You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Article

Prediction Model of Photovoltaic Module Temperature for Power Performance of Floating PVs

Altmetrics

Downloads

1646

Views

610

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

14 December 2017

Posted:

14 December 2017

You are already at the latest version

Alerts
Abstract
Rapid reduction in the $/Wp prices of photovoltaic (solar PV) energy has been proceeded recently, resulting in near exponential deployments with an annual capacity of 200 GW expected by 2020. Achieving high efficiency is necessary for many solar manufacturers to break even. In addition, new innovative installation methods are emerging to complement the improvement of system performance. The floating PV (FPV) solar market space has emerged over the past decade as a method for utilizing the cool ambient environment of the FPV system near the water surface to boost the power output performance of the PV module and ultimately the yield of the PV system. PV module temperature, which is the most critical factor affecting efficiency, ultimately governs the effective performance of solar cells, module, and all semiconductor materials in general. We propose the first ever electrical efficiency equations ( η c,FP V 1 and η c,FP V 2 ) for an FPV module installed on water based on two new predictions of FPV temperature operation models (Tm1 and Tm2), whose coefficients are derived from FPV site data with MATLAB. The theoretical prediction of module temperature shows respective errors of 2% and 4% when compared to the FPVM measured data.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated