early detection of induction machine (IM) faults and the machine
condition prognosis are crucial to reduce maintenance costs [2] and to avoid costly, unexpected
shut-downs [3]. Fault diagnosis via the current analysis in the frequency domain has become a
common method for machine condition evaluation because it is non-invasive, it requires a single
current sensor, either a current transformer, a Hall sensor, or a magnetoelectric current sensor [4],
and it can identify a wide variety of machine faults [5,6]. Traditionally, these techniques, known as
motor current signature analysis (MCSA), have focused on the detection of faults during the steady
state functioning of the machine through the current spectrum, which can be computed using the fast
Fourier transform (FFT) [7-10]. For example, bar breakages in the rotor cage produce components of
frequencies fy, [9,11-16]

foo = |(1i2k5>|fsupply k=123..., 1

a mixed eccentricity fault generates components of frequencies fe, [17-19]

1-—s
= 1ik>
Jece ‘( p

fsupply k=1,23..., 2)
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and bearing faults generate components of frequencies fy,, [20-22]

frear = |(A£kf0) | k=1,2,3..., ®)

2z where s is the slip, fs,pp1y is the frequency of the power supply, p is the number of pole pairs, and f,
2s  corresponds to one of the characteristic vibration frequencies generated by the bearing fault, which
20 depends on the bearing dimensions and on the mechanical rotor frequency [8,23]. However, in
s many applications the slip, the supply frequency and the mechanical rotor frequency can be variable,
a1 which render traditional MCSA techniques inadequate for fault diagnosis of electrical machines
;2 working in non-stationary conditions, such as start-up transients, continuous changes in load or
33 speed [24], or variable frequency supply, especially in machines fed through variable speed drives
s« (VSD). This inadequacy resides in the FFT being unsuitable to identify fault frequencies that are no
35 longer constant.

36 To extend MCSA to such working conditions, recently, transient MCSA (TMCSA) techniques
sz have been developed using different approaches. One approach relies on using only time-domain
ss  features to isolate and to detect the fault: first the fault components of the current are extracted, using
30 a band-pass filter tailored to the frequency band spanned by the fault harmonics during the transient
20 conditions of the machine; and, second, the RMS value of these components is used to detect the
a1 fault. In [25,26] the empirical mode decomposition (EMD) is used to extract the fault components. In
a2 [27] the recursive undecimated wavelet packet transform (RUWPT) is used to isolate and to compute
a3 the RMS value of the components produced by a broken bar fault, using an extremely low sampling
s frequency (224 Hz) and a small number of current samples (1024 samples). Other approaches rely on
a5 tracking the evolution of the fault harmonics in the time-frequency domain, looking for characteristic
s Ppatterns of each type of fault, as indicated by (1), (2) and (3); this technique allows the detection of
a7 different types of faults, even in the case of mixed faults, with the instantaneous presence of two
s faults, such as broken rotor bars in the presence of the intrinsic static eccentricity; as [28] states, rotor
4 bars breakage causes the static eccentricity and it is possible that two faults occur simultaneously.
so TMCSA techniques have been developed in the technical literature using different time-frequency
s1  (TF) signal analysis tools [9,29], such as the discrete wavelet transform (DWT) [15,30-36], the discrete
52 wavelet packet transform (DWPT) [37], the discrete harmonic wavelet transform (DHWT) [38],
ss the continuous wavelet transform (CWT) [39,40], the complex CWT [41,42], and the Wigner-Ville
s« distribution (WVD) [43,44], among others. Wavelet-based transforms require a proper choice of the
ss  mother wavelet and a precise adjustment of the sampling frequency and the number of bands of
se the decomposition to perform fault diagnosis. Quadratic-based transforms, such as the WVD, have,
sz as main drawback, the appearance of the cross-terms effects that can smear the spectrogram of the
ss current signal. The minimization of cross-terms effects has been widely discussed in the technical
so literature [43-47]. However, in the case of the STFT [44,48], which can be considered the natural
e extension of FFT-based MCSA techniques, the cross-terms effects do not appear, as the STFT is a linear
&1 transform. The STFT, as the WVD, can obtain a TF distribution with enough resolution to discriminate
ez the different harmonic components of the signal, but without cross-terms effects[3]. Thus, a STFT
es based approach is proposed in this paper.

The STFT is defined as [49]

S¢(t,w) = /i(T)g(t — T)e /9Tdr, 4)
where i(t) is the stator current and g(t) is the analysis window. The spectrogram Psp(t, w) is given

by
Psp(t,w) = [S¢(t,w)P?, ®)
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which can be re-written as [50]

Pp(t, ) = % [ [ e wyte = b w)drar, ©)

s« Where W;(t,w) and W (t, w) are the WVD of the stator current and the analysis window respectively.
es Thus, the spectrogram can be considered as the 2D smoothing of the WVD of the current signal by the
es  WVD of the analysis window [51]. In other words, the window involves smoothing the oscillatory
ez interference between individual components which appear due to the quadratic nature of the WVD.
se Hence, the window must be selected with the aim of highlighting the TF information of the analyzed
eo signal, and, at the same time with the goal of reducing to a minimum the smearing of the spectrogram
7 [52]. In fact, the optimal window is the one that -for a given total duration- maximizes the amount of
= the total energy in a given bandwidth. But, as the uncertainty principle states, one cannot construct
72 any signal for which both the standard deviation in time, 0, and the standard deviation in frequency,
73 0y (i.e., the duration and the bandwidth) are arbitrarily small [53]. In fact, the minimum achievable
7« values of 0; and o, must satisfy the Heisenberg’s inequality [53]:

or - 0, > 0.5. (7)

75 The equality in (7) is only achieved by the Gaussian pulse of infinite length [54]. But real world
76 signals have a finite duration, and a gated Gaussian window is often not a good choice, as stated in
7z [55]. In fact, in fault diagnosis methods for IMs, the current is sampled during a limited time, so it
7e is a time-limited signal. But, besides, due to the limited bandwidth of the measurement channels,
7 the current signal is also a band-limited signal. Unfortunately, the uncertainty principle tells us that
s a signal cannot be simultaneously time- and band-limited. A natural assumption is thus to consider
e mathematically the current signal as an almost time- and almost band-limited signal, in the way
s2 proposed in [56,57]. That is, using the model [58] of band-limited, or almost band-limited, functions
es that are sufficiently concentrated in time for representing both the current signal and the window
s« used for analyzing it.

85 So, under this model, which is the optimal window? Thanks to the work presented in [59-61],
s the optimal orthogonal system for representing almost time- and almost band-limited functions is
sz known. This system consists of the so called Slepians functions, also known as prolate spheroidal
ss wave functions (PSWFs), which have two remarkable properties that make them optimal for being
s used as STFT windows:

% o The Slepians are the band-limited functions that are the most concentrated to a fixed time
o interval in L2-norm [62]. So, they can be considered as the optimal window for TF analysis
92 of non-stationary currents [63], because they can highlight the energy content of the current
93 signal in the joint time-frequency domain with the highest possible resolution among all the
N almost time- and band-limited windows, including the truncated Gaussian window.

95 o Alternatively, the Slepians can be considered as the time-limited functions that are the most
% concentrated to a fixed frequency interval in L>-norm. That is, for a given bandwidth they are
o7 the shortest possible windows that can be used for generating the current spectrograms, which
08 allows the reduction of the time needed to build such spectrograms.

99 Both properties, the increase of the resolution of the current spectrogram and the reduction of

wo the computing time needed to obtain it, will be assessed in the experimental section of this paper.
11 The Slepian windows have been used in other fields such as medical image diagnostics [64], wireless
w2 transmission [65], acoustics [66], signal processing [67], etc. But, in spite of their benefits, up to the best
10:  knowledge of the authors, they have never been used before for the fault diagnosis of IMs through
ws the analysis of the stator current.

105 Therefore, the main goals of this work are, first, to introduce theoretically the Slepian window;
s second, to demonstrate its suitability for the fault diagnosis of electrical machines; and, finally, to
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w7 provide criteria for optimizing the parameters of the Slepian window depending on the type of the
s diagnosed fault. The broken bar fault is used in this paper to present the application of the Slepian
1o window for the fault diagnosis of IMs, without any loss of generality, because the proposed method is
uo valid for the diagnosis of any IM fault that generates a characteristic series of harmonics in the stator
11 current, such as (1), (2) and (3).

112 This paper is structured as follows: in Section 2 the Slepian window is theoretically introduced
us  and compared with the Gaussian window in terms of energy concentration. Section 3 presents the
us proposed procedure for using the Slepian window for fault diagnosis; for illustrating this method,
us it is applied to a synthetic signal simulating the evolution of the left sideband harmonics (LSH)
us produced by a broken bar during the start-up transient of an IM. In Section 4 the proposed approach
u7 is validated using a high-power, high-voltage IM with a rotor broken bar fault. In Section 5 the
us practical advantages of the proposed method are highlighted. In this section it is proposed the
ue use of a truncated Slepian window, which is able to display correctly the evolution of the fault
120 harmonics in the TF domain with a huge reduction of the computational resources needed to obtain
121 the spectrogram. In Section 6 the main conclusions of this work are presented.

122 2. The Slepian Functions for Fault Diagnosis of Rotating Electrical Machines in Transient
123 Regime

124 From (6) it can be seen that the analysis window has a major effect in the spectrogram of the
s current. It highlights the harmonic components of the current, but, at the same time, it smears the
16 Spectrogram (6), so it has a major impact in the reliability of the fault diagnostic procedure. The
12z election of a window maximally confined to a region of the TF plane with a limited duration and
122 bandwidth is crucial to obtain a high resolution spectrogram, which accurately reflects the fault
120 components of the current in the TF plane, with a minimum of the smearing due to use of the
1o window. So, the spectrogram obtained with this optimal window can improve the diagnostic decision
11 process, compared with the use of non-optimal windows. The type of windows that are optimally and
12 maximally concentrated, for a finite duration and bandwidth, are the Slepians [61,68]. Accordingly, in
13 this paper, the Slepian window is proposed for the fault diagnosis of IMs. In the following subsections
1a its characteristics and the procedure to adjust its parameters are presented.

ws  2.1. Theoretical introduction to the Slepian functions

The Slepians functions are defined [55,69,70] as the solutions of the integral equation

T sin B(t — x)
———Zdx = Ag(t
| o0 = 200 ®)
for eigenvalues A = A;,. There are infinite eigenvalues, all of them real numbers, positive and smaller
than 1,

1>A>A>->A;>--->0. )

136 The integral equation (8) states that trimming the Slepian function of order n, ¢,(t), with a
17 rectangular window in the [—T, T|] interval will reproduce ¢, (t), except for a factor A,. Besides, the
1s  convolution kernel sin(Bt)/ 7t in (8) represents a sharp low-pass filtering process in the frequency
1o domain. Hence, ¢,(t) is a low-pass function with almost no energy at angular frequencies outside
10 the interval [—B, B].

The Slepians have the remarkable property of orthogonality, both over an infinite and a finite
range of the independent variable [68]. Due to the fact that the functions ¢, (t) form a complete set
of orthonormal functions, band-limited functions y(t) can be expanded in terms of the Slepians with
the same bandwidth as

y(t) = ¥ i), (10)
k=0
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where

= [ yhennar )

Other remarkable property of the Splepians is that, as the Gaussian functions, each Slepian
function, ¢, (t), is proportional to its Fourier transform (FT), ¢, (w), in a finite interval

Pn(w) = @y <t = w> for |w| < B, (12)

where T is half of the total duration and B is the positive bandwidth (in rad/s), equal to half of the
total bandwidth. Using (10) and (12), a time-limited signal y(¢) can be expanded in terms of the FT of
the functions @i (t), ¢x(w), which vanish for -T <t < T

) =) bex <f,t) : (13)
k=0

where

be = /joy(f)cpk(t = %w)df- (14)

The main application of the Slepian functions is the design of band-limited signals with a
maximum energy concentration in a given time and frequency interval. In the next subsections,
the energy concentration of a Slepian window for a given duration and bandwidth is obtained, first
separately in each domain, and, afterwards, in the joint TF domain.

2.2. Energy of the Slepian windows in a time interval

Given a band-limited signal, y(t), it can be expanded into the properly scaled functions ¢y (t)
(10). Taking into account the orthonormality of the Slepian functions [55]

o 1 if k=i
/ mqoka)qoj(t)dt:{ 0 it ks (15)

the total energy E of the signal can be computed as
E= / ()[2dt = Z a2. (16)
=0
The energy of the signal y(t) contained in the time interval of duration (—T,T), Et, is given by
T
Er = / () 2dt = 2 Al (17)
Y

From (16) and (17), the energy fraction « = Et/E is

ZOO: /\kaZ
« = 7&30 aik‘ (18)

So the band-limited window which is maximally concentrated to a time interval (=T, T) is given
by the maximum value of the ratio (18). Since Ag is greater than any other Ay, this is achieved by
setting all a; except ag equal to 0 [55]. Hence, a,0x = Ag, where Ag depends on the time-bandwidth
product (B - T). For example, if B- T = 1 then & ~ 0.6. On the contrary, if « is required to be as high
as 0.95 then B- T ~ 3 [60,61]. So, among all the band-limited functions with the same bandwidth, the
zero order Slepian function, ¢y(t), is the maximally concentrated one for a given duration.

do0i:10.20944/preprints201712.0026.v1
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12 2.3. Energy of the Slepian windows in a frequency interval

The energy of the signal y(t) contained in the frequency interval of bandwidth (—B, B), Eg, is
given by

B
Ep = /_B 19(w) 2 dew, (19)

and, applying (13) and (14), the energy fraction § = Ep/E is equal to

B = Z:ICEOZO /\kbl% (20)
===k

Yo bi
153 As done in the previous subsection, since Ay is greater than any other A, the maximum ratio (20)

1« is achieved by setting all by except by equal to 0 [55]. So, among all the time-limited functions with the
155 same duration, the zero order Slepian function, ¢ (t), is the maximally concentrated one for a given
156 bandwidth.

17 2.4. Energy of the Slepian windows in the joint TF domain

As can be deduced from (18) and (20), the largest energy concentration both in the time and in
the frequency domains, considered independently, is achieved by the zero order Slepian function,
@o(t). Similarly, in the joint TF domain, the zero order Slepian function is also the function with the
largest possible product of energy fractions, a - 8, which is obtained for & = j, as in [55]

(0 Bmas = (”2\%)2 @
ws  2.5. Comparison between the Slepian window and the Gaussian window
The Gaussian window g(t) is defined as [49]
12
= (1), -
being
=57 3)

As in the case of the Slepian window, the FT of the Gaussian window, ¢(w), is a scaled version

of itself [49]
1 1/4 _w—2
$(w) = (m) e 27, (24)
where
v =202 . (25)
159 The Gaussian window of infinite length is optimal in terms of minimization of (7), but, for a

10 finite duration and for a given bandwidth, the zero order Slepian function achieves the maximum
11 concentration of energy in the joint TF domain. For example, for Ag = 0.6, (B - T ~ 1), the product of
12 energy fractions (21) is (« - )max = 0.787 in the case of the Slepian window. The Gaussian window
13 has infinite length and infinite bandwidth, so for computing the energy fractions « and j the values
1« Of half of the total duration T and half of the total bandwidth B have been chosen as the values of
16s the respective standard deviations, as in [55]. Thatis, T = 0; and B = 0,,. With these settings, the
s product (« - B) for the Gaussian window is only about 0.466 [55].
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167 Fig. 1 shows the Heisenberg boxes of the Slepian and of the Gaussian atoms in the TF plane.
e The Slepian atom has a rectangular shape, while the Gaussian atom extends radially from its center.
10 Besides, the rectangular shape of the Slepian atom allows an efficient tiling of the TF domain, and
o is specially well suited for the proposed diagnostic approach, just by choosing the diagonal of the
w1 Slepian window to be parallel to the fault component trajectory in the TF plane [54], as will be
2 developed in the next subsection.

Slepian window

Frequency (Hz)

L _-—
L _—
L -

Time (s)

0 0.2 0.4 0.6

0 2 1.4 1.6 1.8

N

Gaussian window

Frequency (Hz)

Time (s)

Figure 1. Time-frequency atoms of a Slepian window (top) and of a Gaussian window (bottom).

w3 2.6. Proposed method for the choice of the parameters of the Slepian window

174 In this subsection, the method for selecting the parameters that optimize the Slepian window for
s detecting a given fault is presented. As the frequencies of the different faults in (1), (2) and (3) are
we given in Hz, it is advisable to define this optimal window using its total bandwidth expressed in Hz,
177 thatis, By = % = %. Besides, the implementation of the STFT algorithms rely on the length of the
17 window, so it is advisable also to characterize the Slepian window using its total duration in seconds,

wo Ty = 2T, as depicted in Fig. 2.
f

Z.fault (t) T
\ w

___Pfault

Figure 2. Choice of the parameters of the Slepian window so that the aspect ratio of its Heisenberg
box coincides with the slope of the trajectory of the related fault component in the TF plane.


http://dx.doi.org/10.20944/preprints201712.0026.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2017 d0i:10.20944/preprints201712.0026.v1

8 of 26

Based on the characteristics of the Slepian window in terms of energy concentration in
a limited time-frequency region, the first criterion to determine the window parameters is to
establish the maximum energy concentration desired for the window, (« - B)mar, Which imposes
the time-bandwidth product, By - Tyy. In this paper an energy concentration as high as possible
is proposed, i.e. (a-B) ~ 1, which, from (21), gives Ay ~ 1. According to [60], this can be obtained
with a time-bandwidth product By - Ty = 8

(@ Bmax ~1— Ag~1— By -Tyy =8 (26)

However, there are infinite combinations of By and Ty that meet condition (26), so an additional
criterion is needed to establish both By and Ty. These two parameters can be selected according
to different criteria. In [71] the optimal bandwidth of the window for signals with time-varying
frequency is found to be equal to the square root of the derivative of the instantaneous frequency
(IF) of the signal. In [54,72] the optimal parameters of the Gaussian window are those that minimize
the TF area occupied by a target component. To achieve this optimization, in this work the Slepian
window is selected to have the maximum overlap with the trajectory of the fault harmonic signal in
the TF plane, as in [54,73]. This condition is met when the magnitude of the slope of this trajectory,
0 faurt, and the aspect ratio By / Ty of the Heisenberg’s box of the Slepian window coincide (Fig. 2),

so that By 'd(ffault(t)) ’

E = Pfault = it (27)

Hence, combining (26) and (27), the two conditions proposed for selecting the optimal
parameters of the Slepian window are

By -Tw = 8
By (28)
Tw = Pfault

From (28), the optimal length of the Slepians window is given by

Ty = | — (29)
O fault

which is valid for any type of fault. For example, pf,; can be computed from (1), (2) and (3) for
the detection of rotor broken bar, mixed eccentricity and bearing faults, respectively. In the following
sections the proposed approach has been applied to the diagnosis of rotor broken bars, as in [9,11,13,

15,32,74], without any loss of generality. In this case, pf4; is calculated as the derivative of (1) with

Nng—n
ng ’

(rpm) and 15 = 60 fs,,p1,/ p is the synchronous speed of the machine, this derivative gives, in the case

of constant fg,pp1y,

respect to the time. Taking into account that s = where 7 is the mechanical speed of the rotor

d((1 £ 2ks) foupply) ds| _ 2kfsupply|dn| _ kp|dn
0 fautt = T | = 2| 3| = TR :% Tok=123.. @0
180 That is, the slope of the broken bar fault harmonic at every time instant is simply the acceleration
11 Of the machine at that instant, up to a constant scale factor.
182 The slope of the trajectory of the fault harmonic in the TF plane is computed at the center of the

13 Slepian window, shown in Fig. 2, as in [75]. Assuming a low variation of the IF of the fault harmonic
1« during the short duration of the window, a first order, linear approximation of this trajectory can be
15 used, as in [76]. In case of long-term variations of the IF, the original current signal can be divided
1 into a number of time segments where this approximation can be applied, as suggested in [75] and
wr [77].
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The practical implementation of the proposed method is very simple with modern computing
software. Effective algorithms for computing the Slepian window can be found in [78]. In MATLAB
there is a function that returns a Slepian sequence named dpss (discrete prolate spheroidal sequences),
which can be called as

dps_seq = dpss(seq_length, time_halfbandwidth, 1), (31)

where seq_length is the length of the Slepian window in samples, and time_halfbandwidth is equal
to By - Ty /2. Applying (28) and (29) to (31), the optimum Slepian window for detecting a given fault

is obtained easily as
| 8
dps_seq = dpss(round (fsumpling X ) 4, 1), (32)
Pfault

s when using a sampling frequency fsumpling-

1o 3. STFT of the Start-up Current of a Simulated IM using the Slepian Window

190 In this section, the use of a Slepian window for the analysis of the current through the STFT is
11 presented, and it is illustrated using the LSH generated during the start-up of a simulated machine
12 with a rotor broken bar, whose main characteristics are given in Appendix A. The simulation has been
1z performed during 2 seconds using a sampling frequency of 5 kHz, giving a total of 10000 samples.

wa 3.1. Evolution of the LSH during the start-up transient of an IM

105 The evolution of the LSH of a IM with a broken bar during the start-up transient has been
1w analyzed in [9,15,79,80]. In this work, the LSH evolution is extracted from the current signal of a
1z simulated machine. Basically, the LSH fault component is a sinusoidal signal whose amplitude and
s frequency vary continuously depending on the slip s.

199 The LSH amplitude (Fig. 3) follows a characteristic evolution. First the amplitude decreases until
200 it disappears (slip s = 0.5, time t = 0.92 s). During the second half of the start-up transient (f > 0.92 s)
201 the amplitude increases up to a maximum value, and, after, decreases towards its steady-state value.

o
N

Amplitude (A)
o

o
)

0.2 0.4 0.6 0.8 1 1.4 1.6 1.8 2

0 12
Time (s)
1500 T T T T
B
£ 1000} / ]
B
o 500F .
Q.
»
0 1 L L L L L L L L
0 0.2 0.4 0.6 0.8 1 12 1.4 16 1.8 2
Time (s)
1 T T
5
L9095 J
o
7] \

o

0.2 0.4 0.6 0.8 0 921 1.2 14 16 1.8 2
. Time (s)

o

Figure 3. Time evolution of the amplitude of the LSH (top), of the motor speed (middle), and of
the motor slip (bottom) during the start-up transient of the simulated IM given in Appendix A. The
vertical line corresponds to the time when the slip s = 0.5 is reached.
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202 The frequency of the LSH varies as shown in Fig. 4. The initial frequency of the LSH, ats = 1, is
203 the same as the supply frequency (fs,pp1, = 50 Hz), and, after, it decreases, becoming null when the
« rotor slip is equal to 0.5. From this point, the frequency of the LSH increases again, keeping a constant
s value (slightly below the supply frequency) when the steady state regime is reached.

N
o

2

o

50

Frequency (Hz)
S 8 3

-
o
T

o

02 0.4 06 08 1
Slip (p.u.)

o

Figure 4. Evolution of the frequency of the LSH as a function of the rotor slip.

206 Traditional MCSA methods cannot be used for the diagnosis of this fault in transient regime. In
20z the spectrum of the LSH shown in Fig. 5, there is no peak signaling the presence of LSH, because
e its frequency is not constant. Hence, the FFT cannot properly highlight the TF evolution of the fault
200 harmonic component generated in the stator current by the fault.

2

o

Amplitude (dB)

0 10 20 30 40 50 60
Frequency (Hz)

Figure 5. Spectrum of the LSH.

210 3.2. Choice of the Parameters of the Slepian Window

The aim of this section is to build a Slepian window suitable for identifying the LSH during the
start-up transient of the IM. As deduced in Section 2.6, this implies to calculate the parameters By, Tyy
from (28), and consequently, a value of ps,,;; has to be adopted. In this work, the value of ps,,; in
(28) will be taken as its average value during the start-up transient. This is a reasonable assumption
whenever the acceleration of the machine during the start-up is quite regular, as happens if the inertia
factor is not very low (see Fig. 3). An approximated value of the averaged value of p,,; for the LSH
is obtained from (30), taking k =1,

As s=05 05-1 ‘ fsupply
~2 — =2 = , (33)
Pfault fsupply At o fsupply teos —0 feos
or, also,
n=n
0 fault & Zfsupply % ~ fsupply (34)
fou ng At n=0 Estartup /27
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where t;_g 5 is the time which takes the rotor to reach half of the synchronous speed, and Estartup is the
start-up time. Therefore, the maximum overlapping conditions (28) and (33) are combined with the
level of maximum energy concentration (26), giving

By-Tw = 8
Bﬂ = 9 _ f supply (35)
TW fault ts—os
211 In this case, for the simulated machine, from Fig. 3, t;—o5 = 0.92 s, and thus By, /Ty = 50/0.92 =

212 54.35 Hz/s. Therefore, the parameters of the optimal Slepian window are By = 20.85 Hz and Ty =
213 383.7 ms. This window is represented in separated time and frequency planes in Fig. 6, located at
214 the center of the respective domains. Almost all the energy of the window is concentrated under the
215 main lobe of the window in the frequency domain. On the other hand, in Fig. 7, the designed Slepian
216 window has been represented in the TF plane, in 2 and 3 dimensions. Moreover, the slope of the LSH
21z has been superimposed (white line) in Fig. 7, showing that the designed window is optimal for this
z1e signal, because it achieves the maximum overlapping with the fault component trajectory in the TF
210 plane.

Amplitude

0 ; ; ; ; ; ; ; ; ;
0 02 04 06 08 1 1.2 14 16 18
Time (s)

1
[4.]
(=]

Amplitude (dB)
5

L
[4.]
(=]

-30 -20 -10 0 10 20 30
Frequency (Hz)

Figure 6. Slepian window (B = 20.85 Hz, Tyy = 383.7 ms) optimized for the maximum overlap with
the LSH trajectory in the time domain (top) and in the frequency domain (bottom).
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Figure 7. Slepian window (Byy = 20.85 Hz, Tyy = 383.7 ms) optimized for representing the LSH, as
a 2-D view (top) and as a 3-D view (bottom) in the time-frequency plane. The white line marks the
trajectory of the LSH in this plane.

220 The assumption of linear instantaneous frequency during the start-up transient is quite accurate
a1 in the case of large IMs (for which the condition monitoring is especially interesting), or IMs driving
222 constant loads. In case of non-linear instantaneous frequency (IF) during the start-up, the total
223 starting time can be sliced in time intervals with nearly constant IF slope (a first order approximation),
22 as done in [81]. During each one of these time intervals, the procedure for selecting the parameters of
225 the Slepian windows presented in this section can be applied, taking the value of ps,,; in (28) as its
26 average value in the interval.

227 3.3. Detection of the LSH Fault Component with the Slepian Window

228 Once the window parameters have been selected using (35), the Slepian window has been
20 applied to obtain the STFT of the LSH fault component shown in Fig. 3. As it is shown in Fig. 8, a high
230 resolution image of the TF pattern of the LSH (Fig. 4) has been obtained with this window. Besides,
231 a linear scale has been used to represent the LSH spectrogram, so that the amplitude evolution of
22 the LSH is visible. Initially, its amplitude decreases until it becomes null (s = 0.5, t;—95 = 0.92 s).
233 During the second half of the start-up the amplitude increases reaching a maximum, an finally it
23 decreases again towards the steady-state value. So, the generated pattern can identify not only the
235 instantaneous frequency of the LSH, but also its instantaneous amplitude, improving the reliability
236 of the fault diagnosis process.
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Figure 8. Time-frequency-amplitude pattern generated by the LSH obtained with the optimized
Slepian window (By = 20.85 Hz, Tyy = 383.7 ms), as a 2-D view (top) and as a 3-D view (bottom).

237 In this particular case,the optimal Slepian window has been achieved for By /Ty = 54.35 Hz/s.
23 The validity of this particular choice and the sensitivity of the method to variations of this parameter
230 can be assessed measuring the entropy of the current spectrogram obtained with different Slepian
20 windows, because small entropy values correspond to good energy concentrations [82,83]. The
2a1 entropy of the current spectrogram has been computed with the method presented in [54,84]. Fig. 9
22 shows the entropy of the LSH analyzed with the Slepian window for By - Tyy = 8 (level of energy
2a3  concentration) and for different values of By /Ty, from 0 to 2000 Hz/s. As can be seen in Fig. 9,
2as  the criterion used to select the optimal value of By /Ty of the Slepian window, (Bw /Tw )opt = 54.35
25 Hz/s, corresponds indeed to the choice of the minimum entropy (maximum energy concentration)
26 Of the LSH representation in the TF plane. Besides, the entropy around the optimal value is a smooth
27 curve, as can be seen in Fig. 9. This indicates that the computation process of By /Ty in (28) can
23 tolerate small errors in determining the value of p¢;,;;, which depends on the £, 5 value in (35). In
200 this way, in the case of motors whose speed cannot be measured, it is still possible to use an estimated
20 value of the time corresponding to a slip of 0.5 p.u. (ts—05), equal to half of the total duration of the
21 start-up transient (Fig. 3), without any noticeable performance degradation of the diagnostic process.
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Figure 9. a) Entropy of the time-frequency analysis of the LSH using the Slepian window;, as a function
of the parameter By /Tyy. b) Zoomed area of the entropy in the interval close to the optimum value
of By /Tw. The vertical line corresponds to the minimum entropy value, which coincides with the
criteria of maximum overlapping between the Slepian window and the LSH, as proposed in this paper.

22 4. Experimental Validation on a High-Power, High-Voltage IM

253 The proposed method has been applied to the analysis of a high power (3.15 MW), high voltage
24 (6 kV) IM working in an actual power plant, whose data are given in Appendix B. This IM has no
255 sensor for speed measurement. The IM had a rotor broken bar, confirmed by visual inspection of
26 the rotor (Fig. 10). On the other hand, in the same factory, another IM of same characteristics was
27 installed. This second IM has not been reported for any anomaly and, thus, is meant to be in healthy
zss  condition. Nevertheless, it has never been subjected to a visual inspection of the rotor. The tests have
250 been carried out during the start-up of the faulty and also of the healthy machine, powered directly
260 from the mains (fs,ppy, = 50 Hz). The sampled current during the start-up of the faulty machine is
261 shown in Fig. 11. Both tests have been performed during 8.2 seconds using a sampling frequency of
262 6.4 kHz, with a total amount of 52480 samples.

Figure 10. Rotor of the high-power, high-voltage IM given in B (left), and detail of the rotor broken
bar (right), used in the experimental validation of the proposed method.
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Figure 11. Stator current during the start-up transient of the high-power, high-voltage IM given in
Appendix B with a broken bar fault.

263 4.1. Choice of the Parameters of the Slepian Window for the Tested IM

264 The parameters of the Slepian window have been selected as proposed in Section 3. First, the
26 value of the product By - Tyy is selected to obtain a high energy concentration, so By - Ty = 8. Second,
266 the ratio By / Tyy is set to be equal to the slope pf,,,;; of the LSH in the TF plane. For applying (35) it is
267 Necessary to know the time when the slip reaches the value 0.5, t;—¢ 5. In this case, as the speed is not
20s measured, f;_o5 must be estimated. Nevertheless, as it is shown in Fig. 9, the entropy curve around
260 the optimal value is smooth, so ;-0 5 can be estimated as half of the total start-up transient duration
20 (34), without penalizing the proposed diagnostic procedure. Applying this criterion to Fig. 11 gives
i tg—o5 ~ 3s. Hence

Bw-Tw= 8
By = 1155Hz
Bw _ Sy 50 02l 9y 8 ms (36)
Tw ts=o5 3
272 Fig. 12 shows the Slepian window designed in separated time and frequency domains. In Fig. 13

2z an atom of the Slepian window and the trajectory of the LSH are drawn in the TF plane. As can be
27a - seen, this window shape achieves the maximum overlap with the LSH trajectory, which coincides
275 with the diagonal of the Slepian window.
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Figure 12. Slepian window (B = 11.55 Hz, Tjy = 692.8 ms), optimized for detecting the LSH during
the start-up of the high-power, high-voltage IM given in Appendix B, represented in the time (top)
and in the frequency (bottom) domains.
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Figure 13. Heisenberg’s box of the atom of the Slepian window (By = 11.55 Hz, Ty = 692.8 ms),
optimized for detecting the LSH during the start-up transient of the high-power, high-voltage IM
given in Appendix B. The white line marks the estimated trajectory of the LSH in the time-frequency
plane.
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Figure 14. Spectrogram of the stator current computed with the proposed Slepian window, optimized
for detecting the LSH during the start-up of the high-power, high-voltage IM given in Appendix B,
with a broken bar (top) and in healthy conditions (bottom).

ze 4.2, Application of the Slepian Window to the Fault Diagnosis of the Tested IM

277 After the selection of the parameters of the Slepian window, it has been applied to the STFT of the
27 motor stator current, to obtain the spectrograms shown in Fig. 14 for both the faulty and the healthy
20 IMs. In these cases, as the mains component has a much higher value than the amplitude of the LSH,
200 a logarithmic scale (dB) has been applied to the spectrogram. In Fig. 14 the characteristic V-shaped
2e1  signature of the LSH in the TF plane appears clearly for both IMs. Nevertheless, as expected, the
202 amplitude of the harmonic component corresponding to a rotor broken bar fault is much greater in
283 the case of the faulty IM (Fig. 14, top) than in the case of the healthy IM (Fig. 14, bottom), whose
2e«  V-shape corresponds to its inherent asymmetry. Fig. 14 gives a visual representation, which enables
2es  a qualitative diagnosis. To add a quantitative criterion and to improve the reliability of the diagnosis,
26 the amplitude of the ridges of the LSH during the start-up of both machines has been represented in
207 Fig. 15. In this figure, it can be seen that the LSH of the faulty machine has greater amplitude (more
26 than 10 dB) than the LSH of the healthy machine.

289 Additionally, the average values of the LSH have been computed in healthy and faulty
200 conditions. In the case of the healthy machine, the average amplitude of the LSH is —56.36 dB,
201 whereas in the case of the faulty machine it is —41.67 dB, which corresponds to a higher level of
202 energy that confirms the presence of the fault.
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Figure 15. Amplitude of the LSH due to rotor broken bar during the start-up of a healthy and faulty
machine extracted from Fig. 14. The average value of the LSH of the healthy machine (blue line) is
—56.36 dB, and of the faulty machine (red line) is —41.67dB.

202 5. Cost Effective IM Fault Diagnosis Using the Truncated Slepian Window

In fault diagnostic systems the spectrogram of the current is not computed on the continuous TF
domain, as indicated in (5), but on a discrete grid of points of the TF plane, as

Psp(m - AT,n - AF) = |Sf(m-AT,n-AF)|2, nm=20,1,23,.... (37)

202 In fact, the current signal is a discrete sequence which is acquired sampling the stator current at
205 a frequency Fypypiing during an acquisition time Ts. So, the most dense grid where the current
206 Spectrogram can be calculated using (37) corresponds to a value of AT = 1/Fgpiing, that is,
20 computing the FFT for every sample of the current, and to a value of AF = 1/T;, that is, using
206 a window with the length of the current signal. This gives a total number of successive FFTs to
200 be computed equal to Ts X Fygppling, €ach one of length Ts X Figppring samples. All the examples
300 presented in the previous sections have been computed using this dense grid.

301 From a practical point of view, this election of AT = 1/Fspiing and AF = 1/Ts in (37) is not
302 the most adequate, because with these values the computing time and memory resources needed
303 to obtain the current spectrogram are very high. For example, it takes 154 seconds and 186 Mb to
s« Obtain each of the current spectrograms shown in Fig. 14 on a personal computer (see Appendix
s0s  C), which makes it difficult to implement this diagnostic technique in low power or embedded
s06 devices such as FPGAs or DSPs. To alleviate this problem, the spectrogram of the current signal
s07 can be obtained with a window shorter than the current signal, which reduces the length of the
s0e  FFTs that must be performed at each time instant. Besides, since the local Fourier spectrum averages
300 frequency variations taking place in the analysis window;, it is not necessary to compute the successive
s10 FFTs for every sample of the discrete-time current signal, but they can be computed with some
su  displacement [73]. Therefore, decimation in time and in frequency is almost always performed [73]
sz when computing the current spectrogram. So, a practical question is to find the minimum acceptable
a1z window length and the maximum acceptable shifting time that provide a high resolution diagnostic
s1e  spectrogram of the stator current, keeping at a minimum the effort needed to obtain it.

315 This question has not a simple answer in the case of a Gaussian window. The use of a window
a1 shorter than the current signal in the TF analysis has been seldom applied, due to the increase in
a1z bandwidth of the truncated window, which blurs the current spectrogram, rendering it useless. Some
a1 authors have proposed to truncate the Gaussian window when its value falls below a given threshold,
a9 such as 0.01% of its maximum value, or using a truncated window with a length equal to six times
320 the standard deviation of the full-length window, 6 x ¢;. Instead of truncating the Gaussian window,
;1 some authors propose to use an efficient computation of the DGT with the full-length Gaussian
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sz window, based on a factorization algorithm [85-87], but this approach has a low penetration in the
»23 fault diagnosis field.

32e In this work, and thanks to the particular properties of the Slepian window (almost compact
325 support both in time and frequency of the discrete window), this problem is solved easily using an
s26 innovative and very cost-effective approach:

327 o Reducing the length of the FFT to the time duration Ty of the Slepian window in (35), much
328 smaller than the length of the current signal T;. That is, using a truncated Slepian window with
320 a length equal to Ty, instead of the length of the current signal. This is equivalent to setting
330 AF = 1/TW in (37)

331 o Increasing the time shift of the window in successive FFTs to a value of 1/ By, where Byy is the
332 frequency bandwidth of the Slepian window in (35), much longer than the time step between
333 consecutive samples of the current, 1/ Fyyypring- That is, setting AT = 1/Byy in (37).

334 The results obtained with the proposed approach are summarized in Table 1, and particularized

335 in Table 2 for the example presented in Section 4. It can be observed in this table a huge reduction in
33 the computational resources needed to obtain a diagnostic spectrogram when the proposed approach
sz is used. The time needed for computing the spectrogram has been reduced from 154.65 seconds to
s3e  just 0.59 seconds (a 0.38% of the original time), and the amount of memory from 186608 kB to just 59
330 kB (a 0.03% of the original memory usage).

Table 1. Comparison of the parameters of the STFT of the current signal using the traditional full
length analysis and the proposed reduced length TF analysis, where T is the length of the current
signal, Foampling 18 the sampling frequency, and Ty and By are the parameters of the Slepian window

obtained from (27).
Full length TF analysis Reduced length TF analysis
Window duration (s) Ts Tw = 8/Bw
Shift step (s) 1/ Fsampling 1/Bw
FFT length (samples) Ts - Fsampling Tw - Fsampling
Number of FFTs Ts - Fsampling Ts - By

Table 2. Comparison of the parameters of the STFT of the current signal using the full length and the
proposed reduced length TF analysis, applied to the example presented in Section 4, where T; is the
length of the current signal, Fyspiing is the sampling frequency, and Tyy and Byy are the parameters of
the Slepian window obtained from (27).

Ts =8.2s, Fegmpling = 6.4 kHz, T = 0.6928 sand B = 11.55 Hz
Full length TF analysis Reduced length TF analysis

Window’s length (seconds) 8.2 0.6928
Shift step (s) 1.56-1074 0.087
FFT length (samples) 52480 4434
Number of FFTs 52480 95
Time needed for computing the spectrogram (seconds) 154.65 0.59

Memory needed for computing the spectrogram (kB) 186608 59
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340 Fig. 16 shows the spectrogram of the current of the faulty machine presented in Section 4,
;a1 obtained using the traditional spectrogram (Fig. 16, top), with a length of the Slepian window equal
;a2 to the length of the current signal, and using the proposed decimated spectrogram (Fig. 16, bottom),
;a3 with a truncated Slepian window. Although the computing time has been greatly reduced to a 0.4%
s Of the original time, the resultant spectrogram still shows clearly the LSH component generated by
s the fault.

Full-length STFT with the Slepian window
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Figure 16. TF distribution of the stator current of the faulty machine presented in Section 4, using
the full length TF analysis with a Slepian window (154.65 seconds, 186608 kB) (top), and using
the proposed reduced length TF analysis with the truncated Slepian window (0.59 seconds, 59 kB)
(bottom).

sas  5.1. Comparison between the Spectrograms Generated with the Truncated Gaussian Window and with the
sar  Truncated Slepian Window

3a8 For comparison purposes, the spectrogram of the current of the faulty machine has been
s computed also with a truncated Gaussian window, using the values of window’s length and time
350 shift obtained in the design of the truncated Slepian window presented in Table 2. Fig. 17 shows that,
31 for the same length, the truncated Slepian window (Fig. 17, top) generates a current spectrogram
32 much less blurred than the spectrogram generated with the truncated Gaussian window (Fig. 17,
353 bottom), thanks to its greater energy concentration. In fact, in the spectrogram generated with the
s« truncated Slepian window it is even possible to observe the signature of higher order fault harmonics
35 (the V-shape with vertex at t=4 s), which are nearly indistinguishable in the spectrogram generated
356 with the truncated Gaussian window. This increased resolution allows for a more accurate assessment
ss7 - of the motor’s condition.


http://dx.doi.org/10.20944/preprints201712.0026.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2017

358

359

21 of 26

Slepian window

-20

= -30
4 w0 8
8 -50 g_
& -0 &

£ -70

-80

-90

-100

4
Time (s)
Gaussian window

e— -10

50 20

= -30
£ w8
) =
8% 50§
g -0 E

2 20

[ -70

10 -80

-90

Time (s)

Figure 17. Reduced spectrogram of the high-power, high-voltage faulty machine given in Appendix
B with a broken bar during the start-up transient using the truncated Slepian window (top) and using
the truncated Gaussian window (bottom).

6. Conclusions

TMCSA methods can extend the field of application of traditional MCSA methods to the fault
diagnosis of electrical machines working in transient conditions, such as the start-up transient of an
IM, by replacing the FFT with the STFT, which is able to display the signature of the fault components
in the TF domain.

Traditionally, a gated Gaussian window has been used to perform the STFT, because an infinitely
long Gaussian pulse achieves the minimum value of the Heisenberg’s uncertainty principle. But, in
this paper, it has been highlighted that there is a special function type, the Slepian function, which
achieves the highest energy concentration for a finite duration and a finite bandwidth. Moreover,
its atoms have a rectangular shape in the TF plane. Both features improve the resolution of the
current spectrograms, highlighting the fault components and enabling for more reliable diagnostic
results. Besides, from a practical point of view, an important reduction in terms of computing time
and memory resources can be achieved limiting the Fourier analysis to the length of the Slepian
window, and shifting the window in time steps equal to the inverse of the bandwidth of the Slepian
window.

In this paper, the use of the Slepian window for performing the TMCSA of electrical machines in
transient regime has been proposed, for the first time up to the best of the authors” knowledge. The
procedure for selecting the parameters of the Slepian window, depending on the type of the fault,
has been also established, and validated both with a synthetic fault component and with the tested
current of a high-power, high-voltage IM with a broken bar. In future works the proposed approach
will be applied to the detection of other types of faults such as eccentricity or bearing faults.
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s Appendix A Simulated IM
387 Three-phase induction machine. Rated characteristics: P = 11 kW, f = 50 Hz,
e U = 230/400 V,I = 2.7/46 A,n = 1410 rpm, cos ¢ = 0.8.
ss0  Appendix B Industrial IM
300 Three-phase induction machine, star connection. Rated characteristics: P = 3.15 MW,
s f =50Hz U =6kV,I =373 A,n = 2982 rpm, cos ¢ = 0.92.
32 Appendix C Computer features
393 CPU: Intel Core i7-2600K CPU @ 3.40 GHZ RAM memory: 16 GB, Matlab Version: 9.0.0.341360
394 (R2016a)
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