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Abstract: The asymmetric bimodal exponential power (ABEP) distribution is an extension of the8

generalized gamma distribution to the real line via adding two parameters which fit the shape of9

peakedness in bimodality on real line. The special values of peakedness parameters of the distribution10

are combination of half Laplace and half normal distributions on real line. The distribution has11

two parameters fitting the height of bimodality, so capacity of bimodality is enhanced by using12

these parameters. Adding a skewness parameter is considered to model asymmetry in data. The13

location-scale form of this distribution is proposed. The Fisher information matrix of these parameters14

in ABEP is obtained explicitly. Properties of ABEP are examined. Real data examples are given to15

illustrate the modelling capacity of ABEP. The replicated artificial data from maximum likelihood16

estimates of parameters of ABEP and distributions having an algorithm for artificial data generation17

procedure are provided to test the similarity with real data.18

Keywords: asymmetric bimodality; bimodal exponential power distribution; modelling; generalized19

Gaussian distribution.20

1. Introduction21

The different bimodal and skew distributions have been proposed over the last decade to construct22

flexible distributions. The proposed distributions are Refs. [1–26] and references therein via using23

different generating techniques [27] to get a probability density function (PDF). In these distributions,24

Refs. [5,6] proposed ε-skew form of gamma distribution on real line. The deficiency of these functions25

is that different height and shape of peakedness around location on real line cannot be modelled26

separately. The model proposed by [6] has a bimodality with the same height, which is not flexible27

enough to model bimodal data with different height and shape of peakedness. Ref. [24] proposed28

bimodal and alpha-skew Laplace distribution that does not model shape peakedness around location29

on real line. However, the best way is to find a function which can fit data around location separately.30

In other words, the left and right sides of location will be modelled with different parameters to have an31

efficient fitting for both sides of location. A bimodal exponential power (BEP) distribution is proposed32

by [28]. The properties of BEP distribution are few when BEP is compared with distribution proposed33

by [29], because BEP has same level of peaks around location on real line and it is also symmetric in34

both side of location. The shape of peakedness around location on real line is modelled by only one35

parameter, however two parameters are added to model different modes from distribution on real line36

[29]. Two parameters controlling to fit the shape of peakedness and two parameters controlling to fit37

the height of bimodality will be used together. Skewness parameter is also added to model asymmetry38

in data. Thus, modelling capacity of asymmetric bimodal exponential power (ABEP) distribution is39

better than current candidates proposed by [5,6,28,29], because ABEP distribution has parameters that40

control the fitting both sides of location separately.41

The second aim is that we do not only propose ABEP distribution but also derive this distribution42

via constructing a normalizing constant (NC) which leads to produce a PDF. While deriving a PDF,43

producing NC can be a preferable approach. This approach can be taken care for deriving a PDF when44

one wants to add a new parameter to increase the modelling capacity of function if it is tractable to get45
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NC from a function. The NC approach was examined by [30] to construct asymmetric distributions46

from symmetric distributions. Some techniques used to derive a PDF are reviewed by [27]. There are47

other techniques to produce PDFs derived from entropy functions via method of Lagrange multipliers48

as well [31,32] and references therein. The different goodness of fit tests (GOFTs) are applied on the49

ABEP. Thus, importance and advantage of GOFTs, such as Kolmogorov-Smirnov (KS), Cramér von50

Mises (CVM), Anderson-Darling (AD) via a cumulative distribution function (CDF) of a PDF will be51

expressed for ABEP distribution when the optimization problem of ABEP can arise.52

Especially, the estimation of location parameter is important, such as the proteins in cancer cell53

are needed to determine, the image processing demands to get the quantitative value of colors at a54

prescribed range. A radar data, speech processing, etc. in many phenomena can be modelled via ABEP.55

The parametric models which can accommodate the shape of peakedness, bimodality and skewness56

are mostly preferred to be able to model the data set efficiently. In other words, the frequented data57

can be represented by the parameters which control to fit the shape of peakedness, the parameters58

which control to fit the bimodality and the skewness which controls to fit the asymmetry in data set.59

Due to this reason, ABEP distribution having these parameters is proposed. In addition to, since the60

generalized gamma distribution is a class for many distributions, it is chosen in order to reflect to the61

negative side of real line.62

The paper is organized as follows. In Section 2, ABEP distribution is defined and mode,63

distributional properties, related distributions and tail behaviour of ABEP distribution are given.64

Maximum likelihood (ML) estimations of parameters are provided in Section 3. In Section 4, the65

real data examples are provided to make a comparison among candidate densities. The results are66

commented. Finally, in last section the conclusions are given and the remarks are considered.67

2. Gamma Distribution: Reparametrization and ABEP Distribution on Real Line68

The random variable Y will have a gamma distribution with PDF having parameters δ+1
α and

β = 1:

g(y) =
1

Γ( δ+1
α )

y
δ+1

α −1 exp{− y
β
}, y > 0, δ > 0, α > 0. (1)

Theorem 1. Let Y be a continuous random variable defined on [0, ∞), distributed as G( δ+1
α , β = 1). Consider

a discrete random variable T. It generates a function on real line and unequal probabilities at negative and
positive sides of real line will be constructed. T is 1 + ε for the probability 1+ε

2 at positive side and T is −(1− ε)

for the probability 1−ε
2 at negative side. A variable transformation Z = Y1/αT is applied to get the α power

of Gamma distribution. Here, the random variables Y and T are independent [5,29]. After applying this
transformation on gamma distribution in equation (1), we will get the following PDF:

f (z) =

 f1(z) = α
2(1−ε)δΓ( δ+1

α )
(−z)δ exp

{
−
( −z

1−ε

)α
}

, z < 0

f0(z) = α
2(1+ε)δΓ( δ+1

α )
zδ exp

{
−
( z

1+ε

)α
}

, z ≥ 0,
(2)

with the parameters α > 0, δ > 0 and ε ∈ (−1, 1) [29]. The random variable T keeps to be PDF that will be
generated, because the gamma distribution is a PDF on [0, ∞). The probabilities of (1 + ε) and −(1− ε) values
of random variable T are 1+ε

2 and 1−ε
2 [30,33]. Thus, a function in equation (2) has the unequal probabilities at

positive and negative sides of real line. The following PDF from function in equation (2) will be proposed:

f (z) =


f1(z) =

α1

2[k1(1−ε)]δ1+1Γ( δ1+1
α1

)
(−z)δ1 exp

{
−
(

−z
k1(1−ε)

)α1
}

, z < 0

f0(z) =
α0

2[k0(1+ε)]δ0+1Γ( δ0+1
α0

)
zδ0 exp

{
−
(

z
k0(1+ε)

)α0
}

, z ≥ 0,
(3)
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with the parameters α1 > 0, α0 > 0, δ1 > 0, δ0 > 0, k1 > 0, k0 > 0 and ε ∈ (−1, 1). Without consulting69

the variable transformation technique, PDF can be obtained. This PDF is called as an asymmetric bimodal70

exponential power distribution (ABEP). α1 and α0 are for the shape of peakedness, δ1 and δ0 are for height of71

bimodality at negative and positive sides of real line. k1 and k0 are nuisance parameters to have same form of72

normal or Laplace distributions. ε is a skewness parameter that is responsible to have unequal probabilities73

at negative and positive sides of real line. Thus, a skewness on a function can be constructed. The details for74

function in equation (3) are given by the following proof.75

Proof. The preliminary tools for the calculation of integrals are required. The gamma function and the
incomplete gamma functions are used to have the integral kernels which are appropriate to calculate
the integrals. Thus, we can derive a PDF.

Γ(s) = γ(s, α) + Γ(s, α), (4)

where Γ(s) =
∫ ∞

0 xs−1 exp{−x}dx, γ(s, α) =
∫ α

0 xs−1 exp{−x}dx, and Γ(s, α) =
∫ ∞

α xs−1 exp{−x}dx.76

These are the gamma, the lower and upper incomplete gamma functions, respectively [34].77

The reparametrization of gamma function is considered as:

Γ(s + 1/α) =
∫ ∞

0
xs+1/α−1 exp{−x}dx. (5)

A variable transformation x = (yp)α is applied to get the power version of gamma function:

Γ(s + 1/α) = αpαs+1
∫ ∞

0
yαs exp{−(yp)α}dy. (6)

From equation (4), γ(s∗, α∗) = Γ(s∗)− Γ(s∗, α∗). Now, let s∗ be s + 1/α and α∗ = (pk)α. Then,78

γ(s + 1/α, (pk)α) =
∫ (pk)α

0 xs+1/α−1 exp{−x}dx. Now, the variable transformation x = (yp)α is79

applied to the power version of the lower incomplete gamma function:80

γ(s + 1/α, (pk)α) = αpαs+1
∫ k

0
yαs exp{−(yp)α}dy. (7)

From equation (4), Γ(s∗, α∗) = Γ(s∗)− γ(s∗, α∗). Now, let s∗ be s + 1/α and α∗ = (pk)α. Then,81

Γ(s+ 1/α, (pk)α) =
∫ ∞
(pk)α xs+1/α−1 exp{−x}dx. Now, the variable transformation x = (yp)α is applied82

to the power version of the upper incomplete gamma function:83

Γ(s + 1/α, (pk)α) = αpαs+1
∫ ∞

k
yαs exp{−(yp)α}dy. (8)

The equations (6)-(8) are power versions of gamma functions defined on the positive axis. These
three functions can be transferred to the negative axis via the variable transformation y = −u. For
equation (6),

Γ(s + 1/α) = αpαs+1
∫ 0

−∞
(−u)αs exp{−(−up)α}du. (9)

For equation (7),

γ(s + 1/α, (pk)α) = αpαs+1
∫ 0

−k
(−u)αs exp{−(−up)α}du. (10)

For equation (8),

Γ(s + 1/α, (pk)α) = αpαs+1
∫ −k

−∞
(−u)αs exp{−(−up)α}du. (11)
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For two cases of x < 0 and x ≥ 0, we have the integrals of equation (3). So, equation (6) and equation84

(9) can be used to calculate these integrals. One can easily show that the integrated value of negative85

and positive sides of equation (3) are 1/2, respectively. Due to the fact that we must have a PDF86

defined on the real line, the summation of these two results is 1. Here, the variable transformation87

technique is not used. Thus, we can guarantee that the function gotten is on the interval [0, 1]. It is well88

known that if a function is defined on the interval [0, 1], this function will be a PDF.89

The location-scale form of this distribution is given by the following form. Suppose that Z is
distributed as ABEP(α1, α0, δ1, δ0, k1, k0, ε). Then, the random variable X = µ + σZ, µ ∈ R and σ > 0
will have ABEP distribution with the following density function:

g(x) =


g1(x) = α1

2σ[k1(1−ε)]δ1+1Γ( δ1+1
α1

)
(− x−µ

σ )δ1 exp{−
[
−(x−µ)
σk1(1−ε)

]α1}, x < µ

g0(x) = α0

2σ[k0(1+ε)]δ0+1Γ( δ0+1
α0

)
( x−µ

σ )δ0 exp{−
[

x−µ
σk0(1+ε)

]α0}, x ≥ µ,
(12)

where µ and σ are the location and the scale parameters, respectively. Here, the random variable X is90

distributed as ABEP(µ, σ, α1, α0, δ1, δ0, k1, k0, ε), that is, X ∼ ABEP(µ, σ, α1, α0, δ1, δ0, k1, k0, ε).91

2.1. Properties of ABEP Distribution92

2.1.1. Mode of a kernel function in ABEP93

The mode of function in equation (12) is examined. It is obvious that this function is a reflected
function in equation (3) from the reparameterized gamma function in equation (1). Thus, examining
the mode of positive side of equation (3) means that the negative side of equation (3) is also examined.
Now, it is examined whether or not there is one root of the following function:

h(t) = tδ0 exp{−tα0}, t > 0, δ0 > 0, α0 > 0. (13)

Here, we will give comments about getting root of this function: NC can be ignored, because NC94

produces a function at interval [0, 1]. It does not affect the modes of function. At the same way, the95

location parameter µ can be ignored, because the location shows where the function in equation (12)96

is located. The scale σ and its variants k0 or k1 and ε parameters change the rescaling of function in97

equation (12).98

The root of derivative of function in equation (13) with respect to t is exp{α−1
0 log(α−1

0 δ0)}. For99

t = 0, h(t) = 0, which is obvious root that does not lead to modality. Thus, there is only one root of100

function in equation (13), that is, there is one mode of function of generalized gamma at positive side.101

Since it is reflected to negative side of real line, the function has a mode at negative side of real line.102

Totally, this function in equation (12) has two modes at real line. Note that it is not necessary to use103

second derivative test, because maximization of a function is equivalent to minus minimization of that104

function. Detecting the root is enough for having modality.105

2.1.2. Cumulative distribution function of ABEP distribution106

Let X ∼ ABEP(µ, σ, α1, α0, δ1, δ0, k1, k0, ε). Let G be CDF of PDF g. Then, CDF of the random
variable X is:

G(x) =


G1(x) = 1

2Γ
(

δ1+1
α1

)Γ
(

δ1+1
α1

, ( −(x−µ)
k1σ(1−ε)

)α1
)

, x < 0

G0(x) = 1+ε
2 + 1

2Γ
(

δ0+1
α0

)γ
(

δ0+1
α0

, ( x−µ
k0σ(1+ε)

)α0
)

, x ≥ 0,
(14)
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where γ and Γ are the lower and upper incomplete gamma functions, respectively.107

2.1.3. rth moment of random variable X distributed as ABEP108

Let X ∼ ABEP(µ = 0, σ = 1, α1, α0, δ1, δ0, k1, k0, ε). The rth, r ≥ 0, non-central moment is given by

E(Xr) =
[k1(1− ε)]rΓ

(
δ1+r+1

α1

)
2Γ
(

δ1+1
α1

) +
[k0(1 + ε)]rΓ

(
δ0+r+1

α0

)
2Γ
(

δ0+1
α0

) . (15)

One can get the results via equations (6) and (9). Since E(Xr) is finite for finite values of parameters109

α1, α0, δ1, δ0, k1, k0 and when the extremely big values of parameters α1, α0, δ1, δ0, k1, k0 and r are not110

taken, the ABEP distribution can produce finite values for the estimates of parameters, because111

finiteness of moments gurantees to have a finite value of function [35]. Note that the domain of112

skewness parameter ε is the interval (−1, 1).113

2.1.4. Moment generating function for random variable X distributed as ABEP114

Let X ∼ ABEP(µ = 0, σ = 1, α1, α0, δ1, δ0, k1, k0, ε). The moment generating function of the
random variable X is:

E[exp(tX)] =
∞

∑
m=0

[ tm[k1(1− ε)]mΓ
(

δ1+m+1
α1

)
2Γ
(

δ1+1
α1

)
m!

+
tm[k0(1 + ε)]mΓ

(
δ0+m+1

α0

)
2Γ
(

δ0+1
α0

)
m!

]
, (16)

where t ∈ R and m ∈ N. In order to calculate the integral E[exp(tX)], the Taylor expansion at x = 0115

of the function exp(tx) = ∑∞
m=0

(tx)m

m! must be gotten. After some straightforward calculation for the116

integral E[exp(tX)] via using equations (6) and (9), the result of integral can be obtained.117

2.1.5. PDFs for different values of parameters in ABEP118

Figures 1 and 2 illustrate the examples of PDF of ABEP distribution for some values of parameters119

that give all possible shapes of function. It is seen from these figures, the shape of peakedness,120

bimodality and asymmetry can be controlled at the same time via parameters in ABEP. When the121

different values of parameters α1, α0 and δ0, δ1 are chosen, the different shape of peakedness and the122

bimodality with different height around location parameter µ are obtained, respectively. The skewness123

parameter ε makes an asymmetry around parameter µ.124
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(a) Unimodal densities due to δ1 = δ0 = 0, examples for normal
and Laplace and their half forms due to α1 > 0 and α0 > 0.
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(b) Bimodal densities due to δ1 > 0, right of density is normal
and Laplace due to δ0 = 0 and α0.

Figure 1. Examples of PDFs of the ABEP distribution for the different values of parameters (µ = 0, σ =

1): Unimodality, bimodality, half of Laplace and half of normal.
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unequal probabilities due to ε.

Figure 2. Examples of PDFs of the ABEP distribution for the different values of parameters (µ = 0, σ =

1): Bimodality.

2.1.6. Tail behaviour property of ABEP125

Tail behaviour or heavy tailedness of a distribution is examined by means of definitions given126

below [36]:127

Definition 1. Let Ḡ(x) be 1− G(x). If lim
x→+∞

exp(λx)Ḡ(x) = ∞ for all λ > 0, then G(x) is a heavy-tailed.128

From equation (14), the positive part of CDF includes the lower incomplete gamma function γ.129

The function γ(a, b) is examined to get the limit in Definition 1. For b > a, this function goes to zero.130

Then, lim
x→+∞

exp(λx)G(x) can go to zero when b is more bigger than a. Otherwise, this limit is infinite.131

If lim
x→+∞

exp(λx)G(x)→ 0, then lim
x→+∞

exp(λx)Ḡ(x)→ ∞ for b > a in γ function.132

lim
x→+∞

exp(λx)Ḡ(x) is undefined for a case a ≥ b. It is seen that when b as a variable x of the133

function γ has big values, that is, an outlier is included by data, the heavy-tailedness property of ABEP134

can be obtained. For a ≥ b, there is already a tendency to get small values of variable x in γ function in135

equation (14), which does not correspond an outlier in data set when it is compared with case b > a in136

γ function. Thus, having an undefined value for lim
x→+∞

exp(λx)Ḡ(x) is not problem in order to test the137

heavy-tailedness property of function G via Definition 1.138

Definition 2. Suppose that random variable X has a PDF g defined on [0, ∞). If E[exp(tX)] = ∞, for all t,139

then g is a heavy-tailed.140
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Note that the generalized gamma distribution is reflected to negative axis or x < µ. The tail141

behaviour at x > µ or x < µ has a same role. Then, Definition 2 can be used for ABEP.142

From equation (16), E[exp(tX)] = ∞ is satisfied due to m in summation in equation (16) of ABEP143

distribution, because m goes to infinity and Γ function gives infinity for big values of m. Then, ABEP is144

a heavy-tailed distribution.145

A comment for heavy-tailedness from the results of Definitions 1 and 2 is given: The skewness146

parameter ε and also shape parameters α1, α0, δ1, δ0 work together in order to get a heavy-tailed147

function, because they are responsible to change the shape of function.148

2.2. Special Cases, Related Distributions and Flexibility of ABEP149

When we want to make a comparison among them from lowest to highest for capacity on150

modelling frequency, ordered form is Refs. [28,29] and ABEP distribution. For this aim, ABEP151

distribution is defined by using the generalized gamma distribution. The resulting distribution has152

five parameters. Thus, ABEP distribution will have some properties: when α1 = 1 and α0 = 2, left side153

of location is half of Laplace distribution and right side of location is half of normal distribution for154

ε = 0 and δ1 = δ0 = 0. For values of α1 = 2 and α0 = 1, the resulting function will be vice versa of155

previous case. For these situations, when ε 6= 0, ABEP will be ε-skew form of half from Laplace and156

normal distributions. It is easily seen that ABEP distribution can be a combination of Laplace and157

normal distributions for values of peakedness parameters α1 and α0 of distribution in ε-skew form.158

The nuisance parameters k1 and k0 are added to have same form of normal and Laplace distributions.159

The location-scale form is also provided. The parameters α1, δ1 and α0, δ0 also determine the overall160

shape of function for x < µ and x ≥ µ, respectively. Tails at negative and positive sides of real line can161

be platykurtic (α1, α0 → ∞) and leptokurtic (α1, α0 → 0). The special cases, related distributions and162

flexibility of ABEP distribution are given in the following items:163

1. When α1 = α0 = α > 0, ABEP distribution drops to the kernel of distribution in [29] for β = 1.164

2. If δ0 = δ1 = δ > 0, the density function has two modes (bimodal case) with the same height. If165

δ0 = δ1 = 0, the distribution is a unimodal.166

3. When ε = 0, the distribution is the symmetric with two different modes.167

4. When α1 = α0 = 2, δ1 = δ0 = 0, k1 = k0 = 2 and ε = 0, the distribution is a standard normal168

distribution. Location µ ∈ R, scale σ > 0 and k1 = k0 = 2 case of ABEP distribution is defined in169

equation (12).170

5. When α1 = α0 = 1, δ1 = δ0 = 0, and ε = 0, the distribution is the Laplace distribution with the171

parameters location µ ∈ R, scale σ > 0 and k1 = k0 = 1 in equation (12).172

6. When α1 = α0 = α > 0, δ1 = δ0 = δ > 0 and ε = 0, the distribution is BEP in [28].173

7. When α1 = α0 = 2 and δ1 = δ0 = δ > 0, ABEP distribution is used to model bimodality with174

ε-skew asymmetry in its modes at left and right sides of location µ ∈ R, which is a similar manner175

with [9].176

8. When δ1 = δ0 = k− 1, α1 = α0 = 1, the ABEP distribution becomes ε-skew gamma distribution177

in [5].178

9. When α1 = α0 = 2, δ1 = δ0 = 0 and k1 = k0 = 2, the distribution becomes the ε-skew normal179

distribution in [33].180

10. When α1 = α0 = α > 0, δ1 = δ0 = 0, k1 = k0 = 1 and ε = 0, ABEP is a generalized normal or181

Gaussian (exponential power, abbreviated as EP) distribution in [37].182

11. When δ1 = δ0 = 0, ε = 0, α1 = α0 = 2/b, b ∈ (0, 2] in [38], δ1 = δ0 = 0, α1 = α0 = α > 0,183

κ1 = 1− ε, κ0 = 1 + ε, ε ∈ (−1, 1) in [39], δ1 = δ0 = 0, a rescaling via convex combination in [40],184

δ1 = δ0 = 0, a skewed form via a rescaling in [41,43] and δ1 = δ0 = 0, ε-skew form in [42], the185

skewed EP and the symmetric EP distributions are equivalent to distributions from Refs. [38–43].186

The Refs. [39–41,43] are asymmetric EP distributions based on different sense of skewed form of187

symmetric EP distribution. The special functions in equations (6) and (9) can be used to get a188

same kernel of EP with recalculated NC in [38–43].189
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12. The ε-skew EP distribution in [44] is a special case of this family for δ0 = δ1 = 0 and k1 = k0 = 2.190

13. The kernel of EP distribution without bimodality in [45,46] is a special case of ABEP when191

k1 = k0 = k > 0, δ1 = δ0 = 0 and α1 = α0 = α > 0.192

14. When the variable transformation z = y1/α on function in equation (1) is done,

f (z) =
α

Γ( δ+1
α )

zδ exp{−zα}, z > 0, δ > 0, α > 0 (17)

is obtained. This is also called as a generalized gamma (GG) distribution. The Pearson type193

III and V, Erlang, exponential, Weibull, Pareto, Levy, Rayleigh, Nakagami, Frechet, Helmert,194

Maxwell-Boltzmann and four-parameter exponential gamma as algebraic and exponential195

functions are members of a function in equation (17) [31,47–49] and references therein.196

The first developer of EP is Ref. [45] via solving the differential equation as a different sense197

from GG in equation (17). The Ref. [46] proposed EP as a generalized error distribution. In ABEP198

distribution, there are parameters for modelling x < µ and x ≥ µ. Thus, the bimodality can be199

produced (see also section 2.1.1) and the role of parameters that creates bimodality due to reflection200

approach in equation (2) of GG function can be observed easily.201

3. Maximum Likelihood Estimations for Parameters of ABEP Distribution202

Let x1, x2, ..., xn be a random sample of size n from an ABEP distributed population. The203

unknown parameters µ, σ, α1, α0, δ1, δ0 and ε will be estimated by ML estimation method [35]. Here,204

the parameters k1 and k0 are nuisance parameters. The log-likelihood log(L) function is:205

log[L(x; θ)] = n1[log(α1)− log(2σ[k1(1− ε)]δ1+1)− log(Γ(
δ1 + 1

α1
))] (18)

+δ1

n1

∑
i=1

log
(
−(xi − µ)

σ

)
−

n1

∑
i=1

(
−(xi − µ)

σ[k1(1− ε)]

)α1

+n0[log(α0)− log(2σ[k0(1 + ε)]δ0+1)− log(Γ(
δ0 + 1

α0
))]

+δ0

n0

∑
i=1

log
(

xi − µ

σ

)
−

n0

∑
i=1

(
xi − µ

σ[k0(1 + ε)]

)α0

,

where n0 is the number of non-negative observations and n1 is the number of negative observations.206

θ̂ = (µ̂, σ̂, α̂1, α̂0, δ̂1, δ̂0, ε̂) are ML estimators of parameter vector θ = (µ, σ, α1, α0, δ1, δ0, ε).207

The second derivative test can be used whether or not the log(L) function in equation (18) has the208

maximum value, however since PDF has seven parameters µ, σ, α1, α0, δ1, δ0 and ε, using the Hessian209

matrix cannot be possible. There can be a solution to overcome this problem if we focus on improving210

the modelling capacity of PDF having more parameters which help us to increase flexibility of the211

function and so the efficiency for ML estimators of the parameters µ and σ, especially. A solution in212

indirect way for this problem is that one can use GOFT statistics, such as KS, CVM and AD to see213

the distances between expected and empirical cumulative distributions. It is well known that the214

more small values of the GOFT statistics mean the more fitting performance is accomplished by the215

function. In the computation process, optimization of nonlinear function in equation (18) is conducted216

via hybrid genetic algorithm (HGA) in MATLAB 2016a. In HGA, intervals for parameters that will217

optimize the log(L) function in equation (18) are used. The intervals for µ, σ, α1, α0, δ1, δ0 and ε are218

[−5, 5], [0, 5], [0, 10], [0, 10], [0, 10], [0, 10] and (−1, 1) that is domain of skewness parameter ε. k1 and k0219

as nuisance parameters are taken to be α1 and α0. This form is an appropriate to have same form of220

normal and Laplace. Let us remind that ABEP is a generalized normal or Laplace distribution. Thus,221

k1 and k0 are nuisance parameters.222
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The Fisher information matrix for parameters µ and σ from ABEP is given by matrix I in the
following form:

I(θ) =

E1

[
∂2 log[ f (x;µ,σ)]

∂µ2

]
+E0

[
∂2 log[ f (x;µ,σ)]

∂µ2

]
E1

[
∂2 log[ f (x;µ,σ)]

∂µ∂σ

]
+E0

[
∂2 log[ f (x;µ,σ)]

∂µ∂σ

]
E1

[
∂2 log[ f (x;µ,σ)]

∂µ∂σ

]
+E0

[
∂2 log[ f (x;µ,σ)]

∂µ∂σ

]
E1

[
∂2 log[ f (x;µ,σ)]

∂σ2

]
+E0

[
∂2 log[ f (x;µ,σ)]

∂σ2

] . (19)

The equations (6) and (9) are used to calculate the integrals in matrix I. Due to the analytical223

expression of PDF in equation (12), undiagonal elements of matrix I are non-zero. Here, shape α1, α0,224

bimodality δ1, δ0, skewness ε and nuisance k1, k0 parameters make a covariance structure between225

location µ and scale σ parameters. From this result, covariance structure on ML estimators of other226

parameters can be seen. Since it is possible to obtain the covariance among ML estimators, Fisher227

information matrix is obtained only ML estimators of two parameters µ and σ. If there can be a228

covariance among ML estimators, the inverse of matrix I cannot be obtained except the generalized229

inverse. Note that getting matrix I for µ and σ from ABEP is tractable for calculation of integration of230

Fisher information. Using the generalized inverse cannot be preferable due to loss of information in an231

inverse of a matrix. The loss of information occurs, because the multiplication of inverse of matrix I232

and I does not give an identity matrix [50]. When α1 = α0 = α, δ1 = δ0 = δ, ε = 0 and k1 = k0 = k,233

E1

[
∂2 log[ f (x;µ,σ)]

∂µ∂σ

]
+E0

[
∂2 log[ f (x;µ,σ)]

∂µ∂σ

]
= 0, that is, the covariance between ML estimators of µ and σ234

from ABEP is zero.235

E1

[
∂2 log[ f (x; µ, σ)]

∂µ2

]
=

δ1Γ( δ1−1
α1

) + α1(α1 − 1)Γ(1− 1−δ1)
α1

2[σk1(1− ε)]2Γ( δ1+1
α1

)
, (20)

E0

[
∂2 log[ f (x; µ, σ)]

∂µ2

]
=

δ0Γ( δ0−1
α0

) + α0(α0 − 1)Γ(1− 1−δ0)
α0

2[σk0(1 + ε)]2Γ( δ0+1
α0

)
, (21)

E1

[
∂2 log[ f (x; µ, σ)]

∂µ∂σ

]
=

−α2
1Γ(1 + δ1/α1)

2k1(1− ε)σ2Γ( δ1+1
α1

)
, (22)

E0

[
∂2 log[ f (x; µ, σ)]

∂µ∂σ

]
=

α2
0Γ(1 + δ0/α0)

2k0(1 + ε)σ2Γ( δ0+1
α0

)
, (23)

E1

[
∂2 log[ f (x; µ, σ)]

∂σ2

]
=

1
2σ2

[
− 1− δ1 +

α1(α1 + 1)Γ(1 + δ1+1
α1

)

Γ( δ1+1
α1

)

]
, (24)

E0

[
∂2 log[ f (x; µ, σ)]

∂σ2

]
=

1
2σ2

[
− 1− δ0 +

α0(α0 + 1)Γ(1 + δ0+1
α0

)

Γ( δ0+1
α0

)

]
. (25)

Some of regularity conditions [35] are as follows:236

1. det[I(µ, σ)] < ∞ and237

2. | ∂3

∂θ3 log f (x; θ)| ≤ M(x). Then, E[M(X)] < ∞.238

One can verify that the conditions can be satisfied by using Maple or Mathematica. Here, it is possible239

to get M(X) as Xr in equation (15). Then, the condition 2 is satisfied. The other regularity conditions240

are already satisfied obviously. Since the ABEP distribution satisfies these two conditions,241

√
n

([
µ̂

σ̂

]
−
[

µ

σ

])
D−→ N(0, [I(µ, σ)]−1), (26)
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that is,
√

n

([
µ̂

σ̂

]
−
[

µ

σ

])
is asymptotically normal with mean zero vector and covariance matrix242

[I(µ, σ)]−1 and µ̂, σ̂ are asymptotically efficient and asymptotic normally distributed [35].243

4. Real Data Examples244

In this section, the modelling capability of ABEP is shown by applying it on two data sets from245

microarray (http://discover.nci.nih.gov/nature2000/data/selected-data/at-matrix.txt). The analysing246

of proteins in cancer cell is important. The efficient estimates of location and scale parameters for these247

proteins are a crucial role in medical care. For this reason, we prefer to focus on these data sets that248

have the different shapes of peakedness, bimodality and asymmetry.249

In the second step, the distributions are considered to model these data sets. In the estimation250

process, we use the maximum likelihood method together with GOFT statistics, mostly prominent251

ones that are KS, CVM and AD (robust one) distances to test the fitting capability of distributions [51].252

When the estimates of parameters are computed, we can examine via GOFT statistics which of the five253

PDFs is the best fit on data.254

The bimodal extended generalized gamma (BEGG) [29], the Rathie–Swamee (RS) (RS is also255

known to be a modified version of generalized logistic) [11–13], the exponentiated sinh Cauchy (ESC)256

[10] and the alpha-skew Laplace (ASL) [24] distributions are used to fit the data and make a comparison257

between them and ABEP. There are many different distributions which have been proposed, however258

using explicit expression for CDF should be preferred to fit the data. For this reason, the distributions259

having explicit expression for their CDFs are used. Thus, GOFTs can be used without including the260

numerical integration methods having the computational errors.261

Modelling data (or Riemann integration in randomly putting the bin of histograms on real line)262

is an equivalent to an integration. So, the discontinuity at x = µ is not problem for estimations of263

parameters. For computation, the HGA is used. HGA also includes the derivative free approach264

[52] for optimization. Then, the discontinuity point x = µ is not problem for optimization of log(L)265

function in equation (18) according to parameters. At the same time, GOFT statistics are used while266

performing the computation process.267

The Rao-Cramér lower bounds (RCLBs) for ML estimators of parameters are given. The Monte268

Carlo numerical integration is used to compute the integrals in Fisher information in equation (19) for269

RS, ESC and ASL distributions.270

Since the data generation procedure in Appendix A for ABEP is provided, the performance of271

fitting can be checked via the counted data at the prescribed ranges of domain as well. However, this272

procedure is rough when it is compared with GOFTs. It is also beneficial to observe the performance of273

the random number generation procedure.274

The number of replicated sample size n is 100 000. Data generated from ABEP, BEGG and ESC275

distributions are sorted from small to big values for each sample size n. After sorting, arithmetic276

mean of 100 000 artificial data is obtained for n = 118. After artificial data are generated from their277

corresponding PDFs, it is also possible to check the fitting performance of these functions via the278

artificial data (see Tables 3 and 6). Since ABEP, BEGG and ESC are competitive distributions for279

fitting data and they have a random number generation procedure, they are preferred to check their280

similarities with real data.281

4.1. Example 1: Modelling shape of peakedness, bimodality and asymmetry282

The data set labelled as "Homo sapiens Pig7 (PIG7) mRNA, complete cds Chr.16 [381663,283

(EW), 5’:AA059047, 3’:AA059031]" from microarray is modelled by ABEP, BEGG, RS, ESC and ASL284

distributions.285
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Table 1. ML estimates of parameters and GOFT statistics of fitted densities for microarray data.

µ̂ σ̂ α̂1 α̂0 δ̂1 δ̂0 ε̂ KS CVM AD
ABEP 0.0395 0.1060 1.7322 1.4499 1.2434 0.0505 0.3864 0.0510 0.0662 0.7150

µ̂ σ̂ α̂1 = α̂ α̂0 = α̂ δ̂1 δ̂0 ε̂ KS CVM AD
BEGG 0.0389 0.0926 1.4880 1.4880 1.0673 0.2657 0.2261 0.0574 0.0850 0.9568

µ̂ σ̂ â b̂ p̂ KS CVM AD
RS 0.0468 0.2049 1.6278 0.7525 1.1703 0.0865 0.1229 0.8152

µ̂ σ̂ λ̂ β̂ KS CVM AD
ESC 0.0226 0.0725 0.4091 1.1730 0.0737 0.1052 0.7086

µ̂ σ̂ â KS CVM AD
ASL -0.0700 0.1052 -0.5039 0.1318 0.4449 2.3821

Table 2. Asymptotic variances and covariances of ML estimators µ̂ and σ̂ (10−3).

ABEP BEGG RS ESC ASL

V̂ar(µ̂) Ĉov(µ̂, σ̂) V̂ar(µ̂) Ĉov(µ̂, σ̂) V̂ar(µ̂) Ĉov(µ̂, σ̂) V̂ar(µ̂) Ĉov(µ̂, σ̂) V̂ar(µ̂) Ĉov(µ̂, σ̂)

Ĉov(µ̂, σ̂) V̂ar(σ̂) Ĉov(µ̂, σ̂) V̂ar(σ̂) Ĉov(µ̂, σ̂) V̂ar(σ̂) Ĉov(µ̂, σ̂) V̂ar(σ̂) Ĉov(µ̂, σ̂) V̂ar(σ̂)
0.0215 0.0082 0.0073 0.0014 0.6481 0.0375 0.5739 −0.0174 4.365 0.4549

0.0383 0.0296 0.0615 0.0756 0.0419
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Figure 3. PDF of ABEP, BEGG, RS, ESC and ASL distributions for the estimates of their parameters.
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Figure 4. CDF of ABEP, BEGG, RS, ESC and ASL distributions for the estimates of their parameters.
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Table 3. Counted data at ranges [-10, -0.3, -0.1, 0, 0.1, 0.3, 10].

Real data 0 22 28 22 37 9 0
ABEP 0 17 29 22 38 12 0
BEGG 0 18 28 22 42 8 0
ESC 1 21 25 25 41 5 0

4.2. Example 2: Modelling shape of peakedness, bimodality and asymmetry286

The data set from microarray labelled as "SID 377353, ESTs [5’:, 3’:AA055048]" is modelled by287

ABEP, BEGG, RS, ESC and ASL distributions.288

Table 4. ML estimates of parameters and GOFT statistics of fitted densities for microarray data.

µ̂ σ̂ α̂1 α̂0 δ̂1 δ̂0 ε̂ KS CVM AD
ABEP 0.0070 0.0810 2.1174 1.3610 0.4937 0.0031 -0.0380 0.0392 0.0203 0.2773

µ̂ σ̂ α̂1 = α̂ α̂0 = α̂ δ̂1 δ̂0 ε̂ KS CVM AD
BEGG -0.0113 0.0516 1.0770 1.0770 1.7593 0.8923 -0.0048 0.0763 0.0936 0.7397

µ̂ σ̂ â b̂ p̂ KS CVM AD
RS -0.0201 0.3848 2.7876 3.9241 0.6641 0.0996 0.1083 0.5158

µ̂ σ̂ λ̂ β̂ KS CVM AD
ESC -0.0361 0.0561 0.3143 1.1959 0.0630 0.0396 0.2502

µ̂ σ̂ â KS CVM AD
ASL 0.0340 0.0988 0.2357 0.1099 0.2491 1.5098

Table 5. Asymptotic variances and covariances of ML estimators µ̂ and σ̂ (10−4).

ABEP BEGG RS ESC ASL

V̂ar(µ̂) Ĉov(µ̂, σ̂) V̂ar(µ̂) Ĉov(µ̂, σ̂) V̂ar(µ̂) Ĉov(µ̂, σ̂) V̂ar(µ̂) Ĉov(µ̂, σ̂) V̂ar(µ̂) Ĉov(µ̂, σ̂)

Ĉov(µ̂, σ̂) V̂ar(σ̂) Ĉov(µ̂, σ̂) V̂ar(σ̂) Ĉov(µ̂, σ̂) V̂ar(σ̂) Ĉov(µ̂, σ̂) V̂ar(σ̂) Ĉov(µ̂, σ̂) V̂ar(σ̂)
1.3731 0.0919 0.0602 3.2295 · 10−4 0.0317 −0.1177 3.1921 1032 344.4 7.592

0.2517 0.0901 0.0085 3747 0.6688
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Figure 5. PDF of ABEP, BEGG, RS, ESC and ASL distributions for the estimates of their parameters.
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Figure 6. CDF of ABEP, BEGG, RS, ESC and ASL distributions for the estimates of their parameters.

Table 6. Counted data at ranges [-10, -0.4, -0.2, 0, 0.2, 0.4, 10].

Real data 0 9 45 62 2 0 0
ABEP 0 8 46 60 4 0 0
BEGG 0 11 44 59 4 0 0
ESC 0 8 52 54 4 0 0

4.3. Comments on the Results of Examples 1 and 2289

For both of two examples, Figures 3 and 5 show that ABEP fits better than the other distributions.290

Especially, the modalities around location have been modelled as the different modes of heights and291

the shape of peakedness can be modelled as well. Especially, the right of location is modelled very292

well by ABEP at example 2. The asymmetry illustrating from example 1 has been modelled. The293

histograms of data at example 2 do not show an asymmetry and ML estimate of skewness parameter is294

very near to zero, because as it is seen from Figure 5, the histograms do not have an asymmetry when295

they are compared with histograms in Figure 3. The unequally distributed histograms around location296

in Figure 3 can show that there is an asymmetry in data set.297

For both of two examples, Tables 1 and 4 represent the ML estimates of parameters of distributions298

and GOFT statistics of fitted densities. ABEP distribution fits the best data set when we consider on299

the values of KS and CVM statistics. When we look at the fitting performance for all distributions300

from Figures 3 and 5, it is seen that ABEP, BEGG and ESC have better fitting performance than RS301

and ASL. However, when ABEP and ESC are compared, it is observed that two parameters λ and β of302

ESC are not enough to get the precise fitting on data, because these parameters work together around303

location. In BEGG, there is only one parameter α to control the fitting shape of function on real line.304

In ABEP, the role of parameters α1, α0, δ1 and δ0 around location is constructed definitely. Thus, these305

parameters affect to get the more precise estimates for parameters µ and σ, which is important if the306

data are from many phenomena.307

It is well known that the probability value (p-value) of a test statistic depends on the fitted density.308

For this reason, the more efficient density must be preferred before getting the p-value of a test statistic309

from corresponding density. Then, the potential problem that can occur in future from phenomena can310

be refrained. The estimates of µ from fitted densities of ABEP, BEGG, RS and ESC can be near to each311

other, but the estimates of µ of ABEP are more precise one, because ABEP is the best one for fitting on312

data. At the same way, the estimates of σ of ABEP from both of two examples are the best one.313
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The random number generation procedure can be conducted at a more precise way for ABEP,314

BEGG and ESC distributions, because ABEP and BEGG have an algorithm of random number315

generation in Appendix A. The inverse of CDF of ESC distribution [10] can be taken to get the316

random numbers from ESC. The artificial data generated from ABEP distribution also show that the317

counted artificial data at ranges can be similar with the counted real data at ranges (see Tables 3 and318

6). It is noted that the mostly counted data (the numbers 37 and 62 in Example 1 and 2, respectively) at319

an interval for real data are constructed by the artificial data generated from ABEP distribution for the320

prescribed ranges at real line. The counted artificial data from ABEP represent the counted real data321

when they are compared with that from BEGG and ESC. Thus, we can infer that the data generation322

procedure is also successful after we get the precise estimates of parameters in ABEP via collaboration323

with GOFT statistics.324

GOFT statistics in Tables 1 and 4 show that there can a numerical error in the computation of325

special function from CDF of ABEP. The AD for ABEP can have a numerical error from the computation326

of CDF, because CDF of ABEP is a special function. Even if CDF of ABEP depends on special functions327

that are incomplete gamma functions, the fitting performance of ABEP is the best one due to fact that328

all possible parameters (shape, bimodality and skewness) that can fit data are added into ABEP.329

5. Conclusions and Discussions330

A family for bimodal distribution with two parameters fitting the shape of peakedness (α1 and331

α0), two parameters fitting the height of bimodality (δ1 and δ0) and a parameter fitting the asymmetry332

(ε) in data set has been proposed. The unimodal case of this family is obtained when δ1 = δ0 = 0. The333

skewness parameter in this family is from ε-skew approach that can produce the asymmetry around334

location. The importance of having these parameters in ABEP for modelling around location separately335

has been observed when we make a comparison among ABEP, BEGG, ESC and RS distributions that336

have explicit expression for CDF. As a result, ABEP can model efficiently the shape of peakedness, the337

bimodality and the asymmetry at the same time, because ABEP has parameters which are responsible338

to fit the shape of peakedness, the bimodality and the asymmetry in data when it is compared with339

BEGG, RS, ESC and ASL distributions.340

The well known approach which derives PDF without consulting the variable transformation341

technique is applied for the tractable functions in equations (6)-(11) to propose a new distribution. It342

is clear that this approach can be applied for other kind of distributions which are on the negative,343

positive or real line. The disadvantage of this approach is that the analytical expression of a function344

must be tractable to derive a PDF. The equations (6)-(8) are the power version of gamma, lower and345

upper incomplete gamma functions. The functions in equations (9)-(11) are transferred to the negative346

side of real line via using functions in equations (6)-(8). They are new kind of the special functions347

to calculate the integrals having the kernel of gamma function. One can get distributions via these348

functions. For example, alpha-skew Laplace [24], alpha–beta skew normal [3], alpha-skew generalized349

t with variable transformation [53,54], symmetric and asymmetric EP [38–43] distributions with the350

recalculated NC can also be gotten by these special functions. The special cases, related distributions351

and flexibility of ABEP are given in relevant section.352

The algorithm for generating artificial data from ABEP is provided. Thus, the similarity between353

artificial and real data sets has been observed as a rough approach and the performance of optimization354

for the log(L) function and GOFTs can be supported by this similarity as well. The benefit of GOFTs is355

depicted when a PDF has more parameters, because the nearness to data, that is, the best performance356

on optimization for log(L) function when the competitive PDFs are used, can be checked by GOFT357

statistics. Thus, if CDF of a PDF exists, using GOFTs as an indirect way to check the potential358

optimization problem(s) is provided when the second derivative test is a problem for getting the359

Hessian matrix with respect to parameters of log(L) function. HGA is also used to overcome the360

problems that can occur while performing optimization of log(L) function according to the parameters361

in ABEP. As a result, performing a cross check between the optimization tool HGA and the GOFT362
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statistics is a beneficial approach to overcome the potential problem(s) from the computation process.363

Thus, the more precise ML estimates for parameters can be gained. When it is considered on overall364

results from illustrating of PDF and CDF and also artificial data, the GOFT statistics and these results365

support each others to show the fitting performance of ABEP.366

RCLBs for ML estimators of parameters µ and σ are obtained. The properties of ABEP are provided367

and so the heavy-tailedness property of ABEP distribution has been examined. The heavy-tailedness368

of ABEP from Definitions 1 and 2 are guaranteed when b > a in γ function. Definitions 1 and 2 imply369

that ABEP can be a heavy-tailed distribution together with that comment in there.370

The entropy-based parameter estimation for ABEP is on going issue from Refs. [31,32] to study371

via the proposed special functions in equations (6)-(11). In future, a package in a statistical software R372

from open access will be prepared for ABEP distribution with the different estimation methods added373

into this package.374
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Abbreviations380

The following abbreviations are used throughout the text:381

PDF Probability density function
CDF Cumulative density function
ML Maximum likelihood
NC Normalizing constant
GOFT Goodness of fit test
RCLBs Rao-Cramér lower bounds
ABEP Asymmetric bimodal exponential power
BEP Bimodal exponential power
EP Exponential power
BEGG Bimodal extended generalized gamma
RS Rathie–Swamee
ESC Exponentiated sinh Cauchy
ASL Alpha–skew–Laplace
HGA Hybrid genetic algorithm
KS Kolmogorov-Smirnov
AD Anderson-Darling
CVM Cramér–von Mises
GG Generalized gamma

382

Appendix Random Number Generation Procedure from ABEP Distribution383

FOR i FROM TO the number of sample size n1 from α1,384

v1 = k1(1− ε),385

Generate y from Gamma distribution with parameters δ1+1
α1

and 1,386

x1 = µ + σv1y1/α1 .387

END FOR388

FOR i FROM TO the number of sample size n0 from α0,389

v0 = k0(1 + ε),390

Generate y from Gamma distribution with parameters δ0+1
α0

and 1,391

x0 = µ + σv0y1/α0 .392

END FOR393
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Let x be a row vector with n = n1 + n0 elements of two vectors x1 with n1 for negative data and x0394

with n0 for positive data, that is, xn = (x1, x0).395
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