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Abstract: Pecan (Carya illinoinensis), as a popular nut tree, is widely planted in China in recent years. 9 
Grafting is an important technique for its cultivation. For a successful grafting, graft union 10 
development generally involves the formation of callus and vascular bundles at the graft union. To 11 
explore the molecular mechanism of graft union development, we applied high through-put RNA 12 
sequencing to investigate transcriptomic profiles of graft union at four time points (0d, 8d, 15d, and 13 
30d) during pecan grafting process. We identified a total of 12,180 differentially expressed genes. In 14 
addition, we found that the content of auxin, cytokinin and gibberellin were accumulated at the 15 
graft unions during the grafting process. Correspondingly, genes involved in those hormone 16 
signaling were found to be differentially expressed. Interestingly, we found that most genes 17 
associated with cell division were up-regulated at callus formative stages, while genes related to cell 18 
elongation, secondary cell wall deposition, and programmed cell death were generally up-regulated 19 
at vascular bundle formative stages. In the meantime, genes responsible for reactive oxygen species 20 
were highly up-regulated across the graft union developmental process. These results will aid in 21 
our understanding of successful grafting in the future. 22 
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 24 

1. Introduction 25 

Pecan (Carya illinoinensis), a member of Juglandaceae family, is an economically important nut 26 
tree native to North America. It has been introduced to China for more than 100 years, however, for 27 
a long time, there was little incentive for its commercial planting due to an extremely long juvenile 28 
stage, with 10-15 years to maturity. Grafting is an effective approach to shorten the duration of 29 
vegetative growth, by which, pecan can start to bear fruits within 5-8 years. For the trees in 30 
Juglandaceae family, grafting is more difficult in comparison to other fruit trees. In recent years, patch 31 
budding, one of the commonly used grafting methods, conducted from July to September in China 32 
achieves over 90% grafting success [1], which makes large-scale cultivation of pecan possible. An in-33 
depth understanding of the mechanism underlying successful grafting will help in increasing the 34 
production efficiency of pecan as well as other trees in the future. 35 

When grafting is performed, the grafted partners, scion and rootstock, are cut and joined 36 
together. Once the scion and rootstock come into intimate contact, an intricate structural and 37 
biochemical response would happen at the graft union for a successful graft. For woody trees, 38 
following the initial adhesion of grafted partners, the graft union undergoes two essential 39 
developmental processes: the formation of callus tissues and the sufficient connection of functional 40 
vascular bundles between the scion and rootstock [2,3]. Therefore, graft union development is a 41 
process that involves cell division and differentiation at the graft junction. 42 

Currently, reports regarding the molecular mechanism of graft union development are still 43 
limited. A cDNA-AFLP method was applied to investigate the gene expression in the graft process 44 
of hickory, and the research obtained 49 differentially expressed genes that were related to signal 45 
transduction, auxin transportation, metabolism, cell cycle, wound response and cell wall synthesis 46 
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[4]. In the hypocotyl grafts of Arabidopsis, changes in global gene expression were evaluated 24 h after 47 
grafting, and graft union development was revealed to involve signal transduction as well as cellular 48 
debris elimination [5]. In grapevine autografts, transcriptional changes were examined via whole 49 
genome microarray analysis, and the results revealed that graft union development triggered 50 
numerous gene expression changes related to wounding, cell wall modification, hormone signaling 51 
and secondary metabolism [6]. Comparison the gene expression between the hetero- and autografts 52 
of grapevine indicated that genes involved in stress responses were up-regulated [7]. In recent years, 53 
RNA sequencing (RNA-seq) is a rapidly emerging transcriptome technology that can perform 54 
without a reference genome. It has been employed to analysis the expression of mRNA and miRNA 55 
in hickory graft process, through which, candidate genes involved in the auxin and cytokinin 56 
signaling were identified [8], otherwise, a total of 12 candidate grafting-responsive miRNA were 57 
detected [9]. A comparative proteomic analysis of the hickory graft unions revealed that key enzymes 58 
involved in flavonoid biosynthesis were up-regulated 7 d after grafting [10]. 59 

Previously, we have paid our attention on the morphological and proteomic changes in pecan 60 
homografts [11]. However, to the best of our knowledge, there were still no reports describing genes 61 
and gene networks underlying graft union development of pecan. In this study, we applied RNA-62 
seq technology to construct mRNA libraries from the graft unions that were collected at 0, 8, 15, and 63 
30 days after grafting, and analyzed the transcriptomic changes across the graft process. 64 

2. Materials and Methods  65 

2.1. Plant material and grafting procedures 66 

Pecan homografts were made in August using patch budding at the experimental orchard of 67 
Nanjing Forestry University (China). Graft unions (approximately 3-cm in length, the budding 68 
segment that includes the tissues of scion and the developing xylem of rootstock) were collected at 0, 69 
8, 15, and 30 days after grafting and immediately frozen in liquid nitrogen. The sampling time points 70 
were determined according to our histological analysis of the graft union developmental process in 71 
pecan homografts. In detail, the samples at 8d, 15d and 30d were selected for exploring the 72 
differentially expressed genes that involved in the initial callus proliferation, massive callus 73 
proliferation accompanied by cambium establishment, and functional vascular bundles formation, 74 
respectively. Samples at 0d were those graft unions that collected immediately from scion and 75 
rootstock before grafting and were used as controls. Three biological replicates were performed for 76 
each time point. 77 

2.2. RNA extraction, library construction and sequencing 78 

Total RNA was isolated from the graft unions using the Universal Plant RNA Kit (BioTeke, 79 
Beijing, China) and treated with RNase-free DNase I (Takara) to degrade genomic DNA. RNA quality 80 
and quantity were monitored by Nanodrop 1000 Spectrophotometer (Thermo Fisher Scientific, 81 
Wilmington, DE) and Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). For each 82 
sample, about 3 μg of the total RNA that passed the quality examinations was used for preparation 83 
of the cDNA library. Construction of sequencing libraries was performed by NEBNext® UltraTM 84 
RNA Library Prep Kit for Illumina® (NEB, Ipswich, MA, USA) according to the protocol. Briefly, the 85 
mRNA was enriched by oligo (dT)-attached magnetic beads and fragmented into short pieces, which 86 
were taken as templates for the first-strand and second-strand cDNA synthesis. And then the 87 
exonuclease/polymerase was used to convert the remaining overhangs into blunt ends. The resulting 88 
fragments were end-repaired by inserting an ‘A’ base to the 3’ ends of the cDNA. NEBNext adopters 89 
with hairpin loop structure were then ligated to the fragments. The library fragments were purified 90 
by AMPure XP system (Beckman Coulter, Beverly, USA) to select suitable cDNA fragments. Then, 91 
the products were amplified by PCR to create sequencing libraries. The constructed libraries were 92 
sequenced by Illumina HiSeqTM 4000 platform (Biomarker Technology Company, Beijing, China). 93 
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The sequencing raw data has been deposited in NCBI Sequence Read Archive (SRA) with the 94 
accession number SRP118757. 95 

2.3. De Novo Assembly and functional annotation 96 

After RNA sequencing, adapter sequences, ploy-N reads and low quality reads from raw data 97 
were removed by in-house perl scripts to obtain clean reads. The resulting clean reads from all the 98 
samples were pooled for generating reference genes as far as possible. Trinity software with a k-mer 99 
length of 25 and other default parameters was used in the subsequent de novo assembly of 100 
transcriptome. Clean reads were assembled into contigs, and then were further linked into transcripts 101 
through pair-end joining. The produced transcripts were clustered with TGI clustering tool and the 102 
longest transcripts were recognized as unigenes. For functional annotation, unigenes were compared 103 
against the following databases, including NCBI non-redundant protein (Nr), Clusters of 104 
Orthologous Groups of proteins (COG), euKaryotic Orthologous Groups (KOG), Gene ontology 105 
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Protein family (Pfam) and Swiss-Prot 106 
using the BLASTX program with E-value of 10-5. 107 

2.4. Analysis of differentially expressed genes (DEGs) 108 

The clean reads sequenced from each sample were mapped back to the unigene library. To 109 
quantify the gene expression level, FPKM (fragments per kilobase of exon per million mapped reads) 110 
was calculated in each sample by RSEM. Differential expression analysis was then performed using 111 
the DESeq R package for three comparisons (8d vs 0d, 15d vs 0d, and 30d vs 0 d). The false discovery 112 
rate (FDR) was applied to identify the P value threshold in multiple test and analysis. Only genes 113 
with FDR < 0.01 and more than two-fold change in expression between samples were considered as 114 
DEGs. GO enrichment analysis of DEGs was carried out by the topGO R package based on 115 
hypergeometric test. Additionally, we used KOBAS software to test the enriched pathway of DEGs. 116 
GO terms and KEGG pathways with corrected P value ≤ 0.01 were recognized as significantly over-117 
represented. 118 

2.5. Validation of RNA-seq data by quantitative real-time PCR (qRT-PCR) 119 

RNA preparation with three biological replicates for each sample was conducted as described 120 
above. First-strand cDNA synthesis was performed using Prime-Script™ II First Strand cDNA 121 
synthesis kit (Takara Bio, Dalian, China) according to the manufacturer’s instructions. The primer 122 
sets for each unigene were designed by Primer Premier 5.0, and their sequences were listed in Table 123 
S1. qRT-PCR was carried out on an ABI 7500 Real-Time PCR System (Thermo Fisher Scientific, Inc. 124 
Waltham, MA, USA) with SYBR Premix Ex Taq™ II kit (Takara). Expression was calculated as 2-△△Ct 125 
and normalized to that of the reference gene Actin. 126 

2.6. Detection of hormones content by ELISA 127 

Samples were taken from the graft union 0, 8, 15, and 30 days after grafting with three biological 128 
replicates. The contents of endogenous indole-3-acetic acid (IAA), zeatin riboside (ZR), and 129 
Gibberellin (GA) were measured with enzyme linked immunosorbent assay (ELISA). The hormone 130 
ELISA kits were developed from China Agricultural University, which have been validated with GC-131 
MS and HPLC method. The determination of hormone content was performed as outlined by [12]. 132 

3. Results and Discussion  133 

3.1. De novo assembly and functional annotation 134 

To gain a comprehensive overview of transcriptome associated with graft union development 135 
in pecan, samples at different time points (0d, 8d, 15d, and 30d after grafting) with three biological 136 
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replicates were subjected to illuminate sequencing. Raw reads were clean to generate a total of 312.08 137 
million high-quality reads, encompassing 93.22 gigabase pairs with an average GC percentage of 138 
46.41%. As a whole, all libraries showed good sequencing quality with Q30 more than 86.58% (Table 139 
S2). After sequence cleaning, reads from all samples were mixed to perform de novo assembly by 140 
Trinity software. Short reads were assembled into 140,455 transcripts with N50 length of 1,905 bp and 141 
an average length of 1178 bp. There were 31,127 (22.16%) transcripts in the range between 1000 bp to 142 
2000 bp, and 25,188 (17.93%) with length more than 2000bp. All transcripts were subsequently 143 
clustered to yield 83,693 unigenes with N50 length of 1,350 bp and mean length of 892 bp. Among 144 
these, 13,698 (16.37%) unigenes were in the range of 1000-2000 bp, and 8,364 (9.99%) exceeded 2000 145 
bp (Table 1). 146 

Table 1. Summary for the graft union transcriptome. 147  
Transcript Unigene 

Total number 140,455 83,693 
Total length 165,440,800 bp 74,679,367 np 
N50 length 1,905 bp 1,350 bp 

Mean length 1,178 bp 892 bp 
200-300 bp 18,665(13.29%) 15,637(18.68%) 
300-500 bp 28,705(20.44%) 21,661(25.88%) 
500-1000 bp 36,770(26.18%) 24,333(29.07%) 
1000-2000 bp 31,127(22.16%) 13,698(16.37%) 

2000+ bp 25,188(17.93%) 8,364(9.99%) 

All the 83,693 unigenes were aligned with available protein databases using BLASTx algorithm 148 
with E-value of 10-5. The results showed that there were 11,762 (14.05%) unigenes matched in the 149 
COG database, 23,260 (27.79%) in the GO database, 13,859 (16.56%) in the KEGG database, 21,612 150 
(25.82%) in the KOG database, 25,909 (30.96%) in the Pfam database, 23,243 (27.77%) in the Swiss-151 
Prot database, and 38,793 (46.35%) in the NR database. In total, there were 40,069 unigenes annotated 152 
in at least one database, accounting for 47.88% of all unigenes (Table 2). There were a relatively large 153 
portion of unigenes had no significant hits to current known proteins, which might represent novel 154 
genes in pecan. For functional classification of the assembled unignenes, COG and GO annotation 155 
were carried out to gain the distributions of functional categories (Fig S1). 156 

Table 2. Summary for the annotation of unigenes. 157 

Annotated 
databases 

Unigene 
number 

Percentage 
(%) 

300 nt ≤ Length < 1000 nt Length ≥1000 nt 

COG 11,762 14.05 3,747 6,644 
GO 23,260 27.79 9,028 10,879 

KEGG 13,859 16.56 5,567 6,557 
KOG 21,612 25.82 8,184 10,759 
Pfam 25,909 30.96 8,838 14,658 

Swiss-Prot 23,243 27.77 8,711 12,071 
NR 38,793 46.35 15,816 17,494 

Annotated in at 
least one database 

40,069 47.88 16,463 17,751 

  158 
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3.2. Analysis of DEGs in the graft process of pecan 159 

Clean reads from the 12 libraries were aligned to the obtained unigenes and quantified to 160 
calculate the expression levels by fragments per kilobase of transcript per million fragments mapped 161 
reads (FPKM). Based on the FPKM values of all genes, the correlations between each of the two 162 
samples was analyzed. And we found that there were strong correlations among biological 163 
repetitions, with the correlation coefficients over 0.90 (Fig S2). 164 

According to the criteria of at least two-fold change and FDR < 0.01, a total of 3,470 DEGs were 165 
discovered by analyzing 8d/0d, with 2,154 up-regulated and 1,316 down-regulated; 4942 DEGs were 166 
identified in the comparison of 15d/0d, with 2,750 up-regulated and 2,192 down-regulated; 9,145 167 
DEGs were found by comparing 30d/0d, with 3,001 up-regulated and 6,144 down-regulated. In total, 168 
12,180 DEGs were identified during the grafting process, among which, 1499 genes were detected at 169 
all comparisons (Fig 1). The number of DEGs in 30d/0d was greater than 8d/0d and 15d/0d indicating 170 
the involvement of complex molecular responses during the developmental stage of vascular tissue 171 
formation.  172 

 173 

 174 
Figure 1. The DEGs in different comparisons (8d/0d, 15d/0d, and 30d/0d) during graft union 175 
development in pecan homografts. 176 

3.3. Gene ontology and pathway enrichment analyses of DEGs 177 

To elucidate the associated biological processes in which the DEGs were involved, the 178 
enrichment of GO terms was analyzed. For the ontology of biological process, there were 44, 28, and 179 
38 GO enriched terms in the comparisons of 8d/0d, 15d/0d, and 30d/0d, respectively (Table S3, Fig 2). 180 
We found that ‘response to hormone’, ‘response to oxidative stress’, and ‘regulation of cell cycle’ were 181 
simultaneously enriched in all the comparisons, suggesting the critical roles of those biological 182 
processes for a successful grafting. Interestingly, GO terms related to ‘plant-type secondary cell wall 183 
biogenesis’ and ‘lignin metabolic process’ were specially enriched in the 30d vs 0d comparison, which 184 
were in good agreements with the developmental stage of vasculature formation at 30d. 185 
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 187 

Figure 2. GO enrichment of DEGs during the graft process. (A) Significantly enriched GO terms 188 
between 8d and 0d; (B) significantly enriched GO terms between 15d and 0d; (C) significantly 189 
enriched GO terms between 30d and 0d. Bubbles represented the significant GO terms, and the 190 
bubble color gradient represented the magnitude of enrichment corresponding to q-values, while the 191 
bubble size represented the frequency of GO terms in the GOA database [13]. 192 

Additionally, KEGG enrichment analysis was performed to reveal the relevant metabolic 193 
pathways in which DEGs participated. We identified 7, 5, 2 significant enriched pathways in 8d/0d, 194 
15d/0d and 30d/0d comparisons, respectively (Fig 3). Among those, ‘phenylpropanoid biosynthesis’ 195 
was the overlapping pathway that identified in three comparisons, which was consistent with the 196 
significant role of this metabolic pathway during the grafting process [10,14]. 197 
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 198 

Figure 3. Significant enriched KEGG pathways during the graft process. (A) Comparison of 8d/0d; 199 
(B) comparison of 15d/0d; (C) comparison of 30d/0d. 200 

3.4. Hormones were critical regulators for graft union development 201 

During the grafting process, a block in auxin basipetal transport would produce due to 202 
vasculature damage, which leads to auxin accumulation at the graft junction. In our study, the 203 
content of auxin was increased distinctly at 8d, 15d and 30d after grafting (Fig 4A). Correspondingly, 204 
all the unigenes except one, c147017.graph_c0, encoding auxin influx carrier and 2 unigenes, 205 
c129281.graph_c0 and c94763.graph_c0, encoding auxin efflux carrier were significantly up-regulated 206 
over the course of graft union development (Fig 5). Similarly, genes responsible for auxin transport 207 
were induced during the grafting process of grapevine [6] and hickory [8]. The accumulated auxin is 208 
indispensable for the regulation of callus proliferation and cambial activity [15,16]. High level of 209 
auxin would release the transcriptional activity of auxin response factors (ARFs), which would 210 
induce the expression of genes that contain auxin responsive elements (AuxREs) in their promoter 211 
regions [17,18]. Previous studies reported that ARF6 and ARF8 mutants showed cell division defects 212 
[16], and ARF5 mutants exhibited abnormality in vasculature development [19], indicating auxin 213 
signaling via ARFs was essential for graft union development. In the present study, six unigenes 214 
encoding ARFs were differentially expressed (Fig 5). Intriguingly, three unigenes, c37236.graph_c0, 215 
c38752.graph_c0, and c114601.graph_c0 were up-regulated significantly at 8d or 15d, indicating a 216 
specific role in callus formation; while one unigene, c142339.graph_c0, was greatly up-regulated at 217 
30d, suggesting its pivotal role in vasculature development. 218 

 219 

 220 
Figure 4. Determination the contents of hormone at the graft unions during the pecan grafting 221 
process. (A) Indole acetic acid (IAA), (B) zeatin riboside (ZR), and (C) gibberellic acid (GA) at different 222 
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time points. '*' indicated the significant differences between the specific time points and the basal 223 
level (0d). 224 
 225 

 226 
Figure 5. Expression patterns of DEGs involved in hormone signaling. Gene expression values were 227 
normalized to z-score. 228 
 229 

Additionally, mounting evidence supports the involvement of cytokinin in cell division and 230 
vasculature differentiation [20-22]. Consistent with its role in graft union development, we found that 231 
the content of zeatin riboside (ZR), a major form of cytokinin, in graft junction was elevated 232 
significantly at 15d and 30d (Fig 4B). It is reported that although auxin is capable to stimulate cell 233 
division, cytokinin is required for its full induction [23,24]. Therefore, massive callus proliferation at 234 
15d in this research might result from the increased cytokinin as well as auxin. Cytokinin signal 235 
transduction is mediated via two-component regulatory pathway to activate type-B ARR 236 
transcription factors [25]. Previous studies showed that triple mutants of type-B ARRs (ARR1, ARR10, 237 
ARR12) showed reduced callus formation [26], while overexpression of ARR1 enhanced callus 238 
formation [27].The activated type-B ARRs could be principal regulators of the cytokinin-induced 239 
callus proliferation. Three unigenes encoding type-B ARR protein were identified in our DEGs data 240 
and one of them, c150807.graph_c1, was greatly up-regulated at 15d (Fig 5), which might play an 241 
important role in callus formation. Meanwhile, cytokinin signaling was also pivotal for the regulation 242 
of cambium activity during vasculature development. Mutating cytokinin receptors, AHK2 and 243 
AHK3, were reported to cause significant reduction in cambial activity [28]. 244 

More and more reports have been suggested that Gibberellin (GA) could trigger xylogenesis 245 
[29,30], which were important for the vascular bundle formation cross the grafted partners. This 246 
coincided with our biochemical analysis of GA content by ELISA, showing that GA was increased 247 
significantly at 30d, while had no significant difference at other time points (Fig 4C). Accordingly, 248 
one GA synthesis gene, GA20ox, were highly up-regulated after grafting and achieved its peak 249 
expression at 30d, while three GA deactivating genes, GA2ox, were all significantly down-regulated 250 
at 30d (Fig 5). GA signaling could promote the expression of genes involved in cell expansion as well 251 
as secondary wall biosynthesis during xylem differentiation [31,32]. For the genes involved in GA 252 
signaling, we found that one unigene encoding GID1, a gibberellin receptor, was up-regulated 253 
strikingly at 30d, which might take part in vasculature formation. 254 

3.5. Genes responsible for callus formation 255 

Callus formation is a basic wound response to grafting, and lack of callus production at the graft 256 
interface could lead to graft failure [33]. Genes involved in cell division are pivotal for callus 257 
formation [34]. Genome-wide transcriptomic study of callus initiation in Arabidopsis has revealed 258 
the up-regulation of various cell division related genes [35]. In this work, a considerable number of 259 
cyclins and cyclin dependent kinases (CDKs) associated with cell cycle were identified and all of them 260 
except one, c123028.graph_c0, were up-regulated across the grafting process (Fig 6), facilitating the 261 
activation of cellular proliferation. As aforementioned, auxin as well as cytokinin signaling play a 262 
leading role in controlling callus proliferation, because of a rate limiting factor for the G1/S transition, 263 
D-type cyclin (CYCD), is usually considered as sensor of external conditions that could be regulated 264 
by those hormone signaling [21,36,37]. Besides, many core cell cycle genes were reported to contain 265 
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AuxREs in their promoter regions, also demonstrating cell cycle process could be regulated by ARFs 266 
in the auxin signaling [24,36]. The induced CYCDs resulting from the accumulated auxin and 267 
cytokinin are critical for promoting cell cycle entry in our research, overexpression of which would 268 
lead to an increased callus growth rate and callus induction frequency [38]. 269 

 270 

 271 
Figure 6. Expression patterns of DEGs involved in and callus formation. Gene expression values 272 
were normalized to z-score. 273 
 274 

In addition, we found one E2Fa gene, c146931.graph_c0, and one MYB3R-1 gene, 275 
c145971.graph_c0, were up-regulated significantly during the entire period of grafting (Fig 6). E2Fa 276 
is a transcription factor that drives the expression of genes required for S-phase in cell cycle [36]. 277 
Transgenic Arabidopsis overexpressing E2Fa could induce cell division in tissues already devoid of 278 
proliferation [39]. MYB3R-1 is R1R2R3-type MYB transcription factor that aims at inducing genes 279 
required for M-phase in cell cycle [40]. Therefore, the up-regulated E2Fa along with MYB3R1 would 280 
facilitate cell cycle progression in this study. As the entry and progress of cell cycle, numerous genes 281 
responsible for nucleosome component synthesis (Histone), DNA replication (DNA replication 282 
licensing factor MCM5 and MCM6), microtubule cytoskeleton organization (microtubule-associated 283 
protein RP/EB family and tubulin) and cytokinesis (Kinesin-like protein) were generally up-regulated 284 
over the course of grafting (Fig 6), leading to callus formation. 285 

3.6. Genes participated in vascular bundle formation 286 

Production of new vascular tissues permits long-distance transport of nutrients between the 287 
grafting partner, and is recognized as a mark of successful grafting [33]. The sequential 288 
developmental processes underlying vascular bundle formation include promoting of vascular 289 
cambial activity, cell elongation, secondary cell wall thickening, and programmed cell death [41]. As 290 
mentioned above, auxin, cytokinin as well as GA mediated signaling are essential for the activity of 291 
vascular cambium and xylem differentiation. Following hormonal stimulation, Cells undergo 292 
significant enlargement. Enzymes such as expansions were required not only for cell growth but also 293 
for the loosening of existing cell wall architecture during cell elongation [42]. As expected, most (6 294 
out of 7) unigenes encoding expansion in this study were up-regulated in both the callus proliferative 295 
phase and the vasculature formative phase (Fig 7). Tubulin, aside from its role in cell division, also 296 
plays a role in cell elongation by guiding nascent cellulose microfibrils deposition [43]. Expression of 297 
tubulin genes was also elevated at 30d in our study (Fig 6), potentially indicating its involvement in 298 
cell expansion. 299 
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 300 

Figure 7. Expression profiles of DEGs involved in vascular bundle formation. Gene expression values 301 
were normalized to z-score. 302 

Following completion of cell elongation, differentiating vascular cells go through deposition of 303 
cellulose, hemicellulose and lignin in the secondary cell wall. We identified various genes encoding 304 
the key biosynthetic enzymes of secondary cell wall components, and most of those genes were up-305 
regulated with the highest expression value at 30d (Fig 7). Cellulose synthase, a gene implicated in 306 
cellulose synthesis, was found to be strongly expressed in the developing secondary xylem of 307 
Populus [44]. Cinnamoyl-CoA reductase (CCR), cinnamyl-alcohol dehydrogenase (CAD), and Caffeoyl CoA 308 
3-O-methyltransferase (CCoAOMT) are the genes involved in the pheneylpropanoid pathway, all of 309 
them are critical for monolignol synthesis. The gene product of laccase is a polyphenol oxidase 310 
enzyme, which plays a critical role in lignin formation through inducing the oxidative polymerization 311 
of monolignols [45]. Mutations in LACCASE4 and 17 showed reduced lignin content in Arabidopsis 312 
[46]. Irregular xylem 9 (IRX9), IRX10, and IRX15 are the genes that participate in hemicellulose 313 
synthesis. 314 

Additionally, we identified candidate transcription factors that involved in the transcriptional 315 
regulation of secondary cell wall deposition. Some NAC transcription factors are master regulators 316 
in controlling the entire developmental process of secondary cell wall synthesis [47]. Overexpression 317 
of NAC genes in plants induced secondary wall thickening in various tissues, while repression of 318 
their function suppressed secondary wall deposition [48,49]. Three particular secondary cell wall 319 
related NACs were identified and all the NACs were strongly up-regulated at 30d (Fig 7), implying 320 
an important role during vasculature differentiation. Secondary wall related R2R3-type MYB 321 
transcription factors are also important regulators, which have been already identified as 322 
transcriptional regulators of phenylpropanoid biosynthesis pathway [50]. In this study, nine 323 
candidate R2R3-type MYB genes were found to be differentially expressed (Fig 7). Among them, two 324 
unigenes, c128129.graph_c0 and c124957.graph_c0, were annotated as MYB46, which act as a direct 325 
target of NAC domain regulator, exhibiting up-regulation throughout the grafting process with peak 326 
value at 30d (Fig 7). The induced MYB46 is not only able to activate synthesis of the lignin but also 327 
the cellulose and hemicellulose [51]. One unigene, c110812.graph_c0, was annotated as MYB4, a gene 328 
that negatively regulated secondary cell wall formation [52], showing great down-regulation at 30d 329 
(Fig 7). Ectopic overexpression of poplar PdYMB221, an ortholog of Arabidopsis MYB4, was reported 330 
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to result in decreased thickness of cell wall [53]. Collectively, these DEGs indicated the synthesis of 331 
secondary cell wall components during vasculature differentiation. 332 

After fulfilling secondary cell wall deposition, developing vascular cells trigger programmed 333 
cell death (PCD) to digest the cellular contents. Hydrolytic enzymes such as aspartic proteinase, 334 
cysteine proteinase and nucleases (endonuclease, exonuclease and ribonuclease) have been 335 
demonstrated to operate during xylogenesis [54-56], which were generally detected with increased 336 
expression at 30d in our research (Fig 7). Metacaspases are a class enzymes with structural similarity 337 
to animal caspases that could regulate the process of plant programmed cell death [57]. Analysis of 338 
microarray data revealed that the expression of an Arabidopsis metacaspase 9 (AtMC9) homologue gene 339 
in Populus was up-regulated during xylem maturation [55]. In the present study, the great up-340 
regulation of metacaspase at 30d (Fig 7) suggested its involvement in vascular bundle differentiation. 341 
Otherwise, we found one cysteine proteinase inhibitor was down-regulated drastically at 30d (Fig 7), 342 
further indicating the strong activity of PCD during vascular bundle formation. 343 

3.7. Genes involved in ROS scavenge 344 

As a stress condition, grafting would trigger the rapid production of reactive oxygen species 345 
(ROS) in the graft interface and the accumulated ROS would function as signaling molecules to active 346 
the following antioxidant defense systems to maintain cellular redox homeostasis. For successful 347 
grafts, a high efficiency in dealing with oxidative stress is of particular importance [58-60]. In the 348 
current investigation, we found 19 DEGs that could scavenge the ROS, including genes encoding 349 
peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), cationic peroxidase and 350 
peroxiredoxin (Prx), and most of them (13 out of 15) showed increased expression during the grafting 351 
process (Fig 8), which were critical for mitigating the ROS toxicity. 352 

 353 
Figure 8. Expression profiles of DEGs involved in ROS scavenge (B). Gene expression values were 354 
normalized to z-score. 355 

3.8. Validation of RNA-seq data by real-time RT-PCR 356 

We selected twelve genes that were predicted to be associated with hormone signaling, cell 357 
division, secondary cell wall formation, programmed cell death and ROS scavenging, to validate the 358 
sequencing data. Results showed that the degree of differential expression between the two data sets 359 
did not match exactly, while the expression patterns were basically identical for those selected genes 360 
(Fig 9). 361 
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 362 
Figure 9. Validation RNA-seq data by real-time quantitative RT-PCR. The right y-axis indicated the 363 
expression level (FPKM) of RNA-seq, and the left y-axis represented the expression level of qRT-364 
PCR. 365 

4. Conclusion 366 

In this work, transcriptomic analysis was applied to explore the differentially expressed genes 367 
at the graft union during the pecan homograft process. A total of 12,180 DEGs were identified at the 368 
comparisons of 8d/0d, 15d/0d and 30d/0d. Candidate genes that would participate in successful 369 
grafting were further analyzed. Based on our result, a model was proposed to elucidate the molecular 370 
mechanism of graft union development (Fig 10). In this model, auxin, cytokinin, and excessive ROS 371 
were accumulated at the graft union due to mechanical damage, and GA was produced during 372 
vasculature differentiation. As a result of that, ROS signaling might active the expression of ROS 373 
scavenge related genes to maintain cellular redox balance. Auxin and cytokinin signaling via 374 
activating ARF and type-B ARR, respectively, would regulate the expression of numerous genes 375 
related to cell division, cell elongation, secondary cell wall synthesis and programmed cell death, 376 
while GA signaling mainly regulated those genes involved in vasculature development. 377 
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 378 

Figure 10. A putative molecular model of successful grafting in pecan. In this model, grafting induced 379 
the accumulation of ROS, auxin, cytokinin as well as the production of gibberellin at the graft 380 
interface. Then the ROS and hormones would trigger signaling pathways to modulate the expression 381 
of specific genes sets, including those responsible for ROS scavenge, cell division, cell elongation, 382 
secondary cell wall synthesis, and programmed cell death. The upper arrow indicated that most 383 
unignenes coding for the specified protein were up-regulated at the corresponding developmental 384 
stages, and the down arrow represented most unigenes were down-regulated. 385 

Supplementary Materials: The following are available online, Figure S1: Functional categories of assembled 386 
unigenes. (A) Distribution of number of annotated unigenes in COG database; (B) Distribution of number of 387 
annotated unigenes in GO database, Figure S2: Distribution of correlation co-efficiencies between each pair of 388 
samples, Table S1: The primer sequences of selected unigenes, Table S2: Summary of sequences analysis in all 389 
samples, Table S3: Significant enriched GO terms of DEGs between different developmental stages. 390 
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