

1 Article

2

Estimating the biogenic non-methane hydrocarbon

emissions over Greece.

4 Ermioni Dimitropoulou^{1*}, Vassiliki D. Assimakopoulos², Kyriaki M. Fameli², Helena A. Flocas¹,
5 Panagiotis Kosmopoulos^{2,4}, Stelios Kazadzis^{2,3} and Kostas Lagouvardos²6 ¹ Department of Physics, Section of Environmental Physics- Meteorology, Building PHYS-5, National and
7 Kapodistrian University of Athens, University campus, 15784 Athens, Greece; ermionidim@yahoo.com
8 (E.D); efloca@phys.uoa.gr (H.A.F)9 ² Institute for Environmental Research and Sustainable Development, National Observatory of Athens,
10 Lofos Koufou, I. Metaxa and V. Pavlou str., Penteli, 152 36, Greece; vasiliki@noa.gr (V.D.A);
11 sandyfameli@hotmail.com (K.M.F); pkosmo@meteo.noa.gr (P.K); Stelios.Kazadzis@pmodwrc.ch (S.K);
12 lagouvar@noa.gr (K.L)13 ³ Physicalisch-Meteorologisches Observatorium Davos, World Radiation Center, Switzerland14 ⁴ Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Greece

15 * Correspondence: ermionidim@yahoo.com; Tel.: +30-6955813570

16 **Abstract:** Biogenic emissions affect the urban air quality as they are ozone and SOA precursors and
17 should be taken into account when applying photochemical pollution models. The present study
18 presents an estimation of the magnitude of Non-Methane Volatile Organic Compounds emissions
19 (NMVOCs) emitted by vegetation over Greece. The methodology is based on computation
20 performed with the aid of a Geographic Information System (GIS) and theoretical equations in order
21 to develop an emission inventory on a 6x6 km² spatial resolution, in a temporal resolution of 1hr
22 covering one year (2016). For this purpose, a variety of input data was used: improved satellite land-
23 use data, land-use specific emission potentials, foliar biomass densities, temperature and solar
24 radiation data. Hourly, daily and annual isoprene, monoterpenes and other volatile organic
25 compounds (OVOCs) were estimated. In the area under study, the annual biogenic emissions were
26 estimated up to 472 kt, consisting of 46.6% isoprene, 28% monoterpenes and 25.4% OVOCs. Results
27 delineate an annual cycle with increasing values from March to April, while maximum emissions
28 were observed from May to September, followed by a decrease from October to January.29 **Keywords:** Biogenic emissions; Greece; Geographic Information System (GIS)

30

31

1. Introduction

32 Volatile organic compounds (VOC) are emitted into the atmosphere from natural sources in
33 marine and terrestrial environment [1]. As a matter of fact, globally, biogenic sources of volatile
34 organic compounds are estimated to exceed those from anthropogenic sources by a factor of ten to
35 one [2]. More specifically in Europe, anthropogenic and biogenic NMVOCs emissions have
36 comparable magnitudes: annual biogenic NMVOCs emissions are estimated at 14 Tg compared to
37 man-made emissions of around 24 Tg [2].38 A great number of VOCs are emitted from vegetation with isoprene (C₅H₈) and monoterpenes
39 (C₁₀H_x) being the most abundant species. The remaining biogenic emitted species consist of a number
40 of oxygenated compounds, such as alcohols and aldehydes and they are referred to as other VOCs
41 (OVOCs) [1].42 The calculation of their fluxes is an important input in air quality models, since they are highly
43 reactive in the troposphere by affecting regional photochemical processes [3]. They react with the
44 hydroxyl radical, ozone and the nitrate radical, resulting in the formation of carbon monoxide and
45 organic species (including secondary organic aerosols) that can enhance concentrations of ozone and
46 other oxidants in environments rich in nitrogen oxides [4]. On a global cycle, Biogenic Volatile

47 Organic Compounds (BVOCs) contribute to the global carbon cycle and have a key role in the global
 48 climate [1]. Furthermore, most of them are oxidized to carbon dioxide (CO_2) into the atmosphere and
 49 determine the growth rate of atmospheric methane concentrations [1].

50 The BVOCs emissions depend on the different types of vegetation and meteorological
 51 conditions. Concerning the isoprene, it has been shown that it is emitted mainly from deciduous trees
 52 under high temperature and Photosynthetically Active Radiation (PAR) conditions [1]. On the other
 53 hand, monoterpenes are emitted mostly by coniferous trees. They are mainly temperature dependent
 54 except for some evergreen oaks and Norway spruce that are temperature and light dependent [5].

55 Presently in Greece there does not exist a detailed gridded database with recent data concerning
 56 the biogenic emissions even though it is well known that BVOCs emissions play a significant role in
 57 the creation of photochemical pollution, especially during the warm months. In addition, this region,
 58 similarly to the Mediterranean, should be studied in detail with regard to biogenic emissions due to
 59 the specificities it presents. More precisely, it has a complex vegetal biodiversity quite different from
 60 the usual northern latitude or US vegetation, it receives high fluxes of solar radiation in the
 61 summertime and is dominated by high temperatures. Finally, high ozone concentrations are often
 62 very pronounced due to primary pollutant emissions in a regional scale dominated by high radiation
 63 fluxes and temperature values [6]. The most recent studies concerning the estimation of biogenic
 64 emissions in Europe and the Balkan Peninsula, including Greece were performed by [7,8] with the
 65 aid of emission models or a Geographic Information System (GIS). Both studies referred to 2003, with
 66 outdated land use data and adopted modeled meteorological input information

67 The present work aims to present results of the computational system developed for estimating
 68 BVOCs emissions based on GIS technology over Greece. It covers the year 2016 and has the possibility
 69 to be regularly updated to include more years. The paper is organized as follows: in Section 2 the
 70 methodology used (the mathematical and computational model) for the estimation of the biogenic
 71 emissions is introduced. Section 3 focuses on the results of our study, presenting the spatially
 72 resolved isoprene, monoterpenes and OVOCS biogenic emissions as well as a short discussion
 73 concerning the results. A summary and conclusions are provided in Section 4.

74 2. Methodology

75 2.1. The mathematical model

76 In the present study, the mathematical model for estimating isoprene, monoterpenes and
 77 OVOCS emissions in Greece was incorporated into the GIS platform. The mathematical model used
 78 for all types of vegetation, describing the emissions flux on an hourly basis is that of [9]:

$$\text{Flux}(\mu\text{g m}^{-2}\text{yr}^{-1}) = \int \varepsilon \cdot D \cdot \gamma \, dt \quad (1)$$

79 where ε is the emission potential ($\mu\text{g g}^{-1}\text{h}^{-1}$) for any particular species, D is the foliar biomass density
 80 ($\text{g dry weight foliage m}^{-2}$), and γ is a unit less environmental correction factor representing the effects
 81 of short-term (e.g. hourly) temperature and solar radiation changes on emissions.

82 Concerning the estimation of the isoprene emissions, [10] showed that, to a very good
 83 approximation, the short-term (e.g. hourly) variations in emissions could be described by the product
 84 of a light-dependent factor and a temperature-dependent factor. So, the environmental correction
 85 factor for the isoprene emission is expressed as:

$$\gamma_{\text{iso}} = C_L \cdot C_T \quad (2)$$

86 The light-dependent factor is given by:

$$C_{L\text{iso}} = \frac{a C_{L1} L}{\sqrt{1+a^2 L^2}} \quad (3)$$

87 where $a=0.0027$ and $C_{L1}=1.066$ are empirical constants, and L is the PAR flux ($\mu\text{mol photons}$
 88 ($400\text{-}700\text{nm}$) $\text{m}^{-2}\text{s}^{-1}$).

89 The temperature-dependent factor is given by:

$$C_{T_{iso}} = \frac{\exp\left(\frac{C_{T_1}(T-T_s)}{R T_s T}\right)}{1 + \exp\left(\frac{C_{T_2}(T-T_M)}{R T_s T}\right)} \quad (4)$$

90 where R is the gas constant ($=8.314 \text{ J K}^{-1} \text{ mol}^{-1}$), and C_{T_1} ($=95000 \text{ J mol}^{-1}$), C_{T_2} ($=230000 \text{ J mol}^{-1}$), and
 91 T_M ($=314 \text{ K}$) are empirical coefficients based upon measurements of three plant species: eucalyptus,
 92 aspen, and velvet bean, but which seem to be valid for a variety of different plant species [10] and
 93 finally, T_s ($=303 \text{ K}$) is the standard temperature.

94 Concerning the estimation of the monoterpene emissions, the environmental correction factor
 95 suitable for most of the plants is parameterized using the following equation [10]:

$$\gamma_{mts} = \exp(\beta(T-T_s)) \quad (5)$$

96 where β ($=0.09 \text{ K}^{-1}$) is an empirical coefficient based on non-linear regression analysis of numerous
 97 measurements present in the literature.

98 Recent studies, proved that monoterpene emissions from some evergreen oaks, and also
 99 Norway spruce show a light-dependency, which seems to be well described by the isoprene
 100 environmental correction factor [5].

101 Since the environmental conditions controlling emissions of OVOCs are not entirely understood
 102 compared to isoprene and monoterpenes and given the lack of other information, OVOCs emissions
 103 are considered temperature dependent and the use of Equation (5) is recommended for the estimation
 104 of their emissions [11].

105 2.2 The computational model

106 In order to produce the NMVOCs emission inventory for Greece on a $6 \times 6 \text{ km}^2$ spatial and a 1hr
 107 temporal resolution covering one year, the GIS software (ArcView v10) was used in order to combine
 108 a variety of input data: improved satellite land-use data, land-use specific emission potentials, foliar
 109 biomass densities, temperature and solar radiation data. For the calculation of the hourly biogenic
 110 emissions, detailed meteorological data for the time period of a whole year (2016) were used. After
 111 calculating the hourly emission fluxes, daily, monthly and yearly emission values were also
 112 estimated.

113 The land use/ land cover (LULC) data used in the present study was provided by the United
 114 States Geological Survey (USGS) Global LULC version 2.0 Database derived from the 1 km Advanced
 115 Very High Resolution Radiometer (AVHRR) data spanning April 1992- March 1993. The USGS
 116 classification system includes 25 land cover categories, only 14 of which are found in the area under
 117 study (Figure 1). The different land use classes emitting BVOC are characterized by one ecosystem
 118 type (e.g. Grassland) or a combination of two of them (e.g. Mixed Scrubland/Grassland). The area
 119 was divided into cells using a spatial resolution of $6 \times 6 \text{ km}^2$ with Lambert Conic Conformal
 120 projection. Each cell was checked separately and correction of the LULC category was made if
 121 necessary based on the work done by [6,12].

122

123

Figure 1. Greece with the land use categories attributed at each cell.

124 The employment of land-use specific emission potentials and foliar biomass densities for every
 125 month covering the whole year is essential for the estimation of isoprene, monoterpenes and OVOCs.
 126 The main references used for the selection of these values were from the recent study of [8] under the
 127 NatAir program (Improving and Applying Methods for the Calculation of Natural and Biogenic
 128 Emissions and Assessment of Impacts on Air Quality) for the region of Europe and the neighboring
 129 ones. According to this study, foliar biomass densities and emission potentials are assigned to
 130 commonly observed European vegetation species. Furthermore, the fact that the foliar biomass
 131 densities are not constant during the year was taken into account. In order to describe the seasonal
 132 variation of the foliar biomass densities, it was necessary to use corrective factors which vary between
 133 the different vegetation species according to the study of [7]. So, appropriate monthly foliar biomass
 134 densities were assigned to each land-use category (Table 1). When a land-use class was characterized
 135 by a combination of different vegetation species, it was assumed that the monthly average foliar
 136 biomass density is equal to the mean value of the foliar biomass densities of all vegetation types
 137 within the land use category [7]. Finally, the specific emission potentials for the land use classes that
 138 are a combination of different vegetation types were calculated using the formula:

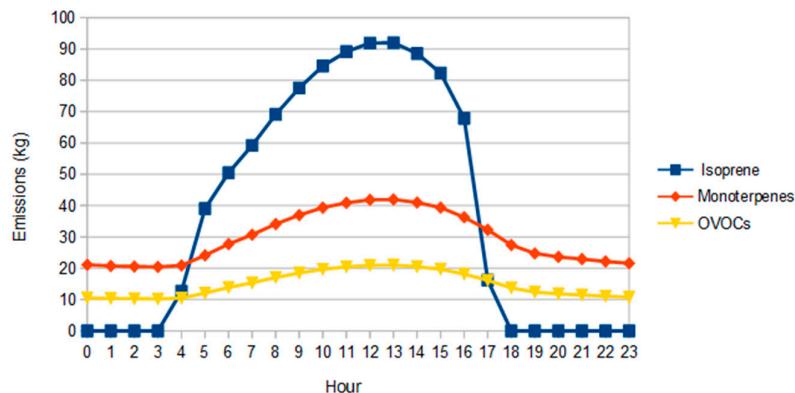
$$\varepsilon = \frac{\sum(\frac{\varepsilon_i D_i}{n})}{\sum(\frac{D_i}{n})} \quad (6)$$

139 where ε_i and D_i are the emission potentials and the foliar biomass densities of each vegetation type
 140 within the land use category and n is the number of vegetation types within the land use category
 141 [7].

142 Finally, for the OVOCs, due to lack of reliable experimental data on their emissions, [7]
 143 recommended the use of the uniform emission rate of $1.5 \mu\text{g g}^{-1}\text{h}^{-1}$ for all tree species.

144 **Table 1.** Foliar biomass densities (g dry weight foliage m^{-2}) and emission potentials ($\mu\text{g g}^{-1}\text{h}^{-1}$) for the
 145 observed land use categories in Greece for the month of July.

Land Use Category	Foliar Biomass Density	Isoprene Emission Potential	Monoterpene Emission Potential
Urban and Built-Up Land	100	2	1
Dryland Cropland and Pasture	100	0.5	0.5
Irrigated Cropland and Pasture	300	0.5	0.5
Mixed Dryland/Irrigated Cropland and Pasture	325	1.85	1.56
Cropland/Grassland Mosaic	175	0.5	0.5
Cropland/Woodland Mosaic	200	1.63	1.63
Grassland	50	0.5	0.5
Shrubland	350	3	2.5
Mixed Shrubland/Grassland	200	2.69	2.25
Savanna	75	3.5	3.5
Deciduous Broadleaf Forest	340	30	0.5
Evergreen Needleleaf Forest	700	1	2.5
Mixed Forest	500	7	3
Water Bodies	0	0	0


146 Hourly temperature values were provided by the National Observatory of Athens
 147 (www.meteo.gr) from 292 meteorological stations for 2016. The typical temperature diurnal variation
 148 for all the stations was produced by calculating the average hourly temperature values of each month
 149 of the year. Hourly temperature maps were constructed using the technique of Inverse Distance
 150 Interpolation (IDW), thus providing a continuous temperature field covering the area under study.

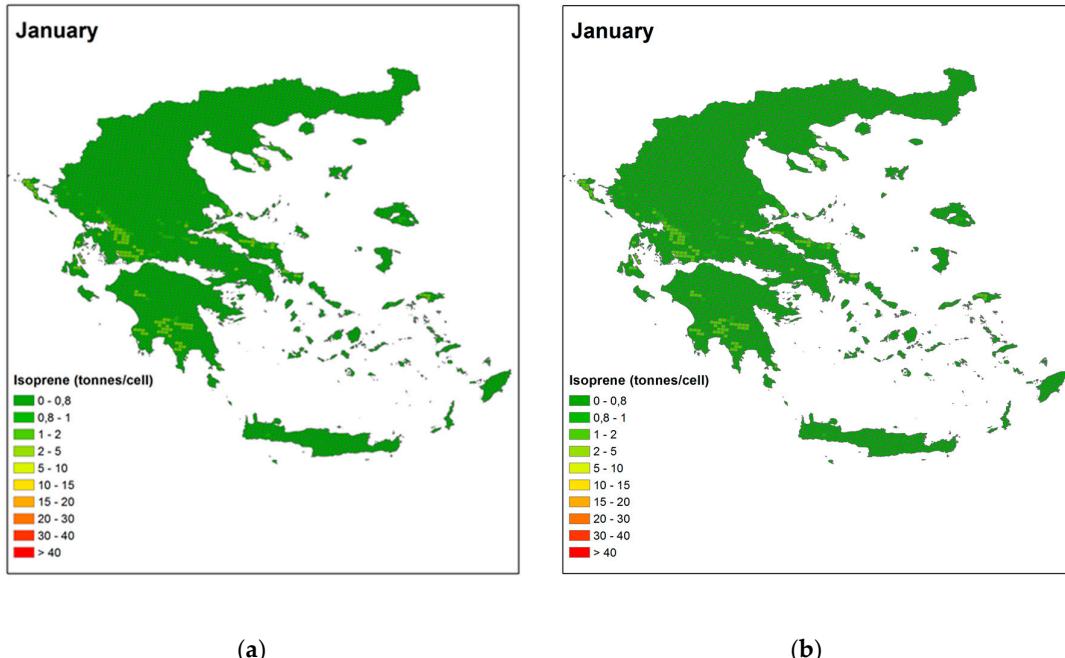
151 The solar radiation data were estimated with the aid of a new research project for the
 152 development of SOLar Energy Applications (SOLEA, www.solea.gr) [13]. It is based on solar
 153 irradiance spectra produced via a synergy of neural networks and radiative transfer simulations. The
 154 Photosynthetically Active Radiation (PAR) was calculated for every month of 2016 having 0.05°
 155 latitude by 0.05° longitude spatial resolution and 1hr temporal resolution. Then, with the aid of GIS,
 156 these radiation values were adjusted to the area of interest with a spatial resolution of $6 \times 6 \text{ km}^2$.

157 Initially, the hourly biogenic emissions were calculated for a typical day of every month of 2016.
 158 Then, the monthly biogenic emissions were estimated by summing up the daily emissions of
 159 isoprene, monoterpenes and OVOCs per month in Greece.

160 3. Results

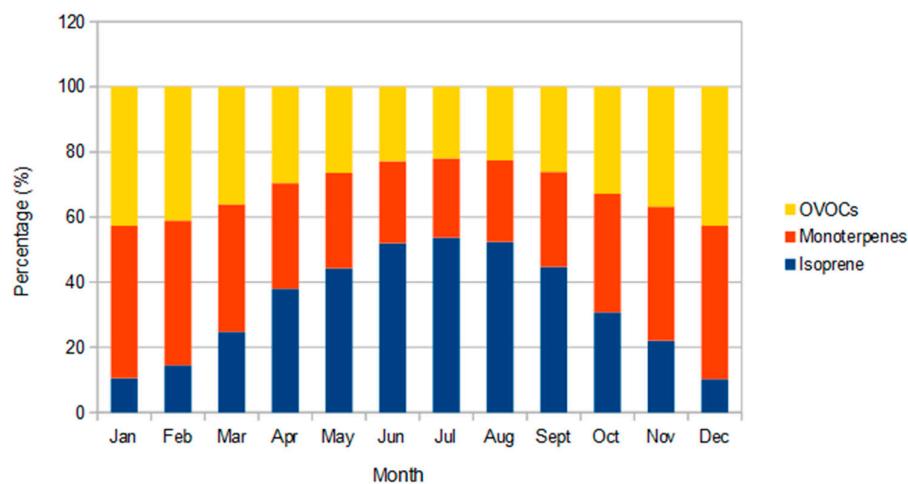
161 The temperature and light dependency of the biogenic emissions determine their magnitude.
 162 This leads to an increase of BVOC emissions during the daytime, with observed maximum values at
 163 midday. For that reason, a cell was selected where high biogenic emissions were expected in order to
 164 observe the diurnal variation of the emission rates. This cell is located at mount Parnitha which is a
 165 densely forested mountain range north of Athens and also, the highest at the Attica peninsula. As we
 166 can observe (Figure 2), isoprene emissions occur only during daytime because of their strong light
 167 dependency and on the other hand, monoterpenes and OVOCs emissions occur both during daytime
 168 and nighttime. The maximum values are observed during midday (13.00 UTC) with isoprene being
 169 the most abundant of the species.

170


171 **Figure 2.** Diurnal variation of BVOCs emission rates above a selected grid cell (Parnitha, Attica).

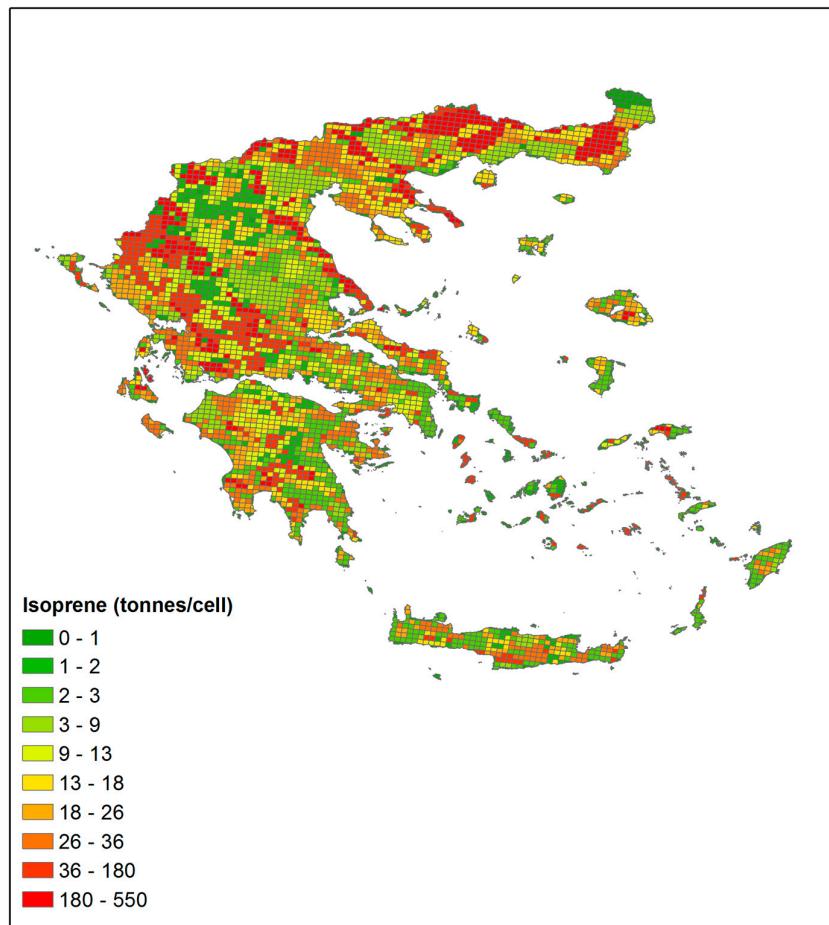
172 As it was expected, the BVOC emissions take their maximum values during summertime and
 173 more precisely, in July. A winter month (January) and a summer month (July) were chosen to be
 174 presented in the present study. More precisely, isoprene emissions during summer reach the 148.71
 175 tones per cell, while on the other hand, in January much lower isoprene emissions were estimated as
 176 expected, (Figure 3). The land-use categories that are characterized by maximum isoprene emissions
 177 are the mixed forests and the deciduous broadleaf forests because of their high emission potential
 178 and foliar biomass density.

179


180 **Figure 3.** Monthly isoprene emissions on (a) January and on (b) July.

181

182 The isoprene emissions during summer are higher than the monoterpene and OVOCs ones, but
 183 during winter the monoterpene and OVOCs emissions are higher because of the dependency of
 184 isoprene emissions on solar radiation. Indicatively, in July, the isoprene emissions contribute up to


185 53.6% to the total biogenic emissions, with monoterpenes contribution being only up to 24.4% and
186 OVOCS' s up to 22% (Figure 4). On the other hand, in January, monoterpenes contribution is the
187 highest one (46.8%), followed by OVOCS' s (42.7%) and isoprene's (10.5%).

188

189 **Figure 4.** Percentage of contribution of each hydrocarbon to the total monthly biogenic emissions.

190 Finally, the annual biogenic emissions were estimated as the sum of the total monthly emissions
191 for 2016 per hydrocarbon. Figures 5 and 6 illustrate the spatial distribution of annual isoprene and
192 monterpene emissions over Greece. Maximum isoprene emissions are about 545.11 tones per cell.
193 Spatially, these maximum values are observed above mixed forests and deciduous broadleaf forests
194 located in the area of Thrace, West Thessaly, Peloponnese, Epirus (Pindus Mountains), Lesvos and
195 Macedonia. Concerning the monoterpenes, peak emission values are about 188.7 tones per cell. The
196 land-use categories characterized by high monoterpenes emissions are the mixed forests and the
197 mixed dryland/irrigated cropland and pasture and are located to the Western Epirus, Central Greece,
198 Euboea, Lesvos, central Peloponnese and Thrace. Finally, the maximum OVOCS emission observed
199 to the area of Greece is up to 112.9 tn/cell. This maximum value is the lowest compared to the
200 maximum values of isoprene and monoterpenes emissions. The areas characterized by high OVOCS
201 emissions are the same as the monoterpenes' s ones.

202

203

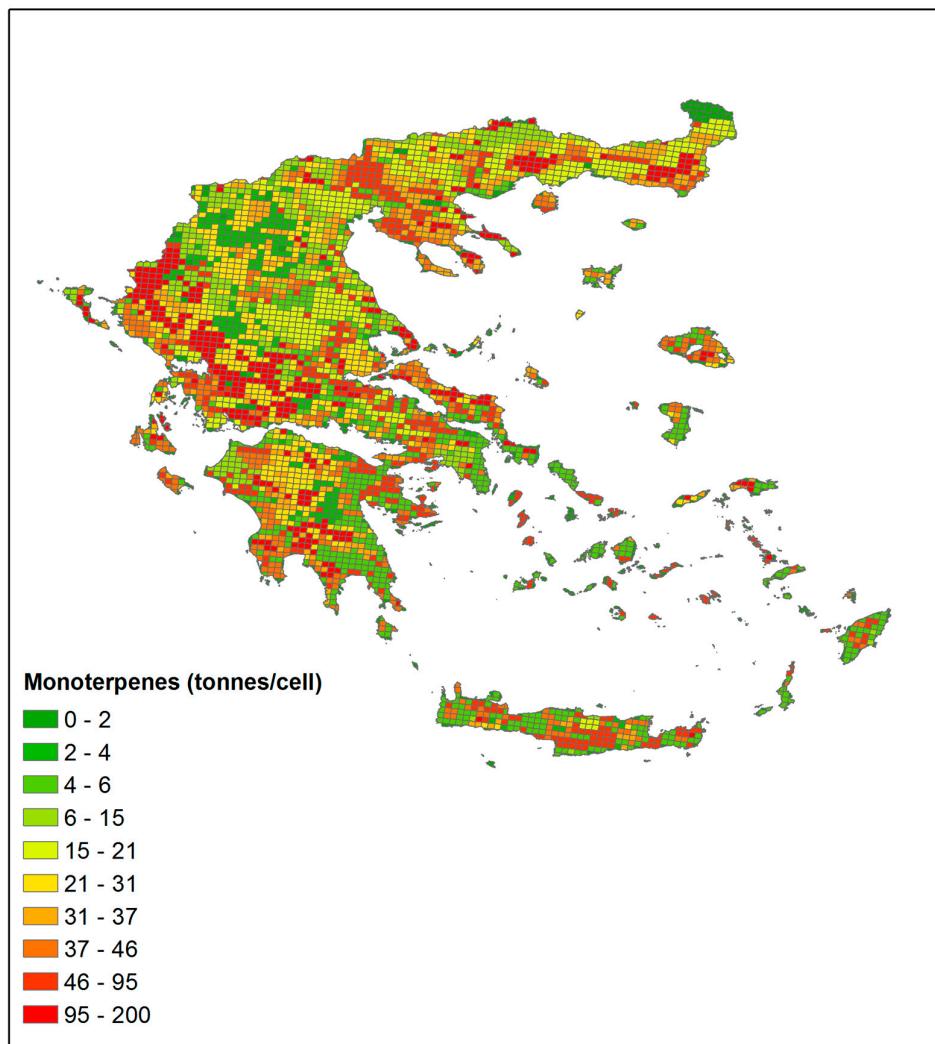
Figure 5. Spatial distribution of total annual isoprene emissions over Greece.

204

A part of this study is the comparison between the annual biogenic emissions with the anthropogenic ones. For Greece, several studies have been done in order to estimate the anthropogenic NMVOCs emissions due to their importance in the creation of photochemical pollution. The annual anthropogenic NMVOCs emissions were derived from the study [6] concerning the years 2006 to 2012. For the comparison, the emissions for the year 2012 were used. The annual biogenic emissions were estimated up to 472 kt and the anthropogenic ones up to 325 kt for Greece. We observe that the annual biogenic emissions exceed the anthropogenic emissions by a fact of 1.45, fact that underlines the study of the biogenic emissions in the Mediterranean.

205

206


207

208

209

210

211

212

213

Figure 6. Spatial distribution of total monoterpene emissions over Greece.

214 The total biogenic NMVOCs emissions over the study area are estimated to be 473 kt, consisting
215 of 220 kt of isoprene, 132 kt of monoterpenes and 120 kt of OVOCs. Comparing the present results
216 with those of other studies for Greece or for an extender area including Greece, it was found that our
217 results differ by a factor of 0.58 from the results of [7], and by a factor of 1.92 from the study of [14].
218 Given the fact that the estimated uncertainty level of annual global biogenic emissions is a factor of 3
219 [1] which is the lower limit of accuracy of annual biogenic emissions for Europe, it was assumed that
220 the results from this study are in good agreement with already existing studies.

221 **5. Concluding Remarks**

222 In the present study, the biogenic emissions in Greece were estimated with the aid of a
223 Geographic Information System (GIS), existing equations and detailed meteorological and solar
224 radiation data. Hourly, daily and annual isoprene, monoterpenes and OVOCs emissions were
225 estimated for the area under study with a spatial resolution of 6x6 km².

226 In the study domain, annual biogenic NMVOCs emissions were estimated to 472 kt, composed
227 of 46.6% isoprene, 28% monoterpenes and 25.4% OVOCs. The annual cycle of biogenic emissions is
228 characterized by higher values during summertime which is in agreement with the influence of high

229 temperature and solar radiation values on the emissions. It is estimated that 89.3% of the annual
230 isoprene emissions occur between May and September due to their dependency on temperature and
231 radiation fluxes. On the other hand, the corresponding percentage for monoterpenes and OVOCs is
232 lower (75% for both types of hydrocarbons).

233 As it was expected, the different land use categories emit different quantities of hydrocarbons
234 as they are characterized by different foliar biomass densities and emission potentials. It was
235 observed that the areas exhibiting peak isoprene emissions are covered either by forest with
236 broadleaved deciduous trees or by forest with evergreen and deciduous trees, mostly present at
237 western and northern Greece. Annual isoprene emissions contribute 46.3% to the annual biogenic
238 emissions. Concerning the monoterpene emissions, the areas emitting the most are covered by forests
239 with evergreen and deciduous trees. The annual monoterpene emissions contribute 28.2% to the total
240 annual emissions. Finally, the annual OVOCs emissions are estimated to contribute 25.5% to the total
241 annual emissions.

242 Further work has to be done concerning the estimation of biogenic emissions. More precisely,
243 the use of isoprene, monoterpene and OVOCs emission potentials is accompanied by a high level of
244 uncertainty. In the present study, the emission potentials derived from the database given by [8]
245 which was the most recent study for the European vegetation, since previous studies used. Already
246 existing databases are based on the American vegetation types. Then, for the land-use categories
247 characterized by a combination by two or more ecosystems, we do not have a certain emission
248 potential. Therefore, more work is required for these land-use categories for Europe and more
249 precisely, for the Mediterranean regions, as this area contributes significant to the total European
250 annual biogenic emissions. Furthermore, the use of a fixed emission potential for the OVOCs
251 emissions, due to lack of experimental measurements concerning the OVOCs, is a source of
252 uncertainty.

253 Concerning the foliar biomass densities used for each month covering one year, it is underlined
254 that they are, also, a source of uncertainty because of the use of corrective factors in order to describe
255 the seasonal variation of the foliar biomass densities. Concerning the satellite land-use data, despite
256 the fact that they are characterized by high resolution, they can be easily misinterpreted. In the
257 present study, the satellite land-use data were checked and tested for the valid representation of land
258 use categories covering Greece. At this point, it should be mentioned that hourly meteorological data
259 have been used for certain periods, instead of climatological data, affecting our estimations, a fact
260 which reduces the uncertainty in the calculation of the environmental correction factors.

261 In conclusion, given the importance of biogenic emissions in atmospheric photochemistry in
262 Greece, it is essential to continuously monitor, record and improve the methods estimating the
263 emissions from natural sources as well as the study of their interaction with the anthropogenic
264 emissions and finally, their overall contribution to ozone and to aerosols matter formation.

265 **Acknowledgments:** The authors would like to thank Special Account for Research Grants and National and
266 Kapodistrian University of Athens for funding E. V. Dimitropoulou to attend the conference CEST (Rhodes,
267 2017).

268 **Author Contributions:** Dimitropoulou E. V. and Assimakopoulos V. D. conceived and designed the study;
269 Dimitropoulou E. V., Assimakopoulos V. D. and Fameli K. M. analyzed the data; P. Kosmopoulos, S. Kazadzis
270 and K. Lagouvardos contributed to the acquisition of input data; and Flocas H. A., Assimakopoulos V. D. and
271 Fameli K. M. improved the paper.

272 **Conflicts of Interest:** The authors declare no conflict of interest.

273 **References**

- 274 1. Guenther, A.; Hewitt, C.N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger,
275 L.; Lerdau, M.; McKay, W. A global model of natural volatile organic compound emissions.
276 *Journal of Geophysical Research: Atmospheres* **1995**, *100*, 8873-8892, doi:
277 10.1029/94JD02950 Available online:
278 <http://onlinelibrary.wiley.com/doi/10.1029/94JD02950/pdf>

279 2. Piccot, S.D.; Watson, J.J.; Jones, J.W. A global inventory of volatile organic compound
280 emissions from anthropogenic sources. *Journal of Geophysical Research: Atmospheres* **1992**, *97*,
281 9897-9912, doi: 10.1029/94JD00246 Available online:
282 <http://onlinelibrary.wiley.com/doi/10.1029/92JD00682/pdf>

283 3. Geron, C.D.; Guenther, A.B.; Pierce, T.E. An improved model for estimating emissions of
284 volatile organic compounds from forests in the eastern united states. *Journal of Geophysical
285 Research: Atmospheres* **1994**, *99*, 12773-12791, doi: 10.1029/94JD00246. Available online:
286 <http://onlinelibrary.wiley.com/doi/10.1029/94JD00246/pdf>

287 4. Naik, V.; Delire, C.; Wuebbles, D.J. Sensitivity of global biogenic isoprenoid emissions to
288 climate variability and atmospheric co2. *Journal of Geophysical Research: Atmospheres* **2004**, *109*,
289 doi: 10.1029/2003JD004236. Available online:
290 <http://onlinelibrary.wiley.com/doi/10.1029/2003JD004236/epdf>

291 5. Staudt, M.; Seufert, G. Light-dependent emission of monoterpenes by holm oak (quercus ilex
292 l.). *Naturwissenschaften* **1995**, *82*, 89-92, doi: 10.1007/BF01140148. Available online:
293 https://www.researchgate.net/publication/226351450_Light-
294 [Dependent_Emission_of_Monoterpenes_by_Holm_Oak_Quercus_ilex_L](https://www.researchgate.net/publication/226351450_Light-Dependent_Emission_of_Monoterpenes_by_Holm_Oak_Quercus_ilex_L)

295 6. Fameli, K.-M.; Assimakopoulos, V.D. The new open flexible emission inventory for greece
296 and the greater athens area (fei-gregaa): Account of pollutant sources and their importance
297 from 2006 to 2012. *Atmospheric Environment* **2016**, *137*, 17-37, doi:
298 <http://dx.doi.org/10.1016/j.atmosenv.2016.04.004>. Available online:
299 <http://www.sciencedirect.com/science/article/pii/S1352231016302618?via%3Dihub>

300 7. Symeonidis, P.; Poupkou, A.; Gkantou, A.; Melas, D.; Yay, O.D.; Pouspourika, E.; Balis, D.
301 Development of a computational system for estimating biogenic nmvoxs emissions based on
302 gis technology. *Atmospheric Environment* **2008**, *42*, 1777-1789, doi:
303 <https://doi.org/10.1016/j.atmosenv.2007.11.019>. Available online:
304 <http://www.sciencedirect.com/science/article/pii/S1352231007010667>

305 8. Steinbrecher, R.; Smiatek, G.; Köble, R.; Seufert, G.; Theloke, J.; Hauff, K.; Ciccioli, P.; Vautard,
306 R.; Curci, G. Intra-and inter-annual variability of voc emissions from natural and semi-
307 natural vegetation in europe and neighbouring countries. *Atmospheric Environment* **2009**, *43*,
308 1380-1391, doi: <https://doi.org/10.1016/j.atmosenv.2008.09.072>. Available online:
309 <https://ac.els-cdn.com/S1352231008008868/1-s2.0-S1352231008008868->
310 [main.pdf?tid=bd07f1fc-d452-11e7-b9fb-00000aab0f6c&acdnat=1511883928_5f12ecfd8ffe6e0865003cba941f888a](https://ac.els-cdn.com/S1352231008008868/1-s2.0-S1352231008008868-main.pdf?tid=bd07f1fc-d452-11e7-b9fb-00000aab0f6c&acdnat=1511883928_5f12ecfd8ffe6e0865003cba941f888a)

311 9. Guenther, A.; Greenberg, J.; Harley, P.; Helmig, D.; Klinger, L.; Vierling, L.; Zimmerman, P.;
312 Geron, C. Leaf, branch, stand and landscape scale measurements of volatile organic
313 compound fluxes from us woodlands. *Tree Physiology* **1996**, *16*, 17-24, doi:
314 <https://doi.org/10.1093/treephys/16.1-2.17>. Available online:
315 <https://academic.oup.com/treephys/article/16/1-2/17/1658112>

316 10. Guenther, A.B.; Monson, R.K.; Fall, R. Isoprene and monoterpene emission rate variability:
317 Observations with eucalyptus and emission rate algorithm development. *Journal of
318 Geophysical Research: Atmospheres* **1991**, *96*, 10799-10808, doi: [https://doi.org/10.1016/S1352-2310\(01\)00092-9](https://doi.org/10.1016/S1352-2310(01)00092-9). Available online:
319 <https://www.sciencedirect.com/science/article/pii/S1352231001000929>

322 11. Guenther, A.; Zimmerman, P.; Wildermuth, M. Natural volatile organic compound emission
323 rate estimates for us woodland landscapes. *Atmospheric Environment* **1994**, *28*, 1197-1210, doi:
324 [https://doi.org/10.1016/1352-2310\(94\)90297-6](https://doi.org/10.1016/1352-2310(94)90297-6). Available online: <http://www.sciencedirect.com/science/article/pii/1352231094902976>

325 12. Fameli, K.-M.; Assimakopoulos, V.D.; Kotroni, V. A modelling study of the photochemical
326 and particulate pollution characteristics above a typical southeast mediterranean urban area.
327 *Institute for Environmental Research and Sustainable Development* **2015**, *152*, 36, doi:
328 10.1007/s10661-013-3076-8. Available online: <https://waset.org/publications/10002735/a-modelling-study-of-the-photochemical-and-particulate-pollution-characteristics-above-a-typical-southeast-mediterranean-urban-area>

329 13. Taylor, M.; Kosmopoulos, P.; Kazadzis, S.; Keramitsoglou, I.; Kiranoudis, C. Neural network
330 radiative transfer solvers for the generation of high resolution solar irradiance spectra
331 parameterized by cloud and aerosol parameters. *Journal of Quantitative Spectroscopy and
332 Radiative Transfer* **2016**, *168*, 176-192, doi: <http://dx.doi.org/10.1016/j.jqsrt.2015.08.018>.
333 Available online: https://ac.els-cdn.com/S0022407315300078/1-s2.0-S0022407315300078-main.pdf?tid=2093b478-d452-11e7-bf25-00000aab0f27&acdnat=1511883665_e91685fecbd0443f259f7fc5707ae5c6

334 14. Simpson, D.; Winiwarter, W.; Börjesson, G.; Cinderby, S.; Ferreiro, A.; Guenther, A.; Hewitt,
335 C.N.; Janson, R.; Khalil, M.A.K.; Owen, S. Inventorying emissions from nature in europe.
336 *Journal of Geophysical Research: Atmospheres* **1999**, *104*, 8113-8152, doi:
337 10.1029/98JD02747 Available online: <http://onlinelibrary.wiley.com/doi/10.1029/98JD02747/epdf>

338

339

340

341

342

343

344