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s Abstract: The asymmetric bimodal exponential power (ABEP) distribution is an extension of the
s  generalized gamma distribution to the real line via adding two parameters which fit the shape of
1o peakedness in bimodality on real line. The special values of peakedness parameters of the distribution
u  are combination of half Laplace and half normal distributions on real line. The distribution has
1z two parameters fitting the height of bimodality, so capacity of bimodality is enhanced by using
1z these parameters. Adding a skewness parameter is considered to model asymmetry in data. The
1« location-scale form of this distribution is proposed. The Fisher information matrix of these parameters
s in ABEP is obtained explicitly. Properties of ABEP are examined. Real data examples are given to
1s illustrate the modelling capacity of ABEP. The replicated artificial data from maximum likelihood
1z estimates of parameters of ABEP and distributions having an algorithm for artificial data generation
1= procedure are provided to test the similarity with real data.

1»  Keywords: asymmetric bimodality; bimodal exponential power distribution; modelling; generalized
20  Gaussian distribution.

1 1. Introduction

~

22 The different bimodal and skew distributions have been proposed over the last decade to construct
23 flexible distributions. The proposed distributions are Refs. [1-26] and references therein via using
2« different generating techniques [27] to get a probability density function (PDF). In these distributions,
25 Refs. [5,6] proposed e-skew form of gamma distribution on real line. The deficiency of these functions
26 is that different height and shape of peakedness around location on real line cannot be modelled
2z separately. The model proposed by [6] has a bimodality with the same height, which is not flexible
2e  enough to model bimodal data with different height and shape of peakedness. Ref. [24] proposed
20 bimodal and alpha-skew Laplace distribution that does not model shape peakedness around location
s onreal line. However, the best way is to find a function which can fit data around location separately.
a1 In other words, the left and right sides of location will be modelled with different parameters to have an
:2  efficient fitting for both sides of location. A bimodal exponential power (BEP) distribution is proposed
33 by [28]. The properties of BEP distribution are few when BEP is compared with distribution proposed
s« by [29], because BEP has same level of peaks around location on real line and it is also symmetric in
35 both side of location. The shape of peakedness around location on real line is modelled by only one
36 parameter, however two parameters are added to model different modes from distribution on real line
sz [29]. Two parameters controlling to fit the shape of peakedness and two parameters controlling to fit
ss the height of bimodality will be used together. Skewness parameter is also added to model asymmetry
3 in data. Thus, modelling capacity of asymmetric bimodal exponential power (ABEP) distribution is
a0 better than current candidates proposed by [5,6,28,29], because ABEP distribution has parameters that
a1 control the fitting both sides of location separately.

a2 The second aim is that we do not only propose ABEP distribution but also derive this distribution
a3 via constructing a normalizing constant (NC) which leads to produce a PDF. While deriving a PDF,
s producing NC can be a preferable approach. This approach can be taken care for deriving a PDF when
«s one wants to add a new parameter to increase the modelling capacity of function if it is tractable to get

© 2017 by the author(s). Distributed under a Creative Commons CC BY license.


http://dx.doi.org/10.20944/preprints201712.0080.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/e20010023

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2017 d0i:10.20944/preprints201712.0080.v1

20f18

s NC from a function. The NC approach was examined by [30] to construct asymmetric distributions
a7 from symmetric distributions. Some techniques used to derive a PDF are reviewed by [27]. There are
ss  other techniques to produce PDFs derived from entropy functions via method of Lagrange multipliers
+ as well [31,32] and references therein. The different goodness of fit tests (GOFTs) are applied on the
so ABEP. Thus, importance and advantage of GOFTs, such as Kolmogorov-Smirnov (KS), Cramér von
51 Mises (CVM), Anderson-Darling (AD) via a cumulative distribution function (CDF) of a PDF will be
s expressed for ABEP distribution when the optimization problem of ABEP can arise.

53 Especially, the estimation of location parameter is important, such as the proteins in cancer cell
s« are needed to determine, the image processing demands to get the quantitative value of colors at a
ss  prescribed range. A radar data, speech processing, etc. in many phenomena can be modelled via ABEP.
ss The parametric models which can accommodate the shape of peakedness, bimodality and skewness
sz are mostly preferred to be able to model the data set efficiently. In other words, the frequented data
se can be represented by the parameters which control to fit the shape of peakedness, the parameters
ss  which control to fit the bimodality and the skewness which controls to fit the asymmetry in data set.
e Due to this reason, ABEP distribution having these parameters is proposed. In addition to, since the
o1 generalized gamma distribution is a class for many distributions, it is chosen in order to reflect to the
sz negative side of real line.

63 The paper is organized as follows. In Section 2, ABEP distribution is defined and mode,
ea distributional properties, related distributions and tail behaviour of ABEP distribution are given.
es  Maximum likelihood (ML) estimations of parameters are provided in Section 3. In Section 4, the
es real data examples are provided to make a comparison among candidate densities. The results are
ez commented. Finally, in last section the conclusions are given and the remarks are considered.

es 2. Gamma Distribution: Reparametrization and ABEP Distribution on Real Line

The random variable Y will have a gamma distribution with PDF having parameters 5#71 and
B=1
1 s
8W) = —sv'* texp{-4}, y>0,6>0a>0. M
I%) p

Theorem 1. Let Y be a continuous random variable defined on [0, 00), distributed as G(%, B = 1). Consider
a discrete random variable T. It generates a function on real line and unequal probabilities at negative and
positive sides of real line will be constructed. T is 1 + ¢ for the probability % at positive side and T is — (1 — ¢)
for the probability % at negative side. A variable transformation Z = YV/*T is applied to get the a power
of Gamma distribution. Here, the random variables Y and T are independent [5,29]. After applying this

transformation on gamma distribution in equation (1), we will get the following PDF:

f(Z): fl(z):M?‘M(_Z)5eXp{_(f)a}, 2 <0 (2)
@) = gt ee { - ()}, 220,

o

with the parameters & > 0,0 > 0and ¢ € (—1,1) [29]. The random variable T keeps to be PDF that will be
generated, because the gamma distribution is a PDF on [0, c0). The probabilities of (1 + €) and —(1 — €) values
of random variable T are 13 and 15 [30,33]. Thus, a function in equation (2) has the unequal probabilities at

positive and negative sides of real line. The following PDF from function in equation (2) will be proposed:

fi(z) = 4 (—z)% exp {— (ﬁ)al}, z<0

- 10101 tL
f(z) = A=) 3)

« 5 z %o
f()(Z) = 2[k0(1+£)]5§+1r(6€%1)200 exp {_ (k0(1+5)) }/ z > 0/
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oo with the parameters ay > 0,09 > 0,61 > 0,80 > 0,ky > 0,kg > Oand e € (—1,1). Without consulting
70 the variable transformation technique, PDF can be obtained. This PDF is called as an asymmetric bimodal
= exponential power distribution (ABEP). a1 and w are for the shape of peakedness, 61 and &y are for height of
72 bimodality at negative and positive sides of real line. ki and ko are nuisance parameters to have same form of
73 normal or Laplace distributions. e is a skewness parameter that is responsible to have unequal probabilities
7a at negative and positive sides of real line. Thus, a skewness on a function can be constructed. The details for
7 function in equation (3) are given by the following proof.

Proof. The preliminary tools for the calculation of integrals are required. The gamma function and the
incomplete gamma functions are used to have the integral kernels which are appropriate to calculate
the integrals. Thus, we can derive a PDF.

I(s) =v(s,a) +T(s,a), 4)

s whereT'(s) = [;°x* Texp{—x}dx, y(s,a) = [; x** Texp{—x}dx,and T'(s,a) = [ x*Texp{—x}dx.
7z These are the gamma, the lower and upper incomplete gamma functions, respectively [34].

The reparametrization of gamma function is considered as:

I'(s+1/a) = /Ooo /e T exp{ —x}dx. (5)

A variable transformation x = (yp)* is applied to get the power version of gamma function:

T(s+1/a) =ap™* /Ooo y* exp{—(yp)" }dy. (6)

78 From equation (4), y(s*,a*) = I'(s*) — T'(s*,a*). Now, let s* be s + 1/a and a* = (pk)*. Then,
o y(s+1/a, (pk)*) = fo(pk)LY x*t1/ &1 exp{—x}dx. Now, the variable transformation x = (yp)*
so applied to the power version of the lower incomplete gamma function:

k
(s +1/a, (ph)") = ap™*! /O y* exp{—(yp)* }dy. )
81 From equation (4), T(s*,a*) =T(s*) —y(s*,a*). Now, let s* be s + 1/a and a* = (pk)“. Then,
e I(s+1/a, (pk)*) = [, (pk) x¥F1/4=1 exp{—x}dx. Now, the variable transformation x = (yp)* is applied
es  to the power version of the upper incomplete gamma function:
I(s+1/a, (pk)") = ap™*! /k y* exp{—(yp)* }dy. ®)
The equations (6)-(8) are power versions of gamma functions defined on the positive axis. These
three functions can be transferred to the negative axis via the variable transformation y = —u. For
equation (6),
0
Mo+ 1/0) = ap 1 [ (=) exp{—(—up)*}du. ©)
For equation (7),
0
(s +1/a, (pk)") = ap™*! / ()" exp{—(—up)"}du. (10)

For equation (8),

s+ 1/, (pR)") = ap [~ (- expl—(~up)*Je. a1
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s« For two cases of x < 0 and x > 0, we have the integrals of equation (3). So, equation (6) and equation
ss  (9) can be used to calculate these integrals. One can easily show that the integrated value of negative
s and positive sides of equation (3) are 1/2, respectively. Due to the fact that we must have a PDF
sz defined on the real line, the summation of these two results is 1. Here, the variable transformation
ss technique is not used. Thus, we can guarantee that the function gotten is on the interval [0, 1]. It is well
so known that if a function is defined on the interval [0, 1], this function will be a PDE.  [J

The location-scale form of this distribution is given by the following form. Suppose that Z is
distributed as ABEP (a1, g, 61, %0, k1, ko, €). Then, the random variable X = y+0Z, y € Rand o > 0
will have ABEP distribution with the following density function:

4 - —\X— !
gl(x) = 2(7[](1(1*8)]‘511+1r((sla+1) (73(0”{)51 exp{i [Uki?l-ﬂs))} }’ x < H
g(x) = v (12)
&0 X—p

g0(x) = (o= ] x =z
20fko (1)l 0 Ir(20) 7 oko(l+e)| 7 Z W
90 where y and o are the location and the scale parameters, respectively. Here, the random variable X is

o1 distributed as ABEP(u, 0, a1, &g, 81, 8o, k1, ko, €), that is, X ~ ABEP(u, o, a1, ag, 61, 80, k1, ko, €).

o2 2.1. Properties of ABEP Distribution

o3 2.1.1. Mode of a kernel function in ABEP

The mode of function in equation (12) is examined. It is obvious that this function is a reflected
function in equation (3) from the reparameterized gamma function in equation (1). Thus, examining
the mode of positive side of equation (3) means that the negative side of equation (3) is also examined.
Now, it is examined whether or not there is one root of the following function:

h(t) = tP exp{—t*}, t>0, 8 >0, ag > 0. (13)

9« Here, we will give comments about getting root of this function: NC can be ignored, because NC

s produces a function at interval [0, 1]. It does not affect the modes of function. At the same way, the

96 location parameter y can be ignored, because the location shows where the function in equation (12)

oz is located. The scale o and its variants kg or ki and € parameters change the rescaling of function in

9e equation (12).

9 The root of derivative of function in equation (13) with respect to t is exp{a,, ! log(a, 150)}. For
wo t=0,h(t) =0, which is obvious root that does not lead to modality. Thus, there is only one root of
11 function in equation (13), that is, there is one mode of function of generalized gamma at positive side.
w2 Since it is reflected to negative side of real line, the function has a mode at negative side of real line.
ws Totally, this function in equation (12) has two modes at real line. Note that it is not necessary to use
s second derivative test, because maximization of a function is equivalent to minus minimization of that
10s function. Detecting the root is enough for having modality.

w6 2.1.2. Cumulative distribution function of ABEP distribution

Let X ~ ABEP(u, 0, a1, x0,01,00,k1,ko,€). Let G be CDF of PDF g. Then, CDF of the random
variable X is:

_ 541 —(x—p) \a
[ o (). e
G(x) = “ B (14)
Gol) = 5+ ey 7 (U2 (o)) ¥20
]
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17 Where v and I’ are the lower and upper incomplete gamma functions, respectively.

108 2.1.3. rth moment of random variable X distributed as ABEP

Let X ~ ABEP(y = 0,0 =1, a9, 0, 01,60, k1, ko, €). The rth, r > 0, non-central moment is given by

ke (1 - )T (821) | o+ a)T (o)

or (42 or (241

100 One can get the results via equations (6) and (9). Since E(X") is finite for finite values of parameters
uo &1, &0, 01,00, k1, ko and when the extremely big values of parameters a1, ag, 61, do, k1, ko and r are not

E(X") = (15)

u1 taken, the ABEP distribution can produce finite values for the estimates of parameters, because
12 finiteness of moments gurantees to have a finite value of function [35]. Note that the domain of
us  skewness parameter ¢ is the interval (—1,1).

ua  2.1.4. Moment generating function for random variable X distributed as ABEP

Let X ~ ABEP(y = 0,0 = 1,a1,0,91,00,k1,ko,€). The moment generating function of the
random variable X is:

1 L0}

s

Elexp(tX)] i [tm[kl(l —orT (M) t"[ko(1 4 ¢)]"T (W)}

m=0

us wheret € Rand m € N. In order to calculate the integral E[exp(tX)], the Taylor expansion at x = 0
ue  of the function exp(tx) = Y5 _ (t;’?!m must be gotten. After some straightforward calculation for the

17 integral Elexp(tX)] via using equations (6) and (9), the result of integral can be obtained.

us 2.1.5. PDFs for different values of parameters in ABEP

119 Figures 1 and 2 illustrate the examples of PDF of ABEP distribution for some values of parameters
1o that give all possible shapes of function. It is seen from these figures, the shape of peakedness,
122 bimodality and asymmetry can be controlled at the same time via parameters in ABEP. When the
12 different values of parameters a1, ap and dy, J1 are chosen, the different shape of peakedness and the
12s  bimodality with different height around location parameter y are obtained, respectively. The skewness
12« parameter ¢ makes an asymmetry around parameter .
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(a) Unimodal densities due to §; = Jp = 0, examples for normal (b) Bimodal densities due to 4; > 0, right of density is normal

and Laplace and their half forms due to a; > 0 and &y > 0. and Laplace due to Jy = 0 and ag.

Figure 1. Examples of PDFs of the ABEP distribution for the different values of parameters (4 = 0,0 =
1): Unimodality, bimodality, half of Laplace and half of normal.

..(1|=2,a0=2,6‘=1,50=1.8,€=0

+ oy=1,0)=2,8,1,6,~1.8.6=0 ) 0y =2,05=2,8,=1,5,=1.8,e=03
| o, =1,00=1,8,=1,5=1.8,e=0 “r - o =1,0=2,8,=1,8=1.8,e=0.3
0t1=1,0t0=1,51=1,50=1.8,E=0.3

A
\

PDF
PDF

X X

(a) Bimodal densities constructed via §; > 0, g > 0, & > 0 (b) Bimodal densities via é; > 0,5y > 0, a7 > 0and ag > 0
and &y > 0. with skewed form: The left and right sides of location have
unequal probabilities due to &.

Figure 2. Examples of PDFs of the ABEP distribution for the different values of parameters (1 = 0,0 =
1): Bimodality.

s 2.1.6. Tail behaviour property of ABEP

126 Tail behaviour or heavy tailedness of a distribution is examined by means of definitions given
127 below [36]:

128 Definition 1. Let G(x) be 1 — G(x). If liI_?'(_l exp(Ax)G(x) = oo forall A > 0, then G(x) is a heavy-tailed.
X—+00

129 From equation (14), the positive part of CDF includes the lower incomplete gamma function 7.
10 The function 7(a, b) is examined to get the limit in Definition 1. For b > a, this function goes to zero.
11 Then, 1_1>r41_'1 exp(Ax)G(x) can go to zero when b is more bigger than a. Otherwise, this limit is infinite.
X [ee]
p2 If ET exp(Ax)G(x) — 0, then grf exp(Ax)G(x) — oo for b > a in 1y function.
X [e) X {oe]
133 1_1)111 exp(Ax)G(x) is undefined for a case a > b. It is seen that when b as a variable x of the
X o
s function 7 has big values, that is, an outlier is included by data, the heavy-tailedness property of ABEP
135 can be obtained. For a > b, there is already a tendency to get small values of variable x in 7 function in

e equation (14), which does not correspond an outlier in data set when it is compared with case b > a in
17 7y function. Thus, having an undefined value for lirf exp(Ax)G(x) is not problem in order to test the
X—+00

s heavy-tailedness property of function G via Definition 1.

10 Definition 2. Suppose that random variable X has a PDF g defined on [0,00). If E[exp(tX)] = oo, for all t,
wo  then g is a heavy-tailed.
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141 Note that the generalized gamma distribution is reflected to negative axis or x < p. The tail
w2 behaviour at x > y or x < y has a same role. Then, Definition 2 can be used for ABEP.
143 From equation (16), E[exp(tX)] = oo is satisfied due to m in summation in equation (16) of ABEP

wa distribution, because m goes to infinity and I' function gives infinity for big values of m. Then, ABEP is
s  aheavy-tailed distribution.

146 A comment for heavy-tailedness from the results of Definitions 1 and 2 is given: The skewness
wr parameter ¢ and also shape parameters a1, g, 1,09 work together in order to get a heavy-tailed
1s function, because they are responsible to change the shape of function.

wo  2.2. Special Cases, Related Distributions and Flexibility of ABEP

150 When we want to make a comparison among them from lowest to highest for capacity on
151 modelling frequency, ordered form is Refs. [28,29] and ABEP distribution. For this aim, ABEP
12 distribution is defined by using the generalized gamma distribution. The resulting distribution has
13 five parameters. Thus, ABEP distribution will have some properties: when a1 = 1 and ay = 2, left side
s« Of location is half of Laplace distribution and right side of location is half of normal distribution for
155 ¢ =0and d; = Jy = 0. For values of a1 = 2 and ay = 1, the resulting function will be vice versa of
16 previous case. For these situations, when ¢ # 0, ABEP will be e-skew form of half from Laplace and
sz normal distributions. It is easily seen that ABEP distribution can be a combination of Laplace and
152 normal distributions for values of peakedness parameters a1 and «g of distribution in e-skew form.
1o The nuisance parameters k; and kg are added to have same form of normal and Laplace distributions.
1o The location-scale form is also provided. The parameters a1, 61 and «g, &y also determine the overall
11 shape of function for x < p and x > p, respectively. Tails at negative and positive sides of real line can
12 be platykurtic (v1,0g — o0) and leptokurtic (#1, 29 — 0). The special cases, related distributions and
13 flexibility of ABEP distribution are given in the following items:

164 1. When a; = ag = & > 0, ABEP distribution drops to the kernel of distribution in [29] for 8 = 1.
165 2. If o = &1 = & > 0, the density function has two modes (bimodal case) with the same height. If
166 b9 = 61 = 0, the distribution is a unimodal.

167 3. When ¢ = 0, the distribution is the symmetric with two different modes.

168 4. When oy =g =2, =9y =0, k1 = kg = 2 and ¢ = 0, the distribution is a standard normal
160 distribution. Location p € R, scale ¢ > 0 and k; = kg = 2 case of ABEP distribution is defined in
170 equation (12).

171 5. When ay = a9 =1, 61 = 6y = 0, and € = 0, the distribution is the Laplace distribution with the
172 parameters location € R, scale ¢ > 0 and k1 = ko = 1 in equation (12).

173 6. Whenay =g =a > 0,01 = dy = 6 > 0and € = 0, the distribution is BEP in [28].
174 7. When a1 = a9 =2 and 6; = Jp = 6 > 0, ABEP distribution is used to model bimodality with

175 e-skew asymmetry in its modes at left and right sides of location p € R, which is a similar manner
176 with [9]

177 8. When é; = dp =k — 1, a1 = ap = 1, the ABEP distribution becomes e-skew gamma distribution
178 in [5]

179 9. When a1 = ag = 2,01 = dp = 0 and k; = kg = 2, the distribution becomes the e-skew normal
180 distribution in [33].

181 10. Whena) =ag=a > 0,0 =3 =0,k; = ko = 1 and € = 0, ABEP is a generalized normal or
182 Gaussian (exponential power, abbreviated as EP) distribution in [37].

183 11. When 6, = 6 =0,e =0, a1 = ag = 2/b,b € (0,2] in[38],61 =0 =0, 00 = ap =a >0,
184 k1=1—¢Kxo=1+¢e€ (—1,1)in[39], 61 = Jp = 0, a rescaling via convex combination in [40],
185 61 = &9 = 0, a skewed form via a rescaling in [41,43] and §; = Jp = 0O, e-skew form in [42], the
186 skewed EP and the symmetric EP distributions are equivalent to distributions from Refs. [38-43].
187 The Refs. [39-41,43] are asymmetric EP distributions based on different sense of skewed form of
188 symmetric EP distribution. The special functions in equations (6) and (9) can be used to get a

180 same kernel of EP with recalculated NC in [38-43].
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190 12. The e-skew EP distribution in [44] is a special case of this family for éy = d; = 0 and k1 = ko = 2.
11 13. The kernel of EP distribution without bimodality in [45,46] is a special case of ABEP when
192 ki=ky=k>0,01 =0 =0and a; = ag =a > 0.

14. When the variable transformation z = y!/* on function in equation (1) is done,
f(z) = r(;:l)z‘s exp{—z"}, 2>0,6>0,a>0 (17)
o

103 is obtained. This is also called as a generalized gamma (GG) distribution. The Pearson type
194 III and V, Erlang, exponential, Weibull, Pareto, Levy, Rayleigh, Nakagami, Frechet, Helmert,
105 Maxwell-Boltzmann and four-parameter exponential gamma as algebraic and exponential
196 functions are members of a function in equation (17) [31,47-49] and references therein.
107 The first developer of EP is Ref. [45] via solving the differential equation as a different sense

ws from GG in equation (17). The Ref. [46] proposed EP as a generalized error distribution. In ABEP
1o distribution, there are parameters for modelling x < y and x > p. Thus, the bimodality can be
200 produced (see also section 2.1.1) and the role of parameters that creates bimodality due to reflection
201 approach in equation (2) of GG function can be observed easily.

202 3. Maximum Likelihood Estimations for Parameters of ABEP Distribution

203 Let x1,x7,...,x, be a random sample of size n from an ABEP distributed population. The
20« Unknown parameters y, o, a1, &g, 1, 5p and e will be estimated by ML estimation method [35]. Here,
205 the parameters kj and ko are nuisance parameters. The log-likelihood log(L) function is:

log[L(50)] = mllog(as) ~ Iog(2eTky (1~ 1 *1) ~log(r( L) 18)
- —(xi=)\ g (i)
*‘52_211%( ) 2 (i)

d+1
&0

“+nollog(wo) — Tog(20fko(1+ )} *1) — log(I
1 xi_y)_%( Xi—p )rXo

+o glog ( o Z; olko(1+¢)] !
206 Where ng is the number of non-negative observations and 77 is the number of negative observations.
207 0= (f1,0,81, 0, b1, b0, g) are ML estimators of parameter vector 8 = (y, 0, a1, g, 91, 0o, €).
208 The second derivative test can be used whether or not the log(L) function in equation (18) has the
200 maximum value, however since PDF has seven parameters y, 0, a1, 29, 01,69 and ¢, using the Hessian
210 matrix cannot be possible. There can be a solution to overcome this problem if we focus on improving
an the modelling capacity of PDF having more parameters which help us to increase flexibility of the
212 function and so the efficiency for ML estimators of the parameters y and o, especially. A solution in
213 indirect way for this problem is that one can use GOFT statistics, such as KS, CVM and AD to see
a1a  the distances between expected and empirical cumulative distributions. It is well known that the
215 more small values of the GOFT statistics mean the more fitting performance is accomplished by the
216 function. In the computation process, optimization of nonlinear function in equation (18) is conducted
a1z via hybrid genetic algorithm (HGA) in MATLAB 2016a. In HGA, intervals for parameters that will
21s optimize the log(L) function in equation (18) are used. The intervals for u, o, a1, ag, 91,6y and ¢ are
a0 [—5,5],(0,5],[0,10],[0,10],[0,10], [0,10] and (—1,1) that is domain of skewness parameter €. k1 and k
220 as Nuisance parameters are taken to be a7 and «g. This form is an appropriate to have same form of

a1 normal and Laplace. Let us remind that ABEP is a generalized normal or Laplace distribution. Thus,
222 kq and kg are nuisance parameters.

)]
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The Fisher information matrix for parameters y and ¢ from ABEP is given by matrix I in the
following form:

21 o 1 i, &1 s 21 s
O e i I .- e | R
- o2 1, 22 Sy 22 s 0? i
E, [ loga[igfru 0)]} + K, [ loga[igﬁéu 0)]] E, [ log[ga(fw)]} + Ky [ logg‘a(;w)]}
223 The equations (6) and (9) are used to calculate the integrals in matrix I. Due to the analytical

24 expression of PDF in equation (12), undiagonal elements of matrix I are non-zero. Here, shape a1, g,
22 bimodality J1, Jg, skewness € and nuisance k1, kg parameters make a covariance structure between
226 location y and scale o parameters. From this result, covariance structure on ML estimators of other
227 parameters can be seen. Since it is possible to obtain the covariance among ML estimators, Fisher
26 information matrix is obtained only ML estimators of two parameters u and o. If there can be a
220 covariance among ML estimators, the inverse of matrix I cannot be obtained except the generalized
230 inverse. Note that getting matrix [ for # and ¢ from ABEP is tractable for calculation of integration of
a1 Fisher information. Using the generalized inverse cannot be preferable due to loss of information in an
232 inverse of a matrix. The loss of information occurs, because the multiplication of inverse of matrix I
233 and I does not give an identity matrix [50]. Whenay = ag = a, 01 =dy =3, e =0and k; =ky =k,
230 [Eq [W} + Eo {W} = 0, that is, the covariance between ML estimators of y and ¢
235 from ABEP is zero.

o [Ploglftopo)]] AT +aa(w — )01 - .
g [Ploglf(upma)]] _ Sr(55H) +aolao — NT(1 - 152 o
0 a],lz | z[o_ko(l _’_8)]2[‘(5?);;1) 4
g [Ploglf(ipo)]] _ _—eqT(1+8/m)
YT e | T PSR (22)
poo J 2k1(1 = &)o?T (%)
g [Ploglf(vu )] _ afT(1+d/ao) 23
0 T - 2 1507+1 12 ( )
uoo | 2ko(1+ €)o?T ( " )
[0 log[f (x;14,0)]] 1 ap(ag + 1)0(1+ 24
i = (=] R , (24)
o0? 202 F(51+1)
J E
[ T S+l
0> log|f(x; jt, )] 1 ap(a + 1T (1 + %t
Eo T 2 | = M{—l—%—i— Y } (25)
L | L
236 Some of regularity conditions [35] are as follows:

237 1. det[I(p,0)] < oo and

s 2. |%logf(x,‘ 0)| < M(x). Then, E[M(X)] < co.

2

w

239 One can verify that the conditions can be satisfied by using Maple or Mathematica. Here, it is possible
200 to get M(X) as X" in equation (15). Then, the condition 2 is satisfied. The other regularity conditions
=21 are already satisfied obviously. Since the ABEP distribution satisfies these two conditions,

NG (M = M) L5 N, [I(1,0)] 7Y, (26)

o g
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22 thatis, v/n | — # is asymptotically normal with mean zero vector and covariance matrix
- ymp y
d

23 [I(p,0)] ! and fi, & are asymptotically efficient and asymptotic normally distributed [35].

2es 4. Real Data Examples

245 In this section, the modelling capability of ABEP is shown by applying it on two data sets from
2e6  microarray (http:/ /discover.nci.nih.gov/nature2000/data/selected-data/at-matrix.txt). The analysing
2az  Of proteins in cancer cell is important. The efficient estimates of location and scale parameters for these
2s  proteins are a crucial role in medical care. For this reason, we prefer to focus on these data sets that
20 have the different shapes of peakedness, bimodality and asymmetry.

250 In the second step, the distributions are considered to model these data sets. In the estimation
251 process, we use the maximum likelihood method together with GOFT statistics, mostly prominent
252 ones that are KS, CVM and AD (robust one) distances to test the fitting capability of distributions [51].
253 When the estimates of parameters are computed, we can examine via GOFT statistics which of the five
2sa  PDFs is the best fit on data.

255 The bimodal extended generalized gamma (BEGG) [29], the Rathie-Swamee (RS) (RS is also
256 known to be a modified version of generalized logistic) [11-13], the exponentiated sinh Cauchy (ESC)
257 [10] and the alpha-skew Laplace (ASL) [24] distributions are used to fit the data and make a comparison
2se  between them and ABEP. There are many different distributions which have been proposed, however
20 using explicit expression for CDF should be preferred to fit the data. For this reason, the distributions
260 having explicit expression for their CDFs are used. Thus, GOFTs can be used without including the
261 numerical integration methods having the computational errors.

262 Modelling data (or Riemann integration in randomly putting the bin of histograms on real line)
263 is an equivalent to an integration. So, the discontinuity at x = p is not problem for estimations of
26« parameters. For computation, the HGA is used. HGA also includes the derivative free approach
26 [52] for optimization. Then, the discontinuity point x = y is not problem for optimization of log(L)
266 function in equation (18) according to parameters. At the same time, GOFT statistics are used while
267 performing the computation process.

268 The Rao-Cramér lower bounds (RCLBs) for ML estimators of parameters are given. The Monte
260 Carlo numerical integration is used to compute the integrals in Fisher information in equation (19) for
270 RS, ESC and ASL distributions.

271 Since the data generation procedure in Appendix A for ABEP is provided, the performance of
a2 fitting can be checked via the counted data at the prescribed ranges of domain as well. However, this
23 procedure is rough when it is compared with GOFTs. It is also beneficial to observe the performance of
27e  the random number generation procedure.

275 The number of replicated sample size n is 100 000. Data generated from ABEP, BEGG and ESC
276 distributions are sorted from small to big values for each sample size n. After sorting, arithmetic
27z mean of 100 000 artificial data is obtained for n = 118. After artificial data are generated from their
2re corresponding PDFs, it is also possible to check the fitting performance of these functions via the
20 artificial data (see Tables 3 and 6). Since ABEP, BEGG and ESC are competitive distributions for
200 fitting data and they have a random number generation procedure, they are preferred to check their
201 similarities with real data.

202 4.1. Example 1: Modelling shape of peakedness, bimodality and asymmetry

263 The data set labelled as "Homo sapiens Pig7 (PIG7) mRNA, complete cds Chr.16 [381663,
20¢  (EW), 5:AA059047, 3":AA059031]" from microarray is modelled by ABEP, BEGG, RS, ESC and ASL
2es  distributions.
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Table 1. ML estimates of parameters and GOFT statistics of fitted densities for microarray data.
il o &1 &o 01 00 € KS CVM AD
ABEP 0.0395 0.1060 1.7322 14499 12434 0.0505 0.3864 0.05610 0.0662 0.7150
i o B ==& Rfy=~& 01 00 & KS CVM AD
BEGG 0.0389 0.0926 14880 14880 1.0673 0.2657 0.2261 0.0574 0.0850 0.9568
[ o a b p KS CVvM AD
RS 0.0468 02049 1.6278 0.7525 1.1703 0.0865 0.1229 0.8152
fi o A B KS CVM AD
ESC 0.0226  0.0725 0.4091 1.1730 0.0737  0.1052 0.7086
i o a KS CVM AD
ASL  -0.0700 0.1052 -0.5039 0.1318 0.4449 2.3821
Table 2. Asymptotic variances and covariances of ML estimators i and ¢ (1073).
ABEP BEGG RS ESC ASL
Var(ft)  Cov(p,@) | Var(p)  Couv(ft,¢) | Var(ft)  Cov(p,0) Var(jt)  Cov(p, o) | Var(p)  Cou(f,0)
Cov(p,0) _ Var(0) | Coo(p,0) Var(0) | Cov(p,&)  Var(0) | Cov(p,0) Var(s) | Cov(p,@)  Var(s)
0.0215 0.0082 0.0073 0.0014 0.6481 0.0375 0.5739 —0.0174 4.365 0.4549
0.0383 0.0296 0.0615 0.0756 0.0419
[ Histogram o
.-~ ABEP 1
BEGG 7
RS 1
ESC ]
“I--AsL i ] 1
B k I8
Q o b
Qd [ “.
95 L .7‘1 ﬂ\z v‘:v 1 ; [;ﬂ s
Observations

Figure 3. PDF of ABEP, BEGG, RS, ESC and ASL distributions for the estimates of their parameters.

—Empirical
”|-- ABEP
BEGG
RS
“I--ESC
-~ ASL

CDF

| e ‘
Observations

Figure 4. CDF of ABEP, BEGG, RS, ESC and ASL distributions for the estimates of their parameters.
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Table 3. Counted data at ranges [-10, -0.3,-0.1, 0, 0.1, 0.3, 10].

Realdata 0 22 28 22 37 9 0
ABEP 0 17 29 22 38 12 0
BEGG 0 18 28 22 42 8 0

ESC 1 21 25 25 41 5 O

4.2. Example 2: Modelling shape of peakedness, bimodality and asymmetry

286

The data set from microarray labelled as "SID 377353, ESTs [5":, 3":AA(055048]" is modelled by
ABEP, BEGG, RS, ESC and ASL distributions.

287

288

Table 4. ML estimates of parameters and GOFT statistics of fitted densities for microarray data.

il o &1 &o 01 o0 € KS CVM AD
ABEP 0.0070 0.0810 2.1174 1.3610 0.4937 0.0031 -0.0380 0.0392 0.0203 0.2773
i o B ==& R&o=4& 01 o0 & KS CVM AD
BEGG -0.0113 0.0516 1.0770 1.0770 1.7593 0.8923 -0.0048 0.0763 0.0936 0.7397
i o a b p KS CVM AD
RS -0.0201 0.3848 2.7876 3.9241 0.6641 0.0996 0.1083 0.5158
i o A B KS CVM AD
ESC  -0.0361 0.0561 0.3143 1.1959 0.0630 0.0396  0.2502
i o a KS CVM AD
ASL 0.0340 0.0988 0.2357 0.1099 0.2491 1.5098
Table 5. Asymptotic variances and covariances of ML estimators i and ¢ (1074).
ABEP BEGG RS ESC ASL
Var(p)  Covu(fi, o) | Var(f) Cov(p, 0) Var(p)  Cov(fi,0) | Var(p)  Cov(f,0) | Var(i)  Cou(f1, &)
Cou(p,0) _ Var(®) | Cou(p,6)  Var(0) | Cov(p,0) Var(#) | Cov(p,0) Var(#) | Coo(p,5) Var(o)
1.3731 0.0919 0.0602 3.2295-10~* 0.0317 —0.1177 3.1921 1032 344.4 7.592
0.2517 0.0901 0.0085 3747 0.6688
[ Histogram
--ABEP
BEGG ] 1
RS RN
--ESC 4
--ASL
Ot \ |
&
’—:_‘:HTO\‘: Il Il

Observations

Figure 5. PDF of ABEP, BEGG, RS, ESC and ASL distributions for the estimates of their parameters.
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—Empirical
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BEGG
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-~ ASL

CDF

Observations

Figure 6. CDF of ABEP, BEGG, RS, ESC and ASL distributions for the estimates of their parameters.

Table 6. Counted data at ranges [-10, -0.4, -0.2, 0, 0.2, 0.4, 10].

Realdata 0 9 45 62 2 0 O
ABEP 0 8 46 60 4 0 O
BEGG 0O 11 4 59 4 0 O
ESC 0O 8 52 54 4 0 O
20 4.3. Comments on the Results of Examples 1 and 2
200 For both of two examples, Figures 3 and 5 show that ABEP fits better than the other distributions.

201 Especially, the modalities around location have been modelled as the different modes of heights and
202 the shape of peakedness can be modelled as well. Especially, the right of location is modelled very
203 well by ABEP at example 2. The asymmetry illustrating from example 1 has been modelled. The
20 histograms of data at example 2 do not show an asymmetry and ML estimate of skewness parameter is
205 Very near to zero, because as it is seen from Figure 5, the histograms do not have an asymmetry when
206 they are compared with histograms in Figure 3. The unequally distributed histograms around location
207 in Figure 3 can show that there is an asymmetry in data set.

208 For both of two examples, Tables 1 and 4 represent the ML estimates of parameters of distributions
200 and GOFT statistics of fitted densities. ABEP distribution fits the best data set when we consider on
s0 the values of KS and CVM statistics. When we look at the fitting performance for all distributions
s1  from Figures 3 and 5, it is seen that ABEP, BEGG and ESC have better fitting performance than RS
sz and ASL. However, when ABEP and ESC are compared, it is observed that two parameters A and S of
503 ESC are not enough to get the precise fitting on data, because these parameters work together around
s0a location. In BEGG, there is only one parameter & to control the fitting shape of function on real line.
s0s In ABEP, the role of parameters a1, a9, d1 and éy around location is constructed definitely. Thus, these
;06 parameters affect to get the more precise estimates for parameters y and ¢, which is important if the
sz data are from many phenomena.

308 It is well known that the probability value (p-value) of a test statistic depends on the fitted density.
s00  For this reason, the more efficient density must be preferred before getting the p-value of a test statistic
310 from corresponding density. Then, the potential problem that can occur in future from phenomena can
su be refrained. The estimates of y from fitted densities of ABEP, BEGG, RS and ESC can be near to each
a1z other, but the estimates of y of ABEP are more precise one, because ABEP is the best one for fitting on
sz data. At the same way, the estimates of o of ABEP from both of two examples are the best one.
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314 The random number generation procedure can be conducted at a more precise way for ABEP,
ss BEGG and ESC distributions, because ABEP and BEGG have an algorithm of random number
a6 generation in Appendix A. The inverse of CDF of ESC distribution [10] can be taken to get the
a1z random numbers from ESC. The artificial data generated from ABEP distribution also show that the
sis  counted artificial data at ranges can be similar with the counted real data at ranges (see Tables 3 and
a1e 6). Itis noted that the mostly counted data (the numbers 37 and 62 in Example 1 and 2, respectively) at
s20 an interval for real data are constructed by the artificial data generated from ABEP distribution for the
su prescribed ranges at real line. The counted artificial data from ABEP represent the counted real data
sz when they are compared with that from BEGG and ESC. Thus, we can infer that the data generation
;23 procedure is also successful after we get the precise estimates of parameters in ABEP via collaboration
52« with GOFT statistics.

325 GOFT statistics in Tables 1 and 4 show that there can a numerical error in the computation of
226 special function from CDF of ABEP. The AD for ABEP can have a numerical error from the computation
327 of CDF because CDF of ABEP is a special function. Even if CDF of ABEP depends on special functions
s2s  that are incomplete gamma functions, the fitting performance of ABEP is the best one due to fact that
s20  all possible parameters (shape, bimodality and skewness) that can fit data are added into ABEP.

s30 5. Conclusions and Discussions

331 A family for bimodal distribution with two parameters fitting the shape of peakedness (x; and
32 &), two parameters fitting the height of bimodality (J; and dy) and a parameter fitting the asymmetry
333 (€) in data set has been proposed. The unimodal case of this family is obtained when §; = ¢y = 0. The
;s skewness parameter in this family is from e-skew approach that can produce the asymmetry around
335 location. The importance of having these parameters in ABEP for modelling around location separately
33  has been observed when we make a comparison among ABEP, BEGG, ESC and RS distributions that
337 have explicit expression for CDE. As a result, ABEP can model efficiently the shape of peakedness, the
ss  bimodality and the asymmetry at the same time, because ABEP has parameters which are responsible
330 to fit the shape of peakedness, the bimodality and the asymmetry in data when it is compared with
a0 BEGG, RS, ESC and ASL distributions.

3a1 The well known approach which derives PDF without consulting the variable transformation
sz technique is applied for the tractable functions in equations (6)-(11) to propose a new distribution. It
;a3 is clear that this approach can be applied for other kind of distributions which are on the negative,
ue  positive or real line. The disadvantage of this approach is that the analytical expression of a function
sas  must be tractable to derive a PDF. The equations (6)-(8) are the power version of gamma, lower and
;s Upper incomplete gamma functions. The functions in equations (9)-(11) are transferred to the negative
;a7 side of real line via using functions in equations (6)-(8). They are new kind of the special functions
aas  to calculate the integrals having the kernel of gamma function. One can get distributions via these
a0 functions. For example, alpha-skew Laplace [24], alpha-beta skew normal [3], alpha-skew generalized
350t with variable transformation [53,54], symmetric and asymmetric EP [38—43] distributions with the
ss1 recalculated NC can also be gotten by these special functions. The special cases, related distributions
352 and flexibility of ABEP are given in relevant section.

353 The algorithm for generating artificial data from ABEP is provided. Thus, the similarity between
ss¢  artificial and real data sets has been observed as a rough approach and the performance of optimization
s for the log(L) function and GOFTs can be supported by this similarity as well. The benefit of GOFTs is
36 depicted when a PDF has more parameters, because the nearness to data, that is, the best performance
7 on optimization for log(L) function when the competitive PDFs are used, can be checked by GOFT
sss  statistics. Thus, if CDF of a PDF exists, using GOFTs as an indirect way to check the potential
sss  Ooptimization problem(s) is provided when the second derivative test is a problem for getting the
0 Hessian matrix with respect to parameters of log(L) function. HGA is also used to overcome the
se1 problems that can occur while performing optimization of log(L) function according to the parameters
sz in ABEP. As a result, performing a cross check between the optimization tool HGA and the GOFT
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ses  statistics is a beneficial approach to overcome the potential problem(s) from the computation process.
see  Thus, the more precise ML estimates for parameters can be gained. When it is considered on overall
ses  results from illustrating of PDF and CDF and also artificial data, the GOFT statistics and these results
ses  support each others to show the fitting performance of ABEP.

367 RCLBs for ML estimators of parameters p and ¢ are obtained. The properties of ABEP are provided
see  and so the heavy-tailedness property of ABEP distribution has been examined. The heavy-tailedness
seo  of ABEP from Definitions 1 and 2 are guaranteed when b > a in  function. Definitions 1 and 2 imply
s that ABEP can be a heavy-tailed distribution together with that comment in there.

a1 The entropy-based parameter estimation for ABEP is on going issue from Refs. [31,32] to study
sz via the proposed special functions in equations (6)-(11). In future, a package in a statistical software R
s from open access will be prepared for ABEP distribution with the different estimation methods added
sz into this package.
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sso  Abbreviations

ss1 The following abbreviations are used throughout the text:
PDF Probability density function

CDF Cumulative density function
ML Maximum likelihood
NC Normalizing constant

GOFT  Goodness of fit test
RCLBs Rao-Cramér lower bounds
ABEP  Asymmetric bimodal exponential power

BEP Bimodal exponential power
EP Exponential power

** BEGG  Bimodal extended generalized gamma
RS Rathie-Swamee

ESC Exponentiated sinh Cauchy
ASL Alpha-skew-Laplace
HGA Hybrid genetic algorithm

KS Kolmogorov-Smirnov
AD Anderson-Darling
CVM Cramér—von Mises
GG Generalized gamma

;3 Appendix Random Number Generation Procedure from ABEP Distribution

see . FOR i FROM TO the number of sample size 11 from a7,

385 01 = k1(1 — 8),

s.s _ Generate y from Gamma distribution with parameters 510:1 and 1,
387 x1 = p+ ooyl

ses  END FOR

30 FOR i FROM TO the number of sample size 1 from ay,

0y = k()(l + 8)/

sn _ Generate y from Gamma distribution with parameters 5%1 and 1,
1 / L4 .

390

392

Xo=H + ooy
303 END FOR
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3¢ Let x be a row vector with n = nj + 1y elements of two vectors x; with n; for negative data and xg
s with n for positive data, that is, x,, = (x1, xp).
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