

1 *Review*2 **Effects of Climate Change on Grassland Biodiversity
3 and Productivity: The Need for a Diversity of Models**4 **Marcel van Oijen ^{1,*}, Gianni Bellocchi ² and Mats Höglind ³**5 ¹ Centre for Ecology & Hydrology, Bush Estate, Penicuik EH26 0QB, UK; mvano@ceh.ac.uk6 ² UREP, INRA, 63000 Clermont-Ferrand, France; gianni.bellocchi@inra.fr7 ³ Norwegian Institute of Bioeconomy Research, 4353 Klepp Stasjon, Norway; mats.hoglind@nibio.no

8 * Correspondence: mvano@ceh.ac.uk

9 **Abstract:** There is increasing evidence that the impact of climate change on the productivity of
10 grasslands will at least partly depend on their biodiversity. A high level of biodiversity may confer
11 stability to grassland ecosystems against environmental change, but there are also direct effects of
12 biodiversity on the quantity and quality of grassland productivity. To explain the manifold
13 interactions, and to predict future climatic responses, models may be used. However, models
14 designed for studying the interaction between biodiversity and productivity tend to be structurally
15 different from models for studying the effects of climatic impacts. Here we review the literature on
16 the impacts of climate change on biodiversity and productivity of grasslands. We first discuss the
17 availability of data for model development. Then we analyse strengths and weaknesses of three
18 types of model: ecological, process-based and integrated. We discuss the merits of this model
19 diversity and the scope for merging different model types.20 **Keywords:** data needs; empirical models; integrated models; process-based models; review

21

22 **1. Introduction**23 Permanent grasslands are often hot spots of biodiversity [1], which contributes to the temporal
24 stability of their services. The variety of plant species present in grasslands is strongly influenced by
25 long-term management practices [2], with livestock grazing being the major driving force affecting
26 vegetation dynamics, species distribution and landscape-scale biodiversity in addition to forage
27 quantity and quality [3]. Biodiversity, encompassing variation within species and across landscapes,
28 may be crucial for the longer-term resilience of ecosystem functions and the services that they
29 underpin [4]. Biodiversity is intimately connected to ecosystem services through various
30 relationships [5], with species-rich communities tending to perform better than any individual
31 species.32 Biodiversity-ecosystem functioning relationships are affected by the number and identities of
33 species, their evenness within the community, their functional traits, and their interactions. If species
34 loss can be compensated by other species contributing similarly to functioning, the role of individual
35 species may shift with environmental change [6]. Abiotic change then leads to biotic change and vice
36 versa, and different species can contribute most to any given ecosystem process at different points in
37 time and space [7]. However, there are limits to species redundancy, and high biodiversity is needed
38 to maintain the many processes operating in multi-functioning ecosystems [8,9].39 As concepts of ecosystem functioning have evolved, work has broadened to encompass
40 biodiversity loss within and between trophic levels [10]. This work has benefited from studies of food
41 webs and more widely of ecological networks [11]. However, Novak et al. [12] concluded that such
42 studies can only provide limited predictive capacity while our knowledge of the strengths of
43 interactions between species remains poor. The need for increased predictive capacity is pressing, as
44 the world's ecosystems undergo unprecedented changes with species being lost from a wide range
45 of ecosystems and trophic levels [13] – and there is a need to consider the role that models can play.

46 In particular, the challenges that grassland systems are facing today imply that aspects related to
47 plant diversity cannot be ignored in modelling studies. Grassland models thus need to consider the
48 nutritional value of multi-species swards [14], the differing herbage intake of grazing animals
49 between mixtures and pure stands [15], the dependence of milk protein content on the botanical
50 composition of swards [16], the beneficial effect of legumes on the nitrogen economy of multi-species
51 swards [15], and the supporting and regulating services (e.g. pollination, pest control, drought
52 resistance) provided by multi-species swards [17]. Of primary importance is the need for models to
53 account for the complex and variable relationship between grassland biodiversity and productivity.
54 If primary productivity is not used by grazers or humans, then it may sustain larger biodiversity [18],
55 although some degree of grazing may stimulate biodiversity [19]. Further, reducing management
56 intensity (e.g. fertilisation) in grasslands reduces livestock productivity but may enhance the quality
57 of meat [20]. So trade-offs between biodiversity and the way grassland productivity is exploited exist,
58 and climate change may affect how we prioritise one or the other (e.g. [21–23]). We need modelling
59 tools to negotiate these trade-offs (e.g. [24–27]).

60 The literature on grassland modelling is extensive. Google Scholar finds over 2 million articles
61 that include the terms 'model' as well as 'grass' or 'grassland', and 1670 of those have the terms in
62 their title; Web of Science finds 1403 thus titled papers (information retrieved on 2017-11-20). We
63 therefore focus our review on categories of grassland models rather than on specific models. Our
64 primary interest here is in modelling the responses of grasslands of varying degrees of biodiversity
65 to climate change. Of course, the climate not only affects grassland biodiversity and productivity but
66 is itself affected by grassland dynamics. Grasslands, like all vegetation, affect climate via their albedo
67 and greenhouse gas balance, and may play an important role in mitigating climate change.
68 Vegetation effects on the atmosphere are represented in the latest generation of GCMs (Global
69 Climate Models), but are not further discussed here.

70 We shall consider both static and dynamic modelling, and modelling aimed at explaining
71 observations as well as modelling aimed at predicting the impact of environmental change. We start
72 off with an overview of data that are available for model development. We then review empirical,
73 process-based and integrated grassland modelling approaches. These are reviewed separately, before
74 discussing their relative strengths and weaknesses, and the scope for using elements from one model
75 type in another. We conclude with a brief outlook toward the future use of new types of data and
76 modelling approaches.

77 2. Data

78 A large body of data from observational studies and from agricultural and ecological
79 experimentation has been collected for grasslands. Data cover both dry and wet areas across wide
80 latitudinal, longitudinal and altitudinal ranges. Most of the ground-breaking experiments on
81 vegetation biodiversity from the 1980s onward were and are being carried out in grasslands because
82 of the convenient size and lifespan of grassland species [28]. These experiments have primarily
83 focused on the relation between the number of grass species in swards and the magnitude and
84 stability of primary productivity (e.g. [29]), with some experiments looking at the impact of water or
85 nutrient availability on this relationship [30], and interactions with grazing [31,32]. In a meta-analysis
86 of 44 grassland biodiversity experiments [33], it was found that different grassland species tended to
87 complement each other, leading to increased productivity in polycultures compared to
88 monocultures. Hector et al. [34], analysing data from eight sites, found that grassland biodiversity
89 enhanced the stability of productivity over time primarily because of asynchrony in population
90 development. In most of these experiments, full ground cover was established. In grassland
91 experiments with low ground cover, biodiversity still conferred stability but productivity depended
92 more on ground cover than on species richness [35]. Also, experiments in Germany by Assaf et al.
93 [36] suggest that biodiversity has a stronger effect on productivity in unmanaged than in managed
94 grasslands. De Boeck et al. [37] found by experiment that warming may increase the detrimental
95 effect of species loss on grassland productivity in temperate climates. Soussana & Lüscher [38]
96 reviewed literature showing that elevated CO₂ is likely to benefit legumes and forbs more than

97 grasses. In temperature-limited environments of high-latitudes, warming is likely to benefit legumes
98 more than grasses during the temperate growing season [15,39], whereas increased nitrogen
99 deposition will disfavour legumes [30]. However, it is still highly uncertain how warming will affect
100 the winter survival of different grassland species [40], and the overall impact of warming and
101 interactions with [CO₂] on grassland biodiversity and productivity at high latitudes is highly
102 uncertain.

103 Agricultural experimentation on grasslands has tended to focus on the impact of abiotic factors
104 and management on yield and quality of forage. However, experiments on grass-legume interactions
105 have been carried out for many decades, including interactions with temperature and nitrogen
106 supply [41–43], grazers [15] and FACE-studies of responses of grasses and legumes to elevated CO₂
107 and fertilisation [44]. Also, there have been experiments examining the effect on cow milk production
108 and ruminant meat quality of grazing the animals on grasslands of differing species composition and
109 richness (e.g. [45–47] and studies mentioned in the Introduction).

110 In short, there is a fair amount of data available for the further development of models aiming
111 to explain or predict the mutual effects of biodiversity and productivity (e.g. [48]), and the impact of
112 grazing thereon (e.g. [49]). In contrast, data are still scarce on how climate change, i.e. changes in
113 weather variables rather than [CO₂], may affect these relationships (but see the aforementioned [39]).
114 Also lacking are data that may help explain observed relationships between biodiversity and
115 productivity in grasslands, such as data on soil dynamics - changes in carbon, nutrient and water
116 pools -, and the spatial heterogeneity of these pools [50]. Such soil data are essential if we want to
117 model long-term impacts of changes in biodiversity. In the 9-year long Jena Experiment (Germany),
118 soil carbon concentration increase was observed to be highly correlated with sown plant species
119 richness [51]. In particular, the presence of legumes negatively affected soil carbon concentration
120 while other plant functional groups did not influence it, and any increase in carbon storage was
121 mainly limited by the integration of new carbon into soil from fine root turnover and less by the
122 decomposition of existing soil carbon.

123 Increasingly, grassland data are becoming available that cover sizeable areas. Tall tower eddy
124 covariance measurements with large spatial footprints and remote sensing allow coverage of large
125 areas at increasing spatial resolution. These data are used to calibrate grassland models aimed at
126 estimating greenhouse gas fluxes and biomass [52,53] but are generally not linked to any biodiversity
127 research. Jing et al. [54] demonstrated the importance of belowground biodiversity for ecosystem
128 multifunctionality at 60 sites on the Tibetan Plateau, covering an area of over one million km². They
129 pointed out the need for more experimental work to assess the degree to which climate modulates
130 the links between belowground biodiversity and ecosystem functionality.

131 3. Empirical modelling (static)

132 Analysis of biodiversity data has most often been carried out using static empirical models that
133 relate response variables to driving variables in a non-dynamic way. Empirical modelling
134 increasingly goes beyond standard linear regression methods, although those are still found useful
135 for productivity-diversity modelling [55]. Newer methods used in grassland modelling include
136 generalised linear and additive mixed models (GLM, GLMM, GAMM; e.g. [56]), nonlinear
137 multivariate models [57] and structural equation models [58]. Lee et al. [59] used mixed-effects
138 modelling to combine the results of grassland experiments with projections of future [CO₂] and
139 nitrogen deposition, to identify areas where productivity may increase and biodiversity decrease.
140 Other examples of empirical models include statistical modelling of livestock productivity effects on
141 grassland biodiversity [18] and Amiri et al.'s [60] geospatial model for optimising choice of grazing
142 area given spatial heterogeneity in vulnerability to drought and erosion.

143 These statistical techniques allow flexible representation of main and interactive effects.
144 However, as all empirical models, they are valuable as descriptive and analytical tools rather than as
145 means for prediction. Extrapolation of empirical models to new conditions (e.g. due to climate
146 change) remains largely speculative, and we focus the remainder of this review on process-based
147 models.

148 **4. Process-based modelling (dynamic)**

149 We define process-based models (PBMs) as dynamic models which explicitly represent
150 processes and mechanisms underlying aspects of biodiversity and productivity. PBMs for grasslands
151 vary in complexity (number of inputs, parameters, processes, feedbacks) and domain of application
152 (spatiotemporal scale, conditions for which the models are designed and calibrated). Any subdivision
153 of models is to some extent subjective, but we distinguish three categories of PBM here: (1) ecological
154 models, (2) biogeochemical models, (3) agricultural models. These represent three largely distinct
155 communities of scientists, with different research questions and modelling preferences. Baker &
156 Viglizzo [61] produced a useful evaluation of rangeland models worldwide, focusing on how the
157 models simulated the interaction between plants and grazers. They used a slightly different
158 categorization of models than we do here, with decision support systems and integrated models
159 being grouped together with other dynamic models.

160 *4.1. Ecological modelling*

161 Ecological models tend to be relatively small models, with few variables and parameters, and
162 often expressed using elegant mathematics. A common aim for these models is to study general
163 ecological patterns rather than questions for specific ecosystems. An example is the model prediction
164 that moderate grazing may increase biodiversity compared to ungrazed lands [62,63]. Hunt [64] used
165 a matrix population model to show that sheep grazing may lead to local extinction of shrub species.
166 More recently, individual-based models have been presented to simulate the trade-offs among plant
167 functional traits and their plasticity in response to environmental changes. May et al. [65] presented
168 an individual-based grassland model that included root- and shoot-competition and was able to
169 reproduce grazing reversal: the finding that grazing increases biodiversity in productive
170 environments but reduces it at unproductive sites. Maire et al. [66,67] made explicit simulations of
171 the mechanisms according to which species interact within communities, linking inter-specific
172 competition to species traits. Further examples are the three simple models of Tilman et al. [68], each
173 of which provides an explanation of the positive effect of biodiversity on grassland productivity
174 through interspecific variation in resource use. Loreau et al. [69] produced a simple model showing
175 how spatial heterogeneity in species distribution may provide stability at large spatial scales.

176 There are various competing ecological biodiversity theories [70], some of which are mainly
177 expressed verbally without quantitative modelling, and several of which have not been empirically
178 tested [71]. Any specific ecological model thus remains, to some extent, a speculative implementation
179 of one of these theories. Another limitation of ecological models for the study of biodiversity
180 (including recent ones e.g. [72]) is that they tend to focus on intrinsic population dynamical processes
181 (demography, competition) rather than on the abiotic environment [73]. This reduces their usability
182 for climate change impact research.

183 *4.2. Biogeochemical modelling*

184 Biogeochemical models tend to be rich in parameters and variables, simulating in detail the
185 connections between soil, vegetation, possibly heterotrophs, and atmosphere through the various
186 biogeochemical cycles of carbon, water, and nutrients [74]. A typical application of these models is to
187 predict, at fairly low spatial resolution, the long-term response of biogeochemical cycles to
188 environmental change. An elegant example is the work of Cannell and Thornley [75] who showed
189 that the response of nitrogen-poor grasslands to elevated CO₂ may, after an initial delay, in the long-
190 term exceed the response of more fertile grasslands, because of higher N-retention in the soil. The
191 spatial resolution is generally matched by a simplified scheme of ecosystem categories, based on the
192 concept of plant functional type (PFT). For example, European grasslands, despite huge variation in
193 biodiversity, may all be lumped in one PFT representing "temperate grassland consisting of C3
194 species". Soil decomposition processes tend to be represented in great detail, with multiple soil pools
195 for each biogeochemical cycle, but with minimal representation of spatial heterogeneity.

196 One example of a biogeochemical model is PaSim, which is used to simulate the interaction
197 between greenhouse gas emissions, growth and grazing in managed grasslands [76,77], and other
198 examples are included in an ensemble of models studied by Sándor et al. [78] and Ehrhardt et al. [79].
199 More complex examples of biogeochemical modelling are formed by Dynamic Global Vegetation
200 Models (DGVMs; [80]), which simulate possible transitions between PFTs driven by environmental
201 change. PFT-based biogeochemical models such as DGVMs cannot be used to study the role of
202 biodiversity within grasslands, but they can be used to study the stability of grasslands in the face of
203 climate change. However, recent studies in biogeography try to bridge biodiversity and ecosystem
204 science and can help implementing integrated frameworks to connect key questions in both
205 disciplines, e.g. on the one hand the dynamics of determinants of species and plant trait assembly
206 and, on the other hand, the effects of climate, land use and biodiversity changes on biogeochemical
207 cycles [81].

208 4.3. Agricultural modelling

209 Agricultural models mostly do not focus on long-term changes in biogeochemical cycles. Rather,
210 they focus on yield prediction and yield analysis. However, the distinction between the agricultural
211 and biogeochemical model types is not absolute, as some models aim to simulate productivity and
212 biogeochemistry to similar accuracy. Soils are often represented using fewer pools and processes in
213 agricultural models than in biogeochemical ones, but plant processes may be represented more fully,
214 e.g. grass-legume interaction [82], cold hardening and winter mortality of tillers [83] and the impacts
215 of pests and diseases. Models accounting for biotic stress factors have mainly been reported for arable
216 crops (e.g. [84]), whereas examples for grassland are rare.

217 Models of grassland dynamics based on the explicit simulation of growth and development of
218 different species in a community and of the competition among them can reflect detailed knowledge
219 of the underlying system. Such models tend to be implemented as three-dimensional, individual-
220 based [85] - or even sub-individual-based [86] – competition models. The complexity and parameter-
221 richness of these models makes them difficult to initialize and parameterize.

222 The application of agricultural grassland models is therefore generally limited to communities
223 with only a few species and restricted simulation areas. However, the scope for grassland models of
224 intermediate complexity – based on agricultural models for single species but incorporating
225 simplified expressions of the effects of competing species on sward dynamics - is currently being
226 investigated [87].

227 4.4. Strengths and weaknesses of process-based modelling modelling

228 The three PBM types have different strengths. Ecological models explain general patterns of
229 biodiversity, productivity and stability. Biogeochemical models predict long-term changes to carbon,
230 water and nutrient cycles. Agricultural models predict yields, feeding value and possible losses due
231 to abiotic and biotic factors. To predict the impact of climate change on grasslands, including the role
232 of biodiversity, we arguably need all three: there is value in model diversity.

233 However, there are common weaknesses in all these PBMs. Spatial heterogeneity, both above-
234 and belowground, is generally ignored or oversimplified. The impacts of grazing are not well
235 simulated. For example, observations that loss of grazing animals may lead to loss of biodiversity at
236 the landscape scale [88], are difficult or impossible to reproduce for any of these PBMs. There is
237 increasing evidence that the relationship between grazing and biodiversity is highly complex and
238 affected by nutrient availability. Bullock et al. [89] found that long-term sheep grazing could benefit
239 or hamper grassland species depending on the timing and intensity of the grazing and on the
240 functional traits of the plant species. No PBM capable of explaining or predicting these intricacies
241 currently exists.

242 Another common weakness of PBMs is that they do not represent processes of physiological and
243 genetic adaptation of grassland species to environmental change. There has been work on relating
244 observed genetic variation amongst grassland cultivars to parameters of PBMs – with a view toward
245 ideotype design in plant breeding [90] – but natural rather than man-made genetic change is not

246 addressed by PBMs. The predictive capacity of the models is hampered by such incomplete process
247 representation but also by other model structural errors and lack of data for parameterisation. There
248 is a need for model comparison and model development in a probabilistic framework [91,92]. That
249 will allow rigorous uncertainty quantification – see the example of comparison and uncertainty
250 analysis for three grassland models by Korhonen et al. [93].

251 **5. Integrated modelling**

252 Integrated models, like PBMs, are dynamic models, but with the additional characteristic that
253 interactions with human agents are explicitly simulated. So a PBM could form the non-human
254 ecosystem component of an integrated model. A modern approach to integrated modelling is by
255 means of probabilistic networks (graphical models, e.g. Bayesian belief networks for ecosystem
256 services; [94]). Typically, integrated models are aimed at policy-makers rather than managers of
257 grasslands (who, as a group, are likely to appear as agents in the integrated models). An integrated
258 model for grasslands is the Sustainability and Organic Livestock Model (SOL-Model) which is
259 "especially designed for an integrated analysis of environmental and socio-economic aspects and
260 their inter-linkages" [95].

261 The strengths of integrated modelling are its comprehensiveness (by including human activities)
262 and, for the network approach, the probabilistic thinking that facilitates uncertainty analysis, risk
263 analysis and decision-support. However, integrated models do propagate the weaknesses, discussed
264 above, of any ecological, biogeochemical or agricultural models that they incorporate, and their
265 complexity may hamper the application of probabilistic techniques for calibration, uncertainty
266 assessment and risk analysis [96].

267 **6. Discussion**

268 *6.1. Modelling aim and model types*

269 This review has focused on one important aim of grassland modelling: to predict the impact of
270 climate change on biodiversity-productivity relationships. In this context, a key question is the
271 following: Will biodiversity loss make grasslands less resilient to climate change in general and
272 extreme events in particular? Although there has been provided some experimental evidence for this
273 (e.g. increased drought resistance at higher biodiversity: [97]), we have not found that current
274 grassland models are able to reproduce these findings. Continued model development thus remains
275 necessary.

276 Given that our aim involves environmental change, dynamic models seem more appropriate
277 tools than static empirical ones, and we shall focus on PBMs rather than integrated models. But which
278 type of PBM to use? We believe that the answer depends on whether the PBM is used for short- or
279 long-term prediction.

280 *6.2. Modelling for short-term prediction*

281 In the case of short-term prediction, biodiversity is not likely to change much and can be treated
282 as a fixed boundary condition, not dynamically simulated. We suggest that the way forward in this
283 situation is to start from agricultural models but to add the mechanisms through which a given
284 degree of biodiversity protects grassland from diseases, extreme weather events, erosion and other
285 threats. This implies enriching the agricultural grassland PBMs with elements from ecological and
286 biogeochemical models. However, the assumption of constant biodiversity is unlikely to be adequate
287 for the long-term perspective of climate change.

288 *6.3. Modelling for long-term prediction*

289 For long-term prediction, biodiversity must be considered a dynamic variable. Biogeochemical
290 models may be the model type of choice here, given their strength in long-term prediction [75], but
291 elements from ecological models need to be added to simulate the biodiversity dynamics. For such

292 model development we need more data on currently poorly quantified aspects of biodiversity, such
293 as its role in erosion prevention, tolerance to extreme events, disease resistance, soil decomposition;
294 see e.g. [98,99]. Moreover, elements from agricultural models (in particular the impact of
295 management - fertilisation, irrigation, harvesting etc. - and grazing on growth and yield) need to be
296 included in the modelling to allow prediction of future food security.

297 Climate change is expected to increase drought risks for Mediterranean grasslands [100]. This
298 may prompt us to investigate the use of modelling approaches developed for non-European semi-
299 arid grazing lands. For example, Benie et al. [53] modelled the impact of grazing intensity on erosion
300 risk in semi-arid grasslands in the Sahel. For grasslands in cold temperate regions, long-term
301 predictions should also take into account the modifying effect of low temperature related stress on
302 vegetation composition and productivity [40,83].

303 The process of further developing biogeochemical models using elements from ecological and
304 agricultural models may lead to large and unwieldy models, difficult to parameterise. Therefore,
305 rather than explicitly simulating the growth of many different grassland species and their
306 competition, we could consider adding only a biodiversity metric (e.g. the Shannon index; [101]) as a
307 dynamically varying state-variable in the model. Such simplification would need to be tested
308 carefully, the more so because long-term prediction may require us to consider other aspects of
309 biodiversity than just plant species richness, e.g. soil biodiversity [54]. For example, persistence of
310 microbial and faunal biodiversity may be required to maintain organic matter decomposition
311 capacity of soils [102–105].

312 6.4. The need for model diversity

313 We conclude that, for estimating the impact of climate change impacts on the biodiversity-
314 productivity relationship in managed grasslands, we shall need process-based modelling as outlined
315 above, with models of different kinds depending on the time-frame and spatial extent of prediction.
316 However, PBMs emphasise the biophysical aspects of the system. For wider goals, such as policy
317 making, integrated models rather than PBMs will be needed, to represent the role of human agents.
318 Rather than incorporating complex PBMs in integrated models, it may be best to keep the model
319 types separate and only include simplified representations of the biophysics - possibly based on
320 analysis using PBMs - in policy-oriented integrated models.

321 7. Outlook

322 In conclusion, we believe that modelling the interaction between climate change and the
323 biodiversity-productivity relationship in grasslands will benefit from model diversity, allowing
324 where needed the merging of elements from ecological, biogeochemical and agricultural models. This
325 will take various forms depending on the spatiotemporal scale of application. Summary models
326 derived from such modelling work (e.g. in the form of generically re-usable components, after
327 Confalonieri et al. [87]), rather than the PBMs themselves, may then be incorporated in integrated
328 models to support policy-making.

329 Model development will require new data on mechanisms underlying changes in biodiversity,
330 in particular data on spatial heterogeneity of species distribution and soil characteristics. In this
331 respect, we need data analysis methods that allow interpretation of eddy-covariance flux
332 measurements and remote sensing measurements (albedo, NDVI-derived estimates of LAI and
333 biomass; see Wachendorf et al. [106] for a review of available methods and their potential application
334 in grassland research) in terms of biodiversity. Such data (or proxies obtained from model analysis,
335 e.g. [107]) are needed to link models across spatial scales (both upscaling and downscaling). A
336 promising example is the work of Gaitán et al. [108] who found that satellite observations showed
337 the least amount of drought-induced reduction of NDVI in those Patagonian rangelands that were
338 species-rich.

339 Increased application of probabilistic methods (such as in Bayesian calibration of PBMs or
340 graphical network modelling for ecosystem services) will be needed to quantify uncertainties
341 associated with model predictions and to support risk analysis [96,100]. Network modelling will also

342 facilitate analysis of the trade-offs and synergies between productivity, biodiversity and the various
343 other ecosystem services not examined here [109].

344 The increasing availability of data at various spatial scales, the existing diversity of dynamic
345 models, and the fast development of probabilistic methods that provide the link between data and
346 models – all these, in our view, portent well for the future of grassland modelling as a tool for
347 explaining and predicting the impact of climate change on biodiversity and productivity.

348 **Acknowledgments:** This work was carried out as part of the knowledge-hub Modelling European Agriculture
349 with Climate Change for Food Security (MACSUR). MvO thanks the Natural Environment Research Council in
350 the U.K. for funding his participation in MACSUR and the Norwegian Institute of Bioeconomy Research (NIBIO)
351 for additional support. GB thanks the metaprogramme Adaptation of Agriculture and Forests to Climate Change
352 (AAFCC) of the French National Institute for Agricultural Research (INRA). MH thanks the Research Council of
353 Norway for funding his participation in MACSUR.

354 **Conflicts of Interest:** The authors declare no conflict of interest.

355 References

1. Marriott, C.; Fothergill, M.; Jeangros, B.; Scotton, M.; Louault, F. Long-term impacts of extensification of grassland management on biodiversity and productivity in upland areas. A review. *Agronomie* 2004, 24, 447–462, doi:10.1051/agro:2004041.
2. Myers, N.; Mittermeier, R. A.; Mittermeier, C. G.; Fonseca, G. A. B. da; Kent, J. Biodiversity hotspots for conservation priorities. *Nature* 2000, 403, 853, doi:10.1038/35002501.
3. Henkin, Z.; Perevolotsky, A.; Sternberg, M. Vulnerability of Mediterranean grasslands to climate change: What can we learn from a long-term experiment? *Options Méditerranéennes. Série A, Séminaires Méditerranéens* 2010, 167–174.
4. Oliver, T. H.; Heard, M. S.; Isaac, N. J. B.; Roy, D. B.; Procter, D.; Eigenbrod, F.; Freckleton, R.; Hector, A.; Orme, C. D. L.; Petchey, O. L.; Proença, V.; Raffaelli, D.; Suttle, K. B.; Mace, G. M.; Martín-López, B.; Woodcock, B. A.; Bullock, J. M. Biodiversity and Resilience of Ecosystem Functions. *Trends in Ecology & Evolution* 2015, 30, 673–684, doi:10.1016/j.tree.2015.08.009.
5. Mace, G. M.; Norris, K.; Fitter, A. H. Biodiversity and ecosystem services: A multilayered relationship. *Trends in Ecology & Evolution* 2012, 27, 19–26, doi:10.1016/j.tree.2011.08.006.
6. Fetzer, I.; Johst, K.; Schäwe, R.; Banitz, T.; Harms, H.; Chatzinotas, A. The extent of functional redundancy changes as species' roles shift in different environments. *Proceedings of the National Academy of Sciences* 2015, 112, 14888–14893, doi:10.1073/pnas.1505587112.
7. Isbell, F.; Calcagno, V.; Hector, A.; Connolly, J.; Harpole, W. S.; Reich, P. B.; Scherer-Lorenzen, M.; Schmid, B.; Tilman, D.; Ruijven, J. van; Weigelt, A.; Wilsey, B. J.; Zavaleta, E. S.; Loreau, M. High plant diversity is needed to maintain ecosystem services. *Nature* 2011, 477, 199, doi:10.1038/nature10282.
8. Hector, A.; Bagchi, R. Biodiversity and ecosystem multifunctionality. *Nature* 2007, 448, 188, doi:10.1038/nature05947.
9. Gamfeldt, L.; Hillebrand, H.; Jonsson, P. R. Multiple Functions Increase the Importance of Biodiversity for Overall Ecosystem Functioning. *Ecology* 2008, 89, 1223–1231, doi:10.1890/06-2091.1.
10. Duffy, J. E.; Cardinale, B. J.; France, K. E.; McIntyre, P. B.; Thébaud, E.; Loreau, M. The functional role of biodiversity in ecosystems: Incorporating trophic complexity. *Ecology Letters* 2007, 10, 522–538, doi:10.1111/j.1461-0248.2007.01037.x.
11. Ings, T. C.; Montoya, J. M.; Bascompte, J.; Blüthgen, N.; Brown, L.; Dormann, C. F.; Edwards, F.; Figueroa, D.; Jacob, U.; Jones, J. I.; Lauridsen, R. B.; Ledger, M. E.; Lewis, H. M.; Olesen, J. M.; Van Veen, F. F.; Warren, P. H.; Woodward, G. Review: Ecological networks beyond food webs. *Journal of Animal Ecology* 2009, 78, 253–269, doi:10.1111/j.1365-2656.2008.01460.x.
12. Novak, M.; Wootton, J. T.; Doak, D. F.; Emmerson, M.; Estes, J. A.; Tinker, M. T. Predicting community responses to perturbations in the face of imperfect knowledge and network complexity. *Ecology* 2011, 92, 836–846, doi:10.1890/10-1354.1.
13. Ceballos, G.; Ehrlich, P. R.; Barnosky, A. D.; García, A.; Pringle, R. M.; Palmer, T. M. Accelerated modern humaninduced species losses: Entering the sixth mass extinction. *Science Advances* 2015, 1, e1400253, doi:10.1126/sciadv.1400253.

393 14. Delaby, L.; Baumont, R.; Peccatte, J. R.; Aufrère, J.; Peyraud, J. L. Description and prediction of multi-species
394 pasture nutritive value across the grazing season. *Grassland in a changing world. Proceedings of the 23rd*
395 *General Meeting of the European Grassland Federation, Kiel, Germany, 29th August - 2nd September 2010*
396 2010, 485–487.

397 15. Lüscher, A.; Mueller-Harvey, I.; Soussana, J. F.; Rees, R. M.; Peyraud, J. L. Potential of legume-based
398 grasslandlivestock systems in Europe: A review. *Grass and Forage Science* 2014, 69, 206–228,
399 doi:10.1111/gfs.12124.

400 16. Stergiadis, S.; Leifert, C.; Seal, C. J.; Eyre, M. D.; Larsen, M. K.; Slots, T.; Nielsen, J. H.; Butler, G. A 2-year
401 study on milk quality from three pasture-based dairy systems of contrasting production intensities in
402 Wales. *The Journal of Agricultural Science* 2015, 153, 708–731, doi:10.1017/S0021859614000963.

403 17. Rutledge, S.; Wall, A. M.; Mudge, P. L.; Troughton, B.; Campbell, D. I.; Pronger, J.; Joshi, C.; Schipper, L. A.
404 The carbon balance of temperate grasslands part I: The impact of increased species diversity. *Agriculture,
405 Ecosystems & Environment* 2017, 239, 310–323, doi:10.1016/j.agee.2017.01.039.

406 18. Alkemade, R.; Reid, R. S.; Berg, M. van den; Leeuw, J. de; Jeuken, M. Assessing the impacts of livestock
407 production on biodiversity in rangeland ecosystems. *Proceedings of the National Academy of Sciences*
408 2013, 110, 20900–20905, doi:10.1073/pnas.1011013108.

409 19. Aguiar, M. R. Biodiversity in grasslands. Current changes and future scenarios. *Grasslands: developments,
410 opportunities, perspectives* 2005.

411 20. Bullock, J. M.; Jefferson, R. G.; Blackstock, T. H.; Pakeman, R. J.; Emmett, B. A.; Pywell, R. J.; Grime, J. P.;
412 Silvertown, J. *Semi-natural grasslands*. 2011.

413 21. Gottfried, M.; Pauli, H.; Futschik, A.; Akhalkatsi, M.; Barančok, P.; Benito Alonso, J. L.; Coldea, G.; Dick, J.;
414 Erschbamer, B.; Fernández Calzado, M. R.; Kazakis, G.; Krajčí, J.; Larsson, P.; Mallaun, M.; Michelsen, O.;
415 Moiseev, D.; Moiseev, P.; Molau, U.; Merzouki, A.; Nagy, L.; Nakhutsrishvili, G.; Pedersen, B.; Pelino, G.;
416 Puscas, M.; Rossi, G.; Stanisci, A.; Theurillat, J.-P.; Tomaselli, M.; Villar, L.; Vittoz, P.; Vogiatzakis, I.;
417 Grabherr, G. Continent-wide response of mountain vegetation to climate change. *Nature Climate Change*
418 2012, 2, 111–115, doi:10.1038/nclimate1329.

419 22. Gavazov, K.; Peringer, A.; Buttler, A.; Gillet, F.; Spiegelberger, T. Dynamics of Forage Production in
420 Pasture-woodlands of the Swiss Jura Mountains under Projected Climate Change Scenarios. *Ecology and
421 Society* 2013, 18, doi:10.5751/ES-04974-180138.

422 23. Ergon, Å.; Seddaiu, G.; Korhonen, P.; Virkajarvi, P.; Bellocchi, G.; Jørgensen, M.; Østrem, L.; Reheul, D.;
423 Volaire, F. How can forage production in Nordic and Mediterranean Europe adapt to the challenges and
424 opportunities arising from climate change? *European Journal of Agronomy* 2018, 92, 97–106,
425 doi:10.1016/j.eja.2017.09.016.

426 24. Soussana, J. F.; Graux, A. I.; Tubiello, F. N. Improving the use of modelling for projections of climate change
427 impacts on crops and pastures. *Journal of Experimental Botany* 2010, 61, 2217–2228, doi:10.1093/jxb/erq100.

428 25. Cammarano, D.; Rivington, M.; Matthews, K.; Miller, D.; Bellocchi, G. Implications of climate model biases
429 and downscaling on crop model simulated climate change impacts. *European Journal of Agronomy* 2017,
430 88, 63–75, doi:10.1016/j.eja.2016.05.012.

431 26. Pulina, A.; Lai, R.; Salis, L.; Seddaiu, G.; Roggero, P. P.; Bellocchi, G. Modelling pasture production and soil
432 temperature, water and carbon fluxes in Mediterranean grassland systems with the Pasture Simulation
433 model. *Grass and Forage Science* 2017, 1–12, doi:10.1111/gfs.12310.

434 27. Sándor, R.; Picon-Cochard, C.; Martin, R.; Louault, F.; Klumpp, K.; Borras, D.; Bellocchi, G. Plant
435 acclimation to temperature: Developments in the Pasture Simulation model. *Field Crops Research* 2017,
436 doi:10.1016/j.fcr.2017.05.030.

437 28. Davis, T. H. Biography of David Tilman. *Proceedings of the National Academy of Sciences of the United
438 States of America* 2004, 101, 10851–10853, doi:10.1073/pnas.0404605101.

439 29. Tilman, D.; Wedin, D.; Knops, J. Productivity and sustainability influenced by biodiversity in grassland
440 ecosystems. *Nature* 1996, 379, 718–720, doi:10.1038/379718a0.

441 30. Niu, D.; Yuan, X.; Cease, A. J.; Wen, H.; Zhang, C.; Fu, H.; Elser, J. J. The impact of nitrogen enrichment on
442 grassland ecosystem stability depends on nitrogen addition level. *Science of The Total Environment* 2017,
443 doi:10.1016/j.scitotenv.2017.09.318.

444 31. Yang, H.; Jiang, L.; Li, L.; Li, A.; Wu, M.; Wan, S. Diversity-dependent stability under mowing and nutrient
445 addition: Evidence from a 7-year grassland experiment. *Ecology Letters* 2012, 15, 619–626,
446 doi:10.1111/j.1461-0248.2012.01778.x.

447 32. Zhang, Y.; Loreau, M.; He, N.; Zhang, G.; Han, X. Mowing exacerbates the loss of ecosystem stability under
448 nitrogen enrichment in a temperate grassland. *Functional Ecology* 2017, 31, 1637–1646, doi:10.1111/1365-
449 2435.12850.

450 33. Cardinale, B. J.; Wright, J. P.; Cadotte, M. W.; Carroll, I. T.; Hector, A.; Srivastava, D. S.; Loreau, M.; Weis,
451 J. J. Impacts of plant diversity on biomass production increase through time because of species
452 complementarity. *Proceedings of the National Academy of Sciences* 2007, 104, 18123–18128,
453 doi:10.1073/pnas.0709069104.

454 34. Hector, A.; Hautier, Y.; Saner, P.; Wacker, L.; Bagchi, R.; Joshi, J.; Scherer-Lorenzen, M.; Spehn, E. M.;
455 Bazeley-White, E.; Weilenmann, M.; Caldeira, M. C.; Dimitrakopoulos, P. G.; Finn, J. A.; Huss-Danell, K.;
456 Jumpponen, A.; Mulder, C. P. H.; Palmberg, C.; Pereira, J. S.; Siamantziouras, A. S. D.; Terry, A. C.;
457 Troumbis, A. Y.; Schmid, B.; Loreau, M. General stabilizing effects of plant diversity on grassland
458 productivity through population asynchrony and overyielding. *Ecology* 2010, 91, 2213–2220,
459 doi:10.1890/09-1162.1.

460 35. Ji, S.; Geng, Y.; Li, D.; Wang, G. Plant coverage is more important than species richness in enhancing
461 aboveground biomass in a premature grassland, northern China. *Agriculture, Ecosystems & Environment*
462 2009, 129, 491–496, doi:10.1016/j.agee.2008.11.002.

463 36. Assaf, T. A.; Beyschlag, W.; Isselstein, J. The Relationship between Plant Diversity and Productivity in
464 Natural and in Managed Grasslands. *Applied Ecology and Environmental Research* 2011, 9.

465 37. De Boeck, H.; Lemmens, C.; Gielen, B.; Bossuyt, H.; Malchaire, S.; Carnol, M.; Merckx, R.; Ceulemans, R.;
466 Nijs, I. Combined effects of climate warming and plant diversity loss on above- and below-ground
467 grassland productivity. *Environmental and Experimental Botany* 2007, 60, 95–104,
468 doi:10.1016/j.envexpbot.2006.07.001.

469 38. Soussana, J.-F.; Lüscher, A. Temperate grasslands and global atmospheric change: A review. *Grass and*
470 *Forage Science* 2007, 62, 127–134, doi:10.1111/j.1365-2494.2007.00577.x.

471 39. Cantarel, A. A. M.; Bloor, J. M. G.; Soussana, J.-F. Four years of simulated climate change reduces above-
472 ground productivity and alters functional diversity in a grassland ecosystem. *Journal of Vegetation Science*
473 2013, 24, 113–126, doi:10.1111/j.1654-1103.2012.01452.x.

474 40. Rapacz, M.; Ergon, Å.; Höglind, M.; Jørgensen, M.; Jurczyk, B.; Østrem, L.; Rognli, O. A.; Tronsmo, A. M.
475 Overwintering of herbaceous plants in a changing climate. Still more questions than answers. *Plant Science*
476 2014, 225, 34–44, doi:10.1016/j.plantsci.2014.05.009.

477 41. Davidson, I. A.; Robson, M. J.; Drennan, D. S. H. Effect of Temperature and Nitrogen Supply on the Growth
478 of Perennial Ryegrass and White Clover. 1. Carbon and Nitrogen Economies of Mixed Swards at Low
479 Temperature. *Annals of Botany* 1986, 57, 697–708, doi:10.1093/oxfordjournals.aob.a087153.

480 42. Woledge, J. Competition between grass and clover in spring as affected by nitrogen fertiliser. *Annals of*
481 *Applied Biology* 1988, 112, 175–186, doi:10.1111/j.1744-7348.1988.tb02053.x.

482 43. Nesheim, L.; Boller, B. C. Nitrogen fixation by white clover when competing with grasses at moderately
483 low temperatures. *Plant and Soil* 1991, 133, 47–56, doi:10.1007/BF00011898.

484 44. Zanetti, S.; Hartwig, U. A.; Kessel, C. van; Lüscher, A.; Hebeisen, T.; Frehner, M.; Fischer, B. U.; Hendrey,
485 G. R.; Blum, H.; Nösberger, J. Does nitrogen nutrition restrict the CO₂ response of fertile grassland lacking
486 legumes? *Oecologia* 1997, 112, 17–25, doi:10.1007/s004420050278.

487 45. Steinshamn, H.; Höglind, M.; Havrevoll, Ø.; Saarem, K.; Lombnæs, I. H.; Steinheim, G.; Svendsen, A.
488 Performance and meat quality of suckling calves grazing cultivated pasture or free range in mountain.
489 *Livestock Science* 2010, 132, 87–97, doi:10.1016/j.livsci.2010.05.006.

490 46. Willems, H.; Kreuzer, M.; Leiber, F. Vegetation-type effects on performance and meat quality of growing
491 Engadine and Valaisian Black Nose sheep grazing alpine pastures. *Livestock Science* 2013, 151, 80–91,
492 doi:10.1016/j.livsci.2012.10.015.

493 47. Roca-Fernández, A. I.; Peyraud, J. L.; Delaby, L.; Delagarde, R. Pasture intake and milk production of dairy
494 cows rotationally grazing on multi-species swards. *animal* 2016, 10, 1448–1456,
495 doi:10.1017/S1751731116000331.

496 48. Brophy, C.; Finn, J. A.; Lüscher, A.; Suter, M.; Kirwan, L.; Sebastià, M.-T.; Helgadóttir, Á.; Baadshaug, O.
497 H.; Bélanger, G.; Black, A.; Collins, R. P.; Čop, J.; Dalmannsdóttir, S.; Delgado, I.; Elgersma, A.; Fothergill,
498 M.; Frankow-Lindberg, B. E.; Ghesquiere, A.; Golinska, B.; Golinski, P.; Grieu, P.; Gustavsson, A.-M.;
499 Höglind, M.; Huguenin-Elie, O.; Jørgensen, M.; Kadziuliene, Z.; Kurki, P.; Llurba, R.; Lunan, T.;
500 Porqueddu, C.; Thumm, U.; Connolly, J. Major shifts in species' relative abundance in grassland mixtures

501 alongside positive effects of species diversity on yield: A continental-scale experiment. *Journal of Ecology* 2017, 105, 1210–1222, doi:10.1111/1365-2745.12754.

502

503 49. Batáry, P.; Báldi, A.; Erdos, S. Grassland versus non-grassland bird abundance and diversity in managed
504 grasslands: Local, landscape and regional scale effects. In *Vertebrate Conservation and Biodiversity*;
505 Hawksworth, D. L., Bull, A. T., Eds.; Springer Netherlands, 2006; pp. 45–55 ISBN 978-1-4020-6319-0 978-1-
506 4020-6320-6.

507 50. Ives, A. R.; Carpenter, S. R. Stability and Diversity of Ecosystems. *Science* 2007, 317, 58–62,
508 doi:10.1126/science.1133258.

509 51. Lange, M.; Eisenhauer, N.; Sierra, C. A.; Bessler, H.; Engels, C.; Griffiths, R. I.; Mellado-Vázquez, P. G.;
510 Malik, A. A.; Roy, J.; Scheu, S.; Steinbeiss, S.; Thomson, B. C.; Trumbore, S. E.; Gleixner, G. Plant diversity
511 increases soil microbial activity and soil carbon storage. *Nature Communications* 2015, 6, ncomms7707,
512 doi:10.1038/ncomms7707.

513 52. Ciais, P.; Soussana, J. F.; Vuichard, N.; Luyssaert, S.; Don, A.; Janssens, I. A.; Piao, S. L.; Dechow, R.;
514 Lathière, J.; Maignan, F.; Wattenbach, M.; Smith, P.; Ammann, C.; Freibauer, A.; Schulze, E. D.; the
515 CARBOEUROPE Synthesis Team The greenhouse gas balance of European grasslands. *Biogeosciences
516 Discuss.* 2010, 7, 5997–6050, doi:10.5194/bgd-7-5997-2010.

517 53. Bénié, G. B.; Kaboré, S. S.; Goïta, K.; Courel, M. F. Remote sensing-based spatio-temporal modeling to
518 predict biomass in Sahelian grazing ecosystem. *Ecological Modelling* 2005, 184, 341–354,
519 doi:10.1016/j.ecolmodel.2004.10.012.

520 54. Jing, X.; Sanders, N. J.; Shi, Y.; Chu, H.; Classen, A. T.; Zhao, K.; Chen, L.; Shi, Y.; Jiang, Y.; He, J.-S. The
521 links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by
522 climate. *Nature Communications* 2015, 6, 8159, doi:10.1038/ncomms9159.

523 55. Bai, Y.; Wu, J.; Pan, Q.; Huang, J.; Wang, Q.; Li, F.; Buyantuyev, A.; Han, X. Positive linear relationship
524 between productivity and diversity: Evidence from the Eurasian Steppe. *Journal of Applied Ecology* 2007,
525 44, 1023–1034, doi:10.1111/j.1365-2664.2007.01351.x.

526 56. Lavorel, S.; Grigulis, K.; Lamarque, P.; Colace, M.-P.; Garden, D.; Girel, J.; Pellet, G.; Douzet, R. Using plant
527 functional traits to understand the landscape distribution of multiple ecosystem services. *Journal of
528 Ecology* 2011, 99, 135–147, doi:10.1111/j.1365-2745.2010.01753.x.

529 57. Connolly, J.; Bell, T.; Bolger, T.; Brophy, C.; Carnus, T.; Finn, J. A.; Kirwan, L.; Isbell, F.; Levine, J.; Lüscher,
530 A.; Picasso, V.; Roscher, C.; Sebastia, M. T.; Suter, M.; Weigelt, A. An improved model to predict the effects
531 of changing biodiversity levels on ecosystem function. *Journal of Ecology* 2013, 101, 344–355,
532 doi:10.1111/1365-2745.12052.

533 58. Grace, J. B.; Michael Anderson, T.; Smith, M. D.; Seabloom, E.; Andelman, S. J.; Meche, G.; Weiher, E.;
534 Allain, L. K.; Jutila, H.; Sankaran, M.; Knops, J.; Ritchie, M.; Willig, M. R. Does species diversity limit
535 productivity in natural grassland communities? *Ecology Letters* 2007, 10, 680–689, doi:10.1111/j.1461-
536 0248.2007.01058.x.

537 59. Lee, M.; Manning, P.; Rist, J.; Power, S. A.; Marsh, C. A global comparison of grassland biomass responses
538 to CO₂ and nitrogen enrichment. *Philosophical Transactions of the Royal Society B: Biological Sciences*
539 2010, 365, 2047–2056, doi:10.1098/rstb.2010.0028.

540 60. Amiri, F.; Shariff, A. R. bin M.; Tabatabaie, T.; Pradhan, B. A geospatial model for the optimization grazing
541 management in semi-arid rangeland of Iran. *Arabian Journal of Geosciences* 2013, 7, 1101–1114,
542 doi:10.1007/s12517-013-0840-6.

543 61. Baker, B.; Viglizzo, E. Rangeland and Livestock. In *Handbook on methods for climate change impact
544 Assessment and Adaptation Strategies*; Feenstra, J. et al., Ed.; UNEP: Amsterdam, 1998; pp. 1–34.

545 62. Milchunas, D. et al. A generalized model of the effects of grazing by large herbivores on grassland
546 community structure. *American Naturalist* 1988, 132, 87–106.

547 63. Bai, Y.; Abouguendia, Z.; Redmann, R. E. Relationship between plant species diversity and grassland
548 condition. *Journal of Range Management* 2001, 177–183.

549 64. Hunt, L. Heterogeneous grazing causes local extinction of edible perennial shrubs: A matrix analysis.
550 *Journal of Applied Ecology* 2001, 38, 238–252, doi:10.1046/j.1365-2664.2001.00586.x.

551 65. May, F.; Grimm, V.; Jeltsch, F. Reversed effects of grazing on plant diversity: The role of below-ground
552 competition and size symmetry. *Oikos* 2009, 118, 1830–1843, doi:10.1111/j.1600-0706.2009.17724.x.

553 66. Maire, V.; Gross, N.; Hill, D.; Martin, R.; Wirth, C.; Wright, I. J.; Soussana, J.-F. Disentangling Coordination
554 among Functional Traits Using an Individual-Centred Model: Impact on Plant Performance at Intra- and
555 Inter-Specific Levels. *PLOS ONE* 2013, 8, e77372, doi:10.1371/journal.pone.0077372.

556 67. Maire, V.; Soussana, J.-F.; Gross, N.; Bachelet, B.; Pagès, L.; Martin, R.; Reinhold, T.; Wirth, C.; Hill, D.
557 Plasticity of plant form and function sustains productivity and dominance along environment and
558 competition gradients. A modeling experiment with Gemini. *Ecological Modelling* 2013, 254, 80–91,
559 doi:10.1016/j.ecolmodel.2012.03.039.

560 68. Tilman, D.; Lehman, C. L.; Thomson, K. T. Plant diversity and ecosystem productivity: Theoretical
561 considerations. *Proceedings of the National Academy of Sciences of the United States of America* 1997, 94,
562 1857–1861.

563 69. Loreau, M.; Mouquet, N.; Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes.
564 *Proceedings of the National Academy of Sciences* 2003, 100, 12765–12770, doi:10.1073/pnas.2235465100.

565 70. Hautier, Y.; Tilman, D.; Isbell, F.; Seabloom, E. W.; Borer, E. T.; Reich, P. B. Anthropogenic environmental
566 changes affect ecosystem stability via biodiversity. *Science* 2015, 348, 336–340, doi:10.1126/science.aaa1788.

567 71. Rillig, M. C.; Kiessling, W.; Borsch, T.; Gessler, A.; Greenwood, A. D.; Hofer, H.; Joshi, J.; Schröder, B.;
568 Thonicke, K.; Tockner, K.; Weisshuhn, K.; Jeltsch, F. Biodiversity research: Data without theorytheory
569 without data. *Conservation* 2015, 3, 20, doi:10.3389/fevo.2015.00020.

570 72. de Mazancourt, C.; Isbell, F.; Larocque, A.; Berendse, F.; De Luca, E.; Grace, J. B.; Haegeman, B.; Wayne
571 Polley, H.; Roscher, C.; Schmid, B.; Tilman, D.; van Ruijven, J.; Weigelt, A.; Wilsey, B. J.; Loreau, M.
572 Predicting ecosystem stability from community composition and biodiversity. *Ecology Letters* 2013, 16,
573 617–625, doi:10.1111/ele.12088.

574 73. Loreau, M.; Naeem, S.; Inchausti, P.; Bengtsson, J.; Grime, J. P.; Hector, A.; Hooper, D. U.; Huston, M. A.;
575 Raffaelli, D.; Schmid, B.; Tilman, D.; Wardle, D. A. Biodiversity and Ecosystem Functioning: Current
576 Knowledge and Future Challenges. *Science* 2001, 294, 804–808, doi:10.1126/science.1064088.

577 74. Brilli, L.; Bechini, L.; Bindu, M.; Carozzi, M.; Cavalli, D.; Conant, R.; Dorich, C. D.; Doro, L.; Ehrhardt, F.;
578 Farina, R.; Ferrise, R.; Fitton, N.; Francaviglia, R.; Grace, P.; Iocola, I.; Klumpp, K.; Léonard, J.; Martin, R.;
579 Massad, R. S.; Recous, S.; Seddaiu, G.; Sharp, J.; Smith, P.; Smith, W. N.; Soussana, J.-F.; Bellocchi, G. Review
580 and analysis of strengths and weaknesses of agro-ecosystem models for simulating C and N fluxes. *The
581 Science of the Total Environment* 2017, 598, 445–470, doi:10.1016/j.scitotenv.2017.03.208.

582 75. Cannell, M. G. R.; Thornley, J. H. M. N-poor ecosystems may respond more to elevated [CO₂] than N-rich
583 ones in the long term. A model analysis of grassland. *Global Change Biology* 1998, 4, 431–442,
584 doi:10.1046/j.1365-2486.1998.00167.x.

585 76. Vuichard, N.; Ciais, P.; Viovy, N.; Calanca, P.; Soussana, J.-F. Estimating the greenhouse gas fluxes of
586 European grasslands with a process-based model: 2. Simulations at the continental level. *Global
587 Biogeochemical Cycles* 2007, 21, GB1005, doi:10.1029/2005GB002612.

588 77. Ma, S.; Lardy, R.; Graux, A.-I.; Ben Touhami, H.; Klumpp, K.; Martin, R.; Bellocchi, G. Regional-scale
589 analysis of carbon and water cycles on managed grassland systems. *Environmental Modelling & Software*
590 2015, 72, 356–371, doi:10.1016/j.envsoft.2015.03.007.

591 78. Sándor, R.; Barcza, Z.; Acutis, M.; Doro, L.; Hidy, D.; Köchy, M.; Minet, J.; Lellei-Kovács, E.; Ma, S.; Perego,
592 A.; Rolinski, S.; Ruget, F.; Sanna, M.; Seddaiu, G.; Wu, L.; Bellocchi, G. Multi-model simulation of soil
593 temperature, soil water content and biomass in Euro-Mediterranean grasslands: Uncertainties and
594 ensemble performance. *European Journal of Agronomy* 2017, 88, 22–40, doi:10.1016/j.eja.2016.06.006.

595 79. Ehrhardt, F.; Soussana, J.-F.; Bellocchi, G.; Grace, P.; McAuliffe, R.; Recous, S.; Sándor, R.; Smith, P.; Snow,
596 V.; de Antoni Migliorati, M.; Basso, B.; Bhatia, A.; Brilli, L.; Doltra, J.; Dorich, C. D.; Doro, L.; Fitton, N.;
597 Giacomini, S. J.; Grant, B.; Harrison, M. T.; Jones, S. K.; Kirschbaum, M. U. F.; Klumpp, K.; Laville, P.;
598 Léonard, J.; Liebig, M.; Lieffering, M.; Martin, R.; Massad, R. S.; Meier, E.; Merbold, L.; Moore, A. D.;
599 Myrgiotis, V.; Newton, P.; Pattey, E.; Rolinski, S.; Sharp, J.; Smith, W. N.; Wu, L.; Zhang, Q. Assessing
600 uncertainties in crop and pasture ensemble model simulations of productivity and N₂O emissions. *Global
601 Change Biology* 2017, 1–14, doi:10.1111/gcb.13965.

602 80. Baudena, M.; Dekker, S. C.; van Bodegom, P. M.; Cuesta, B.; Higgins, S. I.; Lehsten, V.; Reick, C. H.;
603 Rietkerk, M.; Scheiter, S.; Yin, Z.; Zavala, M. A.; Brovkin, V. Forests, savannas, and grasslands: Bridging
604 the knowledge gap between ecology and Dynamic Global Vegetation Models. *Biogeosciences* 2015, 12,
605 1833–1848, doi:10.5194/bg-12-1833-2015.

606 81. Violette, C.; Choler, P.; Borgy, B.; Garnier, E.; Amiaud, B.; Debarros, G.; Diquelou, S.; Gachet, S.; Jolivet, C.;
607 Kattge, J.; Lavorel, S.; Lemaauviel-Lavenant, S.; Loranger, J.; Mikolajczak, A.; Munoz, F.; Olivier, J.; Viovy, N. Vegetation ecology meets ecosystem science: Permanent grasslands as a functional biogeography case study. *Science of The Total Environment* 2015, 534, 43–51, doi:10.1016/j.scitotenv.2015.03.141.

608 82. Soussana, J.-F.; Maire, V.; Gross, N.; Bachelet, B.; Pagès, L.; Martin, R.; Hill, D.; Wirth, C. Gemini: A
609 grassland model simulating the role of plant traits for community dynamics and ecosystem functioning.
610 Parameterization and evaluation. *Ecological Modelling* 2012, 231, 134–145,
611 doi:10.1016/j.ecolmodel.2012.02.002.

612 83. Höglind, M.; Van Oijen, M.; Cameron, D.; Persson, T. Process-based simulation of growth and
613 overwintering of grassland using the BASGRA model. *Ecological Modelling* 2016, 335, 1–15,
614 doi:10.1016/j.ecolmodel.2016.04.024.

615 84. Donatelli, M.; Magarey, R. D.; Bregaglio, S.; Willocquet, L.; Whish, J. P. M.; Savary, S. Modelling the impacts
616 of pests and diseases on agricultural systems. *Agricultural Systems* 2017, 155, 213–224,
617 doi:10.1016/j.agsy.2017.01.019.

618 85. Munier-Jolain, N. M.; Guyot, S. H. M.; Colbach, N. A 3D model for light interception in heterogeneous
619 crop:Weed canopies: Model structure and evaluation. *Ecological Modelling* 2013, 250, 101–110,
620 doi:10.1016/j.ecolmodel.2012.10.023.

621 86. Clark, B.; Bullock, S. Shedding light on plant competition: Modelling the influence of plant morphology on
622 light capture (and vice versa). *Journal of theoretical biology* 2007, 244, 208–217,
623 doi:10.1016/j.jtbi.2006.07.032.

624 87. Confalonieri, R. CoSMo: A simple approach for reproducing plant community dynamics using a single
625 instance of generic crop simulators. *Ecological Modelling* 2014, 286, 1–10,
626 doi:10.1016/j.ecolmodel.2014.04.019.

627 88. Natural England. Environmental impacts of land management (NERR030); 2009;

628 89. Bullock, J.; Franklin, J.; Stevenson, M.; Silvertown, J.; Coulson, S.; Gregory, S.; Tofts, R. A plant trait analysis
629 of responses to grazing in a long-term experiment. *Journal of Applied Ecology* 2001, 38, 253–267,
630 doi:10.1046/j.1365-2664.2001.00599.x.

631 90. Van Oijen, M.; Höglind, M. Toward a Bayesian procedure for using process-based models in plant
632 breeding, with application to ideotype design. *Euphytica* 2016, 207, 627–643, doi:10.1007/s10681-015-1562-
633 5.

634 91. Van Oijen, M.; Cameron, D.; Butterbach-Bahl, K.; Farahbakhshazad, N.; Jansson, P.-E.; Kiese, R.; Rahn, K.-
635 H.; Werner, C.; Yeluripati, J. A Bayesian framework for model calibration, comparison and analysis:
636 Application to four models for the biogeochemistry of a Norway spruce forest. *Agricultural and Forest
637 Meteorology* 2011, 151, 1609–1621, doi:10.1016/j.agrformet.2011.06.017.

638 92. Van Oijen, M.; Reyer, C.; Bohn, F.; Cameron, D.; Deckmyn, G.; Flechsig, M.; Härkönen, S.; Hartig, F.; Huth,
639 A.; Kivistö, A.; Lasch, P.; Mäkelä, A.; Mette, T.; Minunno, F.; Rammer, W. Bayesian calibration, comparison
640 and averaging of six forest models, using data from Scots pine stands across Europe. *Forest Ecology and
641 Management* 2013, 289, 255–268, doi:10.1016/j.foreco.2012.09.043.

642 93. Korhonen, P.; Palosuo, T.; Persson, T.; Höglind, M.; Jego, G.; Van Oijen, M.; Gustavsson, A.-M.; Belanger,
643 G.; Virkajärvi, P. Modelling grass yields in northern climates - a comparison of three growth models for
644 timothy. *Field Crops Research* subm. 2017.

645 94. Landuyt, D.; Broekx, S.; D'hondt, R.; Engelen, G.; Aertsens, J.; Goethals, P. L. M. A review of Bayesian belief
646 networks in ecosystem service modelling. *Environmental Modelling & Software* 2013, 46, 1–11,
647 doi:10.1016/j.envsoft.2013.03.011.

648 95. FAO Sustanability and Organic Livestock - Model (sol-M); 2012; p. 6;

649 96. Van Oijen, M. Bayesian Methods for Quantifying and Reducing Uncertainty and Error in Forest Models.
650 *Current Forestry Reports* 2017, 3, 269–280, doi:10.1007/s40725-017-0069-9.

651 97. Tilman, D.; Downing, J. A. Biodiversity and stability in grasslands. *Science* 1994, 363–365.

652 98. Lemaire, G.; Wilkins, R.; Hodgson, J. Challenges for grassland science: Managing research priorities.
653 *Agriculture, Ecosystems & Environment* 2005, 108, 99–108, doi:10.1016/j.agee.2005.01.003.

654 99. Muscardi, D. C.; Schoereder, J. H.; Sperber, C. F. Biodiversity and Ecosystem Functioning: A Conceptual
655 Model of Leaf Litter Decomposition. In *Biodiversity - The Dynamic Balance of the Planet*; Grillo, O., Ed.;
656 InTech, 2014 ISBN 978-953-51-1315-7.

657 658

659 100. Van Oijen, M.; Balkovi, J.; Beer, C.; Cameron, D. R.; Ciais, P.; Cramer, W.; Kato, T.; Kuhnert, M.; Martin, R.;
660 Myneni, R.; Rammig, A.; Rolinski, S.; Soussana, J.-F.; Thonicke, K.; Van der Velde, M.; Xu, L. Impact of
661 droughts on the carbon cycle in European vegetation: A probabilistic risk analysis using six vegetation
662 models. *Biogeosciences* 2014, 11, 6357–6375, doi:10.5194/bg-11-6357-2014.

663 101. Colwell, R. K. Biodiversity: Concepts, patterns, and measurement. *The Princeton guide to ecology* 2009,
664 257–263.

665 102. Beynon, S. A.; Mann, D. J.; Slade, E. M.; Lewis, O. T. Species-rich dung beetle communities buffer ecosystem
666 services in perturbed agro-ecosystems. *Journal of Applied Ecology* 2012, 49, 1365–1372, doi:10.1111/j.1365-
667 2664.2012.02210.x.

668 103. de Vries, F. T.; Bloem, J.; Quirk, H.; Stevens, C. J.; Bol, R.; Bardgett, R. D. Extensive Management Promotes
669 Plant and Microbial Nitrogen Retention in Temperate Grassland. *PLoS ONE* 2012, 7, e51201,
670 doi:10.1371/journal.pone.0051201.

671 104. Littlewood, N. A.; Stewart, A. J. A.; Woodcock, B. A. Science into practice how can fundamental science
672 contribute to better management of grasslands for invertebrates? *Insect Conservation and Diversity* 2012,
673 5, 1–8, doi:10.1111/j.1752-4598.2011.00174.x.

674 105. Philippot, L.; Spor, A.; Hénault, C.; Bru, D.; Bizouard, F.; Jones, C. M.; Sarr, A.; Maron, P.-A. Loss in
675 microbial diversity affects nitrogen cycling in soil. *The ISME Journal* 2013, 7, 1609–1619,
676 doi:10.1038/ismej.2013.34.

677 106. Wachendorf, M.; Fricke, T.; Möckel, T. Remote sensing as a tool to assess botanical composition, structure,
678 quantity and quality of temperate grasslands. *Grass and Forage Science* 2017, 1–15, doi:10.1111/gfs.12312.

679 107. Diodato, N.; Bellocchi, G. Modelling vegetation greenness responses to climate variability in a
680 Mediterranean terrestrial ecosystem. *Environmental Monitoring and Assessment* 2008, 143, 147–159,
681 doi:10.1007/s10661-007-9964-z.

682 108. Gaitán, J. J.; Bran, D.; Oliva, G.; Maestre, F. T.; Aguiar, M. R.; Jobbág, E.; Buono, G.; Ferrante, D.;
683 Nakamatsu, V.; Ciari, G.; Salomone, J.; Massara, V. Plant species richness and shrub cover attenuate
684 drought effects on ecosystem functioning across Patagonian rangelands. *Biology Letters* 2014, 10, 20140673,
685 doi:10.1098/rsbl.2014.0673.

686 109. Balvanera, P.; Siddique, I.; Dee, L.; Paquette, A.; Isbell, F.; Gonzalez, A.; Byrnes, J.; O'Connor, M. I.;
687 Hungate, B. A.; Griffin, J. N. Linking Biodiversity and Ecosystem Services: Current Uncertainties and the
688 Necessary Next Steps. *BioScience* 2013, bit003, doi:10.1093/biosci/bit003.