

1 Article

2 The Effects of Operational Structure Change on 3 Performance after Seasoned Equity Offerings

4 Chihyoun Ahn¹, Mi-Ok Kim^{2*}, Hyung-Rok Jung³

5 ¹First Author. Part-time Lecturer, School of Management, Kyung Hee University.

6 Address: #603 Orbis Hall, 26, Kyungheeda-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.

7 E-mail: ahndch2013@khu.ac.kr

8 ²Corresponding Author. Assistant Professor, Department of Tax Accounting, Baewha Women's University.

9 Address: #2505 Jung Sim Kwan, 34 1st street, Pirundaero, Jongno-gu, Seoul, 03039, Republic of Korea.

10 E-mail: 10141@baewha.ac.kr

11 ³Coauthor. Associate Professor, School of Management, Kyung Hee University.

12 Address: #404 Orbis Hall, 26, Kyungheeda-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.

13 E-mail: jhrjhr@khu.ac.kr

14 *Correspondence. Email: 10141@baewha.ac.kr; Tel: 82-2-399-0726

15

16 **Abstract:** Sustainability is directly linked to firms' survival in competitive markets. To survive, firms need
17 extra capital, and seasoned equity offerings (SEOs) are one sustainability strategy. Additional resources
18 from SEOs leads to changes in firms' operational structure, which brings future sustainability. This study
19 investigates whether there is sustainability in firms' operational structure and the effects of sustainable
20 development on operational performance and market reaction. We measure the operational structure
21 change of firms as three proxies: 1) the rate of increase in the number of operating segments, 2) the Berry–
22 Herfindahl index using the ratio of sales of each operating segment out of total sales, and 3) the size of net
23 investment in plant and equipment. Our results show that operational structure change has a statistically
24 significant and positive correlation with long-term operating performance. In addition, there is no
25 significant stock price response at first, but the operating performance in the next term is perceived as a
26 favorable factor after 3 years. The results show that there are different responses in the stock market toward
27 operational structure change. The empirical results confirm that firms with SEO have sustainable
28 development in operational structure and that markets recognize firms' sustainability strategy arising from
29 SEOs.

30

31 **Keywords:** seasoned equity offerings; sustainable development; cumulative abnormal return; operational
32 structure change

33

34

35 **1. Introduction**

36 To survive, the firm needs extra capital, and seasoned equity offerings (SEOs) are one sustainability
37 strategy. Additional resources from SEOs lead to changes in a firm's operational structure, which makes the
38 firm's future as a going concern sustainable. This study investigates whether there is sustainability in firms'
39 operational structure and the effects of sustainable development on operational performance and market
40 reaction.

41 Previous studies identify various causes of stock price response before and after SEOs. For example,
42 high correlation with negative stock returns after SEOs is found for rights issue size based on the price
43 pressure hypothesis [1], the debt ratio by substitution hypothesis [2,3], and discretionary accrual before
44 SEOs [4,5]. On the contrary, high correlation with positive stock returns before and after SEOs is found for
45 the old shareholder forfeiture rate based on investment opportunities hypothesis [6], stock price compared
46 to intrinsic value [7], and market price discount rate by the old shareholder interest hypothesis [8,9].

47 However, previous studies have conducted only partial analysis, and not comprehensive analysis, on
48 SEOs and stock price response. In particular, there are insufficient empirical studies on long-term stock
49 price and operating performance after SEOs. Therefore, this study investigates how operational structure
50 change, in addition to the causes identified by previous studies, can explain operating performance and
51 stock price after SEOs.

52 Firms attempt to change their operational structure for sustainable development with the resources
53 they secure from SEOs. For example, they attempt corporate diversification strategies, such as new plant
54 and equipment investments, expansion of their current fields of operation, and entry into new fields.
55 However, considerable amounts of time and cost are required in the process of building a new operational
56 structure. Thus, operating performance during that period is likely to be lower than that in previous
57 periods. Furthermore, performance due to operational structure change appears after stock price
58 formation, which results in a decline of stock price after SEOs.

59 This study examines whether firms with SEOs achieve sustainability from changing operational
60 structure and whether the market recognizes firms' sustainability strategy from SEOs.

61 This study measures the operational structure change of firms using three variables: 1) the rate of
62 increase in the number of operating segments, 2) the Berry–Herfindahl index using the ratio of sales of each
63 operating segment out of total sales, and 3) the size of net investment in plant and equipment. The samples
64 consist of 286 corporations listed on the Korea Composite Stock Price Index (KOSPI) market and the Korea
65 Securities Dealers Automated Quotations (KOSDAQ) market from 1997 to 2011 with a financial year-end
66 at the end of December.

68 Our empirical results are summarized as follows. First, we find a positive relationship between
69 operational structure change for sustainable development and long-term operating performance.
70 Furthermore, we find that stock prices reflect the sustainable organizational structure development as a
71 favorable factor 3 years after an SEO.

72 The remainder of this paper is structured as follows. In Section 2, the research hypothesis is established
73 based on previous studies about the performances and the effects of SEOs. In order to test the hypotheses,
74 Section 3 suggests a testing model to verify the correlation between the performance of SEOs and
75 operational structure change. In addition, the selection process is described for the samples used for the
76 empirical analysis of this study. Section 4 presents the empirical results of this study, and Sections 5 and 6
77 present the discussion and conclusion, respectively, based on the overall summary and empirical results.

78 **2. Literature Review and Hypothesis**

79 Theories about SEOs presented by previous studies on the long-term decline of stock price and
80 operating performance after SEOs can be categorized as follows. First, there is the price pressure hypothesis
81 proposed by Scholes [10]. New stock issues bring excess supply to the market and thus, occur at a low price
82 according to a downward-sloping demand curve. An unexpected increase in stock supply results in a fall
83 of stock price in the long run, and the decline is proportional to the size of the rights issue. Asquith and
84 Mullins [1] support the price pressure hypothesis by proving that the fall of stock price on the day of SEO
85 announcement and the size of SEOs are positively correlated. However, Masulis and Korwar [3] and Bhagat
86 and Frost [2] present contrary results, casting doubt on this hypothesis. Meanwhile, Kang [11] claims that
87 during economic depression, the quantity of stocks from rights issues caused a great burden and
88 encouraged the stock price to fall.

89 The second category is the substitution hypothesis proposed by Galai and Masulis [12]. If the debt
90 ratio is decreased by SEOs, existing creditors receive higher debt at lower risk. Therefore, this transfers the
91 wealth of existing shareholders to creditors, thereby resulting in a fall of the stock price. Masulis and
92 Korwar [3] claim that the stock price due to SEOs and the debt ratio are positively related, thereby
93 supporting the substitution hypothesis. On the other hand, Asquith and Mullins [1] support the price
94 pressure hypothesis, as there is no statistically significant relationship between the two variables when the
95 size of SEOs is controlled.

96 The third category is the signaling hypothesis proposed by Leland and Pyle [13]. If there is information
97 asymmetry between investors and the manager, the investors observe the decisions made by the manager,
98 who has more information, in order to obtain information about the firm [14]. For example, the decision to
99 undertake an SEO is a signal to reduce managerial stock ownership for investors, which serves as an
100 unfavorable factor in the stock market. Moreover, the increase of agency costs due to reduced managerial

101 stock ownership might have a negative impact on the stock market [8]. Meanwhile, Rangan [5] reports that
102 firms that level up profits by increasing discretionary accruals before SEOs end up facing a bigger fall of
103 stock price in the long run, and points out that earnings management before the announcement of SEOs
104 provides wrong information to investors. In summary, prior research suggests that SEOs have a negative
105 impact on stock prices.

106 The fourth category is the investment opportunities hypothesis proposed by McConnell and
107 Muscarrella [15], modified from the signaling hypothesis. A manager considers SEOs only when financing
108 with debts is insufficient. Therefore, SEOs indicate that there is an investment opportunity that guarantees
109 sufficient profitability despite its subsequent disadvantages. Thus, SEOs are considered positive
110 information about sustainable development in future performance, thereby serving as a favorable factor in
111 the stock market. Yoon [6] uses the investment opportunities hypothesis to explain that the announcement
112 of SEOs in Korea is accepted favorably in the short term. Yoon [6] sets the old shareholder forfeiture rate at
113 the point of SEOs as a proxy for the excellence of investment opportunities, and claims that the positive
114 excess return for 2 days after the announcement shows a positive relationship with the power loss rate.
115 Myers and Majluf [7] support the investment opportunities hypothesis, claiming that new stocks are issued
116 when the expected future cash flows are big enough even after reflecting the negative effects of rights issues,
117 whereas bonds are issued on contrary prospects. Moreover, Chung and Jeong [16] report that stock price
118 rather went up after SEOs if information asymmetry is relatively low. Yoon [17] reports that there is a
119 statistically significant and positive excess earning rate on the day of the announcement for issuers after the
120 abolition of the market price discount issuance system, but that rate does not show a statistically significant
121 correlation with future operating performance of the issuers. Yoon [17] thereby claims that the investment
122 opportunities hypothesis is not supported.

123 The fifth category is the old shareholder interest hypothesis. In the US, the wealth of old shareholders
124 can be transferred to a third party if new stocks are issued by public offering. However, if new stocks are
125 issued with market price discount in the allotment of old shareholders, as in Korea, the benefit relevant to
126 the discounted amount belongs to old shareholders, thereby serving as a favorable factor in the short term
127 [8]. However, in the case of preferred dividend of employee stock ownership association, the wealth
128 transfer of old shareholders serves as an unfavorable factor [8]. The market price discount issuance system
129 applying various discount rates is implemented up until 1990 in Korea, but since 1991, it has become
130 completely liberalized, and thus, the effect cannot be anticipated.

131 Loughran and Ritter [4] analyze long-term stock returns of 3,702 companies that issued SEOs from
132 1970 to 1990, and report that stock returns of those who invested in issuers are 15% for 3 years and 33.4%
133 for 5 years depending on the holding period, but the stock returns of those who invested in non-issuers are

134 48% for 3 years and 92.8% for 5 years. This indicates that the returns from the issuers are lower by 33
135 percentage points for 3 years and 59.4 percentage points for 5 years. Moreover, Spiess and Affleck-Graves
136 [18] compared the stock returns of firms organized by matching the stock returns of SEO issuers from 1975
137 to 1989 with industry and firm size, and produced similar results to those of Loughran and Ritter [4].

138 According to previous studies that analyze SEO issuers from 1987 to 1998 in the Korean market
139 [17,19,20], there is a statistically significant and negative excess earning rate for 1–3 years after SEOs, and
140 stock returns fall even more as time passed.

141 In summary, previous studies have reported negative excess earning rates for 1–5 years after SEOs,
142 and stock returns become even lower as time passes. Moreover, long-term operating performance after
143 SEOs declines compared to before, and even more as time passed. The long-term fall of stock price and
144 operating performance has a statistically significant and positive correlation.

145 Previous studies provide various causes for stock price response before and after SEOs. For example,
146 there is a high correlation between the negative price earnings ratio in the stock market after SEOs and
147 rights issue size based on the price pressure hypothesis [1], debt ratio by the substitution hypothesis [2,3],
148 and discretionary accrual before SEOs [5]. There is a correlation between the positive price earnings ratio
149 before and after SEOs and the old shareholder forfeiture rate based on the investment opportunities
150 hypothesis [6], stock price compared to intrinsic value [7], and market price discount rate by the old
151 shareholder interest hypothesis [8,9]. Market conditions at the point of rights issue [11] and data
152 environment of rights issuers [16] are correlated with stock returns after SEOs.

153 However, these studies conducted only partial analysis, not comprehensive analysis, on SEOs and
154 stock price response. In particular, there is insufficient empirical research on long-term stock prices and
155 operating performance after SEOs. Therefore, this study analyzes whether operational structure change, in
156 addition to the causes identified by previous studies, can explain the long-term fall of stock prices and
157 operating performance after SEOs.

158 Operational structure change is an inevitable process of sustainable development. Firms attempt to
159 change their operational structure with the resources they secure from SEOs. For example, they attempt to
160 incorporate diversification strategies, such as new plant and equipment investments, expansion of their
161 current fields of operation, and entry into new fields. However, considerable amounts of time and cost are
162 required in the process of building a new operational structure. Thus, operating performance during that
163 period is likely to be lower than that before. This phenomenon has appeared in previous research about
164 corporate diversification and mergers [21]. Furthermore, performance due to operational structure change
165 appears after stock price formation, which results in the decline of stock price after SEOs. However, such
166 low operating performance and under-performance in stock returns is a temporary phenomenon, and if a

167 new operational structure is developed, there will be high operating performance in the long term, which
 168 is likely to be perceived as a favorable factor in the stock market, according to the investment opportunities
 169 hypothesis.

170 Therefore, this study sets the following hypotheses based on previous studies and operational
 171 structure change.

172 [H-1]: There is no correlation between operational structure change and long-term operating
 173 performance after SEOs.

174 [H-2]: There is no correlation between operational structure change and long-term stock returns after
 175 SEOs.

176 Operational structure change in these two hypotheses is measured by the level of corporate
 177 diversification and the size of plant and equipment investment. The level of corporate diversification is
 178 measured by the Berry–Herfindahl index, which uses the number of operating segments and the ratio of
 179 sales of each operating segment out of total sales. The size of plant and equipment investment is measured
 180 by net investment in plant and equipment.

181 H-1 verifies whether operational structure change explains the long-term operating performance after
 182 SEOs even when reflecting the explanatory factors proposed by previous studies (e.g., rights issue size,
 183 debt ratio decrease, and earnings management size).

184 H-2 verifies whether operational structure change explains the long-term stock returns after SEOs
 185 even when reflecting the explanatory factors proposed by previous studies (e.g., return on equity level,
 186 return on equity change, and excess earning rate in the past year before SEOs).

187 **3. Materials and Methods**

188 *3.1 Research Methodology*

189 *3.1.1 Empirical Model of Operating Performance*

190 The following regression model in Eq.(1) is developed to verify H-1.

$$191 \Delta ROAi,st = \alpha_0 + \beta_1 \cdot \Delta OPCHi,st + \beta_2 \cdot TACi,t + \beta_3 \cdot MTBi,t + \beta_4 \cdot \Delta Salesi,t + \sum Dummies + \varepsilon \quad (1)$$

192 where,

1. Dependent variable:

$\Delta ROAi,st$ = the change rate of operating performance for firm i from year t to year s,

$$1) \Delta ROAi,01 = (ROAi,1 - ROAi,0) / ROAi,0,$$

$$2) \Delta ROAi,02 = (ROAi,2 - ROAi,0) / ROAi,0,$$

$$3) \Delta ROAi,03 = (ROAi,3 - ROAi,0) / ROAi,0;$$

2. Independent variables:

$\Delta OPCH_{i,st}$ =the change rate of operational structure firm i, year t to year s,

1) $\Delta N_{Dept,i,t}$ = the change rate of the number of operating segments of firm i in year t,

2) $\Delta BHI_{i,t}$ = the change rate of the Berry–Herfindahl index by operating segment sales of firm i in year t

$$BHI_{i,t} = \frac{\sum_{j=1}^J (Sales_{i,t,j}/Sales_{i,t})^2}{J}$$

$Sales_{i,t,j}$ = segment j sales for firm i in year t, $Sales_{i,t}$ = total sales for firm i in year t;

3) $\Delta Cap_{Exp,i,st}$ =the change rate of capital expenditure for firm i from year t to year s
 $= (Cap_{Exp,i,t} + Cap_{Exp,i,s}) / SEOs_Amount_{i,s}$,

$SEO_{i,s}$ _Amount_{i,t}=total amount of SEOs of firm i in year t;

$TAC_{i,t}$ = total accrual of firm i in year t = $(net\ income_{i,t} - operating\ cash\ flow_{i,t}) / average\ total\ assets_{i,t}$;

$MTB_{i,t}$ = market-to-book ratio of firm i in year t = market value of equity_{i,t} ÷ book value of equity_{i,t};

$\Delta Sales_{i,t}$ = sales growth rate of firm i in year t = $(Sales_{i,t} - Sales_{i,t-1}) / Sales_{i,t-1}$;

$\Sigma Dummies$ = year dummy, industry dummy.

193 Operating performance, which is the dependent variable, is the unexpected return on assets by
 194 deducting s year return on assets from t year return on assets. The level of corporate diversification and
 195 plant and equipment investment are key explanatory variables to verify H-1. This study used $TAC_{i,t}$, $MTB_{i,t}$,
 196 $\Delta Sales_{i,t}$ as control variables affecting operating performance.

197 Operational structure change is measured by the level of corporate diversification and plant and
 198 equipment investment. The level of corporate diversification is measured using the following two indexes
 199 [22]. The first is the change in the number of operating segments ($\Delta N_{Dept,i,t}$). The second is the change in
 200 the Berry–Herfindahl index based on sales ($\Delta BHI_{i,t}$). This is the sum of sales that are first divided according
 201 to each operating segment by total sales and squared. The Berry–Herfindahl index is a typical method used
 202 to measure the level of corporate diversification. If there is one operating segment, $BHI_{i,t}$ has the value of 1,
 203 and a higher level of corporate diversification results in convergence to 0. For convenience of interpretation,
 204 the Berry–Herfindahl index is deducted from 1 so that higher corporate diversification indicates the value
 205 closer to 1. Plant and equipment investment ($\Delta Cap_{Exp,i,st}$) is calculated by accumulating the net investment
 206 in plant and equipment (= increase of plant asset – decrease of plant asset) from year s to t, and dividing it

207 by the amount of SEOs in year s .

208 The process of building a new operational structure with the resources secured from SEOs requires a
 209 considerable amount of time and cost. Thus, the operating performance during that period is likely to be
 210 lower than before. However, this low operating performance is a temporary phenomenon in the process of
 211 building a new operational structure, and once the new structure is established, there might be high
 212 operating performance in the long term. Therefore, the signs of the coefficients of $\Delta N_{Dept,i,t}$, $\Delta BHI_{i,t}$ and
 213 $\Delta Cap_Exp_{i,st}$ are not as predicted.

214 $TAC_{i,t}$ is total accrual in year t , and this amount has lower durability than cash flows; thus, profits in
 215 the next term are lower if the performance of the current term is adjusted according to the accounting
 216 choices made by the manager [4,23]. Therefore, the bigger the amount of the total accrual, the lower the
 217 operating performance is expected to be in the next term. $MTB_{i,t}$ is the measure of investment opportunities
 218 or growth, and thus, the higher it is, the higher the operating performance is expected to be in the next term.
 219 $\Delta Sales_{i,t}$ is the sales growth rate, and the higher the growth rate in the current term is, the higher the future
 220 operating performance is expected to be. $\Sigma Dummies$ represents the year and industry dummies.

221 3.1.2 Empirical Model of Abnormal Return

222 The following regression model Eq.(2) is developed to verify H-2:

$$223 Bahr_{i,st} = \alpha_0 + \beta_1 \cdot \Delta OPCH_{i,st} + \beta_2 \cdot Num_Issue_{i,t} + \beta_3 \cdot \Delta Debt_{i,st} + \beta_4 \cdot Forfeiture_{i,t} + \beta_5 \cdot Discount_{i,t} \\ 224 + \Sigma Controls + \Sigma Dummies + \epsilon \quad . \quad (2)$$

225 where,

1. Dependent variable:

$BAHR_{i,st}$ = buy-and-hold returns for firm i from year t to year s ;

2. Independent variables:

$Num_Issue_{i,t}$ = the number of outstanding shares at SEO for firm i in year t ;

$\Delta Debt_{i,st}$ = the change rate of debt ratio for firm i from year t to year s , $Debt_{i,t}$ = total $Debt_{i,t}$ / total
 asset $_{i,t}$;

$Forfeiture_{i,t}$ = old shareholder forfeiture rate at seasoned equity offering for firm i in year t ;

$Discount_{i,t}$ = market discount rate at seasoned equity offering for firm i in year t ;

$\Sigma Controls$ = $\Delta ROA_{i,st}$, $TAC_{i,t}$, $MTB_{i,t}$, $\Delta Sales_{i,t}$ in Eq.(1).

The other variables are as defined for Eq.(1).

226 Monthly earnings rates are measured and accumulated from April year s to March year t to measure
 227 the stock performance after SEOs. The level of corporate diversification and plant and equipment
 228 investment in Eq.(2) are key explanatory variables to verify H-2. The process of changing to a new

229 operational structure with the resources secured from SEOs requires a considerable amount of time and
230 cost. Thus, the operating performance during that period is likely to be lower than before. Since the
231 performance due to operational structure change appears after the point of stock formation, stock prices
232 fall after SEOs. However, this fall of stock returns is a temporary phenomenon, and it might be perceived
233 as a favorable factor in the stock market according to the investment opportunities hypothesis. Therefore,
234 the signs of the coefficients of $\Delta N_{Dept,i,t}$, $\Delta BHI_{i,t}$ and $\Delta Cap_{Exp,i,st}$ are not as predicted.

235 This study implements the variables presented in previous studies as control variables in order to
236 determine whether operational structure change can explain operating performance and stock price after
237 SEOs. The size of stock issuance at the point of SEOs ($Num_{Issue,i,t}$) is a variable to test the price pressure
238 hypothesis proposed by Scholes [10], and the increase of stock supply leads to the fall of that stock price in
239 the long run; thus, the bigger the rights issue size is, the more likely there is to be a fall of stock prices [1,24].

240 The increase rate of debt ratio ($\Delta Debt_{i,st}$) is based on the substitution hypothesis proposed by Galai and
241 Masulis [12]. If the debt ratio decreases owing to SEOs, existing creditors receive higher interest at lower
242 risks. Therefore, the decrease of debt ratio according to SEOs results in the transfer of the wealth of existing
243 shareholders to creditors. Thus, a higher debt ratio leads to lower stock returns.

244 The old shareholder forfeiture rate at the point of SEOs ($Forfeiture_{i,t}$) is to test the old shareholder
245 interest hypothesis. According to Yoon [6], a higher old shareholder forfeiture rate leads to greater loss of
246 old shareholders due to SEOs. Therefore, to make up for the loss, there must be higher net present value of
247 new investments. Issuing an SEO means that the net present value of investment might bring profits even
248 after making up for the loss of shareholders, and thus, there is a positive correlation between the old
249 shareholder forfeiture rate and the excess returns.

250 The market price discount rate at the point of SEOs ($Discount_{i,t}$) is based on Jung [8] and Shin [9]. SEOs
251 by the shareholder allotment method do not affect stock prices in the US, but they are perceived as a
252 negative signal in Korea because of the market price discount rate, which is one of the institutional
253 characteristics of SEOs in Korea. Therefore, there is evidence that if the stock split effect accompanied by
254 excessive market price discount rate is controlled in Korea, SEOs might result in a fall of stock prices, as in
255 the US.

256 3.2 Sample Selection

257 Samples used in this study are non-financial firms listed on the KOSPI and KOSDAQ from 1997 to
258 2011 with a financial year-end at the end of December. SEOs in the financial sector are excluded because
259 they are likely to be issued according to external or non-financial decisions, such as government regulations,
260 instead of financial decisions [9,20].

261

262 Data on SEOs are collected using the Korea Listed Companies Association database (TS-2000). The
263 following samples are excluded from the first data extracted. First, third-party allotment is eliminated,
264 because it is decided by a policy factor [20], and has low profitability and stock price and thus, is mostly
265 used when it is impossible to issue general SEOs or there is a need for equity participation of those in a
266 special relationship with the firm, such as the government, joint ventures, or clients, which is differentiated
267 from general SEOs. In particular, SEOs through third-party allotment are in many cases abused by marginal
268 firms to avoid being kicked out of the market, as a means to finance the acquisition of managerial rights,
269 and for expedient investments, rather than being used for their original purposes, such as implementing
270 new technology of normal businesses, improving financial structure, and attracting foreign capital [24].

271 Second, small amounts less than 1 billion KRW are excluded. If the amount is less than 1 billion KRW,
272 the firm is not subject to submit a registration statement. Moreover, this is mainly used by firms facing
273 difficulties in financing from other sources owing to their weak financial structure, thereby possibly
274 resulting in benefits for long-term stock returns after SEOs.

275 Third, firms that issued SEOs within 3 years of listing are excluded in order to avoid the fall of returns
276 of the first stocks in public offering, as suggested by Kim and Byun [25]. For the same reason, the samples
277 excluded the cases in which there are SEOs in the succeeding 3 years of issuing SEOs in order to eliminate
278 their interdependency [26].

279 Data on stock prices, stock returns, and financial data are collected using KIS-VALUE provided by
280 Korea Investors Service. The total number of samples is 286.

281 4. Result

282 4.1. Descriptive Statistics

283 Table 1 shows the basic statistics of variables used in this study. The amount of funds financed through
284 SEOs ($SEOs_Amount_{i,t}$) is 30 billion KRW on average, and 680 billion KRW at maximum. $\Delta ROA_{i,01}$ is (-)1%,
285 $\Delta ROA_{i,02}$ is 2%, and $\Delta ROA_{i,03}$ is 1%. This result is different from previous studies claiming that long-term
286 operating performance falls after SEOs. $BAHR_{i,1}$ is (-)3%, $BAHR_{i,12}$ is 11%, and $BAHR_{i,13}$ is 7%, showing no
287 long-term under-performance.

288 $\Delta N_Dept_{i,01}$ is 38%, $\Delta N_Dept_{i,02}$ is 52%, and $\Delta N_Dept_{i,03}$ is 31%. $\Delta BHI_{i,01}$ is (-)4%, $\Delta BHI_{i,02}$ is 2%, and
289 $\Delta BHI_{i,03}$ is 7%, showing an increase. $\Delta Cap_Exp_{i,01}$ increased to 95%, $\Delta Cap_Exp_{i,02}$ to 140%, and $\Delta Cap_Exp_{i,03}$ to
290 as high as 192%.

291 On the other hand, the debt ratio due to SEOs ($\Delta Debt_{i,si}$) did not decrease, which suggests that SEOs
292 and debt issuance are carried out at the same time. The market-to-book value ($MTB_{i,t}$) is 1.59 on average.
293 The sales growth rate of SEO issuers ($\Delta Sales_{i,t}$) is on average 21%, and the maximum is 1,453%.

Table 1. Descriptive statistics

Variables	Mean	Std. Dev.	Minimum	1 st quartile	Median	3 rd quartile	Maximum
<i>SEOs_Amount_{i,t}</i>	30.39	88.96	1.10	5.18	9.66	19.00	680.64
$\Delta ROA_{i,01}$	-0.01	0.25	-2.65	-0.04	-0.01	0.03	1.25
$\Delta ROA_{i,02}$	0.02	0.23	-1.74	-0.04	0.00	0.06	1.23
$\Delta ROA_{i,03}$	0.01	0.23	-1.64	-0.05	0.00	0.07	1.33
<i>BAHR_{i,t}</i>	-0.03	0.54	-0.87	-0.40	-0.12	0.19	2.38
<i>BAHR_{i,12}</i>	0.11	0.84	-0.93	-0.50	-0.11	0.41	3.12
<i>BAHR_{i,13}</i>	0.08	0.99	-0.94	-0.58	-0.19	0.40	4.64
$\Delta N_{Dept_{i,01}}$	0.38	1.00	-0.60	0.00	0.00	0.25	4.00
$\Delta N_{Dept_{i,02}}$	0.52	1.53	-0.67	0.00	0.00	0.33	9.00
$\Delta N_{Dept_{i,03}}$	0.31	0.89	-0.67	0.00	0.00	0.33	4.00
$\Delta BHI_{i,01}$	-0.04	0.41	-1.00	-0.20	-0.03	0.08	1.90
$\Delta BHI_{i,02}$	0.02	0.49	-0.79	-0.23	-0.01	0.16	2.27
$\Delta BHI_{i,03}$	0.07	0.56	-0.70	-0.28	0.00	0.26	2.15
$\Delta Cap_Exp_{i,01}$	0.95	1.73	-2.32	0.10	0.40	1.21	9.66
$\Delta Cap_Exp_{i,02}$	1.40	2.66	-3.77	0.15	0.63	1.66	14.43
$\Delta Cap_Exp_{i,03}$	1.92	3.53	-3.72	0.16	0.80	2.51	19.52
<i>TAC_{i,t}</i>	-0.04	0.14	-0.72	-0.10	-0.02	0.05	0.28
<i>Num_Issue_{i,t}</i>	14.85	1.25	11.56	14.17	14.89	15.70	18.68
$\Delta Debt_{i,01}$	0.13	0.62	-0.64	-0.08	0.02	0.15	4.67
$\Delta Debt_{i,02}$	0.13	0.55	-0.80	-0.10	0.03	0.19	3.76
$\Delta Debt_{i,03}$	0.13	0.59	-0.84	-0.15	0.04	0.24	3.35
<i>Forfeiture_{i,t}</i>	0.01	0.04	0.00	0.00	0.00	0.00	0.31
<i>Discount_{i,t}</i>	17.68	13.70	0.00	0.00	25.00	30.00	50.00
<i>MTB_{i,t}</i>	1.59	1.86	0.09	0.64	1.11	1.82	14.55
$\Delta Sales_{i,t}$	0.21	0.95	-0.83	-0.05	0.10	0.28	14.53

295 1) The definition of the variables is as follows:

296 $SEOs_Amount_{i,t}$ = total amount of SEOs (billion KRW);

297 $\Delta ROA_{i,t}$ = the change rate of operating performance from year s to year t;

298 $BAHR_{i,t}$ = buy-and-hold returns from year s to year t;

299 $\Delta N_{Dept_{i,t}}$ = the change rate in the number of operating segments;

300 $\Delta BHI_{i,t}$ = the change rate of the Berry–Herfindahl index by operating segment sales;

301 $\Delta Cap_Exp_{i,t}$ = the change rate of capital expenditure from year s to year t divided by $SEOs_Amount_{i,t}$;

302 $TAC_{i,t}$ = total accrual = (net income - operating cash flow) \div average total assets;

303 $Num_Issue_{i,t}$ = number of outstanding shares at SEO;

304 $\Delta Debt_{i,t}$ = the change rate of debt ratio from year s to year t;

305 $Forfeiture_{i,t}$ = old shareholder forfeiture rate at SEO;

306 $Discount_{it}$ =market discount rate at SEO;
 307 MTB_{it} = market value of equity ÷ book value of equity;
 308 $\Delta Sales_{it}$ = sales growth rate = $(Sales_{it} - Sales_{it-1}) / Sales_{it-1}$.

309 2) To control for outliers in the sample, all the variables are winsorized for the upper and lower 1%.

310 4.2 Results of Multi-regression Analysis

311 Tables 2–4 show the empirical analysis results for H-1. Table 2 shows the correlation between
 312 operating performance ($\Delta ROA_{i,01}$) and operational structure change 1 year after SEOs. Operational
 313 structure change is measured by the level of corporate diversification and plant and equipment investment.
 314 Model (1) used $\Delta Dept_{i,01}$ as the first corporate diversification variable. The coefficient of $\Delta Dept_{i,01}$ is
 315 statistically significant and negative at (-)0.042. This implies that the operating performance immediately
 316 after SEOs is lower because of the investment that occurred in the process of building a new operational
 317 structure through corporate diversification. The coefficients of $\Delta BHI_{i,01}$, which is the second measurement
 318 variable of corporate diversification, and of $\Delta Cap_Exp_{i,01}$, which is the measure of plant and equipment
 319 investment coefficient, turn out not to be significant. Model (4), which considers all values of operational
 320 structure change, shows that the coefficient of $\Delta Dept_{i,01}$ is statistically significant and negative, thereby
 321 implying that operational structure change due to the increase of operating segments has a negative
 322 correlation with the operating performance of the current term.

323 As proved by previous studies, the coefficient of $TAC_{i,0}$ is statistically significant and negative, whereas
 324 the coefficients of $MTB_{i,0}$ and $\Delta Sales_{i,0}$ are statistically significant and positive.

325 **Table 2** Operating performance analysis at 1 year after SEOs

$\Delta ROA_{i,01}(s=0, t=1)=\alpha_0+\beta_1 \Delta OPCH_{i,01}+\beta_2 TAC_{i,0}+\beta_3 MTB_{i,0}+\beta_4 \Delta Sales_{i,0}+\sum Dummies+\varepsilon$									
Variables	Model (1)		Model (2)		Model (3)		Model (4)		
$\Delta Dept_{i,01}$	-0.042**	(-2.53)	-	-	-	-	-0.048**	(-2.51)	
$\Delta OPCH_{i,01}$	-	-	0.024	(0.64)	-	-	-0.028	(-0.65)	
$\Delta Cap_Exp_{i,01}$	-	-	-	-	0.004	(0.45)	0.002	(0.27)	
$TAC_{i,0}$	-0.600***	(-5.81)	-0.603***	(-5.76)	-0.612***	(-5.85)	-0.607***	(-5.83)	
$MTB_{i,0}$	0.018**	(2.32)	0.016**	(2.07)	0.017**	(2.15)	0.018**	(2.39)	
$\Delta Sales_{i,0}$	0.032**	(2.06)	0.032**	(2.02)	0.031*	(1.96)	0.031**	(1.98)	
F-value	3.61***		3.31***		3.30***		3.36***		
Adjusted R ² (%)	19.8		18.0		17.9		19.4		
# of obs.	286		286		286		286		

326 1) ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

327 2) t-values are specified in parentheses.

328 3) For brevity, year and industry dummies are not reported.

329 4) See Table 1 for the definition of the variables.

330 Table 3 shows the correlation between operating performance ($\Delta ROA_{i,02}$) and operational structure
 331 change 2 years after SEOs. Contrary to the results in Table 2, the coefficient of $\Delta Dept_{i,02}$ in Model(1) is
 332 statistically significant and positive at 0.027. Model (4), which considers all values of operational structure
 333 change, shows that only the coefficient of $\Delta Dept_{i,02}$ is statistically significant and positive. This implies that
 334 operational structure change through SEOs is positively correlated with long-term operating performance,
 335 especially in terms of corporate diversification.

336 **Table 3.** Operating performance analysis at 2 years after SEOs

$\Delta ROA_{i,st}(s=0, t=2) = \alpha_0 + \beta_1 \cdot \Delta OPCH_{i,st} + \beta_2 \cdot TAC_{i,t} + \beta_3 \cdot MTB_{i,t} + \beta_4 \cdot \Delta Sales_{i,t} + \sum Dummies + \epsilon$								
Variables	Model (1)		Model (2)		Model (3)		Model (4)	
$\Delta Dept_{i,02}$	0.027 **	(2.51)	-	-	-	-	0.033***	(2.89)
$\Delta OPCH_{i,st}$	$\Delta BHI_{i,02}$	-	-	0.017 (0.56)	-	-	0.048 (1.52)	
	$\Delta Cap_Expi,02$	-	-	-	-0.004 (-0.87)	-0.005 (-0.94)		
$TAC_{i,0}$		-0.707*** (-7.50)	-0.692*** (-7.24)	-0.692*** (-7.27)	-0.697*** (-7.39)			
$MTB_{i,0}$		0.005 (0.67)	0.005 (0.66)	0.004 (0.59)	0.004 (0.53)			
$\Delta Sales_{i,0}$		0.026* (1.80)	0.029** (2.00)	0.028** (1.97)	0.027* (1.91)			
F-value	3.79***		3.49***		3.51***		3.65***	
Adjusted R ² (%)	20.9		19.1		19.2		21.3	
# of obs.	286		286		286		286	

337 1) ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

338 2) t-values are specified in parentheses.

339 3) For brevity, year and industry dummies are not reported.

340 4) See Table 1 for the definition of the variables.

341 Like Table 3, Table 4 also shows that operational structure change and long-term operating
 342 performance has a statistically significant and positive correlation. The coefficient of $\Delta BHI_{i,03}$ in Model (2) is
 343 statistically significant and positive at 0.043. Model (4), which considers all values of operational structure
 344 change, also shows that the coefficient of $\Delta BHI_{i,03}$ is statistically significant and positive.

345 **Table 4.** Operating performance analysis at 3 years after SEOs

$\Delta ROA_{i,st}(s=0, t=3) = \alpha_0 + \beta_1 \cdot \Delta OPCH_{i,st} + \beta_2 \cdot TAC_{i,t} + \beta_3 \cdot MTB_{i,t} + \beta_4 \cdot \Delta Sales_{i,t} + \sum Dummies + \epsilon$								
Variables	Model (1)		Model (2)		Model (3)		Model (4)	
$\Delta Dept_{i,03}$	0.001	(0.04)	-	-	-	-	0.016	(0.78)
$\Delta OPCH_{i,st}$	$\Delta BHI_{i,03}$	-	-	0.043* (1.73)	-	-	0.052* (1.90)	
	$\Delta Cap_Expi,03$	-	-	-	-0.000 (-0.09)	-0.001 (-0.18)		
$TAC_{i,0}$		-0.495*** (-5.04)	-0.488*** (-5.01)	-0.494*** (-5.04)	-0.488*** (-4.98)			
$MTB_{i,0}$		0.012 (1.63)	0.011 (1.56)	0.012 (1.62)	0.010 (1.45)			

$\Delta Sales_{i,0}$	0.015	(1.02)	0.015	(1.04)	0.015	(1.02)	0.015	(1.02)
F-value	1.92***		2.05***		1.92***		1.92***	
Adjusted R ² (%)	8.0		9.1		8.0		8.6	
# of obs.	286		286		286		286	

346 1) ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

347 2) t-values are specified in parentheses.

348 3) For brevity, year and industry dummies are not reported.

349 4) See Table 1 for the definition of the variables.

350

351 Tables 5–7 show the empirical analysis results for H-2. Table 5 shows the correlation between stock
 352 returns ($BAHR_{i,01}$) and operational structure change 1 year after SEOs. Models (1), (2), and (3), which
 353 individually use $\Delta Dept_{i,01}$, $\Delta BHI_{i,01}$, $\Delta Cap_Exp_{i,01}$, all show values that are not significant. However, Model (4),
 354 which considers all values of operational structure change, shows that the coefficient of $\Delta BHI_{i,01}$ is
 355 statistically significant and negative at (-)0.164. This implies there is under-performance in stock returns in
 356 terms of operational structure change.

357 **Table 5.** Stock return analysis at 1 year after SEOs

$$BAHR_{i,01}(t=0, t=1) = \alpha_0 + \beta_1 \Delta OPCH_{i,01} + \beta_2 Num_Issue_{i,01} + \beta_3 \Delta Debt_{i,01} + \beta_4 Forfeiture_{i,01} + \beta_5 Discount_{i,01} + \varepsilon$$

+ΣControls+ΣDummies+ ε

Variables	Model (1)		Model (2)		Model (3)		Model (4)		
$\Delta Dept_{i,01}$	-0.013	(-0.35)	-	-	-	-	-0.044	(-1.07)	
$\Delta OPCH_{i,01}$	$\Delta BHI_{i,01}$	-	-	-0.116	(-1.45)	-	-	-0.164*	(-1.80)
$\Delta Cap_Exp_{i,01}$	-	-	-	-	0.029	(1.55)	0.027	(1.48)	
$Num_Issue_{i,01}$	-0.020	(-0.78)	-0.023	(-0.91)	-0.012	(-0.46)	-0.019	(-0.71)	
$\Delta Debt_{i,01}$	0.072	(1.30)	0.073	(1.33)	0.062	(1.13)	0.067	(1.21)	
$Forfeiture_{i,01}$	1.749**	(2.20)	1.600**	(2.02)	1.795**	(2.28)	1.725**	(2.18)	
$Discount_{i,01}$	0.003	(0.93)	0.003	(1.09)	0.003	(0.85)	0.003	(1.02)	
F-value	3.02***		3.10***		3.12***		3.04***		
Adjusted R ² (%)	18.5		19.1		19.2		19.6		
# of obs.	286		286		286		286		

358 1) ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

359 2) t-values are specified in parentheses.

360 3) For brevity, year and industry dummies are not reported.

361 4) See Table 1 for the definition of the variables.

362

363

364

365 Table 6 shows the correlation between stock returns ($BAHR_{i,02}$) and operational structure change 2
 366 years after SEOs. Similar to Table 5, the correlation between operational structure change and stock returns
 367 is not significant in Models (1), (2), and (3). In particular, Model (4), which considers all values of operational
 368 structure change, shows no significant correlation between operational structure change and stock returns.

369

370 **Table 6.** Stock return analysis at 2 years after SEOs

Variables	$BAHR_{i,02} = \alpha_0 + \beta_1 \Delta OPCH_{i,02} + \beta_2 Num_Issue_{i,02} + \beta_3 \Delta Debt_{i,02} + \beta_4 Forfeiture_{i,02} + \beta_5 Discount_{i,02} + \Sigma Controls + \Sigma Dummies + \epsilon$				
	+ΣControls+ΣDummies+ε				
	Model (1)	Model (2)	Model (3)	Model (4)	
$\Delta Dept_{i,02}$	-0.052 (-1.32)	-	-	-	-0.051 (-1.21)
$\Delta OPCH_{i,02}$	-	0.063 (0.58)	-	-	0.014 (0.12)
$\Delta Cap_Exp_{i,02}$	-	-	-	0.015 (0.80)	0.015 (0.81)
$Num_Issue_{i,02}$	-0.038 (-0.98)	-0.036 (-0.91)	-0.032 (-0.80)	-0.032 (-0.80)	
$\Delta Debt_{i,02}$	-0.072 (-0.82)	-0.078 (-0.88)	-0.085 (-0.96)	-0.078 (-0.88)	
$Forfeiture_{i,02}$	-0.257 (-0.21)	-0.317 (-0.25)	-0.280 (-0.22)	-0.199 (-0.16)	
$Discount_{i,02}$	0.010** (2.23)	0.011** (2.25)	0.010** (2.19)	0.010** (2.12)	
F-value	3.42***	3.36***	3.37***	3.22***	
Adjusted R ² (%)	21.4	21.0	21.0	21.0	
# of obs.	286	286	286	286	

371 1) ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

372 2) t-values are specified in parentheses.

373 3) For brevity, year and industry dummies are not reported.

374 4) See Table 1 for the definition of the variables.

375

376 Table 7 shows the correlation between stock returns ($BAHR_{i,03}$) and operational structure change 3
 377 years after SEOs. $\Delta BHI_{i,03}$ in Model (2) has a statistically significant and positive correlation with stock
 378 returns, and $Cap_Exp_{i,03}$ in Model (3) has a statistically significant and positive correlation with stock returns.
 379 Therefore, the correlation between operational structure change and stock returns is not formed when SEOs
 380 are issued, but appears afterward.

381

382

383

384

385

386

387

Table 7. Stock return analysis at 3 years after SEOs

$BAHR_{i,st}(s=0, t=3) = \alpha_0 + \beta_1 \Delta OPCH_{i,st} + \beta_2 Num_Issue_{i,t} + \beta_3 \Delta Debt_{i,st} + \beta_4 Forfeiture_{i,t} + \beta_5 Discount_{i,t} + \Sigma Controls + \Sigma Dummies + \epsilon$								
Variables	Model (1)		Model (2)		Model (3)		Model (4)	
$\Delta Debt_{i,03}$	-0.014	(-0.18)	-	-	-	-	0.054	(0.65)
$\Delta OPCH_{i,st}$	$\Delta BHI_{i,03}$	-	-	0.213** (2.01)	-	-	0.227** (2.01)	
	$\Delta Cap_Exp_{i,03}$	-	-	-	0.062*** (3.76)	0.060*** (3.68)		
$Num_Issue_{i,0}$	-0.059	(-1.24)	-0.056	(-1.19)	-0.021	(-0.45)	-0.018	(-0.38)
$\Delta Debt_{i,03}$	-0.119	(-1.17)	-0.103	(-1.01)	-0.151	(-1.52)	-0.132	(-1.32)
$Forfeiture_{i,0}$	-2.136	(-1.45)	-2.022	(-1.39)	-1.594	(-1.11)	-1.456	(-1.01)
$Discount_{i,0}$	0.006	(1.10)	0.006	(1.07)	0.004	(0.70)	0.004	(0.65)
F-value	2.7***		2.86***		3.29***		3.24***	
Adjusted R ² (%)	16.0		17.3		20.4		21.1	
# of obs.	286		286		286		286	

1) ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

2) t-values are specified in parentheses.

3) For brevity, year and industry dummies are not reported.

4) See Table 1 for the definition of the variables.

393 5. Discussion

394 Tables 2–4, which present the empirical analysis results for H-1, can be summarized as follows. The
 395 process of building a new operational structure with the resources secured from SEOs requires
 396 considerable amounts of time and cost. The results of the empirical analysis show that the correlation
 397 between operational structure and operating performance changes from statistically significant and
 398 negative 1 year after SEOs to statistically significant and positive 2 and 3 years after SEOs. This supports
 399 the investment opportunities hypothesis—that low operating performance is a temporary phenomenon in
 400 the process of building a new operational structure, and once it is developed, there will be high operating
 401 performance in the long term. Therefore, H-1 is rejected, and operational structure change for sustainable
 402 development has a statistically significant and positive correlation with long-term operating performance.
 403 Among the control variables, $TAC_{i,0}$ is the major cause of adverse effects on operating performance after
 404 SEOs.

405 Tables 5–7, which present the empirical analysis results for H-2, can be summarized as follows.
 406 Operational structure change ($\Delta BHI_{i,01}$) in the model of stock returns ($BAHR_{i,st}$) shows a statistically
 407 significant and negative correlation with stock returns after 1 year, while operational structure change
 408 shows no significant correlation with stock returns after 2 years. However, the coefficients of $\Delta BHI_{i,03}$ and
 409 $\Delta Cap_Exp_{i,03}$ are statistically significant and positive in the analysis after 3 years. This indicates that some

410 time must pass before operational structure change increases operating performance. Furthermore,
411 disclosed accounting information is actually information from the past in principle and thus, economic
412 benefits of the current term are reflected in stock prices but might not be reflected in the financial statements.
413 In other words, time must pass before plant and equipment investment after SEOs leads to operating
414 performance. Thus, in the results, there is no significant stock price response at first, and the operating
415 performance in the next term is perceived as a favorable factor after 3 years. In summary, there is a time lag
416 in the stock market regarding operational structure change.

417 The results for control variables can be interpreted as follows. The rights issue size ($Num_Issue_{i,0}$) is
418 negatively correlated with stock returns but this is not significant. Therefore, the price pressure hypothesis
419 proposed by Scholes [10] is not supported. The increase rate of debt ($\Delta Debt_{i,01}$) had a negative or positive
420 correlation, depending on the model, but none is significant. Therefore, the substitution hypothesis
421 proposed by Galai and Masulis [12] is not supported. The old shareholder forfeiture rate ($Forfeiture_{i,0}$)
422 showed a statistically significant and positive correlation with the stock returns in all models for 1 year after
423 SEOs, thereby supporting the old shareholder interest hypothesis. The market price discount rate
424 ($Discount_{i,0}$) showed a statistically significant and positive correlation with stock returns only 2 years after
425 SEOs.

426 6. Conclusion

427 Previous studies have identified various causes of stock returns before and after SEOs. However, they
428 have conducted only partial analyses, not comprehensive analyses, on SEOs and stock returns. In
429 particular, there is insufficient empirical research on long-term stock price and operating performance after
430 SEOs. This study investigates whether there is sustainability in operational structure and the effects of
431 sustainable development on operational performance and market.

432 The results are as follows. First, change in corporate diversification has a statistically significant and
433 negative correlation with operating performance 1 year after SEOs. However, the increase rate of the
434 number of operating segments increases 2 years after SEOs, and the increase of the Berry–Herfindahl index
435 using the sales of operating segments has a statistically significant and positive correlation with operating
436 performance after 3 years. This result shows that corporate diversification decreases operating performance
437 in the short term but increases operating performance in the long term, thereby supporting the hypothesis
438 that operational structure change through SEOs might increase performance.

439 Second, plant and equipment investment does not show a statistically significant correlation with
440 stock returns for 2 years after SEOs. However, it shows a statistically significant and positive correlation
441 with stock returns for 3 years after SEOs, which indicates that time must pass for operating performance to
442 increase by operational structure change. In other words, since some time is required until plant and

443 equipment investment after SEOs results in operating performance, there is no significant stock price
444 response in the first 2 years, and only after 3 years is the favorable factor of operating performance in the
445 next term reflected in stock prices.

446 We acknowledge that unknown measurement errors or other correlated omitted variables could
447 influence our empirical findings. Despite these caveats, this study contributes to the literature in the
448 following ways. This study complements a large body of literature that investigates the positive
449 consequences of sustainable development from operational structure using SEOs. We also provide
450 evidence that sustainable development mechanisms, such as the increasing ratio of operational segments,
451 leads to a favorable stock market reaction by rebuilding operational structure using SEOs. Lastly, we
452 analyze operating performance after SEOs according to operational structure change while including all
453 causes presented by previous studies. Future studies could be extended to the comparison of financing
454 type, which the firms decided to issue SEO or bonds for sustainability strategies and consequences.

455 **Acknowledgments:** this study didn't receive any funding.

456 **Author Contributions:** C.A. collected non-machine readable data, brought the empirical model based on
457 literature review, and analyzed the data. M.K. designed the hypothesis, summarized literature review and wrote
458 the paper. H.J. conceived and designed the paper and hypothesis, contributed to set the empirical model, and
459 wrote the paper.

460 **Conflicts of Interest:** The authors declare no conflict of interest.

461
462 **References**

- 463 1. Asquith, P.; Mullins, D.W. Equity issues and offering dilution. *J. Financ. Econ.* **1986**, *15*(1), 61–89.
- 464 2. Bhagat, S.; Frost, P.A. Issuing costs to existing shareholders in competitive and negotiated
465 underwritten public utility equity offerings. *J. Financ. Econ.* **1986**, *15*(1), 233–259.
- 466 3. Masulis, R.W.; Korwar, A.N. Seasoned equity offerings: An empirical investigation. *J. Financ. Econ.*
467 **1986**, *15*(1), 91–118.
- 468 4. Loughran, T.; Ritter, J.R. The operating performance of firms conducting seasoned equity offerings. *J.*
469 *Financ.* **1997**, *52*(5), 1823–1850.
- 470 5. Rangan, S. Earnings management and the performance of seasoned equity offerings. *J. Financ. Econ.*
471 **1998**, *50*(1), 101–122.
- 472 6. Yoon, Y.K. CEO's seasoned equity offering decision making. *Korean J. Financ. Assoc.* **1996**, *12*, 77–105.
(In Korean)
- 473 7. Myers, S.C.; Majluf, N.S. Corporate financing and investment decisions when firms have information
475 that investors do not have. *J. Financ. Econ.* **1984**, *13*(2), 187–221.
- 476 8. Jung, H.C. Value effect of seasoned equity offerings after controlling for stock splits. *J. Financ. Bank.*
477 **1995**, *1*, 235–276. (In Korean)
- 478 9. Shin, Y.K. Announcement effects of seasoned equity offerings. *Korean J. Financ. Manag.* **1995**, *12*(1), 75–
479 92. (In Korean)
- 480 10. Scholes, M.S. The market for securities: Substitution versus price pressure and the effects of
481 information on share prices. *J. Bus.* **1972**, *45*(2), 179–211.
- 482 11. Kang, H.S. The effect of the issue price in seasoned equity offerings on shareholders' wealth. *Korean*
483 *Manag. Rev.* **1988**, *18*(1), 99–128. (In Korean)
- 484 12. Galai, D.; Masulis, R. The option pricing model and the risk factor of stock. *J. Financ. Econ.* **1976**, *3*(1–2),
485 53–81.

486 13. Leland, H.; Pyle, D. Information asymmetries, financial structure, and financial intermediation. *J.*
487 *Financ.* **1977**, *32*(2), 371–387.

488 14. Ross, S.A. The determination of financial structure: The incentive-signalling approach. *Bell J. Econ.*
489 **1977**, *8*(1), 23–40.

490 15. McConnell, J.J.; Muscarrella, C.J. Corporate capital expenditure decisions and the market value of the
491 firm. *J. Financ. Econ.* **1985**, *14*(3), 399–422.

492 16. Chung, H.C.; Jeong, Y.W. Seasoned equity offering announcement and market efficiency. *Korean J.*
493 *Financ. Manag.* **2008**, *25*(3), 79–109. (In Korean)

494 17. Yoon, P.S. Short-term and long-term effect of seasoned equity offering. *J. Korean Secur. Assoc.* **1999**, *25*,
495 71–105. (In Korean)

496 18. Spiess, D.K.; Affleck-Graves, J. Under-performance in long-run stock returns following seasoned
497 equity offerings. *J. Financ. Econ.* **1995**, *38*(3), 243–267.

498 19. Kim, P.K.; Kong, M.J. Long-run abnormal stock returns and operating performance following
499 seasoned equity offerings. *Korean J. Financ. Manag.* **2000**, *17*(1), 13–44. (In Korean)

500 20. Khil, J.W. Long-run performance in the seasoned equity issues. *Hanyang J. Econ. Stud.* **2001**, *22*(1), 261–
501 283. (In Korean)

502 21. Mason, R.H.; Goudzwaard, M.B. Performance of conglomerate firms: A portfolio approach. *J. Financ.*
503 **1976**, *31*(1), 39–48.

504 22. Comment, R.; Jarrell, G.A. Corporate focus and stock returns. *J. Financ. Econ.* **1995**, *37*(1), 67–87.

505 23. Sloan, R.G. Do stock prices fully reflect information in accruals and cash flows about future earnings?
506 *Account. Rev.* **1996**, *71*(3), 289–315.

507 24. Kim, D.H.; Moon, S.J. A study on the improvement of capital increase through third-party allocation.
508 *J. Prof. Manag.* **2010**, *13*(1), 75–91. (In Korean)

509 25. Kim, S.J.; Byun, H.S. Seasoned equity offering and long-run performance. *Asian Rev. Financ. Res.* **1998**,
510 *11*(2), 23–49. (In Korean)

511 26. Kim, J.W. Earnings management using accruals and the long-run performance of SEOs. *J. Bus. Res.*
512 **2013**, *28*(1), 165–191. (In Korean)