

1 Article

# 2 Asymmetric Bimodal Exponential Power Distribution 3 on Real Line

4 Mehmet Niyazi Çankaya <sup>1\*</sup>

5 <sup>1</sup> Applied Sciences School, Department of International Trading & Faculty of Art and Sciences, Department of  
6 Statistics, Uşak University, Uşak, Turkey

7 \* Correspondence: mehmet.cankaya@usak.edu.tr; Tel.: +90-276-221-21-21 (ext. 2585)

8 **Abstract:** The asymmetric bimodal exponential power (ABEP) distribution is an extension of the  
9 generalized gamma distribution to the real line via adding two parameters which fit the shape of  
10 peakedness in bimodality on real line. The special values of peakedness parameters of the distribution  
11 are combination of half Laplace and half normal distributions on real line. The distribution has  
12 two parameters fitting the height of bimodality, so capacity of bimodality is enhanced by using  
13 these parameters. Adding a skewness parameter is considered to model asymmetry in data. The  
14 location-scale form of this distribution is proposed. The Fisher information matrix of these parameters  
15 in ABEP is obtained explicitly. Properties of ABEP are examined. Real data examples are given to  
16 illustrate the modelling capacity of ABEP. The replicated artificial data from maximum likelihood  
17 estimates of parameters of ABEP and distributions having an algorithm for artificial data generation  
18 procedure are provided to test the similarity with real data.

19 **Keywords:** asymmetric bimodality; bimodal exponential power distribution; modelling; generalized  
20 Gaussian distribution.

---

## 21 1. Introduction

22 The different bimodal and skew distributions have been proposed over the last decade to construct  
23 flexible distributions. The proposed distributions are Refs. [1–26] and references therein via using  
24 different generating techniques [27] to get a probability density function (PDF). In these distributions,  
25 Refs. [5,6] proposed  $\epsilon$ -skew form of gamma distribution on real line. The deficiency of these functions  
26 is that different height and shape of peakedness around location on real line cannot be modelled  
27 separately. The model proposed by [6] has a bimodality with the same height, which is not flexible  
28 enough to model bimodal data with different height and shape of peakedness. Ref. [24] proposed  
29 bimodal and alpha-skew Laplace distribution that does not model shape peakedness around location  
30 on real line. However, the best way is to find a function which can fit data around location separately.  
31 In other words, the left and right sides of location will be modelled with different parameters to have an  
32 efficient fitting for both sides of location. A bimodal exponential power (BEP) distribution is proposed  
33 by [28]. The properties of BEP distribution are few when BEP is compared with distribution proposed  
34 by [29], because BEP has same level of peaks around location on real line and it is also symmetric in  
35 both side of location. The shape of peakedness around location on real line is modelled by only one  
36 parameter, however two parameters are added to model different modes from distribution on real line  
37 [29]. Two parameters controlling to fit the shape of peakedness and two parameters controlling to fit  
38 the height of bimodality will be used together. Skewness parameter is also added to model asymmetry  
39 in data. Thus, modelling capacity of asymmetric bimodal exponential power (ABEP) distribution is  
40 better than current candidates proposed by [5,6,28,29], because ABEP distribution has parameters that  
41 control the fitting both sides of location separately.

42 The second aim is that we do not only propose ABEP distribution but also derive this distribution  
43 via constructing a normalizing constant (NC) which leads to produce a PDF. While deriving a PDF,  
44 producing NC can be a preferable approach. This approach can be taken care for deriving a PDF when  
45 one wants to add a new parameter to increase the modelling capacity of function if it is tractable to get

46 NC from a function. The NC approach was examined by [30] to construct asymmetric distributions  
 47 from symmetric distributions. Some techniques used to derive a PDF are reviewed by [27]. There are  
 48 other techniques to produce PDFs derived from entropy functions via method of Lagrange multipliers  
 49 as well [31,32] and references therein. The different goodness of fit tests (GOFs) are applied on the  
 50 ABEP. Thus, importance and advantage of GOFs, such as Kolmogorov-Smirnov (KS), Cramér von  
 51 Mises (CVM), Anderson-Darling (AD) via a cumulative distribution function (CDF) of a PDF will be  
 52 expressed for ABEP distribution when the optimization problem of ABEP can arise.

53 Especially, the estimation of location parameter is important, such as the proteins in cancer cell  
 54 are needed to determine, the image processing demands to get the quantitative value of colors at a  
 55 prescribed range. A radar data, speech processing, etc. in many phenomena can be modelled via ABEP.  
 56 The parametric models which can accommodate the shape of peakedness, bimodality and skewness  
 57 are mostly preferred to be able to model the data set efficiently. In other words, the frequented data  
 58 can be represented by the parameters which control to fit the shape of peakedness, the parameters  
 59 which control to fit the bimodality and the skewness which controls to fit the asymmetry in data set.  
 60 Due to this reason, ABEP distribution having these parameters is proposed. In addition to, since the  
 61 generalized gamma distribution is a class for many distributions, it is chosen in order to reflect to the  
 62 negative side of real line.

63 The paper is organized as follows. In Section 2, ABEP distribution is defined and mode,  
 64 distributional properties, related distributions and tail behaviour of ABEP distribution are given.  
 65 Maximum likelihood (ML) estimations of parameters are provided in Section 3. In Section 4, the  
 66 real data examples are provided to make a comparison among candidate densities. The results are  
 67 commented. Finally, in last section the conclusions are given and the remarks are considered.

## 68 2. Gamma Distribution: Reparametrization and ABEP Distribution on Real Line

The random variable  $Y$  will have a gamma distribution with PDF having parameters  $\frac{\delta+1}{\alpha}$  and  $\beta = 1$ :

$$g(y) = \frac{1}{\Gamma(\frac{\delta+1}{\alpha})} y^{\frac{\delta+1}{\alpha}-1} \exp\left\{-\frac{y}{\beta}\right\}, \quad y > 0, \delta > 0, \alpha > 0. \quad (1)$$

**Theorem 1.** Let  $Y$  be a continuous random variable defined on  $[0, \infty)$ , distributed as  $G(\frac{\delta+1}{\alpha}, \beta = 1)$ . Consider a discrete random variable  $T$ . It generates a function on real line and unequal probabilities at negative and positive sides of real line will be constructed.  $T$  is  $1 + \varepsilon$  for the probability  $\frac{1+\varepsilon}{2}$  at positive side and  $T$  is  $-(1 - \varepsilon)$  for the probability  $\frac{1-\varepsilon}{2}$  at negative side. A variable transformation  $Z = Y^{1/\alpha} T$  is applied to get the  $\alpha$  power of Gamma distribution. Here, the random variables  $Y$  and  $T$  are independent [5,29]. After applying this transformation on gamma distribution in equation (1), we will get the following PDF:

$$f(z) = \begin{cases} f_1(z) = \frac{\alpha}{2(1-\varepsilon)^\delta \Gamma(\frac{\delta+1}{\alpha})} (-z)^\delta \exp\left\{-\left(\frac{-z}{1-\varepsilon}\right)^\alpha\right\}, & z < 0 \\ f_0(z) = \frac{\alpha}{2(1+\varepsilon)^\delta \Gamma(\frac{\delta+1}{\alpha})} z^\delta \exp\left\{-\left(\frac{z}{1+\varepsilon}\right)^\alpha\right\}, & z \geq 0, \end{cases} \quad (2)$$

with the parameters  $\alpha > 0, \delta > 0$  and  $\varepsilon \in (-1, 1)$  [29]. The random variable  $T$  keeps to be PDF that will be generated, because the gamma distribution is a PDF on  $[0, \infty)$ . The probabilities of  $(1 + \varepsilon)$  and  $-(1 - \varepsilon)$  values of random variable  $T$  are  $\frac{1+\varepsilon}{2}$  and  $\frac{1-\varepsilon}{2}$  [30,33]. Thus, a function in equation (2) has the unequal probabilities at positive and negative sides of real line. The following PDF from function in equation (2) will be proposed:

$$f(z) = \begin{cases} f_1(z) = \frac{\alpha_1}{2[k_1(1-\varepsilon)]^{\delta_1+1} \Gamma(\frac{\delta_1+1}{\alpha_1})} (-z)^{\delta_1} \exp\left\{-\left(\frac{-z}{k_1(1-\varepsilon)}\right)^{\alpha_1}\right\}, & z < 0 \\ f_0(z) = \frac{\alpha_0}{2[k_0(1+\varepsilon)]^{\delta_0+1} \Gamma(\frac{\delta_0+1}{\alpha_0})} z^{\delta_0} \exp\left\{-\left(\frac{z}{k_0(1+\varepsilon)}\right)^{\alpha_0}\right\}, & z \geq 0, \end{cases} \quad (3)$$

69 with the parameters  $\alpha_1 > 0, \alpha_0 > 0, \delta_1 > 0, \delta_0 > 0, k_1 > 0, k_0 > 0$  and  $\varepsilon \in (-1, 1)$ . Without consulting  
 70 the variable transformation technique, PDF can be obtained. This PDF is called as an asymmetric bimodal  
 71 exponential power distribution (ABEP).  $\alpha_1$  and  $\alpha_0$  are for the shape of peakedness,  $\delta_1$  and  $\delta_0$  are for height of  
 72 bimodality at negative and positive sides of real line.  $k_1$  and  $k_0$  are nuisance parameters to have same form of  
 73 normal or Laplace distributions.  $\varepsilon$  is a skewness parameter that is responsible to have unequal probabilities  
 74 at negative and positive sides of real line. Thus, a skewness on a function can be constructed. The details for  
 75 function in equation (3) are given by the following proof.

**Proof.** The preliminary tools for the calculation of integrals are required. The gamma function and the incomplete gamma functions are used to have the integral kernels which are appropriate to calculate the integrals. Thus, we can derive a PDF.

$$\Gamma(s) = \gamma(s, \alpha) + \Gamma(s, \alpha), \quad (4)$$

76 where  $\Gamma(s) = \int_0^\infty x^{s-1} \exp\{-x\} dx$ ,  $\gamma(s, \alpha) = \int_0^\alpha x^{s-1} \exp\{-x\} dx$ , and  $\Gamma(s, \alpha) = \int_\alpha^\infty x^{s-1} \exp\{-x\} dx$ .  
 77 These are the gamma, the lower and upper incomplete gamma functions, respectively [34].

The reparametrization of gamma function is considered as:

$$\Gamma(s + 1/\alpha) = \int_0^\infty x^{s+1/\alpha-1} \exp\{-x\} dx. \quad (5)$$

A variable transformation  $x = (yp)^\alpha$  is applied to get the power version of gamma function:

$$\Gamma(s + 1/\alpha) = \alpha p^{\alpha s + 1} \int_0^\infty y^{\alpha s} \exp\{-(yp)^\alpha\} dy. \quad (6)$$

78 From equation (4),  $\gamma(s^*, \alpha^*) = \Gamma(s^*) - \Gamma(s^*, \alpha^*)$ . Now, let  $s^*$  be  $s + 1/\alpha$  and  $\alpha^* = (pk)^\alpha$ . Then,  
 79  $\gamma(s + 1/\alpha, (pk)^\alpha) = \int_0^{(pk)^\alpha} x^{s+1/\alpha-1} \exp\{-x\} dx$ . Now, the variable transformation  $x = (yp)^\alpha$  is  
 80 applied to the power version of the lower incomplete gamma function:

$$\gamma(s + 1/\alpha, (pk)^\alpha) = \alpha p^{\alpha s + 1} \int_0^k y^{\alpha s} \exp\{-(yp)^\alpha\} dy. \quad (7)$$

81 From equation (4),  $\Gamma(s^*, \alpha^*) = \Gamma(s^*) - \gamma(s^*, \alpha^*)$ . Now, let  $s^*$  be  $s + 1/\alpha$  and  $\alpha^* = (pk)^\alpha$ . Then,  
 82  $\Gamma(s + 1/\alpha, (pk)^\alpha) = \int_{(pk)^\alpha}^\infty x^{s+1/\alpha-1} \exp\{-x\} dx$ . Now, the variable transformation  $x = (yp)^\alpha$  is applied  
 83 to the power version of the upper incomplete gamma function:

$$\Gamma(s + 1/\alpha, (pk)^\alpha) = \alpha p^{\alpha s + 1} \int_k^\infty y^{\alpha s} \exp\{-(yp)^\alpha\} dy. \quad (8)$$

The equations (6)-(8) are power versions of gamma functions defined on the positive axis. These three functions can be transferred to the negative axis via the variable transformation  $y = -u$ . For equation (6),

$$\Gamma(s + 1/\alpha) = \alpha p^{\alpha s + 1} \int_{-\infty}^0 (-u)^{\alpha s} \exp\{-(up)^\alpha\} du. \quad (9)$$

For equation (7),

$$\gamma(s + 1/\alpha, (pk)^\alpha) = \alpha p^{\alpha s + 1} \int_{-k}^0 (-u)^{\alpha s} \exp\{-(up)^\alpha\} du. \quad (10)$$

For equation (8),

$$\Gamma(s + 1/\alpha, (pk)^\alpha) = \alpha p^{\alpha s + 1} \int_{-\infty}^{-k} (-u)^{\alpha s} \exp\{-(up)^\alpha\} du. \quad (11)$$

84 For two cases of  $x < 0$  and  $x \geq 0$ , we have the integrals of equation (3). So, equation (6) and equation  
 85 (9) can be used to calculate these integrals. One can easily show that the integrated value of negative  
 86 and positive sides of equation (3) are 1/2, respectively. Due to the fact that we must have a PDF  
 87 defined on the real line, the summation of these two results is 1. Here, the variable transformation  
 88 technique is not used. Thus, we can guarantee that the function gotten is on the interval [0, 1]. It is well  
 89 known that if a function is defined on the interval [0, 1], this function will be a PDF.  $\square$

The location-scale form of this distribution is given by the following form. Suppose that  $Z$  is distributed as  $\text{ABEP}(\alpha_1, \alpha_0, \delta_1, \delta_0, k_1, k_0, \varepsilon)$ . Then, the random variable  $X = \mu + \sigma Z$ ,  $\mu \in \mathbb{R}$  and  $\sigma > 0$  will have ABEP distribution with the following density function:

$$g(x) = \begin{cases} g_1(x) = \frac{\alpha_1}{2\sigma[k_1(1-\varepsilon)]^{\delta_1+1}\Gamma(\frac{\delta_1+1}{\alpha_1})} \left(-\frac{x-\mu}{\sigma}\right)^{\delta_1} \exp\left\{-\left[\frac{-(x-\mu)}{\sigma k_1(1-\varepsilon)}\right]^{\alpha_1}\right\}, & x < \mu \\ g_0(x) = \frac{\alpha_0}{2\sigma[k_0(1+\varepsilon)]^{\delta_0+1}\Gamma(\frac{\delta_0+1}{\alpha_0})} \left(\frac{x-\mu}{\sigma}\right)^{\delta_0} \exp\left\{-\left[\frac{x-\mu}{\sigma k_0(1+\varepsilon)}\right]^{\alpha_0}\right\}, & x \geq \mu, \end{cases} \quad (12)$$

90 where  $\mu$  and  $\sigma$  are the location and the scale parameters, respectively. Here, the random variable  $X$  is  
 91 distributed as  $\text{ABEP}(\mu, \sigma, \alpha_1, \alpha_0, \delta_1, \delta_0, k_1, k_0, \varepsilon)$ , that is,  $X \sim \text{ABEP}(\mu, \sigma, \alpha_1, \alpha_0, \delta_1, \delta_0, k_1, k_0, \varepsilon)$ .

## 92 2.1. Properties of ABEP Distribution

### 93 2.1.1. Mode of a kernel function in ABEP

The mode of function in equation (12) is examined. It is obvious that this function is a reflected function in equation (3) from the reparameterized gamma function in equation (1). Thus, examining the mode of positive side of equation (3) means that the negative side of equation (3) is also examined. Now, it is examined whether or not there is one root of the following function:

$$h(t) = t^{\delta_0} \exp\{-t^{\alpha_0}\}, \quad t > 0, \delta_0 > 0, \alpha_0 > 0. \quad (13)$$

94 Here, we will give comments about getting root of this function: NC can be ignored, because NC  
 95 produces a function at interval [0, 1]. It does not affect the modes of function. At the same way, the  
 96 location parameter  $\mu$  can be ignored, because the location shows where the function in equation (12)  
 97 is located. The scale  $\sigma$  and its variants  $k_0$  or  $k_1$  and  $\varepsilon$  parameters change the rescaling of function in  
 98 equation (12).

99 The root of derivative of function in equation (13) with respect to  $t$  is  $\exp\{\alpha_0^{-1} \log(\alpha_0^{-1} \delta_0)\}$ . For  
 100  $t = 0$ ,  $h(t) = 0$ , which is obvious root that does not lead to modality. Thus, there is only one root of  
 101 function in equation (13), that is, there is one mode of function of generalized gamma at positive side.  
 102 Since it is reflected to negative side of real line, the function has a mode at negative side of real line.  
 103 Totally, this function in equation (12) has two modes at real line. Note that it is not necessary to use  
 104 second derivative test, because maximization of a function is equivalent to minus minimization of that  
 105 function. Detecting the root is enough for having modality.

### 106 2.1.2. Cumulative distribution function of ABEP distribution

Let  $X \sim \text{ABEP}(\mu, \sigma, \alpha_1, \alpha_0, \delta_1, \delta_0, k_1, k_0, \varepsilon)$ . Let  $G$  be CDF of PDF  $g$ . Then, CDF of the random variable  $X$  is:

$$G(x) = \begin{cases} G_1(x) = \frac{1}{2\Gamma(\frac{\delta_1+1}{\alpha_1})} \Gamma\left(\frac{\delta_1+1}{\alpha_1}, \left(\frac{-(x-\mu)}{\sigma k_1(1-\varepsilon)}\right)^{\alpha_1}\right), & x < 0 \\ G_0(x) = \frac{1+\varepsilon}{2} + \frac{1}{2\Gamma(\frac{\delta_0+1}{\alpha_0})} \gamma\left(\frac{\delta_0+1}{\alpha_0}, \left(\frac{x-\mu}{\sigma k_0(1+\varepsilon)}\right)^{\alpha_0}\right), & x \geq 0, \end{cases} \quad (14)$$

107 where  $\gamma$  and  $\Gamma$  are the lower and upper incomplete gamma functions, respectively.

108 2.1.3.  $r$ th moment of random variable  $X$  distributed as ABEP

Let  $X \sim \text{ABEP}(\mu = 0, \sigma = 1, \alpha_1, \alpha_0, \delta_1, \delta_0, k_1, k_0, \varepsilon)$ . The  $r$ th,  $r \geq 0$ , non-central moment is given by

$$\mathbb{E}(X^r) = \frac{[k_1(1 - \varepsilon)]^r \Gamma\left(\frac{\delta_1+r+1}{\alpha_1}\right)}{2\Gamma\left(\frac{\delta_1+1}{\alpha_1}\right)} + \frac{[k_0(1 + \varepsilon)]^r \Gamma\left(\frac{\delta_0+r+1}{\alpha_0}\right)}{2\Gamma\left(\frac{\delta_0+1}{\alpha_0}\right)}. \quad (15)$$

109 One can get the results via equations (6) and (9). Since  $\mathbb{E}(X^r)$  is finite for finite values of parameters  
110  $\alpha_1, \alpha_0, \delta_1, \delta_0, k_1, k_0$  and when the extremely big values of parameters  $\alpha_1, \alpha_0, \delta_1, \delta_0, k_1, k_0$  and  $r$  are not  
111 taken, the ABEP distribution can produce finite values for the estimates of parameters, because  
112 finiteness of moments guarantees to have a finite value of function [35]. Note that the domain of  
113 skewness parameter  $\varepsilon$  is the interval  $(-1, 1)$ .

114 2.1.4. Moment generating function for random variable  $X$  distributed as ABEP

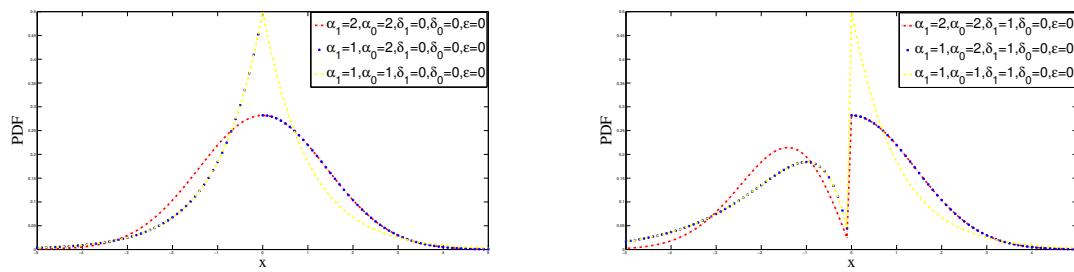
Let  $X \sim \text{ABEP}(\mu = 0, \sigma = 1, \alpha_1, \alpha_0, \delta_1, \delta_0, k_1, k_0, \varepsilon)$ . The moment generating function of the random variable  $X$  is:

$$\mathbb{E}[\exp(tX)] = \sum_{m=0}^{\infty} \left[ \frac{t^m [k_1(1 - \varepsilon)]^m \Gamma\left(\frac{\delta_1+m+1}{\alpha_1}\right)}{2\Gamma\left(\frac{\delta_1+1}{\alpha_1}\right) m!} + \frac{t^m [k_0(1 + \varepsilon)]^m \Gamma\left(\frac{\delta_0+m+1}{\alpha_0}\right)}{2\Gamma\left(\frac{\delta_0+1}{\alpha_0}\right) m!} \right], \quad (16)$$

115 where  $t \in \mathbb{R}$  and  $m \in \mathbb{N}$ . In order to calculate the integral  $\mathbb{E}[\exp(tX)]$ , the Taylor expansion at  $x = 0$   
116 of the function  $\exp(tx) = \sum_{m=0}^{\infty} \frac{(tx)^m}{m!}$  must be gotten. After some straightforward calculation for the  
117 integral  $\mathbb{E}[\exp(tX)]$  via using equations (6) and (9), the result of integral can be obtained.

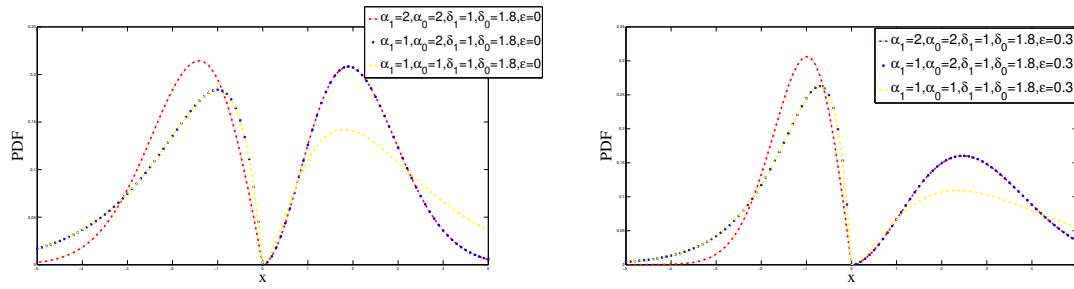
118 2.1.5. PDFs for different values of parameters in ABEP

119 Figures 1 and 2 illustrate the examples of PDF of ABEP distribution for some values of parameters  
120 that give all possible shapes of function. It is seen from these figures, the shape of peakedness,  
121 bimodality and asymmetry can be controlled at the same time via parameters in ABEP. When the  
122 different values of parameters  $\alpha_1, \alpha_0$  and  $\delta_0, \delta_1$  are chosen, the different shape of peakedness and the  
123 bimodality with different height around location parameter  $\mu$  are obtained, respectively. The skewness  
124 parameter  $\varepsilon$  makes an asymmetry around parameter  $\mu$ .



(a) Unimodal densities due to  $\delta_1 = \delta_0 = 0$ , examples for normal and Laplace and their half forms due to  $\alpha_1 > 0$  and  $\alpha_0 > 0$ . (b) Bimodal densities due to  $\delta_1 > 0$ , right of density is normal and Laplace due to  $\delta_0 = 0$  and  $\alpha_0$ .

**Figure 1.** Examples of PDFs of the ABEP distribution for the different values of parameters ( $\mu = 0, \sigma = 1$ ): Unimodality, bimodality, half of Laplace and half of normal.



(a) Bimodal densities constructed via  $\delta_1 > 0, \delta_0 > 0, \alpha_1 > 0$  and  $\alpha_0 > 0$ . (b) Bimodal densities via  $\delta_1 > 0, \delta_0 > 0, \alpha_1 > 0$  and  $\alpha_0 > 0$  with skewed form: The left and right sides of location have unequal probabilities due to  $\epsilon$ .

**Figure 2.** Examples of PDFs of the ABEP distribution for the different values of parameters ( $\mu = 0, \sigma = 1$ ): Bimodality.

### 2.1.6. Tail behaviour property of ABEP

Tail behaviour or heavy tailedness of a distribution is examined by means of definitions given below [36]:

**Definition 1.** Let  $\bar{G}(x)$  be  $1 - G(x)$ . If  $\lim_{x \rightarrow +\infty} \exp(\lambda x) \bar{G}(x) = \infty$  for all  $\lambda > 0$ , then  $G(x)$  is a heavy-tailed.

From equation (14), the positive part of CDF includes the lower incomplete gamma function  $\gamma$ . The function  $\gamma(a, b)$  is examined to get the limit in Definition 1. For  $b > a$ , this function goes to zero. Then,  $\lim_{x \rightarrow +\infty} \exp(\lambda x) G(x)$  can go to zero when  $b$  is more bigger than  $a$ . Otherwise, this limit is infinite. If  $\lim_{x \rightarrow +\infty} \exp(\lambda x) G(x) \rightarrow 0$ , then  $\lim_{x \rightarrow +\infty} \exp(\lambda x) \bar{G}(x) \rightarrow \infty$  for  $b > a$  in  $\gamma$  function.  $\lim_{x \rightarrow +\infty} \exp(\lambda x) \bar{G}(x)$  is undefined for a case  $a \geq b$ . It is seen that when  $b$  as a variable  $x$  of the function  $\gamma$  has big values, that is, an outlier is included by data, the heavy-tailedness property of ABEP can be obtained. For  $a \geq b$ , there is already a tendency to get small values of variable  $x$  in  $\gamma$  function in equation (14), which does not correspond an outlier in data set when it is compared with case  $b > a$  in  $\gamma$  function. Thus, having an undefined value for  $\lim_{x \rightarrow +\infty} \exp(\lambda x) \bar{G}(x)$  is not problem in order to test the heavy-tailedness property of function  $G$  via Definition 1.

**Definition 2.** Suppose that random variable  $X$  has a PDF  $g$  defined on  $[0, \infty)$ . If  $\mathbb{E}[\exp(tX)] = \infty$ , for all  $t$ , then  $g$  is a heavy-tailed.

141 Note that the generalized gamma distribution is reflected to negative axis or  $x < \mu$ . The tail  
 142 behaviour at  $x > \mu$  or  $x < \mu$  has a same role. Then, Definition 2 can be used for ABEP.

143 From equation (16),  $\mathbb{E}[\exp(tX)] = \infty$  is satisfied due to  $m$  in summation in equation (16) of ABEP  
 144 distribution, because  $m$  goes to infinity and  $\Gamma$  function gives infinity for big values of  $m$ . Then, ABEP is  
 145 a heavy-tailed distribution.

146 A comment for heavy-tailedness from the results of Definitions 1 and 2 is given: The skewness  
 147 parameter  $\varepsilon$  and also shape parameters  $\alpha_1, \alpha_0, \delta_1, \delta_0$  work together in order to get a heavy-tailed  
 148 function, because they are responsible to change the shape of function.

149 *2.2. Special Cases, Related Distributions and Flexibility of ABEP*

150 When we want to make a comparison among them from lowest to highest for capacity on  
 151 modelling frequency, ordered form is Refs. [28,29] and ABEP distribution. For this aim, ABEP  
 152 distribution is defined by using the generalized gamma distribution. The resulting distribution has  
 153 five parameters. Thus, ABEP distribution will have some properties: when  $\alpha_1 = 1$  and  $\alpha_0 = 2$ , left side  
 154 of location is half of Laplace distribution and right side of location is half of normal distribution for  
 155  $\varepsilon = 0$  and  $\delta_1 = \delta_0 = 0$ . For values of  $\alpha_1 = 2$  and  $\alpha_0 = 1$ , the resulting function will be vice versa of  
 156 previous case. For these situations, when  $\varepsilon \neq 0$ , ABEP will be  $\varepsilon$ -skew form of half from Laplace and  
 157 normal distributions. It is easily seen that ABEP distribution can be a combination of Laplace and  
 158 normal distributions for values of peakedness parameters  $\alpha_1$  and  $\alpha_0$  of distribution in  $\varepsilon$ -skew form.  
 159 The nuisance parameters  $k_1$  and  $k_0$  are added to have same form of normal and Laplace distributions.  
 160 The location-scale form is also provided. The parameters  $\alpha_1, \delta_1$  and  $\alpha_0, \delta_0$  also determine the overall  
 161 shape of function for  $x < \mu$  and  $x \geq \mu$ , respectively. Tails at negative and positive sides of real line can  
 162 be platykurtic ( $\alpha_1, \alpha_0 \rightarrow \infty$ ) and leptokurtic ( $\alpha_1, \alpha_0 \rightarrow 0$ ). The special cases, related distributions and  
 163 flexibility of ABEP distribution are given in the following items:

- 164 1. When  $\alpha_1 = \alpha_0 = \alpha > 0$ , ABEP distribution drops to the kernel of distribution in [29] for  $\beta = 1$ .
- 165 2. If  $\delta_0 = \delta_1 = \delta > 0$ , the density function has two modes (bimodal case) with the same height. If  
 166  $\delta_0 = \delta_1 = 0$ , the distribution is a unimodal.
- 167 3. When  $\varepsilon = 0$ , the distribution is the symmetric with two different modes.
- 168 4. When  $\alpha_1 = \alpha_0 = 2, \delta_1 = \delta_0 = 0, k_1 = k_0 = 2$  and  $\varepsilon = 0$ , the distribution is a standard normal  
 169 distribution. Location  $\mu \in \mathbb{R}$ , scale  $\sigma > 0$  and  $k_1 = k_0 = 2$  case of ABEP distribution is defined in  
 170 equation (12).
- 171 5. When  $\alpha_1 = \alpha_0 = 1, \delta_1 = \delta_0 = 0$ , and  $\varepsilon = 0$ , the distribution is the Laplace distribution with the  
 172 parameters location  $\mu \in \mathbb{R}$ , scale  $\sigma > 0$  and  $k_1 = k_0 = 1$  in equation (12).
- 173 6. When  $\alpha_1 = \alpha_0 = \alpha > 0, \delta_1 = \delta_0 = \delta > 0$  and  $\varepsilon = 0$ , the distribution is BEP in [28].
- 174 7. When  $\alpha_1 = \alpha_0 = 2$  and  $\delta_1 = \delta_0 = \delta > 0$ , ABEP distribution is used to model bimodality with  
 175  $\varepsilon$ -skew asymmetry in its modes at left and right sides of location  $\mu \in \mathbb{R}$ , which is a similar manner  
 176 with [9].
- 177 8. When  $\delta_1 = \delta_0 = k - 1, \alpha_1 = \alpha_0 = 1$ , the ABEP distribution becomes  $\varepsilon$ -skew gamma distribution  
 178 in [5].
- 179 9. When  $\alpha_1 = \alpha_0 = 2, \delta_1 = \delta_0 = 0$  and  $k_1 = k_0 = 2$ , the distribution becomes the  $\varepsilon$ -skew normal  
 180 distribution in [33].
- 181 10. When  $\alpha_1 = \alpha_0 = \alpha > 0, \delta_1 = \delta_0 = 0, k_1 = k_0 = 1$  and  $\varepsilon = 0$ , ABEP is a generalized normal or  
 182 Gaussian (exponential power, abbreviated as EP) distribution in [37].
- 183 11. When  $\delta_1 = \delta_0 = 0, \varepsilon = 0, \alpha_1 = \alpha_0 = 2/b, b \in (0, 2)$  in [38],  $\delta_1 = \delta_0 = 0, \alpha_1 = \alpha_0 = \alpha > 0$ ,  
 184  $\kappa_1 = 1 - \varepsilon, \kappa_0 = 1 + \varepsilon, \varepsilon \in (-1, 1)$  in [39],  $\delta_1 = \delta_0 = 0$ , a rescaling via convex combination in [40],  
 185  $\delta_1 = \delta_0 = 0$ , a skewed form via a rescaling in [41,43] and  $\delta_1 = \delta_0 = 0, \varepsilon$ -skew form in [42], the  
 186 skewed EP and the symmetric EP distributions are equivalent to distributions from Refs. [38–43].  
 187 The Refs. [39–41,43] are asymmetric EP distributions based on different sense of skewed form of  
 188 symmetric EP distribution. The special functions in equations (6) and (9) can be used to get a  
 189 same kernel of EP with recalculated NC in [38–43].

190 12. The  $\varepsilon$ -skew EP distribution in [44] is a special case of this family for  $\delta_0 = \delta_1 = 0$  and  $k_1 = k_0 = 2$ .  
 191 13. The kernel of EP distribution without bimodality in [45,46] is a special case of ABEP when  
 192  $k_1 = k_0 = k > 0$ ,  $\delta_1 = \delta_0 = 0$  and  $\alpha_1 = \alpha_0 = \alpha > 0$ .  
 193 14. When the variable transformation  $z = y^{1/\alpha}$  on function in equation (1) is done,

$$f(z) = \frac{\alpha}{\Gamma(\frac{\delta+1}{\alpha})} z^\delta \exp\{-z^\alpha\}, \quad z > 0, \delta > 0, \alpha > 0 \quad (17)$$

193 is obtained. This is also called as a generalized gamma (GG) distribution. The Pearson type  
 194 III and V, Erlang, exponential, Weibull, Pareto, Levy, Rayleigh, Nakagami, Frechet, Helmert,  
 195 Maxwell-Boltzmann and four-parameter exponential gamma as algebraic and exponential  
 196 functions are members of a function in equation (17) [31,47–49] and references therein.

197 The first developer of EP is Ref. [45] via solving the differential equation as a different sense  
 198 from GG in equation (17). The Ref. [46] proposed EP as a generalized error distribution. In ABEP  
 199 distribution, there are parameters for modelling  $x < \mu$  and  $x \geq \mu$ . Thus, the bimodality can be  
 200 produced (see also section 2.1.1) and the role of parameters that creates bimodality due to reflection  
 201 approach in equation (2) of GG function can be observed easily.

### 202 3. Maximum Likelihood Estimations for Parameters of ABEP Distribution

203 Let  $x_1, x_2, \dots, x_n$  be a random sample of size  $n$  from an ABEP distributed population. The  
 204 unknown parameters  $\mu, \sigma, \alpha_1, \alpha_0, \delta_1, \delta_0$  and  $\varepsilon$  will be estimated by ML estimation method [35]. Here,  
 205 the parameters  $k_1$  and  $k_0$  are nuisance parameters. The log-likelihood  $\log(L)$  function is:

$$\begin{aligned} \log[L(x; \theta)] &= n_1[\log(\alpha_1) - \log(2\sigma[k_1(1 - \varepsilon)]^{\delta_1+1}) - \log(\Gamma(\frac{\delta_1+1}{\alpha_1}))] \\ &\quad + \delta_1 \sum_{i=1}^{n_1} \log\left(\frac{-(x_i - \mu)}{\sigma}\right) - \sum_{i=1}^{n_1} \left(\frac{-(x_i - \mu)}{\sigma[k_1(1 - \varepsilon)]}\right)^{\alpha_1} \\ &\quad + n_0[\log(\alpha_0) - \log(2\sigma[k_0(1 + \varepsilon)]^{\delta_0+1}) - \log(\Gamma(\frac{\delta_0+1}{\alpha_0}))] \\ &\quad + \delta_0 \sum_{i=1}^{n_0} \log\left(\frac{x_i - \mu}{\sigma}\right) - \sum_{i=1}^{n_0} \left(\frac{x_i - \mu}{\sigma[k_0(1 + \varepsilon)]}\right)^{\alpha_0}, \end{aligned} \quad (18)$$

206 where  $n_0$  is the number of non-negative observations and  $n_1$  is the number of negative observations.  
 207  $\hat{\theta} = (\hat{\mu}, \hat{\sigma}, \hat{\alpha}_1, \hat{\alpha}_0, \hat{\delta}_1, \hat{\delta}_0, \hat{\varepsilon})$  are ML estimators of parameter vector  $\theta = (\mu, \sigma, \alpha_1, \alpha_0, \delta_1, \delta_0, \varepsilon)$ .

208 The second derivative test can be used whether or not the  $\log(L)$  function in equation (18) has the  
 209 maximum value, however since PDF has seven parameters  $\mu, \sigma, \alpha_1, \alpha_0, \delta_1, \delta_0$  and  $\varepsilon$ , using the Hessian  
 210 matrix cannot be possible. There can be a solution to overcome this problem if we focus on improving  
 211 the modelling capacity of PDF having more parameters which help us to increase flexibility of the  
 212 function and so the efficiency for ML estimators of the parameters  $\mu$  and  $\sigma$ , especially. A solution in  
 213 indirect way for this problem is that one can use GOFT statistics, such as KS, CVM and AD to see  
 214 the distances between expected and empirical cumulative distributions. It is well known that the  
 215 more small values of the GOFT statistics mean the more fitting performance is accomplished by the  
 216 function. In the computation process, optimization of nonlinear function in equation (18) is conducted  
 217 via hybrid genetic algorithm (HGA) in MATLAB 2016a. In HGA, intervals for parameters that will  
 218 optimize the  $\log(L)$  function in equation (18) are used. The intervals for  $\mu, \sigma, \alpha_1, \alpha_0, \delta_1, \delta_0$  and  $\varepsilon$  are  
 219  $[-5, 5], [0, 5], [0, 10], [0, 10], [0, 10], [0, 10]$  and  $(-1, 1)$  that is domain of skewness parameter  $\varepsilon$ .  $k_1$  and  $k_0$   
 220 as nuisance parameters are taken to be  $\alpha_1$  and  $\alpha_0$ . This form is an appropriate to have same form of  
 221 normal and Laplace. Let us remind that ABEP is a generalized normal or Laplace distribution. Thus,  
 222  $k_1$  and  $k_0$  are nuisance parameters.

The Fisher information matrix for parameters  $\mu$  and  $\sigma$  from ABEP is given by matrix  $I$  in the following form:

$$I(\boldsymbol{\theta}) = \begin{bmatrix} \mathbb{E}_1 \left[ \frac{\partial^2 \log[f(x; \mu, \sigma)]}{\partial \mu^2} \right] + \mathbb{E}_0 \left[ \frac{\partial^2 \log[f(x; \mu, \sigma)]}{\partial \mu^2} \right] & \mathbb{E}_1 \left[ \frac{\partial^2 \log[f(x; \mu, \sigma)]}{\partial \mu \partial \sigma} \right] + \mathbb{E}_0 \left[ \frac{\partial^2 \log[f(x; \mu, \sigma)]}{\partial \mu \partial \sigma} \right] \\ \mathbb{E}_1 \left[ \frac{\partial^2 \log[f(x; \mu, \sigma)]}{\partial \mu \partial \sigma} \right] + \mathbb{E}_0 \left[ \frac{\partial^2 \log[f(x; \mu, \sigma)]}{\partial \mu \partial \sigma} \right] & \mathbb{E}_1 \left[ \frac{\partial^2 \log[f(x; \mu, \sigma)]}{\partial \sigma^2} \right] + \mathbb{E}_0 \left[ \frac{\partial^2 \log[f(x; \mu, \sigma)]}{\partial \sigma^2} \right] \end{bmatrix}. \quad (19)$$

223 The equations (6) and (9) are used to calculate the integrals in matrix  $I$ . Due to the analytical  
 224 expression of PDF in equation (12), undiagonal elements of matrix  $I$  are non-zero. Here, shape  $\alpha_1, \alpha_0$ ,  
 225 bimodality  $\delta_1, \delta_0$ , skewness  $\varepsilon$  and nuisance  $k_1, k_0$  parameters make a covariance structure between  
 226 location  $\mu$  and scale  $\sigma$  parameters. From this result, covariance structure on ML estimators of other  
 227 parameters can be seen. Since it is possible to obtain the covariance among ML estimators, Fisher  
 228 information matrix is obtained only ML estimators of two parameters  $\mu$  and  $\sigma$ . If there can be a  
 229 covariance among ML estimators, the inverse of matrix  $I$  cannot be obtained except the generalized  
 230 inverse. Note that getting matrix  $I$  for  $\mu$  and  $\sigma$  from ABEP is tractable for calculation of integration of  
 231 Fisher information. Using the generalized inverse cannot be preferable due to loss of information in an  
 232 inverse of a matrix. The loss of information occurs, because the multiplication of inverse of matrix  $I$   
 233 and  $I$  does not give an identity matrix [50]. When  $\alpha_1 = \alpha_0 = \alpha, \delta_1 = \delta_0 = \delta, \varepsilon = 0$  and  $k_1 = k_0 = k$ ,  
 234  $\mathbb{E}_1 \left[ \frac{\partial^2 \log[f(x; \mu, \sigma)]}{\partial \mu \partial \sigma} \right] + \mathbb{E}_0 \left[ \frac{\partial^2 \log[f(x; \mu, \sigma)]}{\partial \mu \partial \sigma} \right] = 0$ , that is, the covariance between ML estimators of  $\mu$  and  $\sigma$   
 235 from ABEP is zero.

$$\mathbb{E}_1 \left[ \frac{\partial^2 \log[f(x; \mu, \sigma)]}{\partial \mu^2} \right] = \frac{\delta_1 \Gamma(\frac{\delta_1-1}{\alpha_1}) + \alpha_1(\alpha_1-1)\Gamma(1-\frac{1-\delta_1}{\alpha_1})}{2[\sigma k_1(1-\varepsilon)]^2 \Gamma(\frac{\delta_1+1}{\alpha_1})}, \quad (20)$$

$$\mathbb{E}_0 \left[ \frac{\partial^2 \log[f(x; \mu, \sigma)]}{\partial \mu^2} \right] = \frac{\delta_0 \Gamma(\frac{\delta_0-1}{\alpha_0}) + \alpha_0(\alpha_0-1)\Gamma(1-\frac{1-\delta_0}{\alpha_0})}{2[\sigma k_0(1+\varepsilon)]^2 \Gamma(\frac{\delta_0+1}{\alpha_0})}, \quad (21)$$

$$\mathbb{E}_1 \left[ \frac{\partial^2 \log[f(x; \mu, \sigma)]}{\partial \mu \partial \sigma} \right] = \frac{-\alpha_1^2 \Gamma(1+\delta_1/\alpha_1)}{2k_1(1-\varepsilon)\sigma^2 \Gamma(\frac{\delta_1+1}{\alpha_1})}, \quad (22)$$

$$\mathbb{E}_0 \left[ \frac{\partial^2 \log[f(x; \mu, \sigma)]}{\partial \mu \partial \sigma} \right] = \frac{\alpha_0^2 \Gamma(1+\delta_0/\alpha_0)}{2k_0(1+\varepsilon)\sigma^2 \Gamma(\frac{\delta_0+1}{\alpha_0})}, \quad (23)$$

$$\mathbb{E}_1 \left[ \frac{\partial^2 \log[f(x; \mu, \sigma)]}{\partial \sigma^2} \right] = \frac{1}{2\sigma^2} \left[ -1 - \delta_1 + \frac{\alpha_1(\alpha_1+1)\Gamma(1+\frac{\delta_1+1}{\alpha_1})}{\Gamma(\frac{\delta_1+1}{\alpha_1})} \right], \quad (24)$$

$$\mathbb{E}_0 \left[ \frac{\partial^2 \log[f(x; \mu, \sigma)]}{\partial \sigma^2} \right] = \frac{1}{2\sigma^2} \left[ -1 - \delta_0 + \frac{\alpha_0(\alpha_0+1)\Gamma(1+\frac{\delta_0+1}{\alpha_0})}{\Gamma(\frac{\delta_0+1}{\alpha_0})} \right]. \quad (25)$$

236 Some of regularity conditions [35] are as follows:

237 1.  $\det[I(\mu, \sigma)] < \infty$  and  
 238 2.  $|\frac{\partial^3}{\partial \theta^3} \log f(x; \theta)| \leq M(x)$ . Then,  $\mathbb{E}[M(X)] < \infty$ .

239 One can verify that the conditions can be satisfied by using Maple or Mathematica. Here, it is possible  
 240 to get  $M(X)$  as  $X^r$  in equation (15). Then, the condition 2 is satisfied. The other regularity conditions  
 241 are already satisfied obviously. Since the ABEP distribution satisfies these two conditions,

$$\sqrt{n} \left( \begin{bmatrix} \hat{\mu} \\ \hat{\sigma} \end{bmatrix} - \begin{bmatrix} \mu \\ \sigma \end{bmatrix} \right) \xrightarrow{D} N(0, [I(\mu, \sigma)]^{-1}), \quad (26)$$

242 that is,  $\sqrt{n} \left( \begin{bmatrix} \hat{\mu} \\ \hat{\sigma} \end{bmatrix} - \begin{bmatrix} \mu \\ \sigma \end{bmatrix} \right)$  is asymptotically normal with mean zero vector and covariance matrix  
 243  $[I(\mu, \sigma)]^{-1}$  and  $\hat{\mu}, \hat{\sigma}$  are asymptotically efficient and asymptotic normally distributed [35].

#### 244 4. Real Data Examples

245 In this section, the modelling capability of ABEP is shown by applying it on two data sets from  
 246 microarray (<http://discover.nci.nih.gov/nature2000/data/selected-data/at-matrix.txt>). The analysing  
 247 of proteins in cancer cell is important. The efficient estimates of location and scale parameters for these  
 248 proteins are a crucial role in medical care. For this reason, we prefer to focus on these data sets that  
 249 have the different shapes of peakedness, bimodality and asymmetry.

250 In the second step, the distributions are considered to model these data sets. In the estimation  
 251 process, we use the maximum likelihood method together with GOFT statistics, mostly prominent  
 252 ones that are KS, CVM and AD (robust one) distances to test the fitting capability of distributions [51].  
 253 When the estimates of parameters are computed, we can examine via GOFT statistics which of the five  
 254 PDFs is the best fit on data.

255 The bimodal extended generalized gamma (BEGG) [29], the Rathie–Swamee (RS) (RS is also  
 256 known to be a modified version of generalized logistic) [11–13], the exponentiated sinh Cauchy (ESC)  
 257 [10] and the alpha-skew Laplace (ASL) [24] distributions are used to fit the data and make a comparison  
 258 between them and ABEP. There are many different distributions which have been proposed, however  
 259 using explicit expression for CDF should be preferred to fit the data. For this reason, the distributions  
 260 having explicit expression for their CDFs are used. Thus, GOFTs can be used without including the  
 261 numerical integration methods having the computational errors.

262 Modelling data (or Riemann integration in randomly putting the bin of histograms on real line)  
 263 is an equivalent to an integration. So, the discontinuity at  $x = \mu$  is not problem for estimations of  
 264 parameters. For computation, the HGA is used. HGA also includes the derivative free approach  
 265 [52] for optimization. Then, the discontinuity point  $x = \mu$  is not problem for optimization of  $\log(L)$   
 266 function in equation (18) according to parameters. At the same time, GOFT statistics are used while  
 267 performing the computation process.

268 The Rao-Cramér lower bounds (RCLBs) for ML estimators of parameters are given. The Monte  
 269 Carlo numerical integration is used to compute the integrals in Fisher information in equation (19) for  
 270 RS, ESC and ASL distributions.

271 Since the data generation procedure in Appendix A for ABEP is provided, the performance of  
 272 fitting can be checked via the counted data at the prescribed ranges of domain as well. However, this  
 273 procedure is rough when it is compared with GOFTs. It is also beneficial to observe the performance of  
 274 the random number generation procedure.

275 The number of replicated sample size  $n$  is 100 000. Data generated from ABEP, BEGG and ESC  
 276 distributions are sorted from small to big values for each sample size  $n$ . After sorting, arithmetic  
 277 mean of 100 000 artificial data is obtained for  $n = 118$ . After artificial data are generated from their  
 278 corresponding PDFs, it is also possible to check the fitting performance of these functions via the  
 279 artificial data (see Tables 3 and 6). Since ABEP, BEGG and ESC are competitive distributions for  
 280 fitting data and they have a random number generation procedure, they are preferred to check their  
 281 similarities with real data.

##### 282 4.1. Example 1: Modelling shape of peakedness, bimodality and asymmetry

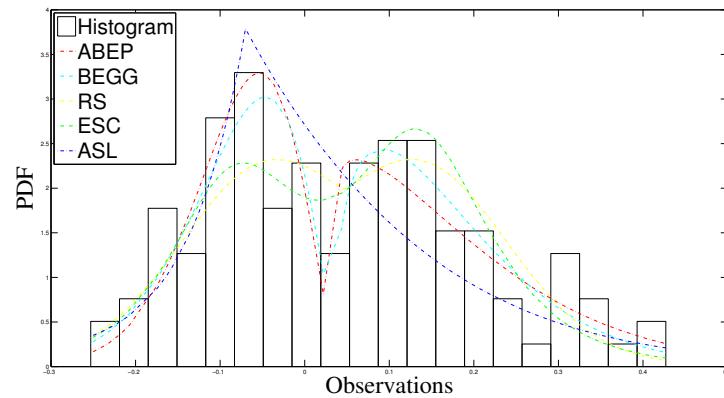
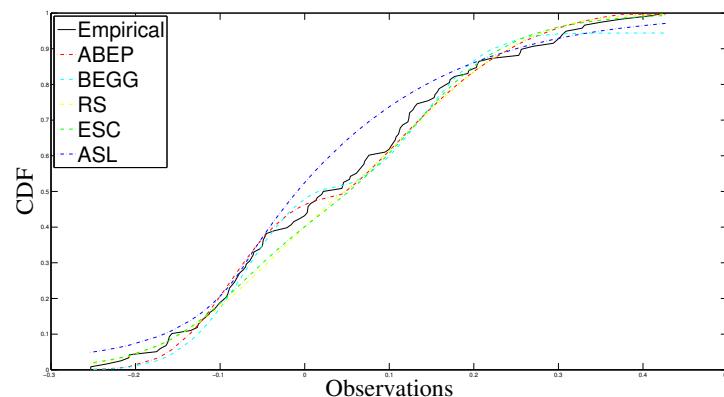
283 The data set labelled as "Homo sapiens Pig7 (PIG7) mRNA, complete cds Chr.16 [381663,  
 284 (EW), 5':AA059047, 3':AA059031]" from microarray is modelled by ABEP, BEGG, RS, ESC and ASL  
 285 distributions.

**Table 1.** ML estimates of parameters and GOFT statistics of fitted densities for microarray data.

|      | $\hat{\mu}$ | $\hat{\sigma}$ | $\hat{\alpha}_1$                | $\hat{\alpha}_0$                | $\hat{\delta}_1$ | $\hat{\delta}_0$ | $\hat{\varepsilon}$ | KS     | CVM    | AD     |
|------|-------------|----------------|---------------------------------|---------------------------------|------------------|------------------|---------------------|--------|--------|--------|
| ABEP | 0.0395      | 0.1060         | 1.7322                          | 1.4499                          | 1.2434           | 0.0505           | 0.3864              | 0.0510 | 0.0662 | 0.7150 |
|      | $\hat{\mu}$ | $\hat{\sigma}$ | $\hat{\alpha}_1 = \hat{\alpha}$ | $\hat{\alpha}_0 = \hat{\alpha}$ | $\hat{\delta}_1$ | $\hat{\delta}_0$ | $\hat{\varepsilon}$ | KS     | CVM    | AD     |
| BEGG | 0.0389      | 0.0926         | 1.4880                          | 1.4880                          | 1.0673           | 0.2657           | 0.2261              | 0.0574 | 0.0850 | 0.9568 |
|      | $\hat{\mu}$ | $\hat{\sigma}$ | $\hat{a}$                       | $\hat{b}$                       | $\hat{p}$        |                  |                     | KS     | CVM    | AD     |
| RS   | 0.0468      | 0.2049         | 1.6278                          | 0.7525                          | 1.1703           |                  |                     | 0.0865 | 0.1229 | 0.8152 |
|      | $\hat{\mu}$ | $\hat{\sigma}$ | $\hat{\lambda}$                 | $\hat{\beta}$                   |                  |                  |                     | KS     | CVM    | AD     |
| ESC  | 0.0226      | 0.0725         | 0.4091                          | 1.1730                          |                  |                  |                     | 0.0737 | 0.1052 | 0.7086 |
|      | $\hat{\mu}$ | $\hat{\sigma}$ | $\hat{a}$                       |                                 |                  |                  |                     | KS     | CVM    | AD     |
| ASL  | -0.0700     | 0.1052         | -0.5039                         |                                 |                  |                  |                     | 0.1318 | 0.4449 | 2.3821 |

**Table 2.** Asymptotic variances and covariances of ML estimators  $\hat{\mu}$  and  $\hat{\sigma}$  ( $10^{-3}$ ).

| ABEP                                     |                                          | BEGG                                     |                                          | RS                                       |                                          | ESC                                      |                                          | ASL                                      |                                          |
|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| $\widehat{Var}(\hat{\mu})$               | $\widehat{Cov}(\hat{\mu}, \hat{\sigma})$ |
| $\widehat{Cov}(\hat{\mu}, \hat{\sigma})$ | $\widehat{Var}(\hat{\sigma})$            |
| 0.0215                                   | 0.0082                                   | 0.0073                                   | 0.0014                                   | 0.6481                                   | 0.0375                                   | 0.5739                                   | -0.0174                                  | 4.365                                    | 0.4549                                   |
|                                          | 0.0383                                   |                                          | 0.0296                                   |                                          | 0.0615                                   |                                          | 0.0756                                   |                                          | 0.0419                                   |

**Figure 3.** PDF of ABEP, BEGG, RS, ESC and ASL distributions for the estimates of their parameters.**Figure 4.** CDF of ABEP, BEGG, RS, ESC and ASL distributions for the estimates of their parameters.

**Table 3.** Counted data at ranges [-10, -0.3, -0.1, 0, 0.1, 0.3, 10].

|           |   |    |    |    |    |    |   |
|-----------|---|----|----|----|----|----|---|
| Real data | 0 | 22 | 28 | 22 | 37 | 9  | 0 |
| ABEP      | 0 | 17 | 29 | 22 | 38 | 12 | 0 |
| BEGG      | 0 | 18 | 28 | 22 | 42 | 8  | 0 |
| ESC       | 1 | 21 | 25 | 25 | 41 | 5  | 0 |

<sup>286</sup> **4.2. Example 2: Modelling shape of peakedness, bimodality and asymmetry**

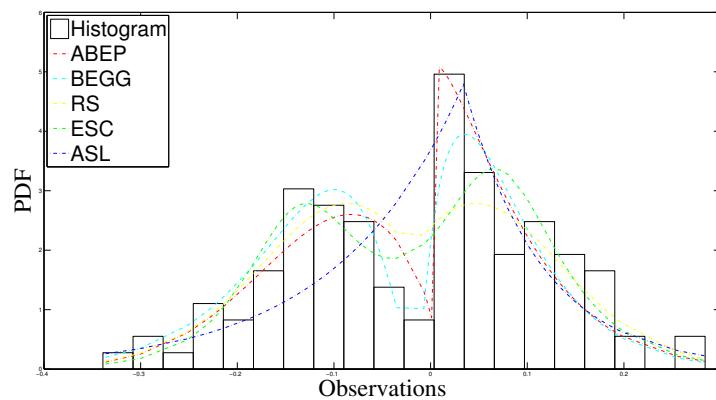
<sup>287</sup> The data set from microarray labelled as "SID 377353, ESTs [5':, 3':AA055048]" is modelled by  
<sup>288</sup> ABEP, BEGG, RS, ESC and ASL distributions.

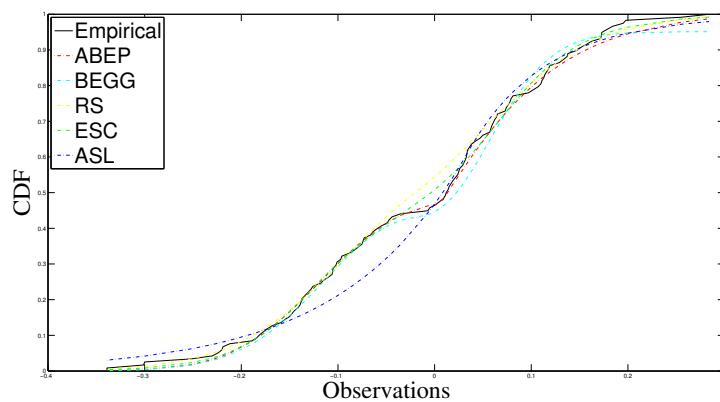
**Table 4.** ML estimates of parameters and GOFT statistics of fitted densities for microarray data.

|      | $\hat{\mu}$ | $\hat{\sigma}$ | $\hat{\alpha}_1$                | $\hat{\alpha}_0$                | $\hat{\delta}_1$ | $\hat{\delta}_0$ | $\hat{\varepsilon}$ | KS     | CVM    | AD     |
|------|-------------|----------------|---------------------------------|---------------------------------|------------------|------------------|---------------------|--------|--------|--------|
| ABEP | 0.0070      | 0.0810         | 2.1174                          | 1.3610                          | 0.4937           | 0.0031           | -0.0380             | 0.0392 | 0.0203 | 0.2773 |
|      | $\hat{\mu}$ | $\hat{\sigma}$ | $\hat{\alpha}_1 = \hat{\alpha}$ | $\hat{\alpha}_0 = \hat{\alpha}$ | $\hat{\delta}_1$ | $\hat{\delta}_0$ | $\hat{\varepsilon}$ | KS     | CVM    | AD     |
| BEGG | -0.0113     | 0.0516         | 1.0770                          | 1.0770                          | 1.7593           | 0.8923           | -0.0048             | 0.0763 | 0.0936 | 0.7397 |
|      | $\hat{\mu}$ | $\hat{\sigma}$ | $\hat{\alpha}$                  | $\hat{\beta}$                   | $\hat{p}$        |                  |                     | KS     | CVM    | AD     |
| RS   | -0.0201     | 0.3848         | 2.7876                          | 3.9241                          | 0.6641           |                  |                     | 0.0996 | 0.1083 | 0.5158 |
|      | $\hat{\mu}$ | $\hat{\sigma}$ | $\hat{\lambda}$                 | $\hat{\beta}$                   |                  |                  |                     | KS     | CVM    | AD     |
| ESC  | -0.0361     | 0.0561         | 0.3143                          | 1.1959                          |                  |                  |                     | 0.0630 | 0.0396 | 0.2502 |
|      | $\hat{\mu}$ | $\hat{\sigma}$ | $\hat{\alpha}$                  |                                 |                  |                  |                     | KS     | CVM    | AD     |
| ASL  | 0.0340      | 0.0988         | 0.2357                          |                                 |                  |                  |                     | 0.1099 | 0.2491 | 1.5098 |

**Table 5.** Asymptotic variances and covariances of ML estimators  $\hat{\mu}$  and  $\hat{\sigma}$  ( $10^{-4}$ ).

| ABEP                                     |                                          | BEGG                                     |                                          | RS                                       |                                          | ESC                                      |                                          | ASL                                      |                                          |
|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| $\widehat{Var}(\hat{\mu})$               | $\widehat{Cov}(\hat{\mu}, \hat{\sigma})$ |
| $\widehat{Cov}(\hat{\mu}, \hat{\sigma})$ | $\widehat{Var}(\hat{\sigma})$            |
| 1.3731                                   | 0.0919                                   | 0.0602                                   | $3.2295 \cdot 10^{-4}$                   | 0.0317                                   | -0.1177                                  | 3.1921                                   | 1032                                     | 344.4                                    | 7.592                                    |
|                                          | 0.2517                                   |                                          | 0.0901                                   |                                          | 0.0085                                   |                                          | 3747                                     |                                          | 0.6688                                   |

**Figure 5.** PDF of ABEP, BEGG, RS, ESC and ASL distributions for the estimates of their parameters.



**Figure 6.** CDF of ABEP, BEGG, RS, ESC and ASL distributions for the estimates of their parameters.

**Table 6.** Counted data at ranges [-10, -0.4, -0.2, 0, 0.2, 0.4, 10].

| Real data | 0 | 9  | 45 | 62 | 2 | 0 | 0 |
|-----------|---|----|----|----|---|---|---|
| ABEP      | 0 | 8  | 46 | 60 | 4 | 0 | 0 |
| BEGG      | 0 | 11 | 44 | 59 | 4 | 0 | 0 |
| ESC       | 0 | 8  | 52 | 54 | 4 | 0 | 0 |

289 4.3. *Comments on the Results of Examples 1 and 2*

290 For both of two examples, Figures 3 and 5 show that ABEP fits better than the other distributions.  
 291 Especially, the modalities around location have been modelled as the different modes of heights and  
 292 the shape of peakedness can be modelled as well. Especially, the right of location is modelled very  
 293 well by ABEP at example 2. The asymmetry illustrating from example 1 has been modelled. The  
 294 histograms of data at example 2 do not show an asymmetry and ML estimate of skewness parameter is  
 295 very near to zero, because as it is seen from Figure 5, the histograms do not have an asymmetry when  
 296 they are compared with histograms in Figure 3. The unequally distributed histograms around location  
 297 in Figure 3 can show that there is an asymmetry in data set.

298 For both of two examples, Tables 1 and 4 represent the ML estimates of parameters of distributions  
 299 and GOFT statistics of fitted densities. ABEP distribution fits the best data set when we consider on  
 300 the values of KS and CVM statistics. When we look at the fitting performance for all distributions  
 301 from Figures 3 and 5, it is seen that ABEP, BEGG and ESC have better fitting performance than RS  
 302 and ASL. However, when ABEP and ESC are compared, it is observed that two parameters  $\lambda$  and  $\beta$  of  
 303 ESC are not enough to get the precise fitting on data, because these parameters work together around  
 304 location. In BEGG, there is only one parameter  $\alpha$  to control the fitting shape of function on real line.  
 305 In ABEP, the role of parameters  $\alpha_1, \alpha_0, \delta_1$  and  $\delta_0$  around location is constructed definitely. Thus, these  
 306 parameters affect to get the more precise estimates for parameters  $\mu$  and  $\sigma$ , which is important if the  
 307 data are from many phenomena.

308 It is well known that the probability value (p-value) of a test statistic depends on the fitted density.  
 309 For this reason, the more efficient density must be preferred before getting the p-value of a test statistic  
 310 from corresponding density. Then, the potential problem that can occur in future from phenomena can  
 311 be refrained. The estimates of  $\mu$  from fitted densities of ABEP, BEGG, RS and ESC can be near to each  
 312 other, but the estimates of  $\mu$  of ABEP are more precise one, because ABEP is the best one for fitting on  
 313 data. At the same way, the estimates of  $\sigma$  of ABEP from both of two examples are the best one.

314 The random number generation procedure can be conducted at a more precise way for ABEP,  
315 BEGG and ESC distributions, because ABEP and BEGG have an algorithm of random number  
316 generation in Appendix A. The inverse of CDF of ESC distribution [10] can be taken to get the  
317 random numbers from ESC. The artificial data generated from ABEP distribution also show that the  
318 counted artificial data at ranges can be similar with the counted real data at ranges (see Tables 3 and  
319 6). It is noted that the mostly counted data (the numbers 37 and 62 in Example 1 and 2, respectively) at  
320 an interval for real data are constructed by the artificial data generated from ABEP distribution for the  
321 prescribed ranges at real line. The counted artificial data from ABEP represent the counted real data  
322 when they are compared with that from BEGG and ESC. Thus, we can infer that the data generation  
323 procedure is also successful after we get the precise estimates of parameters in ABEP via collaboration  
324 with GOFT statistics.

325 GOFT statistics in Tables 1 and 4 show that there can a numerical error in the computation of  
326 special function from CDF of ABEP. The AD for ABEP can have a numerical error from the computation  
327 of CDF, because CDF of ABEP is a special function. Even if CDF of ABEP depends on special functions  
328 that are incomplete gamma functions, the fitting performance of ABEP is the best one due to fact that  
329 all possible parameters (shape, bimodality and skewness) that can fit data are added into ABEP.

### 330 5. Conclusions and Discussions

331 A family for bimodal distribution with two parameters fitting the shape of peakedness ( $\alpha_1$  and  
332  $\alpha_0$ ), two parameters fitting the height of bimodality ( $\delta_1$  and  $\delta_0$ ) and a parameter fitting the asymmetry  
333 ( $\varepsilon$ ) in data set has been proposed. The unimodal case of this family is obtained when  $\delta_1 = \delta_0 = 0$ . The  
334 skewness parameter in this family is from  $\varepsilon$ -skew approach that can produce the asymmetry around  
335 location. The importance of having these parameters in ABEP for modelling around location separately  
336 has been observed when we make a comparison among ABEP, BEGG, ESC and RS distributions that  
337 have explicit expression for CDF. As a result, ABEP can model efficiently the shape of peakedness, the  
338 bimodality and the asymmetry at the same time, because ABEP has parameters which are responsible  
339 to fit the shape of peakedness, the bimodality and the asymmetry in data when it is compared with  
340 BEGG, RS, ESC and ASL distributions.

341 The well known approach which derives PDF without consulting the variable transformation  
342 technique is applied for the tractable functions in equations (6)-(11) to propose a new distribution. It  
343 is clear that this approach can be applied for other kind of distributions which are on the negative,  
344 positive or real line. The disadvantage of this approach is that the analytical expression of a function  
345 must be tractable to derive a PDF. The equations (6)-(8) are the power version of gamma, lower and  
346 upper incomplete gamma functions. The functions in equations (9)-(11) are transferred to the negative  
347 side of real line via using functions in equations (6)-(8). They are new kind of the special functions  
348 to calculate the integrals having the kernel of gamma function. One can get distributions via these  
349 functions. For example, alpha-skew Laplace [24], alpha-beta skew normal [3], alpha-skew generalized  
350 t with variable transformation [53,54], symmetric and asymmetric EP [38–43] distributions with the  
351 recalculated NC can also be gotten by these special functions. The special cases, related distributions  
352 and flexibility of ABEP are given in relevant section.

353 The algorithm for generating artificial data from ABEP is provided. Thus, the similarity between  
354 artificial and real data sets has been observed as a rough approach and the performance of optimization  
355 for the  $\log(L)$  function and GOFTs can be supported by this similarity as well. The benefit of GOFTs is  
356 depicted when a PDF has more parameters, because the nearness to data, that is, the best performance  
357 on optimization for  $\log(L)$  function when the competitive PDFs are used, can be checked by GOFT  
358 statistics. Thus, if CDF of a PDF exists, using GOFTs as an indirect way to check the potential  
359 optimization problem(s) is provided when the second derivative test is a problem for getting the  
360 Hessian matrix with respect to parameters of  $\log(L)$  function. HGA is also used to overcome the  
361 problems that can occur while performing optimization of  $\log(L)$  function according to the parameters  
362 in ABEP. As a result, performing a cross check between the optimization tool HGA and the GOFT

363 statistics is a beneficial approach to overcome the potential problem(s) from the computation process.  
 364 Thus, the more precise ML estimates for parameters can be gained. When it is considered on overall  
 365 results from illustrating of PDF and CDF and also artificial data, the GOFT statistics and these results  
 366 support each others to show the fitting performance of ABEP.

367 RCLBs for ML estimators of parameters  $\mu$  and  $\sigma$  are obtained. The properties of ABEP are provided  
 368 and so the heavy-tailedness property of ABEP distribution has been examined. The heavy-tailedness  
 369 of ABEP from Definitions 1 and 2 are guaranteed when  $b > a$  in  $\gamma$  function. Definitions 1 and 2 imply  
 370 that ABEP can be a heavy-tailed distribution together with that comment in there.

371 The entropy-based parameter estimation for ABEP is on going issue from Refs. [31,32] to study  
 372 via the proposed special functions in equations (6)-(11). In future, a package in a statistical software R  
 373 from open access will be prepared for ABEP distribution with the different estimation methods added  
 374 into this package.

375 **Acknowledgments:** I would like to thank sincerely Editor in Chief and Associate Editor and finally referees  
 376 for their supports and efforts in the process. I would like to thank the partial financial support from Turkish  
 377 government. I also wish to thank my great parents. The memory of my nice brother...

378 **Author Contributions:** The author has finished, read and approved the final form of manuscript.

379 **Conflicts of Interest:** The authors declare no conflict of interest.

## 380 Abbreviations

381 The following abbreviations are used throughout the text:

|       |                                      |
|-------|--------------------------------------|
| PDF   | Probability density function         |
| CDF   | Cumulative density function          |
| ML    | Maximum likelihood                   |
| NC    | Normalizing constant                 |
| GOFT  | Goodness of fit test                 |
| RCLBs | Rao-Cramér lower bounds              |
| ABEP  | Asymmetric bimodal exponential power |
| BEP   | Bimodal exponential power            |
| EP    | Exponential power                    |
| BEGG  | Bimodal extended generalized gamma   |
| RS    | Rathie-Swamee                        |
| ESC   | Exponentiated sinh Cauchy            |
| ASL   | Alpha-skew-Laplace                   |
| HGA   | Hybrid genetic algorithm             |
| KS    | Kolmogorov-Smirnov                   |
| AD    | Anderson-Darling                     |
| CVM   | Cramér-von Mises                     |
| GG    | Generalized gamma                    |

## 383 Appendix Random Number Generation Procedure from ABEP Distribution

384 FOR i FROM TO the number of sample size  $n_1$  from  $\alpha_1$ ,

385  $v_1 = k_1(1 - \varepsilon)$ ,

386 Generate  $y$  from Gamma distribution with parameters  $\frac{\delta_1+1}{\alpha_1}$  and 1,

387  $x_1 = \mu + \sigma v_1 y^{1/\alpha_1}$ .

388 END FOR

389 FOR i FROM TO the number of sample size  $n_0$  from  $\alpha_0$ ,

390  $v_0 = k_0(1 + \varepsilon)$ ,

391 Generate  $y$  from Gamma distribution with parameters  $\frac{\delta_0+1}{\alpha_0}$  and 1,

392  $x_0 = \mu + \sigma v_0 y^{1/\alpha_0}$ .

393 END FOR

394 Let  $x$  be a row vector with  $n = n_1 + n_0$  elements of two vectors  $x_1$  with  $n_1$  for negative data and  $x_0$   
395 with  $n_0$  for positive data, that is,  $x_n = (x_1, x_0)$ .

## 396 References

- 397 1. Arnold, B.C.; Gómez, H.W.; Salinas, H.S. A doubly skewed normal distribution. *Statistics* **2015**, *49*, 842–858.
- 398 2. Bolfarine, H.; Martínez-Flórez, G.; Hugo, Salinas, S. Bimodal symmetric-asymmetric power-normal families  
399 *Commun. statist.—theory meth.* **2013**, dx.doi.org/10.1080/03610926.2013.765475.
- 400 3. Shafiee, S.; Doostparast M.; Jamalizadeh, A. The alpha–beta skew normal distribution: properties and  
401 applications. *Statistics* **2016**, *50*, 338–349.
- 402 4. Sharifi, M.; Sajjadnia, Z.; Behboodian, J. A new generalization of alpha-skew-normal distribution. *Commun.*  
403 *statist.—theory meth.* **2017**, *46*, 6098–6111.
- 404 5. Abdulah, E.; Elsalloukh, H. Analyzing skewed data with the epsilon skew gamma distribution. *Journal of*  
405 *Statistics Applications & Probability* **2013**, *2*, 195–202.
- 406 6. Abdulah, E.; Elsalloukh, H. Bimodal class based on the inverted symmetrized gamma distribution with  
407 Applications. *Journal of Statistics Applications & Probability* **2014**, *3*, 1–7.
- 408 7. Ahmed, S.E.; Goria, M.N.; Hussein, A. Gamma mixture: bimodality, inflexions and L-moments. *Commun.*  
409 *statist.—theory meth.* **2008**, *8*, 1147–1161.
- 410 8. Dexter, O.C. Some skew-symmetric distributions which include the bimodal ones. *Commun. statist.—theory*  
411 *meth.* **2015**, *44*, 554–563.
- 412 9. Arellano-Valle, R.B.; Cortés, M.A.; Gómez, H.W. An extension of the epsilon-skew-normal distribution.  
413 *Communications in Statistics - Theory and Methods* **2010**, *39*, 912–922.
- 414 10. Cooray, K. Exponentiated sinh Cauchy distribution with applications. *Commun. statist.—theory meth.* **2013**,  
415 *42*, 3838–3852.
- 416 11. Andrade, B.B.; Rathie, P.N. Fitting asymmetric bimodal data with selected distributions. *Journal of Statistical*  
417 *Computation and Simulation* **2016**, *86*, 3205–3224.
- 418 12. Rathie, P.N.; Swamee, P.K. On a new invertible generalized logistic distribution approximation to normal  
419 distribution; Technical Research Report No. 07/2006; Department of Statistics, University of Brasilia: Brasilia,  
420 Brazil, 2006.
- 421 13. Rathie, P.N.; Silva, P.; Olinto, G. Applications of skew models using generalized logistic distribution. *Axioms*  
422 **2016**, *5*, 10.
- 423 14. Elal-Olivero, D. Alpha-skew-normal distribution. *Proyecciones(Antofagasta)* **2010**, *29*, 224–240.
- 424 15. Osvaldo Venegas, O.; Salinas, H.S.; Gallardo, D.I.; Bolfarine, H.; Gómez, H.W. Bimodality based on  
425 the generalized skew-normal distribution. *Journal of Statistical Computation and Simulation* **2017**, 1–26,  
426 10.1080/00949655.2017.1381698.
- 427 16. Eugene, N.; Lee, C.; Famoye, F. Beta-normal distribution and its applications. *Commun. statist.—theory*  
428 *meth.* **2002**, *31*, 497–512.
- 429 17. Famoye, F.; Lee, C.; Eugene, N. Beta-normal distribution: Bimodality properties and application. *Journal of*  
430 *Modern Applied Statistical Methods* **2004**, *3*, 85–103.
- 431 18. Gui, W. A generalization of the slashed distribution via alpha skew normal distribution. *Statistical Methods*  
432 *& Applications* **2014**, *23*, 1–17.
- 433 19. Gómez, H.W.; Elal-Olivero, D.; Salinas, H.S.; Bolfarine, H. Bimodal extension based on the skew-normal  
434 distribution with application to pollen. *Environmetrics* **2011**, *22*, 50–62.
- 435 20. Jamalizadeh, A.; Arabpour, A.R.; Balakrishnan, N.A. Generalized skew two-piece skew-normal distribution.  
436 *Statistical Papers* **2011**, *52*, 431–446.
- 437 21. Rêgo, L.C.; Cintra, R.J.; Cordeiro, G.M. On some properties of the beta normal distribution. *Commun.*  
438 *statist.—theory meth.* **2012**, *41*, 3722–3738.
- 439 22. Rocha, G.H.M.A.; Loschi, R.H.; Arellano-Valle, R.B. Inference in flexible families of distributions with normal  
440 kernel. *Statistics* **2013**, *47*, 1184–1206.
- 441 23. Sanhueza, A.; Leiva, V.; Balakrishnan, N. The generalized Birnbaum–Saunders distribution and its theory,  
442 methodology, and application. *Commun. statist.—theory meth.* **2008**, *37*, 645–670.
- 442 24. Shams, H.S.; Alamatsaz, M.H. Alpha-Skew-Laplace distribution. *Statistics & Probability Letters* **2013**, *83*,  
443 774–782.

445 25. Cordeiro, G.M.; Lemonte, A.J. The beta Laplace distribution. *Statistics and Probability Letters* **2011**, *81*,  
446 973–982.

447 26. Hassan, M.Y.; El-Bassiouni, M.Y. Bimodal skew-symmetric normal distribution. *Commun. statist.—theory  
448 meth.* **2016**, *45*, 1527–1541.

449 27. Lee, C.; Famoye, F.; Alzaatre A.Y. Methods for generating families of univariate continuous distributions in  
450 the recent decades. *Comput Stat.* **2013**, *5*, 219–238.

451 28. Hassan, Y.M.; Hijazi, R.H. A Bimodal exponential power distribution. *Pakistan Journal of Statistics* **2010**, *26*,  
452 379–396.

453 29. Çankaya, M.N.; Bulut, Y.M.; Doğru, F.Z.; Arslan, O. A bimodal extension of the generalized gamma  
454 distribution. *Revista Colombiana de Estadística* **2015**, *38*, 371–384.

455 30. Arellano-Valle, R.B.; Gomez H.W.; Quintana, F.A. Statistical inference for a general class of asymmetric  
456 distributions. *Journal of Statistical Planning and Inference* **2005**, *128*, 427–443.

457 31. Singh, V. *Entropy-Based Parameter Estimation in Hydrology*. Water Science and Technology Library Vol. 30,  
458 Springer Science+Business Media Dordrecht, 1998.

459 32. Çankaya, M.N.; Korbel, J. On statistical properties of Jizba–Arimitsu hybrid entropy. *Physica A* **2017**, *475*,  
460 1–10.

461 33. Mudholkar, G.S.; Hutson, A.D. The epsilon-skew-normal distribution for analyzing near-normal data.  
462 *Journal of Statistical Planning and Inference* **2000**, *83*, 291–309.

463 34. Gradshteyn, I.S.; Ryzhik, I.M. *Tables of integrals, sums, series, and products*. Nauka, Moscow, 2014.

464 35. Lehmann, E.L.; Casella, G. *Theory of Point Estimation*. Wadsworth & Brooks/Cole. Pacific Grove, CA, 589.  
465 USA, 1998.

466 36. Embrechts, P.; Kluppelberg, C.; Mikosch, T. *Modelling Extremal Events for Insurance and Finance*. Springer,  
467 Heidelberg, 1997.

468 37. Nadarajah, S. A generalized normal distribution. *Journal of Applied Statistics* **2005**, *32*, 685–694, DOI:  
469 10.1080/02664760500079464.

470 38. Choy, S.T.B.; Walker, S.G. The extended exponential power distribution and Bayesian robustness. *Statistics &  
471 Probability Letters* **2003**, *65*, 227–232.

472 39. Delicado, P.; Goria, M.N. A small sample comparison of maximum likelihood, moments and L-moments  
473 methods for the asymmetric exponential power distribution. *Computational Statistics & Data Analysis* **2008**,  
474 *52*, 1661–1673.

475 40. Zhu, D.; Victoria Zinde-Walsh, V. Properties and estimation of asymmetric exponential power distribution.  
476 *Journal of Econometrics* **2009**, *148*, 86–99.

477 41. Fernandez, C.; Osiewalski, J.; Steel, M.F.J. Modeling and inference with  $\nu$ -spherical distributions. *J. Amer.  
478 Statist. Assoc.* **1995**, *90*, 1331–1340.

479 42. Theodossiou, P. Skewed generalized error distribution of financial assets and option pricing. *SSRN Working  
480 Paper*, **2000**.

481 43. Komunjer, I. Asymmetric power distribution: Theory and applications to risk measurement. *J. Appl. Econom.*  
482 **2007**, *22*, 891–921.

483 44. Elsalloukh, H.; Guardiola, J.H.; Young, M. The epsilon-skew exponential power distribution family. *Far East  
484 Journal of Theoretical Statistics* **2005**, *17*, 97–107.

485 45. Subbotin, M.T. On the law of frequency of errors. *Matematicheskii Sbornik* **1923**, *31*, 296–301.

486 46. Box, G.E.P.; Tiao, G.C. *Bayesian Inference in Statistical Analysis*, Reading, MA: Addison-Wesley, 1973.

487 47. Johnson, N.L.; Kotz, S.; Balakrishnan, N. *Continuous Univariate Distributions* - Volume 1. Second edition, John  
488 Wiley & Sons, New York, 1994.

489 48. Johnson, N.L.; Kotz, S.; Balakrishnan, N. *Continuous Univariate Distributions* - Volume 2. Second edition, John  
490 Wiley & Sons, New York, 1995.

491 49. Mathai, A.M.; Haubold, H.J. *Special Functions for Applied Scientists*. Springer Science+Business Media, LLC,  
492 2008.

493 50. Horn, R.A.; Johnson, C.R. *Matrix Analysis*. Second Edition. Cambridge, New York, 2013.

494 51. Tiku, M.L.; Akkaya, A.D. *Robust Estimation and Hypothesis Testing*. New Age International (P) Limited,  
495 Publishers, 2004.

496 52. Conn, A.R.; Scheinberg, K.; Vicente, L.N. *Introduction to Derivative-Free Optimization*. Society for Industrial  
497 and Applied Mathematics and the Mathematical Programming Society, USA, 2008.

498 53. Arslan, O.; Genç, A.I. The skew generalized t distribution as the scale mixture of a skew exponential power  
499 distribution and its applications in robust estimation. *Statistics* **2009**, *43*, 481–498.

500 54. Acitaş, S.; Şenoğlu, B.; Arslan, O. Alpha-skew generalized t distribution. *Revista Colombiana de Estadística*  
501 **2015**, *38*, 353–370.