Numerical Solution of First Order Linear Differential Equations in Fuzzy Environment by Modified Runge-Kutta- Method and Runga-Kutta-Merson-Method under generalized H-differentiability and its Application in Industry
The paper presents an adaptation of numerical solution of first order linear differential equation in fuzzy environment. The numerical method is re-established and studied with fuzzy concept to estimate its uncertain parameters whose values are not precisely known. Demonstrations of fuzzy solutions of the governing methods are carried out by the approaches, namely Modified Runge Kutta method and Runge Kutta Merson method. The results are compared with the exact solution which is found using generalized Hukuhara derivative (gH-derivative) concepts. Additionally, different illustrative examples and an application in industry of the methods are also undertaken with the useful table and graph to show the usefulness for attained to the proposed approaches.
Keywords:
Subject: Computer Science and Mathematics - Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.