Preprint
Article

A Low-Complexity Model-Free Approach for Real-Time Cardiac Anomaly Detection Based on Singular Spectrum Analysis and Nonparametric Control Charts

Altmetrics

Downloads

584

Views

470

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

08 December 2017

Posted:

11 December 2017

You are already at the latest version

Alerts
Abstract
While the importance of continuous monitoring of electrocardiographic (ECG) or photoplethysmographic (PPG) signals to detect cardiac anomalies is generally accepted in preventative medicine, there remain major barriers to its actual widespread adoption. Most notably, current approaches tend to lack real-time capability, exhibit high computational cost, and be based on restrictive modeling assumptions or require large amounts of training data. We propose a lightweight and model-free approach for the online detection of cardiac anomalies such as ectopic beats in ECG or PPG signals based on the change detection capabilities of Singular Spectrum Analysis (SSA) and nonparametric rank-based cumulative sum (CUSUM) control charts. The procedure is able to quickly detect anomalies without requiring the identification of fiducial points such as R-peaks and is computationally significantly less demanding than previously proposed SSA-based approaches. Therefore, the proposed procedure is equally well suited for standalone use and as an add-on to complement existing (e.g. heart rate (HR) estimation) procedures.
Keywords: 
Subject: Medicine and Pharmacology  -   Other
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated