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Abstract: There is increasing evidence that the impact of climate change on the productivity of 9 
grasslands will at least partly depend on their biodiversity. A high level of biodiversity may confer 10 
stability to grassland ecosystems against environmental change, but there are also direct effects of 11 
biodiversity on the quantity and quality of grassland productivity. To explain the manifold 12 
interactions, and to predict future climatic responses, models may be used. However, models 13 
designed for studying the interaction between biodiversity and productivity tend to be structurally 14 
different from models for studying the effects of climatic impacts. Here we review the literature on 15 
the impacts of climate change on biodiversity and productivity of grasslands. We first discuss the 16 
availability of data for model development. Then we analyse strengths and weaknesses of three 17 
types of model: ecological, process-based and integrated. We discuss the merits of this model 18 
diversity and the scope for merging different model types. 19 
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1. Introduction 22 
Permanent grasslands are often hot spots of biodiversity [1], which contributes to the temporal 23 

stability of their services. The variety of plant species present in grasslands is strongly influenced by 24 
long-term management practices [2], with livestock grazing being the major driving force affecting 25 
vegetation dynamics, species distribution and landscape-scale biodiversity in addition to forage 26 
quantity and quality [3]. Biodiversity, encompassing variation within species and across landscapes, 27 
may be crucial for the longer-term resilience of ecosystem functions and the services that they 28 
underpin [4]. Biodiversity is intimately connected to ecosystem services through various 29 
relationships [5], with species-rich communities tending to perform better than any individual 30 
species. 31 

Biodiversity-ecosystem functioning relationships are affected by the number and identities of 32 
species, their evenness within the community, their functional traits, and their interactions. If species 33 
loss can be compensated by other species contributing similarly to functioning, the role of individual 34 
species may shift with environmental change [6]. Abiotic change then leads to biotic change and vice 35 
versa, and different species can contribute most to any given ecosystem process at different points in 36 
time and space [7]. However, there are limits to species redundancy, and high biodiversity is needed 37 
to maintain the many processes operating in multi-functioning ecosystems [8,9]. 38 

As concepts of ecosystem functioning have evolved, work has broadened to encompass 39 
biodiversity loss within and between trophic levels [10]. This work has benefited from studies of food 40 
webs and more widely of ecological networks [11]. However, Novak et al. [12] concluded that such 41 
studies can only provide limited predictive capacity while our knowledge of the strengths of 42 
interactions between species remains poor. The need for increased predictive capacity is pressing, as 43 
the world’s ecosystems undergo unprecedented changes with species being lost from a wide range 44 
of ecosystems and trophic levels [13] – and there is a need to consider the role that models can play. 45 
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In particular, the challenges that grassland systems are facing today imply that aspects related to 46 
plant diversity cannot be ignored in modelling studies. Grassland models thus need to consider the 47 
nutritional value of multi-species swards [14], the differing herbage intake of grazing animals 48 
between mixtures and pure stands [15], the dependence of milk protein content on the botanical 49 
composition of swards [16], the beneficial effect of legumes on the nitrogen economy of multi-species 50 
swards [15], and the supporting and regulating services (e.g. pollination, pest control, drought 51 
resistance) provided by multi-species swards [17]. Of primary importance is the need for models to 52 
account for the complex and variable relationship between grassland biodiversity and productivity. 53 
If primary productivity is not used by grazers or humans, then it may sustain larger biodiversity [18], 54 
although some degree of grazing may stimulate biodiversity [19]. Further, reducing management 55 
intensity (e.g. fertilisation) in grasslands reduces livestock productivity but may enhance the quality 56 
of meat [20]. So trade-offs between biodiversity and the way grassland productivity is exploited exist, 57 
and climate change may affect how we prioritise one or the other (e.g. [21–23]). We need modelling 58 
tools to negotiate these trade-offs (e.g. [24–27]). 59 

The literature on grassland modelling is extensive. Google Scholar finds over 2 million articles 60 
that include the terms 'model' as well as 'grass' or 'grassland', and 1670 of those have the terms in 61 
their title; Web of Science finds 1403 thus titled papers (information retrieved on 2017-11-20). We 62 
therefore focus our review on categories of grassland models rather than on specific models. Our 63 
primary interest here is in modelling the responses of grasslands of varying degrees of biodiversity 64 
to climate change. Of course, the climate not only affects grassland biodiversity and productivity but 65 
is itself affected by grassland dynamics. Grasslands, like all vegetation, affect climate via their albedo 66 
and greenhouse gas balance, and may play an important role in mitigating climate change. 67 
Vegetation effects on the atmosphere are represented in the latest generation of GCMs (Global 68 
Climate Models), but are not further discussed here. 69 

We shall consider both static and dynamic modelling, and modelling aimed at explaining 70 
observations as well as modelling aimed at predicting the impact of environmental change. We start 71 
off with an overview of data that are available for model development. We then review empirical, 72 
process-based and integrated grassland modelling approaches. These are reviewed separately, before 73 
discussing their relative strengths and weaknesses, and the scope for using elements from one model 74 
type in another. We conclude with a brief outlook toward the future use of new types of data and 75 
modelling approaches. 76 

2. Data 77 
A large body of data from observational studies and from agricultural and ecological 78 

experimentation has been collected for grasslands. Data cover both dry and wet areas across wide 79 
latitudinal, longitudinal and altitudinal ranges. Most of the ground-breaking experiments on 80 
vegetation biodiversity from the 1980s onward were and are being carried out in grasslands because 81 
of the convenient size and lifespan of grassland species [28]. These experiments have primarily 82 
focused on the relation between the number of grass species in swards and the magnitude and 83 
stability of primary productivity (e.g. [29]), with some experiments looking at the impact of water or 84 
nutrient availability on this relationship [30], and interactions with grazing [31,32]. In a meta-analysis 85 
of 44 grassland biodiversity experiments [33], it was found that different grassland species tended to 86 
complement each other, leading to increased productivity in polycultures compared to 87 
monocultures. Hector et al. [34], analysing data from eight sites, found that grassland biodiversity 88 
enhanced the stability of productivity over time primarily because of asynchrony in population 89 
development. In most of these experiments, full ground cover was established. In grassland 90 
experiments with low ground cover, biodiversity still conferred stability but productivity depended 91 
more on ground cover than on species richness [35]. Also, experiments in Germany by Assaf et al. 92 
[36] suggest that biodiversity has a stronger effect on productivity in unmanaged than in managed 93 
grasslands. De Boeck et al. [37] found by experiment that warming may increase the detrimental 94 
effect of species loss on grassland productivity in temperate climates. Soussana & Lüscher [38] 95 
reviewed literature showing that elevated CO2 is likely to benefit legumes and forbes more than 96 
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grasses. In temperature-limited environments of high-latitudes, warming is likely to benefit legumes 97 
more than grasses during the temperate growing season [15,39], whereas increased nitrogen 98 
deposition will disfavour legumes [30]. However, it is still highly uncertain how warming will affect 99 
the winter survival of different grassland species [40], and the overall impact of warming and 100 
interactions with [CO2] on grassland biodiversity and productivity at high latitudes is highly 101 
uncertain. 102 

Agricultural experimentation on grasslands has tended to focus on the impact of abiotic factors 103 
and management on yield and quality of forage. However, experiments on grass-legume interactions 104 
have been carried out for many decades, including interactions with temperature and nitrogen 105 
supply [41–43], grazers [15] and FACE-studies of responses of grasses and legumes to elevated CO2 106 
and fertilisation [44]. Also, there have been experiments examining the effect on cow milk production 107 
and ruminant meat quality of grazing the animals on grasslands of differing species composition and 108 
richness (e.g. [45–47] and studies mentioned in the Introduction). 109 

In short, there is a fair amount of data available for the further development of models aiming 110 
to explain or predict the mutual effects of biodiversity and productivity (e.g. [48]), and the impact of 111 
grazing thereon (e.g. [49]). In contrast, data are still scarce on how climate change, i.e. changes in 112 
weather variables rather than [CO2], may affect these relationships (but see the aforementioned [39]). 113 
Also lacking are data that may help explain observed relationships between biodiversity and 114 
productivity in grasslands, such as data on soil dynamics - changes in carbon, nutrient and water 115 
pools -, and the spatial heterogeneity of these pools [50]. Such soil data are essential if we want to 116 
model long-term impacts of changes in biodiversity. In the 9-year long Jena Experiment (Germany), 117 
soil carbon concentration increase was observed to be highly correlated with sown plant species 118 
richness [51]. In particular, the presence of legumes negatively affected soil carbon concentration 119 
while other plant functional groups did not influence it, and any increase in carbon storage was 120 
mainly limited by the integration of new carbon into soil from fine root turnover and less by the 121 
decomposition of existing soil carbon. 122 

Increasingly, grassland data are becoming available that cover sizeable areas. Tall tower eddy 123 
covariance measurements with large spatial footprints and remote sensing allow coverage of large 124 
areas at increasing spatial resolution. These data are used to calibrate grassland models aimed at 125 
estimating greenhouse gas fluxes and biomass [52,53] but are generally not linked to any biodiversity 126 
research. Jing et al. [54] demonstrated the importance of belowground biodiversity for ecosystem 127 
multifunctionality at 60 sites on the Tibetan Plateau, covering an area of over one million km2. They 128 
pointed out the need for more experimental work to assess the degree to which climate modulates 129 
the links between belowground biodiversity and ecosystem functionality. 130 

3. Empirical modelling (static) 131 
Analysis of biodiversity data has most often been carried out using static empirical models that 132 

relate response variables to driving variables in a non-dynamic way. Empirical modelling 133 
increasingly goes beyond standard linear regression methods, although those are still found useful 134 
for productivity-diversity modelling [55]. Newer methods used in grassland modelling include 135 
generalised linear and additive mixed models (GLM, GLMM, GAMM; e.g. [56]), nonlinear 136 
multivariate models [57] and structural equation models [58]. Lee et al. [59] used mixed-effects 137 
modelling to combine the results of grassland experiments with projections of future [CO2] and 138 
nitrogen deposition, to identify areas where productivity may increase and biodiversity decrease. 139 
Other examples of empirical models include statistical modelling of livestock productivity effects on 140 
grassland biodiversity [18] and Amiri et al.’s [60] geospatial model for optimising choice of grazing 141 
area given spatial heterogeneity in vulnerability to drought and erosion. 142 

These statistical techniques allow flexible representation of main and interactive effects. 143 
However, as all empirical models, they are valuable as descriptive and analytical tools rather than as 144 
means for prediction. Extrapolation of empirical models to new conditions (e.g. due to climate 145 
change) remains largely speculative, and we focus the remainder of this review on process-based 146 
models. 147 
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4. Process-based modelling (dynamic) 148 
We define process-based models (PBMs) as dynamic models which explicitly represent 149 

processes and mechanisms underlying aspects of biodiversity and productivity. PBMs for grasslands 150 
vary in complexity (number of inputs, parameters, processes, feedbacks) and domain of application 151 
(spatiotemporal scale, conditions for which the models are designed and calibrated). Any subdivision 152 
of models is to some extent subjective, but we distinguish three categories of PBM here: (1) ecological 153 
models, (2) biogeochemical models, (3) agricultural models. These represent three largely distinct 154 
communities of scientists, with different research questions and modelling preferences. Baker & 155 
Viglizzo [61] produced a useful evaluation of rangeland models worldwide, focusing on how the 156 
models simulated the interaction between plants and grazers. They used a slightly different 157 
categorization of models than we do here, with decision support systems and integrated models 158 
being grouped together with other dynamic models. 159 

4.1. Ecological modelling 160 
Ecological models tend to be relatively small models, with few variables and parameters, and 161 

often expressed using elegant mathematics. A common aim for these models is to study general 162 
ecological patterns rather than questions for specific ecosystems. An example is the model prediction 163 
that moderate grazing may increase biodiversity compared to ungrazed lands [62,63]. Hunt [64] used 164 
a matrix population model to show that sheep grazing may lead to local extinction of shrub species. 165 
More recently, individual-based models have been presented to simulate the trade-offs among plant 166 
functional traits and their plasticity in response to environmental changes. May et al. [65] presented 167 
an individual-based grassland model that included root- and shoot-competition and was able to 168 
reproduce grazing reversal: the finding that grazing increases biodiversity in productive 169 
environments but reduces it at unproductive sites. Maire et al. [66,67] made explicit simulations of 170 
the mechanisms according to which species interact within communities, linking inter-specific 171 
competition to species traits. Further examples are the three simple models of Tilman et al. [68], each 172 
of which provides an explanation of the positive effect of biodiversity on grassland productivity 173 
through interspecific variation in resource use. Loreau et al. [69] produced a simple model showing 174 
how spatial heterogeneity in species distribution may provide stability at large spatial scales. 175 

There are various competing ecological biodiversity theories [70], some of which are mainly 176 
expressed verbally without quantitative modelling, and several of which have not been empirically 177 
tested [71]. Any specific ecological model thus remains, to some extent, a speculative implementation 178 
of one of these theories. Another limitation of ecological models for the study of biodiversity 179 
(including recent ones e.g. [72]) is that they tend to focus on intrinsic population dynamical processes 180 
(demography, competition) rather than on the abiotic environment [73]. This reduces their usability 181 
for climate change impact research. 182 

4.2. Biogeochemical modelling 183 
Biogeochemical models tend to be rich in parameters and variables, simulating in detail the 184 

connections between soil, vegetation, possibly heterotrophs, and atmosphere through the various 185 
biogeochemical cycles of carbon, water, and nutrients [74]. A typical application of these models is to 186 
predict, at fairly low spatial resolution, the long-term response of biogeochemical cycles to 187 
environmental change. An elegant example is the work of Cannell and Thornley [75] who showed 188 
that the response of nitrogen-poor grasslands to elevated CO2 may, after an initial delay, in the long-189 
term exceed the response of more fertile grasslands, because of higher N-retention in the soil. The 190 
spatial resolution is generally matched by a simplified scheme of ecosystem categories, based on the 191 
concept of plant functional type (PFT). For example, European grasslands, despite huge variation in 192 
biodiversity, may all be lumped in one PFT representing "temperate grassland consisting of C3 193 
species". Soil decomposition processes tend to be represented in great detail, with multiple soil pools 194 
for each biogeochemical cycle, but with minimal representation of spatial heterogeneity. 195 
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One example of a biogeochemical model is PaSim, which is used to simulate the interaction 196 
between greenhouse gas emissions, growth and grazing in managed grasslands [76,77], and other 197 
examples are included in an ensemble of models studied by Sándor et al. [78] and Ehrhardt et al. [79]. 198 
More complex examples of biogeochemical modelling are formed by Dynamic Global Vegetation 199 
Models (DGVMs; [80]), which simulate possible transitions between PFTs driven by environmental 200 
change. PFT-based biogeochemical models such as DGVMs cannot be used to study the role of 201 
biodiversity within grasslands, but they can be used to study the stability of grasslands in the face of 202 
climate change. However, recent studies in biogeography try to bridge biodiversity and ecosystem 203 
science and can help implementing integrated frameworks to connect key questions in both 204 
disciplines, e.g. on the one hand the dynamics of determinants of species and plant trait assembly 205 
and, on the other hand, the effects of climate, land use and biodiversity changes on biogeochemical 206 
cycles [81]. 207 

4.3. Agricultural modelling 208 
Agricultural models mostly do not focus on long-term changes in biogeochemical cycles. Rather, 209 

they focus on yield prediction and yield analysis. However, the distinction between the agricultural 210 
and biogeochemical model types is not absolute, as some models aim to simulate productivity and 211 
biogeochemistry to similar accuracy. Soils are often represented using fewer pools and processes in 212 
agricultural models than in biogeochemical ones, but plant processes may be represented more fully, 213 
e.g. grass-legume interaction [82], cold hardening and winter mortality of tillers [83] and the impacts 214 
of pests and diseases. Models accounting for biotic stress factors have mainly been reported for arable 215 
crops (e.g. [84]), whereas examples for grassland are rare. 216 

Models of grassland dynamics based on the explicit simulation of growth and development of 217 
different species in a community and of the competition among them can reflect detailed knowledge 218 
of the underlying system. Such models tend to be implemented as three-dimensional, individual-219 
based [85] - or even sub-individual-based [86] – competition models. The complexity and parameter-220 
richness of these models makes them difficult to initialize and parameterize. 221 

The application of agricultural grassland models is therefore generally limited to communities 222 
with only a few species and restricted simulation areas. However, the scope for grassland models of 223 
intermediate complexity – based on agricultural models for single species but incorporating 224 
simplified expressions of the effects of competing species on sward dynamics - is currently being 225 
investigated [87]. 226 

4.4. Strengths and weaknesses of process-based modelling modelling 227 
The three PBM types have different strengths. Ecological models explain general patterns of 228 

biodiversity, productivity and stability. Biogeochemical models predict long-term changes to carbon, 229 
water and nutrient cycles. Agricultural models predict yields, feeding value and possible losses due 230 
to abiotic and biotic factors. To predict the impact of climate change on grasslands, including the role 231 
of biodiversity, we arguably need all three: there is value in model diversity. 232 

However, there are common weaknesses in all these PBMs. Spatial heterogeneity, both above- 233 
and belowground, is generally ignored or oversimplified. The impacts of grazing are not well 234 
simulated. For example, observations that loss of grazing animals may lead to loss of biodiversity at 235 
the landscape scale [88], are difficult or impossible to reproduce for any of these PBMs. There is 236 
increasing evidence that the relationship between grazing and biodiversity is highly complex and 237 
affected by nutrient availability. Bullock et al. [89] found that long-term sheep grazing could benefit 238 
or hamper grassland species depending on the timing and intensity of the grazing and on the 239 
functional traits of the plant species. No PBM capable of explaining or predicting these intricacies 240 
currently exists. 241 

Another common weakness of PBMs is that they do not represent processes of physiological and 242 
genetic adaptation of grassland species to environmental change. There has been work on relating 243 
observed genetic variation amongst grassland cultivars to parameters of PBMs – with a view toward 244 
ideotype design in plant breeding [90] – but natural rather than man-made genetic change is not 245 
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addressed by PBMs. The predictive capacity of the models is hampered by such incomplete process 246 
representation but also by other model structural errors and lack of data for parameterisation. There 247 
is a need for model comparison and model development in a probabilistic framework [91,92]. That 248 
will allow rigorous uncertainty quantification – see the example of comparison and uncertainty 249 
analysis for three grassland models by Korhonen et al. [93]. 250 

5. Integrated modelling 251 
Integrated models, like PBMs, are dynamic models, but with the additional characteristic that 252 

interactions with human agents are explicitly simulated. So a PBM could form the non-human 253 
ecosystem component of an integrated model. A modern approach to integrated modelling is by 254 
means of probabilistic networks (graphical models, e.g. Bayesian belief networks for ecosystem 255 
services; [94]). Typically, integrated models are aimed at policy-makers rather than managers of 256 
grasslands (who, as a group, are likely to appear as agents in the integrated models). An integrated 257 
model for grasslands is the Sustainability and Organic Livestock Model (SOL-Model) which is 258 
"especially designed for an integrated analysis of environmental and socio-economic aspects and 259 
their inter-linkages" [95]. 260 

The strengths of integrated modelling are its comprehensiveness (by including human activities) 261 
and, for the network approach, the probabilistic thinking that facilitates uncertainty analysis, risk 262 
analysis and decision-support. However, integrated models do propagate the weaknesses, discussed 263 
above, of any ecological, biogeochemical or agricultural models that they incorporate, and their 264 
complexity may hamper the application of probabilistic techniques for calibration, uncertainty 265 
assessment and risk analysis [96]. 266 

6. Discussion  267 

6.1. Modelling aim and model types 268 
This review has focused on one important aim of grassland modelling: to predict the impact of 269 

climate change on biodiversity-productivity relationships. In this context, a key question is the 270 
following: Will biodiversity loss make grasslands less resilient to climate change in general and 271 
extreme events in particular? Although there has been provided some experimental evidence for this 272 
(e.g. increased drought resistance at higher biodiversity: [97]), we have not found that current 273 
grassland models are able to reproduce these findings. Continued model development thus remains 274 
necessary. 275 

Given that our aim involves environmental change, dynamic models seem more appropriate 276 
tools than static empirical ones, and we shall focus on PBMs rather than integrated models. But which 277 
type of PBM to use? We believe that the answer depends on whether the PBM is used for short- or 278 
long-term prediction. 279 

6.2. Modelling for short-term prediction 280 
In the case of short-term prediction, biodiversity is not likely to change much and can be treated 281 

as a fixed boundary condition, not dynamically simulated. We suggest that the way forward in this 282 
situation is to start from agricultural models but to add the mechanisms through which a given 283 
degree of biodiversity protects grassland from diseases, extreme weather events, erosion and other 284 
threats. This implies enriching the agricultural grassland PBMs with elements from ecological and 285 
biogeochemical models. However, the assumption of constant biodiversity is unlikely to be adequate 286 
for the long-term perspective of climate change. 287 

6.3. Modelling for long-term prediction 288 
For long-term prediction, biodiversity must be considered a dynamic variable. Biogeochemical 289 

models may be the model type of choice here, given their strength in long-term prediction [75], but 290 
elements from ecological models need to be added to simulate the biodiversity dynamics. For such 291 
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model development we need more data on currently poorly quantified aspects of biodiversity, such 292 
as its role in erosion prevention, tolerance to extreme events, disease resistance, soil decomposition; 293 
see e.g. [98,99]. Moreover, elements from agricultural models (in particular the impact of 294 
management - fertilisation, irrigation, harvesting etc. - and grazing on growth and yield) need to be 295 
included in the modelling to allow prediction of future food security. 296 

Climate change is expected to increase drought risks for Mediterranean grasslands [100]. This 297 
may prompt us to investigate the use of modelling approaches developed for non-European semi-298 
arid grazing lands. For example, Benie et al. [53] modelled the impact of grazing intensity on erosion 299 
risk in semi-arid grasslands in the Sahel. For grasslands in cold temperate regions, long-term 300 
predictions should also take into account the modifying effect of low temperature related stress on 301 
vegetation composition and productivity [40,83]. 302 

The process of further developing biogeochemical models using elements from ecological and 303 
agricultural models may lead to large and unwieldy models, difficult to parameterise. Therefore, 304 
rather than explicitly simulating the growth of many different grassland species and their 305 
competition, we could consider adding only a biodiversity metric (e.g. the Shannon index; [101]) as a 306 
dynamically varying state-variable in the model. Such simplification would need to be tested 307 
carefully, the more so because long-term prediction may require us to consider other aspects of 308 
biodiversity than just plant species richness, e.g. soil biodiversity [54]. For example, persistence of 309 
microbial and faunal biodiversity may be required to maintain organic matter decomposition 310 
capacity of soils [102–105]. 311 

6.4. The need for model diversity 312 
We conclude that, for estimating the impact of climate change impacts on the biodiversity-313 

productivity relationship in managed grasslands, we shall need process-based modelling as outlined 314 
above, with models of different kinds depending on the time-frame and spatial extent of prediction. 315 
However, PBMs emphasise the biophysical aspects of the system. For wider goals, such as policy 316 
making, integrated models rather than PBMs will be needed, to represent the role of human agents. 317 
Rather than incorporating complex PBMs in integrated models, it may be best to keep the model 318 
types separate and only include simplified representations of the biophysics - possibly based on 319 
analysis using PBMs - in policy-oriented integrated models. 320 

7. Outlook 321 
In conclusion, we believe that modelling the interaction between climate change and the 322 

biodiversity-productivity relationship in grasslands will benefit from model diversity, allowing 323 
where needed the merging of elements from ecological, biogeochemical and agricultural models. This 324 
will take various forms depending on the spatiotemporal scale of application. Summary models 325 
derived from such modelling work (e.g. in the form of generically re-usable components, after 326 
Confalonieri et al. [87]), rather than the PBMs themselves, may then be incorporated in integrated 327 
models to support policy-making. 328 

Model development will require new data on mechanisms underlying changes in biodiversity, 329 
in particular data on spatial heterogeneity of species distribution and soil characteristics. In this 330 
respect, we need data analysis methods that allow interpretation of eddy-covariance flux 331 
measurements and remote sensing measurements (albedo, NDVI-derived estimates of LAI and 332 
biomass; see Wachendorf et al. [106] for a review of available methods and their potential application 333 
in grassland research) in terms of biodiversity. Such data (or proxies obtained from model analysis, 334 
e.g. [107]) are needed to link models across spatial scales (both upscaling and downscaling). A 335 
promising example is the work of Gaitán et al. [108] who found that satellite observations showed 336 
the least amount of drought-induced reduction of NDVI in those Patagonian rangelands that were 337 
species-rich. 338 

Increased application of probabilistic methods (such as in Bayesian calibration of PBMs or 339 
graphical network modelling for ecosystem services) will be needed to quantify uncertainties 340 
associated with model predictions and to support risk analysis [96,100]. Network modelling will also 341 
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facilitate analysis of the trade-offs and synergies between productivity, biodiversity and the various 342 
other ecosystem services not examined here [109]. 343 

The increasing availability of data at various spatial scales, the existing diversity of dynamic 344 
models, and the fast development of probabilistic methods that provide the link between data and 345 
models – all these, in our view, portent well for the future of grassland modelling as a tool for 346 
explaining and predicting the impact of climate change on biodiversity and productivity. 347 
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