

1 Article

2 Incidence and determinants of health care associated 3 blood stream infection at a neonatal intensive care 4 unit in Ujjain, India: a prospective cohort study

5 Mamta Dhaneria ¹, Sachin Jain¹, Poonam Singh ¹, Aditya Mathur ¹, Cecilia Stålsby Lundborg ³,
6 Ashish Pathak ^{1,2,3,*}

7 ¹ Department of Paediatrics, Ruxmaniben Deepchand Gardi Medical College, Ujjain, Madhya Pradesh India;
8 mamtadhaneria@gmail.com; drsachinjain2006@yahoo.co.in; drpoonamsingh@yahoo.co.in;
9 dr.adityamathur121@gmail.com; drashish.jpathak@gmail.com

10 ² Department of Women and Children's Health, International Maternal and Child Health Unit, Uppsala
11 University, Uppsala, Sweden

12 ³ Global Health - Health Systems and Policy: Medicines, focusing antibiotics, Department of Public Health
13 Sciences, Karolinska Institutet, Stockholm, Sweden; cecilia.stalsby.lundborg@ki.se

14 * Correspondence: drashish.jpathak@gmail.com; Tel.: +91-930-223-9899

15

16 **Abstract:** Very little is known about laboratory confirmed blood stream infections (LCBIs) in
17 neonatal intensive care units (NICUs) in resource-limited settings. The aim of this cohort study
18 was to determine the incidence, risk factors, and causative agents of LCBIs in a level-2 NICU in
19 India. The diagnosis of LCBIs was established using the Centre for Disease Control, USA criteria.
20 A predesigned questionnaire containing risk factors associated with LCBIs was filled-in. A total of
21 150 neonates (43% preterm) were included in the study. The overall incidence of LCBIs was 31%.
22 The independent risk factors for LCBIs were: preterm neonates (relative risk (RR) 2.23), duration
23 of NICU stay more than 14 days (RR 1.75), chorioamnionitis in the mother (RR 3.18), premature
24 rupture of membrane in mothers (RR 2.32), neonate born through meconium-stained amniotic
25 fluid (RR 2.32), malpresentation (RR 3.05), endotracheal intubation (RR 3.41), umbilical
26 catheterization (RR 4.18), and ventilator-associated pneumonia (RR 3.17). The initiation of minimal
27 enteral nutrition was protective from LCBIs (RR 0.22). The predominant causative organisms were
28 gram-negative pathogens (58%). The results of the present study can be used to design antibiotic
29 interventions to reduce LCBIs in resource-limited settings.

30 **Keywords:** blood stream health care associated infections; neonates; risk factors, antibiotic use,
31 antibiotic resistance; neonatal intensive care unit; India

32

33 1. Introduction

34 Health care associated infections (HAIs) are a significant public health problem resulting in
35 increased morbidity, mortality and increased hospital stay lengths and health care costs [1].
36 Neonates admitted to neonatal intensive care units (NICU) are more vulnerable to HAIs because of
37 their underlying susceptibility to infection and the need for invasive procedures [2].

38 Various fetal, maternal and NICUs environmental factors contribute toward causing infections in
39 newborns. Apart from the immature immune system, some of the fetal factors are low birth weight,
40 gestational age and Apgar score, prolonged hospital stay, invasive procedures, endotracheal tubes,
41 umbilical cauterization, parenteral nutrition, lack of adequate hand washing by hospital personnel
42 and indiscriminate use of antibiotics [1–4]. Some of the maternal factors are the premature rupture
43 of membrane, maternal fever within two weeks prior to delivery, meconium-stained amniotic fluid
44 (MSAF), foul smelling liquor and instrumental delivery, etc.[1–4]. NICUs environments can be

45 bacteriologically very hostile, containing a wide selection of pathogenic, antibiotic resistant
46 organisms with which the patient becomes colonized [1–4].

47 Among the neonatal infections in the NICU, blood stream infections (BSI) are a major cause of
48 concern worldwide [1,4–7]. In low-middle income countries (LMICs) laboratory confirmed BSI
49 (LCBI) rates are two to three times higher than those of high-income countries [1,3,4,7,8]. In high-
50 income countries, HAI surveillance in the intensive care unit (ICU) plays a major role in infection
51 control as it is essential that HAIs, especially those caused by multi-drug resistant bacteria, be
52 reported [1,4,6]. However, there is a paucity of data from LMICs, including India, where HAIs
53 continue to remain a hidden but serious burden for health systems and patients alike [1,7,9–11]. The
54 present study was therefore undertaken with an aim to determining the incidence, onset, risk
55 factors, and causative agents associated with blood stream HAIs in a level-2 NICU at C. R. Gardi
56 hospital (CRGH), Ujjain, Madhya Pradesh, India.

57 2. Materials and Methods

58 2.1. Settings

59 The study was conducted from June 2012 to January 2014 in the eight-bedded NICU, which is a part
60 of the 750-bedded academic hospital CRGH, and which is associated with R. D. Gardi Medical
61 College, Ujjain. The hospital is situated in a semi-urban area approximately six kilometers from
62 Ujjain city in the western part of the province of Madhya Pradesh, India. The hospital caters
63 predominantly to the rural population from the villages surrounding Ujjain city. During the study
64 period, three post-graduate trainees and four consultants provided patient care in NICU. The
65 nurse-to-patient ratio during the study period ranged from 1:8 to 1:12. The bed occupancy remained
66 above 98% during the study period. Our nursery admits a mixed population of low- and high-risk
67 infants. Aseptic non-touch techniques and maximum aseptic precautions were available during the
68 study period, but compliance with these measures was not monitored.

69 2.2. Definitions

70 In order to define both clinical sepsis and laboratory confirmed blood stream infections (LCBIs), the
71 standard criteria for HAI surveillance—as defined by the Centers for Disease Control and
72 Prevention's (CDC's) National Nosocomial Infection Surveillance System (NNIS) and the National
73 Healthcare Safety Network (NHSN)—were used [12]. Primary BSI was defined as: (1) a patient with
74 a recognized pathogen cultured from one or more blood cultures, where the organism cultured was
75 not related to an infection at another site; or (2) a patient found to have a common skin contaminant
76 (e.g., coagulase-negative staphylococci, viridans group streptococci or micrococci, diphtheroids,
77 *Bacillus* sp., or *Propionibacterium* sp.) cultured from two or more blood cultures [13]. Additionally,
78 the presence of at least one of the signs and symptoms was necessary for the infection diagnosis,
79 including thermal or hemodynamic instability, apnea, milk or glucose intolerance, respiratory
80 distress, hemodynamic instability or underactivity/lethargy [14]. Ventilator Associated Pneumonia
81 (VAP) was defined as per NNIS definitions [12].

82 LCBIs in neonates admitted in NICU and presenting within the first 72 hours of life were defined as
83 early-onset sepsis, while those presenting after 72 hours of life were defined as late-onset sepsis
84 [15]. New Ballard scoring was used to calculate the gestational age of newborns after birth [16]. The
85 babies were classified as appropriate, small or large for the gestational age (SGA or LGA) according
86 to Lubchenco and Battaglia charts [17]. The birth weight of the neonates was categorized by
87 adopting the NNIS, USA for high-risk neonatal intensive care units. Three birth weight categories—
88 1001–1500 g, 1501–2500 g, >2500 g—were used [18]. Infants who weighed <2.5 kg at birth were
89 considered low-birth-weight infants, including those small for gestational age, while infants who
90 weighed <1500 g were considered very low-birth-weight infants, and premature infants were those

91 born before 37 weeks of gestation [19]. Mothers with a high risk of chorioamnionitis were defined
92 as having 2 or more of the following: maternal fever, leukocytosis, maternal tachycardia, uterine
93 tenderness or foul smelling amniotic fluid [20]. Premature rupture of membranes (PROM) was
94 defined when there was leaking of membranes for more than 24 hours before the onset of labor [20].
95 Minimal enteral nutrition (MEN) in the study was the practice of feeding 10–15 ml/kg/day of
96 enteral feeds.

97 *2.3. Inclusion and Exclusion Criteria*

98 Consecutive neonates admitted in NICU during the study period, having a gestational age of more
99 than 28 weeks and diagnosed with LCBIs using the above definitions were included in the study.
100 As there is an inherent uncertainty in ascribing neonatal infection as “maternally acquired” or
101 “hospital acquired” for the study, any infection in the hospital-born neonate was considered a
102 potential HAI. Neonates with a birth weight of less than 1000 g, and neonates transferred to the
103 NICU with a diagnosis of sepsis or showing features of sepsis on admission were not included.
104 LCBIs caused by fungal organisms and anaerobic bacteria were also not included.

105 *2.4. HAI Surveillance*

106 A pre-designed questionnaire for the surveillance of LCBIs as HAIs was filled in for all the neonates
107 included in the study. At least two physicians and one of the four resident doctors, who were
108 trained in HAI surveillance, followed all neonates daily until discharge or death.

109 The questionnaire contained a) demographic details of the neonates including the name of the
110 neonate and the mother's name, the age of the baby at the time of admission, the date and time of
111 birth, and the mother's address; and b) the maternal, fetal and environmental risk factors associated
112 with LCBIs as HAIs. Appropriate samples for septic screen and blood cultures were collected on all
113 neonates with suspected sepsis. All neonates were followed-up until discharge or death. The
114 number of patient-days was defined as the total number of days that patients spent in the NICU
115 during a 28-day period.

116 *2.5. Blood Culture Sampling and Processing*

117 Blood cultures were obtained by peripheral puncture. There was no change in the blood culture
118 sampling policy during the study period. Within four hours of receipt all the samples were plated
119 on blood agar and MacConkey agar medium (HiMedia Laboratories Pvt, Ltd, Mumbai, India). The
120 growth of bacteria within 48 hours after blood culture was considered clinically significant.
121 Pathogenic bacteria were identified using standard conventional microbiological methods [21].

122 *2.6. Antibiotic Susceptibility Testing*

123 Antibiotic susceptibility testing was performed using the Kirby-Bauer disc diffusion method on
124 Mueller-Hinton agar plates. The disc strengths used were those recommended by the Clinical and
125 Laboratory Standards Institute (CLSI) at the time of the study [22]. CLSI interpretive criteria for
126 susceptibility and resistance were followed [22]. Extended Spectrum Beta-Lactamase (ESBL) were
127 detected phenotypically through a combined disc diffusion method with cefotaxime (30 µg) and
128 cefotaxime/clavulanic acid (30/10 µg), and with ceftazidime (30 µg) and ceftazidime/clavulanic acid
129 (30/10 µg), according to CLSI guidelines [22]; they were confirmed using Vitek 2 [23]. Multidrug-
130 resistant isolates were defined as isolates having co-resistance to at least three antibiotic groups [24].
131 The ethics committee of RD Gardi Medical College approved the study (approval number
132 114/2010). The cultures were performed without any cost to the patients, and the results were made
133 available to the concerned physician.

134 *2.7. Empiric Antibiotic Therapy in NICU*

135 During the study period the first-line empiric choice of antibiotic therapy was a third generation
136 cephalosporin (either cefotaxime, ceftriaxone or ceftazidime) with or without an aminoglycoside
137 (either gentamicin or amikacin). The exact choice of antibiotics was made at the discretion of the
138 attending physician. Empirical antibiotic therapy was initiated according to antibiotic guidelines for
139 NICU, if CRP was positive, awaiting culture reports.

140 *2.8. Statistical Analysis*

141 The data was entered in EpiData Entry (version 3.1) and then transferred to Stata 12.1 (Stata Corp.
142 College Station, Texas, USA) software for statistical analysis. Frequency and percentages are
143 presented for categorical data. A generalized linear regression model (GLM) was used to examine
144 the association of independent risk factors responsible for LCBIs. The independent risk factors were
145 compared between neonates with and without LCBIs (binary outcome variable). The adjusted
146 relative risk (RR) of LCBIs was calculated using multivariate predicted marginal proportions for
147 logistic regression models and included the following independent variables as covariates: sex -
148 male versus female; gestational age - preterm versus term; duration of NICU stay - more than 14
149 days versus less than 14 days; chorioamnionitis in mother - yes versus no; a history of premature
150 rupture of membranes in the mother - yes versus no; meconium-stained liquor - yes versus no;
151 malpresentation - yes versus no; birth asphyxia - yes versus no; endotracheal intubation - yes versus
152 no; umbilical catheterization - yes versus no; VAP - yes versus no; and minimal enteral nutrition -
153 yes versus no. The means along with the associated 95% confidence intervals (CI) and p values
154 were reported from GLMs. A *p* value less than or equal to 0.05 was considered significant.

155 **3. Results**

156 A total of 775 neonates were admitted in NICU during the study period and 150 neonates were
157 suspected to have LCBIs. These 150 neonates formed the final cohort. Out of them, 63% (95/150)
158 were male. A total of 65 neonates (43%) were preterm babies according to the New Ballard scoring
159 and the remaining were term babies. A fourth (n=41) of the babies were small for the gestational age
160 (SGA), while the rest were appropriate for the gestational age (AGA), there were no large-for-the-
161 gestational-age babies admitted in the unit during the study period. Out of a total of 150 neonates, a
162 total of 81 neonates were suspected to have early-onset sepsis, while the remaining 69 were
163 suspected to have late-onset sepsis. Fifteen neonates (15/150, i.e., 10%) died during the study
164 period. All deaths occurred among preterm neonates, and all had clinical sepsis due to LCBIs.

165 *3.1. HAI Incidence*

166 The overall incidence of LCBIs was 31% (i.e., 46/150) (95% for a CI of 23–38%). The incidence of
167 LCBIs among preterm neonates was 45% (i.e., 29/65) (95% for a CI of 32–57%) compared to term
168 neonates, for whom the incidence was 20% (i.e., 17/85) (95% for a CI of 11–29%). The incidence of
169 LCBIs in neonates suspected to have early-onset sepsis (n=81) was 25% (95% for a CI of 15–34%)
170 and that for late-onset sepsis (n=69), was 38% (95% for a CI of 26–49%).

171 *3.2. Risk Factors for HAIs*

172 The following risk factors were significantly associated with microbiologically confirmed LCBIs in
173 the multivariate analysis: preterm versus term, NICU stay duration over 14 days versus under 14
174 days, chorioamnionitis in mother, PROM in mother, neonate born through meconium-stained
175 amniotic fluid (MSAF), malpresentation, endotracheal intubation, umbilical catheterization, and
176 VAP. The initiation of MEN was protective from LCBIs. The details are shown in Table 1. For each
177 increasing day of stay in the NICU the risk for LCBIs increased by 6.6% (SE 2.9%). Additionally, for
178 each incremental day a neonate was on intravenous fluids the risk of LCBIs increased by 12% (95%
179 for a CI of 6–26%; *P*=0.039).

180 **Table 1.** Multivariate analysis of neonatal and maternal characteristics associated with laboratory-
181 confirmed blood stream infections in a cohort of 150 neonates.

Risk factors	Total (%) [*]		HAI		RR	95% CI	<i>p</i> value
	150	No (%) [#]	Yes (%) [#]				
Sex							
Female	55 (37)	40 (73)	15 (27)	Reference	Reference	Reference	
Male	95 (63)	64 (67)	31 (33)	1.91	0.71-2.01	0.498	
Gestational age							
Term	85 (57)	68 (80)	17 (20)	Reference	Reference	Reference	
Preterm	65 (43)	36 (55)	29 (45)	2.23	1.34-3.69	0.002	
Duration of NICU stay							
Up to 14 days	115 (77)	85 (74)	30 (26)	Reference	Reference	Reference	
>14 days	35 (23)	19 (54)	16 (46)	1.75	1.09-2.81	0.020	
Chorioamnionitis in mother							
No	142 (95)	103 (73)	39 (27)	Reference	Reference	Reference	
Yes	8 (5)	01 (12)	7 (88)	3.18	2.19-4.63	<0.001	
PROM in mother							
No	129 (86)	97 (75)	32 (25)	Reference	Reference	Reference	
Yes	21 (14)	7 (33)	14 (67)	2.68	1.75-4.11	<0.001	
Meconium stained amniotic fluid							
No	134 (89)	98 (73)	36 (27)	Reference	Reference	Reference	
Yes	16 (11)	6 (37)	10 (13)	2.32	1.45-3.72	<0.001	
Malpresentation							
No	136 (91)	101 (74)	35 (26)	Reference	Reference	Reference	
Yes	14 (9)	3 (21)	11 (79)	3.05	2.05-4.53	<0.001	
Birth asphyxia							
No	122 (81)	86 (70)	36 (30)	Reference	Reference	Reference	
Yes	28 (19)	18 (64)	10 (36)	1.21	0.68-2.13	0.510	
ET intubation							
No	128 (85)	99 (77)	29 (23)	Reference	Reference	Reference	
Yes	22 (15)	5 (23)	17 (77)	3.41	2.30-5.04	<0.001	
Umbilical catheterization							
No	119 (79)	97 (82)	22 (18)	Reference	Reference	Reference	
Yes	31 (31)	7 (23)	24 (77)	4.18	2.74-6.38	<0.001	
VAP							
No	135 (90)	101 (75)	34 (25)	Reference	Reference	Reference	
Yes	15 (10)	3 (20)	12 (80)	3.17	2.16-4.67	<0.001	
Minimal enteral nutrition							
No	114 (76)	71 (62)	43 (38)				
Yes	36 (24)	33 (92)	3 (8)	0.22	0.07-0.66	0.008	

182 # Row percentage, * Column percentage PROM-premature rupture of membrane, ET-endotracheal
183 tube, VAP-ventilator associated pneumonia

184

185 3.3. Antibiotic Use Pattern and Antibiotic Sensitivity Pattern of Pathogenic Isolates

186 All neonates included in the study were prescribed antibiotics. The mean duration of antibiotics
 187 prescribed was 8.2 days. Most (78%) of the patients were prescribed a combination of two
 188 antibiotics, while 19% of patients received a combination of three antibiotics. The most common
 189 antibiotic prescribed was amikacin (67%), followed by cefotaxime (30%), ceftriazone (29%),
 190 ampicillin (25%), meropenem (24%), vancomycin (20%), ampicilin with cloxacillin (14%),
 191 piperacillin with tazobactum (8%), ceftazidime (4%), and metronidazole (3%). The most common
 192 combination of antibiotics used was a third-generation cephalosporin with amikacin (59%). Around
 193 20% of the sick neonates were shifted to last resort antibiotics, like meropenam and vancomycin,
 194 after initially starting other antibiotics.

195 The antibiotic sensitivity pattern of the isolates is shown in Table 2.

196 **Table 2.** The antibiotic-resistance-pattern of the most prevalent causes of laboratory-confirmed
 197 blood stream infections in a cohort of 150 neonates.

Antimicrobial class/agent tested	Activity by organism (number tested)					
	<i>K. pneumonia</i>	<i>P. aeruginosa</i>	<i>E. coli</i>	<i>Proteus</i> sp	<i>S. aureus</i>	CONS
	(11)	(6)	(5)	(4)	(10)	(8)
	R (%)	R (%)	R (%)	R (%)	R (%)	R (%)
Ampicillin	10(91)	-	4(80)	3(75)	8(80)	7(88)
Amoxicillin/clavulanate	9(82)	-	4(80)	3(75)	7(70)	7(88)
Piperacillin/tazobactam	4(36)	4(67)	2(40)	1(25)	-	-
Cefuroxime	9(82)	-	4(80)	3(75)	-	-
Ceftriaxone	8(73)	-	3(60)	1(25)	-	-
Cefixime	9(82)	-	4(80)	1(25)	-	-
Ceftazidime	7(64)	5(83)	4(80)	1(25)	-	-
Ciprofloxacin	9(82)	5(83)	3(60)	3(75)	-	-
Norfloxacin	9(82)	-	3(60)	-	-	-
Ofloxacin	9(82)	-	3(60)	2(50)	-	-
Levofloxacin	-	-	-	-	3(30)	1(13)
Gentamicin	7(64)	4(67)	3(60)	1(25)	-	-
Amikacin	4(36)	2(33)	1(20)	1(25)	2(20)	1(13)
Chloramphenicol	6(55)	4(67)	3(60)	1(25)	-	-
Tetracycline	10(91)	5(83)	4(80)	2(50)	-	-
Co-trimoxazole	9(82)	5(83)	4(80)	3(75)	-	-
Cefoxitin	-	-	-	-	3(30)	-
Vancomycin	-	-	-	-	0(0)	0(0)
Imipenam	-	-	-	-	1(10)	1(13)

198
 199

200 In 58% of cases in our study gram-negative organisms caused blood stream HAIs. *Klebsiella*
 201 *pneumonia* (24%), *Pseudomonas aeruginosa* (13%), *Escherichia coli* (11%), *Staphylococcus aureus* (21%),
 202 and Group B Streptococci (17%) were the prominent isolates. Around 73% of *Klebsiella pneumonia*
 203 and 80% of *Escherichia coli* were ESBL producing. The MDR rates were 86%, 82%, 80%, and 92% for
 204 *Klebsiella pneumonia*, *Pseudomonas aeruginosa*, *Escherichia coli* and *Proteus* spp., respectively. The
 205 MRSA proportion among the *S. aureus* isolates was 35%.

206
 207

208 4. Discussion

209 This study, according to our knowledge, is the first study from Central India that reports the
210 incidence and risk factors associated with LCBIs in a level 2 NICU. The results of our study show
211 that several factors are associated with an increased risk of acquisition of LCBIs, including being
212 born preterm, a NICU stay duration of over 14 days, the presence of chorioamnionitis and PROM in
213 the mother, a neonate born through MSAF, malpresentation, endotracheal intubation, umbilical
214 catheterization, and VAP. The initiation of MEN was protective of LCBIs.

215 The overall incidence of LCBIs in the study was 31%. It is difficult to compare this incidence
216 with other studies without a knowledge of the patient mix admitted by the reporting NICUs and
217 the level of care offered by them. A review of hospital-acquired neonatal infections in developing
218 countries reported that the incidence of culture positivity in South Asia was 15 per 1000 live births
219 [7], which is much lower than that reported by our study. The Delhi Neonatal Infection Study
220 (DeNIS) collaboration study from India, reported a total sepsis incidence of 14% and a culture-
221 positive sepsis incidence of 6.2% (95% with a CI of 5.8–6.6) [9]. However, the DeNIS collaboration
222 study had neonates admitted from level 3 NICUs. Thus, the patient mix of this study cannot be
223 compared with that of our study. The BSI incidence varies from 21% to 39% in nurseries in LMICs,
224 which admit a mixed population of low and high-risk infants [25]. The BSI incidence of 31%
225 reported in our study falls within the range reported in the above study. A WHO-led review of
226 water, sanitation, and hygiene (WASH) services in 54 LMICs showed severe water shortages in 38%
227 of healthcare facilities, an absence of both water and hand-washing soap in 35% of facilities, and a
228 lack of sanitation in 19% of the facilities [26]. The lack of WASH facilities makes hospitals in LMICs
229 prone to a higher incidence of HAIs [27]. The high rate of neonatal infections in LMICs strongly
230 suggests a lack of adequate hygiene for the peri-partum and neonatal periods in the hospitals [27].

231 In our study, a neonate born preterm had a RR of 1.75 (95% for a CI of 1.09–2.81; $p = 0.02$) for
232 acquiring a LCBI, compared to a term neonate. It has been shown that, compared to term babies, the
233 incidence of neonatal sepsis in preterm babies is nearly nine times superior, with a birth weight that
234 is between 1000 gm and 1500 gm [4,7]. In our study, chorioamnionitis and PROM increased the risk
235 for LCBIs (RR 3.18 and 2.68, respectively; $p < 0.001$). Chorioamnionitis is very closely related to
236 early-onset sepsis [28]. Chorioamnionitis and PROM in premature babies are associated with higher
237 neonatal mortality, morbidity, and resource use [28]. The risk of early-onset sepsis in a neonate
238 whose mother had a definite chorioamnionitis is approximately 8% [29]. A cohort study reported a
239 3.5 times increased risk of a sepsis in a premature rupture of membranes in premature neonates
240 [30], compared to our study, which reported a 2.68 times increased risk. In our study, the risk for
241 LCBIs was higher for neonates with MAS (RR), however there is no evidence that the use of
242 antibiotics for MAS reduces the rate of sepsis in neonates born through meconium-stained amniotic
243 fluid [31]. In our study fetal malpresentation was associated with LCBIs (RR 3.05, 95% CI 2.05–4.53;
244 $p < 0.001$). Although this was not specifically examined in our study, malpresentation may increase
245 obstetric practices, such as a higher frequency of vaginal infections, that promote ascending
246 infections in neonates.

247 Previous studies have shown that a very low birth weight and a longer duration of antibiotic
248 therapy were risk factors for umbilical arterial catheter-related sepsis [32]. A study from China
249 showed that the incidence of umbilical venous catheterization related septicemia was at 9.5% [33].
250 The most common organisms associated with umbilical catheterization related septicemia in our
251 study were *Staphylococcus aureus* and Coagulase-negative *Staphylococcus*, which is similar to what
252 was reported by previous studies [32,33]. Endotracheal intubation has its own complications because
253 of its invasive nature. The risk of infection following endotracheal intubation has not been studied
254 very often in neonates except for VAP. However, there is evidence that endotracheal intubation
255 should be viewed as an important risk for sepsis in neonates [4,7]. It is commonly known that
256 mechanical ventilation is associated with an increased risk of BSI, due to its invasive nature, breech
257 in asepsis during and after the procedure, and during intratracheal suctioning [3,10,34]. The NICU
258 environment per se increases the risk of HAIs, and it is therefore no surprise that the NICU stay
259 duration was associated with an increased risk of BSIs. The NICUs are considered to be important

260 focus areas for HAI surveillance and antibiotic stewardship [1,5,6,12]. Minimal enteral nutrition and
261 early total enteral nutrition has been shown to reduce the risk of sepsis and the duration of hospital
262 stays [35].

263 There is a paucity of data on the bacterial causes of neonatal sepsis in neonates, especially from
264 resource-constrained settings [8]. *Klebsiella species*, *Escherichia coli*, *Staphylococcus aureus*, and Group
265 B Streptococci (GBS) predominate in early-onset neonatal sepsis [8]. Conversely, late-onset sepsis is
266 predominantly caused by gram-positive bacteria [8]. Gram-negative rods are responsible for 60 to
267 70% of blood culture positive infections in the neonatal period [8,34]. In our study, *Klebsiella*
268 *pneumoniae* was responsible for 22% of the LCBIs. This rate falls within the range of 16 to 28%
269 reported from different parts of the world [36]. *S. aureus* is responsible for 8 to 22% of the
270 bloodstream isolates in different regions [9]. Antibiotic resistance is common in the HAI isolates for
271 NICUs. In Indian studies the most common reported pathogens are gram-negative bacteria, and
272 most are resistant to ampicillin and gentamicin, while some are resistant to cephalosporins [9–11].
273 Antibiotic resistances to common first-line agents render treatments costly and force healthcare
274 workers to increase the spiral of antibiotic use. In our study, we observed considerable variations in
275 the type of antibiotics uses in the NICU. It can be assumed that a considerable proportion of these
276 could be irrational and excessive. However, if the antibiotic-use pattern is seen in light of the
277 resistance pattern of bacterial isolates for HAIs, this use is largely justified.
278

279 *Methodological Considerations*

280 Our study has some weaknesses: 1) Hand hygiene is the most important intervention to reduce
281 HAIs in NICUs. We did not measure adherence to hand hygiene as that was not an objective of the
282 study; 2) Despite doing a literature review prior to the start of the study to identify risk factors for
283 HAIs, it is possible that we missed out on some risk factors for the HAIs in our study. Our study
284 has the following strengths: 1) A standard definition for the HAI surveillance was used for the
285 surveillance which is needed for a comparison of results with other international and national
286 studies; 2) Our study assessed the AST pattern for pathogens responsible for HAIs, which generally
287 is lacking in other published studies of HAIs; 3) We have defined the level of care and have
288 reported the LCBI rates according to the term and preterm, which is usually absent from published
289 studies from LMICs.
290

291 **5. Conclusions**

292 This study determined the incidence, onset, risk factors, and causative agents for LCBIs in resource-
293 constrained settings in India. The results can be used to identify high-risk neonates for LCBIs in
294 other resource-constrained settings. The study highlights the need for strengthening surveillance
295 for LCBIs in resource-limited set-ups. More studies are needed to study the effect of interventions
296 on the modifiable risk factors for LCBIs. The results of the present study will be used to design and
297 implement an antibiotic stewardship policy and introduce interventions to reduce LCBI in our
298 settings.

299 **Acknowledgments:** The authors thank all the patients for participating in the study. Special thanks to Dr
300 Harshada Shah, former Professor and Head, Department of Microbiology, for doing the culture and
301 susceptibility testing of the bacterial isolates. This study is part of a project funded by the Swedish Research
302 Council (K2007-70X-20,514-01-3). The funders had no role in study design, data collection and analysis,
303 decision to publish, or preparation of the manuscript. Part of the available funds from the project can be used
304 for publishing in open access journals.

305 **Author Contributions:** MD, SJ, PS, CLS and AP participated in the conception and design of the study. MD, SJ,
306 PS and AP collected the data. AM helped in data management. AP and SJ performed the statistical analysis.
307 AP drafted the manuscript. MD, SJ, PS, AM, CLS and AP revised the paper critically for substantial intellectual
308 content. All authors read and approved the final manuscript.

309 **Conflicts of Interest:** The authors declare no conflict of interest. The founding sponsors had no role in the
310 design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and
311 in the decision to publish the results.
312

313 **References**

- 314 1. Allegranzi, B.; Bagheri Nejad, S.; Combescure, C.; Graafmans, W.; Attar, H.; Donaldson, L.;
315 Pittet, D. Burden of endemic health-care-associated infection in developing countries:
316 Systematic review and meta-analysis. *Lancet* **2011**, *377*, 228-241.
- 317 2. Brady, M.T. Health care-associated infections in the neonatal intensive care unit. *American*
318 *journal of infection control* **2005**, *33*, 268-275.
- 319 3. Simonsen, K.A.; Anderson-Berry, A.L.; Delair, S.F.; Davies, H.D. Early-onset neonatal
320 sepsis. *Clin Microbiol Rev* **2014**, *27*, 21-47.
- 321 4. Vergnano, S.; Sharland, M.; Kazembe, P.; Mwansambo, C.; Heath, P.T. Neonatal sepsis: An
322 international perspective. *Archives of disease in childhood. Fetal and neonatal edition* **2005**, *90*,
323 F220-224.
- 324 5. Djordjevic, Z.M.; Markovic-Denic, L.; Folic, M.M.; Igrutinovic, Z.; Jankovic, S.M. Health
325 care-acquired infections in neonatal intensive care units: Risk factors and etiology. *American*
326 *journal of infection control* **2015**, *43*, 86-88.
- 327 6. Folgori, L.; Bielicki, J.; Sharland, M. A systematic review of strategies for reporting of
328 neonatal hospital-acquired bloodstream infections. *Archives of disease in childhood. Fetal and*
329 *neonatal edition* **2013**, *98*, F518-523.
- 330 7. Zaidi, A.K.; Huskins, W.C.; Thaver, D.; Bhutta, Z.A.; Abbas, Z.; Goldmann, D.A. Hospital-
331 acquired neonatal infections in developing countries. *Lancet* **2005**, *365*, 1175-1188.
- 332 8. Obiero, C.W.; Seale, A.C.; Berkley, J.A. Empiric treatment of neonatal sepsis in developing
333 countries. *The Pediatric infectious disease journal* **2015**, *34*, 659-661.
- 334 9. Investigators of the Delhi Neonatal Infection Study, c. Characterisation and antimicrobial
335 resistance of sepsis pathogens in neonates born in tertiary care centres in delhi, india: A
336 cohort study. *Lancet Glob Health* **2016**, *4*, e752-760.
- 337 10. Nambiar, S.; Singh, N. Change in epidemiology of health care-associated infections in a
338 neonatal intensive care unit. *The Pediatric infectious disease journal* **2002**, *21*, 839-842.
- 339 11. Viswanathan, R.; Singh, A.K.; Ghosh, C.; Dasgupta, S.; Mukherjee, S.; Basu, S. Profile of
340 neonatal septicaemia at a district-level sick newborn care unit. *J Health Popul Nutr* **2012**, *30*,
341 41-48.
- 342 12. Horan, T.C.; Andrus, M.; Dudeck, M.A. Cdc/nhsn surveillance definition of health care-
343 associated infection and criteria for specific types of infections in the acute care setting.
344 *American journal of infection control* **2008**, *36*, 309-332.
- 345 13. Hall, K.K.; Lyman, J.A. Updated review of blood culture contamination. *Clin Microbiol Rev*
346 **2006**, *19*, 788-802.
- 347 14. Donahoe, M. Acute respiratory distress syndrome: A clinical review. *Pulm Circ* **2011**, *1*, 192-
348 211.
- 349 15. Edwards MS, B.C. Sepsis in the newborn. In *Krugman's infectious diseases of children*, 11th ed
350 ed.; Gershon AA, H.P., Katz SL, Ed. Mosby: Philadelphia, PA, 2004; pp 545-561.
- 351 16. Ballard, J.L.; Khoury, J.C.; Wedig, K.; Wang, L.; Eilers-Walsman, B.L.; Lipp, R. New ballard
352 score, expanded to include extremely premature infants. *The Journal of pediatrics* **1991**, *119*,
353 417-423.
- 354 17. Battaglia, F.C.; Lubchenco, L.O. A practical classification of newborn infants by weight and
355 gestational age. *The Journal of pediatrics* **1967**, *71*, 159-163.

356 18. Solomon S, H.T., Andrus M, et al. . National nosocomial infections surveillance (nnis)
357 system report, data summary from january 1992 to june 2002. *Am J Inf Control* **2002**, 458–
358 475.

359 19. Singh, M. *Care of the newborn*. Sagar Publications: New Delhi, India, 2010.

360 20. Tita, A.T.; Andrews, W.W. Diagnosis and management of clinical chorioamnionitis. *Clinics*
361 *in perinatology* **2010**, 37, 339-354.

362 21. Murray PR, B.E., Pfaller MA, Tenover FC, Yolken RH. *Manual of clinical microbiology*. 7th ed
363 ed.; ASM press: Washington DC, 1999.

364 22. Clinical and laboratory standards institute (clsi): Performance standard for antimicrobial
365 disk susceptibility testing. 2011, twenty first informational supplement. Pa: Wayne; 2011. P.
366 M100-s21.

367 23. Winstanley, T.; Courvalin, P. Expert systems in clinical microbiology. *Clinical microbiology*
368 *reviews* **2011**, 24, 515-556.

369 24. Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.;
370 Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B., et al. Multidrug-resistant,
371 extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal
372 for interim standard definitions for acquired resistance. *Clin Microbiol Infect* **2012 Mar** doi
373 10.1111/j.1469-0691.2011.03570.x **2011**, 18 268-281.

374 25. Rosenthal, V.D.; Lynch, P.; Jarvis, W.R.; Khader, I.A.; Richtmann, R.; Jaballah, N.B.; Aygun,
375 C.; Villamil-Gomez, W.; Duenas, L.; Atencio-Espinoza, T., et al. Socioeconomic impact on
376 device-associated infections in limited-resource neonatal intensive care units: Findings of
377 the inicc. *Infection* **2011**, 39, 439-450.

378 26. UNICEF, W.a. Water, sanitation and hygiene in health care facilities-status in low- and
379 middle-income countries and way forward. WHO: 2015; p 35.

380 27. Cross, S.; Afsana, K.; Banu, M.; Mavalankar, D.; Morrison, E.; Rahman, A.; Roy, T.; Saxena,
381 D.; Vora, K.; Graham, W.J. Hygiene on maternity units: Lessons from a needs assessment in
382 bangladesh and india. *Glob Health Action* **2016**, 9, 32541.

383 28. Pugni, L.; Pietrasanta, C.; Acaia, B.; Merlo, D.; Ronchi, A.; Ossola, M.W.; Bosari, S.; Mosca,
384 F. Chorioamnionitis and neonatal outcome in preterm infants: A clinical overview. *J Matern*
385 *Fetal Neonatal Med* **2016**, 29, 1525-1529.

386 29. Escobar, G.J.; Li, D.K.; Armstrong, M.A.; Gardner, M.N.; Folck, B.F.; Verdi, J.E.; Xiong, B.;
387 Bergen, R. Neonatal sepsis workups in infants >=2000 grams at birth: A population-based
388 study. *Pediatrics* **2000**, 106, 256-263.

389 30. Levine, C.D. Premature rupture of the membranes and sepsis in preterm neonates. *Nurs Res*
390 **1991**, 40, 36-41.

391 31. Sivanandan, S.; Agarwal, R.; Sethi, A. Respiratory distress in term neonates in low-resource
392 settings. *Semin Fetal Neonatal Med* **2017**, 22, 260-266.

393 32. Landers, S.; Moise, A.A.; Fraley, J.K.; Smith, E.O.; Baker, C.J. Factors associated with
394 umbilical catheter-related sepsis in neonates. *Am J Dis Child* **1991**, 145, 675-680.

395 33. Hei, M.Y.; Zhang, X.C.; Gao, X.Y.; Zhao, L.L.; Wu, Z.X.; Tian, L.; Tan, Y.J. Catheter-related
396 infection and pathogens of umbilical venous catheterization in a neonatal intensive care
397 unit in china. *Am J Perinatol* **2012**, 29, 107-114.

398 34. Khan, A.M.; Morris, S.K.; Bhutta, Z.A. Neonatal and perinatal infections. *Pediatr Clin North*
399 *Am* **2017**, *64*, 785-798.

400 35. Nangia, S.; Bishnoi, A.; Goel, A.; Mandal, P.; Tiwari, S.; Saili, A. Early total enteral feeding
401 in stable very low birth weight infants: A before and after study. *J Trop Pediatr* **2017**.

402 36. Pammi, M.; Zhong, D.; Johnson, Y.; Revell, P.; Versalovic, J. Polymicrobial bloodstream
403 infections in the neonatal intensive care unit are associated with increased mortality: A
404 case-control study. *BMC infectious diseases* **2014**, *14*, 390.