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Abstract: The paper studies some cases in physics such as Galilean inertia motion and etc., and hereby, presents a
logical schema of recursive abduction, from which we can derive the universality of physical law in an effective
logical path without infinite induction asked. Recursive abduction provides an effective logical path to connect a
universal physical law with finite empirical observations basing on the both quasi-law tautology and suitable
recursive dimension, the two new concepts introduced in this paper. Under the viewpoint of recursive abduction,
the historically lasting difficulty from Hume’s problem naturally vanishes. In Hume’s problem one always
misunderstood the universality of natural law as a product of empirical induction and the time-recursive issue as an
infinitely inductive problem and, thus, sank into the inescapable quagmire. The paper gives a concluding

discussion to Hume’s problem in the new effective logical schema.
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1. Introduction

The paper clarifies the properties of physical law from three aspects: abduction, the foundation of universality
of physical laws, and Hume’s problem.

Abduction has revealed an intuitively vivid logical process in empirical judgments, but left the logical
uncertainty to physical laws just as to commonsense. It significantly conflicts with our general impression that the
physical law is successful much more than the commonsense. From the initial illustration of abduction at
beginning, by Pierce [1], to the more rigorous formal formulations of abduction in the present, e.g., by Meheus and
Batens [2], Lycke [3], Soler-Toscano, et al. [4], Beirlaen and Aliseda [5], and so on, during one and half centuries,
physical law and commonsense were always indiscriminately viewed as similar objects in abductive analyses.
Below, we shall call such kind of abduction as normal abduction, which always cannot discriminate the strict
natural law from the commonsense. In the framework of normal abduction, the abductive studies are not enough to
explain the difference between the discovery processes of physical law and other objects, and usually focus on
their similarity, e.g., see Pombo and Gerner [7], McNally, et al. [8], Chattopadhyay and Lipson [9], Haig [10],
Khemlani, et al. [11], Pedemonte and Reid [12], Bajc [13], Singer [14], and so on, in which the logical inferential
processes in physics, biology, psychology, pedagogy, ethnography, jurisprudence, and etc. are almost indifferent.

Developing from Pierce’s initial proposal [1], abduction as the non-standard logic follows the reasoning

schema
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B(x), (A(x) = B(x))/A(x), (1.1)

where A and B must be different predicates. Distinguishing from the empirical induction, different predicates in
the antecedent and consequent in A(x) = B(x) are the necessary characteristic of abduction. The empirical
induction is always carried on only in different quantifiers but with the same predicate. In such a characteristic
framework for identifying the abductive reasoning, an abduced physical law and an abduced commonsense are
usually indifferent. It is a long-standing fatal mistake misleading the abductive discussion upon physical laws.

Emphasizing on the distinction from deduction and induction, normal abduction deals with all abduced objects
in postulations as the following, e.g., see Nubiola [6]:

i) it cannot be logically derived out;

ii) it is purely an empirical guess.
Namely, in the mathematical logical terminologies, any abduced object in normal abduction is logically inderivable
and empirically indecidable in the rigorous logical sense. The major concern in this paper is not the distinction
from deduction and induction but the difference of physical law from not so rigorous abduced objects. The case
studies will present a significantly different view upon the abductive reasoning for physical laws in Sections 2 and
3.

Tracing back to earlier times, Hume’s problem also mixed natural laws with normal empirical inductions and
denied any certainty of natural laws, of course, including the most successful physical laws. Intensive question to
natural law was incisively claimed by Hume since more than two and half centuries ago, Hume [15][16], and left
unsolved up to resent time, both in the classical reasoning and in the non-standard abductive reasoning. The fatal
problem is how to know the conformability of past and future for the natural law in empirical test, which asks
infinite empirical induction. From Hume’s time, philosophers and logicians had made great effort to rescue the
empirical origin of natural laws’ certainty and finally laid out two leading roundabout but unsuccessful tactics in
modern time to fight Hume’s skepticism. One was to justify the feasibility or reliability of empirical inductive
procedure for yielding a natural law, and some of them eventually drew support from the probability argument, e.g.,
Fisher [17], Carnap [18-21], Reichenbach [22,23], and others showed the empirical inductive procedure always
more reliable than Hume’s reasoning path, e.g., Worrall [24], Kelly [25]. Another tried to dissolve the skeptical
threat by cancelling the core sense of Hume’s problem to defense the natural law system, such as using
falsification to replace verification, Popper [26-29], using unsovability of Hume’s problem in a three-valued
logical schema to evade from Hume’s critique, Shier [30], and etc.; but they only used empirical inductive
falsification or empirical inductive unsovability to replace empirical inductive verification, and still concentrated
on empirical induction to find resolution for Hume’s problem. The two tactics all sank into the circulation dilemma
of using induction to justify induction to which Hume had already denounced far earlier than those arguments were
proposed, see Howson [31]. All those arguments are unsuccessful to thoroughly free the natural law system from
Hume’s critique, see Skyrms [32], Howson [31], and, especially, are incapable to surpass the cordon delimited by
Hume and to bring enterprising studies to the natural law system on a level higher than what Hume had reached.
Up to resent time, as a methodological problem in natural science, the core issue unsolved in Hume’s radical
skepticism is always the problem of infinite induction, e.g., Boulter [33], Okasha [34], Hetherington [35], Schurz
[36]. Different from the above two tactics, this paper will open up a new route to deal with Hume’s problem in a
recursive pattern to overcome the problem of infinite induction.

Another development from the discussions of Hume’s problem is Goodman’s discovery [37,38]. Goodman
proposed a triple propositional category of accidentalness, lawlikeness, and natural law to deal with the analysis
involving Hume’s problem, in which only the lawlike proposition, but not all empirical propositions, is possible to

serve as a candidate for becoming a natural law. For a long time lawlikeness had been discussed repeatedly, e.g.,
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Carnap [19], Barker and Achinstein [39], Small [40], Ullion [41], Quine [42], Hesse [43], Skyrms [33], Israsel [44],
Chart [45], Godfrey-Smith [46], Schwartz [47]. Nevertheless, how to characterize the lawlikeness had little
progress and, in fact, fell into difficulties up to now. All efforts were seemingly destined to come back to the
endless old argument for inductive procedure similar to those in Hume’s problem. The resent paper will involve
nothing with Goodman and his successors’ approach of and explanation to the lawlikeness. But the idea of
lawlikeness indicating the candidate of a natural law is adopted to make up an important logical judgment leading
to the natural law.

The paper is organized as follows: Section 2, first clarifies the realistic logical path for yielding a physical law
by case studies in the mathematical logic framework, discusses the relation among characteristics of normal
abduction, lawlikeness, and physical law, gets rid of some long-term misunderstandings, and finally introduces the
new abductive framework, called law-deriving abduction. Section 3 defines the recursive abduction in the logical
and operational senses and discusses the universality of physical law. Section 4 gives a conclusive solution to

Hume’s problem basing on the framework of recursive abduction. Section 5 summarizes the main conclusions.

2. Analysis on Physical Laws Derived from Experiments

In order to precisely re-clarify the objective ground on which the physical law is yielded, we first focus on the

case study of some physical laws in the mathematical logical form.

2.1. Case 1: Galilean Derivation for the Inertia Motion

Fig. 1 Illustration of Galilean inference in his slant experiment

Galilean discovery, Galilei [48], can be illustrated in Fig. 1. First, a metal ball freely moves down from “A” to
“B” along slant “A-B”, proceeds to move up to “C” along slant “B-C”, and during moving on “B-C”, it slows
down to zero at the highest point “C”; if neglect the resistance, the heights of points “A” and “C” are equivalent /.
Second, keeping the point “B” fixed and turning slant “B-C” to “B-D”, repeating the process in the first time, the
metal ball reaches the final point “D” along fold line “A-B-D”; if neglect the resistance, the height of point “D” is
yet h. Turning the slant between £CBE has no impact on height /. So far, we induce from the slant experiment
that the metal ball will arrives at 7 and slows down to zero at its terminal point on the slant B-C for any 6
between <CBE. Galilei further thought that if slant “B-C” turns to close the horizontal plane more and more, to
reach height / the velocity of the metal ball will slow down slowly more and more, and finally if let slant “B-C”
infinitely tends to coincide with horizontal plane “B-E”, to reach the final height / the metal ball will have to
always move on and therefore to keep its velocity constant. So Galilei concluded that if there is no any external
force imposed on an object, the object will keep its velocity constant to move on horizontally. It is the preliminary

description of inertia motion which bred Newton’s inertia law in a more general form, eventually.
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Restate Galilean discovery more rigorously in the form of propositional logic as follows:

1) Neglect the resistance, denoted e.

2) For all observable 6 between 2CBE, if a metal ball freely moves down from height /# and along slant
“A-B” from “A” to “B”, denoted hj, it will get maximal velocity v, at “B”, denoted v,, and proceeds to move
up along slant “B-C” , denoted h;, and finally reaches height % too, during which v, slows down to zero, denoted
voy: (hy = vg) = (e = hy Avgy). Inductive conclusion p; from the experiment is p; = e = hy A vg,.

3) As a reasonable supposition, change angle 6 such that slant “B-C” infinitely tends to coinciding with
horizontal “B-E”, denoted Ogg, h; will also result h;, and to do so unless the metal ball keeps vy constant
infinitely to move on along “B-E”, denoted —vy, = —hy, thus, the metal ball will keep v, constant always to
move on along “B-E”, denoted hy = (e = vg): O = ((=(e = vg) = —hy) = (hy = (e > vy))).

4) Summing up from “1)” ~ “3)”, obtain

((hy = vg) = (e = hy Avgy)) = (Bp = ((=(e = vo) = =hy) = (hy = (e = vp))). (2.1

Concluding from (2.1),

Ogr = ((=(e = vo) = =hy) = (hy = (e = vp))). (2.2)

(2.1) completely describes Galilean analysis and (2.2) is the right-hand side in (2.1). (2.2) is a tautology,
denoted L, called Galilean “quasi-law tautology” (in the case without specific assignment, denoted £). If merely
concern with the conclusion, they are equivalent. However, (2.2) cannot be directly tested in the slant experiment,
and it is the result of tautological inference from the experimentally observable process under Galilean premise h;.
Only the left-hand side in (2.1), denoted I, is an inductive examination, and can be tested by the experiment. The
inductive conclusion in I is p;=e = (hy Avgy). (2.1) includes all contents covering the experimentally
observable process and the tautological inference in Galilean analysis. It is neither a pure empirical induction nor a
pure tautological inference but some kind of their combination to enable Galilei to derive his conclusion.

(2.1) is a tautology too, denoted by J; called Galilean “lawlike tautology” (in the case without specific
assignment, denoted T°). The last formula e = v, in L;, called inertia motion, is Galilean conclusion. However,
we cannot accept it as a physical law only basing on the analysis of slant experiment, for it is not the unique
reasonable conclusion from the empirical inductive conclusion p;. Galilei only used h; in inductive conclusion
e = hy Avg in [, and disused vg;. Galilean analysis does not include all conclusions objectively implied in the
slant experiment.

We might convert our theoretical stand to agree with Aristotle’s claim. From Aristotle, the basic empirical
evidence contained in this experimental induction should be that the metal ball always naturally stops in the
midway and never always freely moves on, Aristotle [49], that is, in inductive conclusion e = hy A vy, Vg, but
not Galilean h; is Aristotle’s premise for the further analysis. Hence, from Aristotle’s ideas h; is impossible to

happen in 8 for it must request —vg;. Following Aristotle, (2.1) should become

((hy = vg) = (e = hy Avgy)) = (B = (B = —wpy) = (Vo = =), (2.3)

and correspondingly (2.2) becomes

Ope = ((ht = —wgy) = (Wou = —hy). 2.4)
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Similar to (2.1) and (2.2), (2.3) and (2.4) are also tautologies. But (2.3) and (2.4) conclude that when slant “B-C”
infinitely tends to coinciding with horizontal plane “B-E”, the metal ball will stop in the midway and will be
impossible to reach height 4. The conclusion from (2.3) or (2.4) is opposite to that from (2.1) or (2.2). Denoting
L, the right-hand side in (2.3), a quasi-law tautology, and commonly denoting I the left-hand sides in (2.1) and
(2.3) (notice: they are the same), similar to (2.1), (2.3) is a lawlike tautology, denoted 7, and [ in J4 is the
initial empirical induction. The last formula —h; in £, is Aristotle’s conclusion.

In evident, the empirical induction in slant experiment cannot determine which of e - vy or —h; to be a
physical law. They are merely the candidate for a physical law so far. Galilean e = v, and Aristotle’s —h; are
two typical lawlike propositions, denoted p;. In L;, hy combining with the particular logical consistent
explanation turns out e = vy and excludes vg, while, in L, vy, combining with the other particular logical
consistent explanation turns out —h; and excludes h;, although the experimental inductive conclusion
pr = e = hy Avg, is the same for both. The difference in logical consistent explanations, respectively indicated by
L and L,, plays an important role to determine different candidates of physical law. The consistent explanation
presented in a quasi-law tautology is an indispensable logical ground to construct a lawlike proposition, and the
initial inductive observation in the slant experiment only offers the reasoning clue for inspiring scientists to suggest
their own lawlike propositions.

The initial experimental induction cannot uniquely exclude one and support another between L; and L.
Only the further empirical test is possible to determine which of them to be a physical law. In the history, the
further corollaries from Galilean inertia motion, such as parabolic motion, Galilean transformation in the inertial
system, static phenomena in the rotating earth, and etc., contributed the further empirical support to make Galilean
lawlike proposition eventually to become a natural law. Whereas Aristotle’s motion law was rejected for its
corollaries, beside of static phenomena in the rotating earth, were not supported by further empirical observations.
They involve nothing of Kuhn’s incomparable paradigms, Kuhn [50]. Abduction offers litmus test for their
qualities.

Taking parabolic motion as an example, and denoting g the acceleration of gravity and m, the parabolic

motion, we have

(e = vp) = ((e = vo) A (g = mp)), 25)

in which (e » vo) A (g » m,) gives a new empirical inductive observation, denoted p;. The judgment to (2.5)

supporting Galilean inertia motion has the reasoning schema of

pi» (0L = p1)/PLs

a typical abduction, where, p; = ((e = vp) A g = m,) and p, = (e > vy).

As well-known in abduction, all natural laws have this feature: in Einstein’s relativity, it is principle of
constancy of light velocity to interpret Michelson-Morley experiment but not vice versa, meanwhile
Michelson-Morley experiment to give the empirical truth to principle of constancy of light velocity; in
Darwin’s evolution theory, it is principle of natural selection to interpret the phenomena of species’ evolution but
not vice versa, meanwhile the phenomena of species’ evolution to give the empirical truth to principle of natural
selection; and so on. They finally become natural laws all through p;, (p, = p;)/pL, see, e.g., Pombo and Gerner
[7]. Here the further issue is that why physical laws are always most excellent in their universality comparing with

other empirical sciences and commonsense.
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2.2. Further Discussions on the Abduction for Deriving Physical Laws

Denoting Lp; as tautology L containing conclusion p;, we define quasi-law tautology, lawlike proposition,

and natural law as follows:

Definition 1. Lp;, is a quasi-law tautology if the corollary of p; is an empirical induction p;, and p; is

called lawlike proposition.
Definition 2. p;, is a natural law, denoted pf, if and only if pj, the corollary of p,, is empirically true.

In Definition 2, p, and p{ are the same in terms of their sentence contents, but they are distinguished by the
different empirical truth value statuses. p; is merely the conclusion in Lp; without the empirical truth value but
pl is the empirically valued p, by abduction.

In Case 1, Galilean p; = e - v, in L; obtains empirical truth by abduction in p; — p; to become a natural
law pf, whereas Aristotle’s p, = —hy in L, fails in obtaining empirical truth by abduction in p, — p; and is
rejected as a natural law.

Using the symbols in Definitions 1 and 2, we always denote the abduction for deriving a physical law as

follows

pi» (oL = 1)/ (PL = PL) (2.6)

It is still an abduction of course, in which we discriminate p, and pf, a lawlike proposition and a physical law. A
lawlike proposition is the conclusion in quasi-law tautology Lp;, and a natural law is a lawlike proposition
obtaining the empirical truth in abduction. The form of (2.6) slightly differs from the current abductive reasoning

schema and emphasizes on the different empirical truth statuses of p;, and pf.
2.3. A New Kind of Abduction

(2.6) indicates a new kind of abduction, called law-deriving abduction, briefly L-abduction. 1t means that
normal abduction in p — p; is merely the necessity but not the sufficiency for deriving a physical law. No any
strict natural law such as physical law is sufficiently derivable from the normal abduction. On the other hand, it
reveals yet that the combination of quasi-law tautology, indicating the lawlikeness following Definition 1, with
empirical abduction, indicating the empiricalness following Definition 2, to give the sufficient derivability of a
physical law, though the empirical abduction alone is always insufficient to do it. This new kind of abduction
introduces the new sufficiency for deriving a strict natural law, and is grounded on the combination of lawlikeness
with empirical abduction. In order to establish the sufficient abduction in empirical induction for deriving a
physical law we should focus on the combination of lawlikeness with empirical abduction but not the normal
abduction alone.

In terms of the simplest case in which there is only pj, i.e., there is only one corollary of p; considered in

abduction, the above analysis on Case 1 is generally summarized in (2.7) and (2.8),

01 = Lp) = (oL~ p1); (2.7
{ pi» (o = )/ (P = PL). (2.8)
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By the similar analysis conducted in Case 1, it is easily to examine that (2.7) and (2.8) describes the general
reasoning process followed by strict natural laws such as Newtonian three laws of motion,
Darwin’s law of evolution, mass conservation law in chemistry, Mendeleev periodic law of elements, Mendel’s law
of inheritance, principle of constancy of light velocity, and so on. Every strict natural law first has its own
lawlikeness indicated by a quasi-law tautology, in which particular consistent explanation is presented, and then, is
supported by empirical observations in abduction.

So far we have clarified at least that a lawlike proposition and a strict natural law are never a normal abductive
result. In (2.7), only p; is a purely descriptive empirical result and it merely offers preliminary raw materials for
inspiring scientists to find the lawlikeness for the candidate of natural law. It contributes the inspiration
psychologically but neither the necessity nor the sufficiency for deriving a natural law. Moreover, (2.2) derived
from (2.1) and (2.4) from (2.3) all obey (p; = C) + p,, where C indicates an interpreting choice from p;. We
derive different lawlike results p;=e — v, or p,=-h; by introducing the interpretation h; or vy, as C. Initial
empirical observation in I at most delivers p;. Logically irrelevant to p;, the logical consistent explanation in £,
rather than the great number of cumulative evidences in the normal empirical abduction, to yield a lawlike
proposition. Lawlike tautology " asks both a consistent logical relationship and a set of observables. Based on £
in T butnot I in T, the candidate of a natural law is eventually proposed.

Theoretically, initial empirical induction I is unnecessary, and it is only a psychological factor to inspiring
scientists. For example, more than two-thousand and three-hundred years ago Aristotle proposed his motion law
without the empirical inductive result p;=e — (hy Avg,) in a slant experiment. Lp; and p; together consist of

sufficiency to abduct pf. So (2.7) can be simplified into (2.9) as the following

{ Ly, = (oL = p1); 2.9
pi» (o = )/ (P = PL). (2.10)

Henceforth, we always refer L-abduction to (2.9) and (2.10).

The case study clearly reveals that a strict natural law is logically derivable in (2.9). It is an important feature
differing from the normal abduction and formally distinguishes a strict natural law from a commonsense. The next
issue left is how the empirical truth of a strict natural law is decidable in observational test from the further
analysis on (2.10).

It is concluded now that

1. Beginning with an initial empirical inductive conclusion p;, one cannot determine p; unless it associates
with a consistent relationship presented in quasi-law tautology L; and p; is the conclusion in L, namely Lp;.

2. p, cannot become p} unless its corollaries pj, py ... are empirically true.

3. Not the initial inspiring p; but the combination of lawlikeness with sequent empirical inductive pj, py,...
gives the sufficiency to infer a natural law. It is an L-abduction.

4. (2.9) and (2.10) completely define the L-abduction.

Normal abduction always well prepares for the non-monotonicity and dynamical reasoning but overlooks the
sufficiency of derivation for the strict natural law. The normal abduction as a general concept is certainly
over-pessimistic. It is necessary to distinguish L-abduction from normal abduction. Their difference can be
summarized as: the normal abduction deals with loose phenomena of A and B in speculative A = B, just like a
physician facing with a patient to conjecture what is the explanation to the patient’s symptom, in which usually no
sufficiency exists for deriving a conclusion, Meheus and Batens [2]; L-abduction deals with the logically compact
relation between p; and p; consistently based on Lp; and the empirical truth of pj, just like one using

originally consistent geometry in the measurement of realistic space to determine whether the conclusions from the
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geometrical theorems are empirically true, in which there is the sufficiency to derive the conclusion.

2.4. Case 2: Difference between Empirical Inductive Conclusion and Physical Law

Sentence “the sun rises from the east everyday” is an empirical inductive conclusion (purely as a repeated
result from numerous empirical observations) or a physical law (as an empirically true corollary from inertia
rotation of the earth following inertia law). The difference between a physical law and a normal empirical
inductive result is not their empirical contents but their intensions concerning the logical consistent explanation
presented in a quasi-law tautology. Empirical observation at most produces the inductive conclusion, only
L-abduction possibly produces the strict natural law. Here, three things should be distinguished: empirical
induction, normal abduction, and L-abduction. If “Tom always dresses red color” is concluded from the observable
result of “Tom dressed red color every day up to now”, this is an empirical inductive conclusion. If one from “Tom
likes to dress red color” inferring “Tom dresses red color” empirically examines “Tom likes to dress red color”,
this is a normal abductive reasoning, for like and dress involve different predicates. However, it will be impossible
to derive a lawlike proposition and, further, a strict natural law, unless a quasi-law tautology makes sense to

explain Tom’s dressing in a consistent relation. Only L-abduction is possible to finally yield a strict natural law.

2.5. Case 3: Galilean Law of Free Fall

Aristotle regarded from the intuitive impression that the heavier a body (w") is, the faster its free fall (g7) is,
and, naturally, the lighter a body (W) is, the slower its free fall (g*) is: (W' >w') = (g' > g*). By using
reduction to absurdity, Galilei refuted upon Aristotle’s viewpoint, Galilei, [48]: Supposing Aristotle’s assertion
right, if a heavier body is bundled with a lighter one, the total weight w' will increase to their plus w' = (w' +

w") > w', and if they together freely fall, then their free fall (g') will be faster than g:

w'+wh) - (g™ > g"); @2.11)

on the other hand, if a faster falling heavier body is bundled with a slower falling lighter one, then the slower one

will slow down the faster one to result in their common free fall (g™) slower than g': g™ < g, that is,

w'+wh) - (g™ < g"; (2.12)

combining (2.11) with (2.12), obtain

W' +wH A Agh - @ > gD At <gh; (2.13)

it is contradictory. And the contradiction is avoided unless g' = g*, that is, free falls of heavier and lighter bodies

are the same. Galilei therefore proposed g' = g by the following reasoning

(@' =gH = (@' >gH A <gM) > @ >gH At <gN-g"=g") (@14

(2.14) is a quasi-law tautology, in which g' = g* is the conclusion, a lawlike proposition p;. In this case, the
empirical inductive resultis p; = (¢' > g") » (W >wh - @ > g A (@' A gh) = (g™ < g"), which

is omitted in (2.14) for simplifying the expression. Galilean reasoning in (2.14) led to the discovery of gravity
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acceleration constant g on the earth surface. Here g is p; derived from Galilean lawlike proposition and
supported the law of free fall in abduction, namely p;, (p, = p})/p; = pf. It is an example without interpreting
choice by dividing p;. It still follows (2.9) and (2.10). If Galilei proposed g' = g* merely from the said
experimental observation to the free falling bodies in Leaning Tower of Pisa without the consistent explanation in
(2.14), it would had been called equal free falling phenomenon, a pure empirical inductive conclusion, but not the
law of free fall. The consistent explanation in £ is the indispensible character of a lawlike proposition preparing

for a natural law.
2.6. Relationship between the Empirical Truth Values of Lp; and p,

A tautology is always true for its semantics of connectives, namely connective-semantically true, but its
contents may be empirically true or false. In Case 1, the contents of L; is empirically true revealing the realistic
empirical process, whereas L, empirically false involving nothing with the realistic empirical process. It
enlightens us that a quasi-law tautology Lp; is empirically true or false because p; is empirically true or false,
and vice versa. Below, we proof this result as Theorem 1 in the general sense.

Theorem 1. (p, = pj) © (£p, = p))

Proof of Theorem 1:

There are three steps in the proof:

Step 1, proof for (Lp, = (p, = pp) = (LpL = p1):

@ LpL - (oL~ D) = (LpL = pL) > LpL > pD) Axiom
@ Lp, - (oL~ pD) 2.9)
® (LpL - pL) = Lo~ pD) O@MP
@ Lp, - pL Lp, = L containing conclusion p,
® Lp, - p ®@MP
Step 2, proof for (Lp, = (p = p1)) = (P = P1):
@ (Lpy, = (.~ pD) = (L.~ P Theorem
@ Lp, = (pL = p1) (2.9)
© pL - p1 D@ MP

Step 3, proof for (Lp, = p;) © (p, = p1):
@ ((Lp, = (oL = D)) = L = pD)) A((LpL = (L = D) = (L = D) = (Lo, = p1) © (PL = 1)

Theorem
@ ((Lp, = (pr = ) = Lo = pD)) A((LpL = (0L = pD) = (0L = PD)) Step 1 and Step 2
@ (Lp, = p1) © (0L~ p1) D@ MP

Denoting empirically true Lp, as Lp.°, we have
Corollary 1. Lp,* = p!.
In Lp,t and pf in Corollary 1, superscript ¢ indicates the empirical truth of Lp, and p, obtained from

L-abduction. The meanings of Corollary 1 are only that the empirical truth value of Lp; is equivalent to the

empirical truth value of p; obtained from L-abduction, but not Lp; = p;.
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Proof of Corollary 1: From Theorem 1, if p; obtains empirical truth by L-abductive reasoning in p; = p; to
become pf, then Lp; will obtain empirical truth by L-abductive reasoning in Lp, — p; to become Lp,*, and

vice versa.

Corollary 1 reveals a physical law pf must correspond to an empirically true Lp;. It explicitly appeals us,
beside of the connective-semantically truth of a tautology, to concentrate on the empirical truth value of sentence
contents in quasi-law tautology Lp; though it is never the subject in classical formal logic. Empirically true Lp;
is always meaningful in physics. In Case 1, L; implies the conservation of mechanical energy, in which the
summation of potential energy, indicated by h; of the metal ball, and kinetic energy, indicated by v, of the metal
ball, keeps constant. It was clearly proposed almost one-hundred and fifty years later from Galilean time. Also, in
Case 3, the empirically true quasi-law tautology (2.14) implies the equivalence of gravitational mass and inertial
mass, which was unambiguously proposed almost three-hundred years later. They have revealed the importance of
empirical truth value of a quasi-law tautology. Classical formal logic involves nothing such as whether or not the
contents of a tautology are empirically true and needs not discriminate the connective-semantic truth and empirical
truth. However, derivation for a physical law is not such a reasoning, and we must answer whether or not the
contents of a quasi-law tautology are empirically true, just as we had seen in L; and L4. Their empirical truth
values are not inconsequential and always make sense in physics. It is another non-ignorable characteristic of
L-abduction distinguished from classical logic. Usually we always paid our attention to the natural law rather than
to the quasi-law tautology. The analysis to the quasi-law tautology might be neglected too much in physical

studies.

3. Recursive Abduction Based on Quasi-Law Tautology

3.1. A Comparison between Physics and Geometry

Physics as empirical science and geometry as formal system are always viewed as essentially different
knowledge fields. However, under the viewpoint of L-abduction presented by (2.9) and (2.10), they are the same.

All theorems of geometry are just lawlike propositions and have the same logical status to the candidate of
physical law p; without any particularity until they are tested in the empirical observation by L-abduction. The
logical procedure for yielding the theorems of geometry is also Lp;, in which the relation between axiom and
theorem is presented. When they pass the empirical test by L-abduction, they become the natural law, and the
complete logical procedure is the combination of (2.9) and (2.10) as well. This logical procedure is indifferent
between physical law and geometrical theorem. Geometry as the feasible descriptive system to the nature differs
from physics merely by nothing but being yielded usually without referring to specific I in 7', a non-essential
feature for physical laws. No mater of the axioms of geometry or the fundamental explanations of physical laws,
they all are presented in Lp;; geometrical theorems and physical laws such as Newtonian motion laws, Einstein’s
principle of constancy of light velocity, and so on, all correspond to the conclusions in Lp;, unlike the current
misunderstanding that corresponds the physical law to the axiom in geometry. Obviously in L-abduction, the
physical law corresponds to the theorem of geometry, and the relationship between geometrical theorem and
corresponding axiom is presented in Lp;.

In T, antecedent [ is an initial empirical induction inspiring the scientist to propose a lawlike proposition, it is
merely to describe the most feasible discovery manner in practice for the scientist who always makes effort to

eliminate the psychological illusion so that straightly to stimulates the insight into the objective nature.

10
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Theoretically, the scientist can directly uses observables to construct quasi-law tautology Lp; without the initial
specific empirical induction / in T, and in this case, the lawlike proposition directly derived from Lp; will
likewise become a natural law as long as its logical corollary p; is empirically true in L-abduction. Geometry as
the description of realistic physical space is just such a natural law system. Without drawing support from specific
induction [ in T, geometrists directly construct a set of consistent inferences (corresponding to a set of quasi-law
tautologies) to set up a lawlike system, in which idealized spatial descriptive elements, such as point, line, plane,
and so on, are organized in consistent logical contexts to compose of possible consistent spatial descriptions, such
as Euclidean geometry and non-Euclidean geometries; if anyone of them infers the true empirical results in
L-abduction, it will become a natural law system. This process is completely similar to determining which of the
conclusions in L£; and £, into a natural law. In Newton’s time, Euclidean geometry was a natural law system,
and in Einstein’s time, it became non-Euclidean geometry. Natural law system is always verifiable and falsifiable
in L-abduction.

Physics and geometry as applicable systems to the realistic world similarly contain two parts: consistent
formality part presented by the quasi-law tautology and empirically tested part presented by the L-abduction.
Traditionally, one was customary to concentrating more on empirically tested part in physics and on consistent
formal part in geometry. L-abduction reveals to us that two parts are equally important for physics and geometry.

We shall intensively discuss what the quasi-law tautology in L-abduction has brought to physics.
3.2. Recursive Abduction

First, let us come back to (2.2). For time 7, we can always define measurable recursive partitions tp,

k =0,1,2,-, such that
T =2ty, k=012,

The most familiar t; includes second, minute, hour, day, month, year, century, and so on. When we choose time
as a recursive dimension, the recursive feature of time is certainly treated as the ultimate attribute of time itself in
the explanation given in a quasi-law tautology. What we want to clarify here is the recursion how to function in
L-abduction differently from that in a normal abduction.

Denoting p; in tj as pﬁ", k=012, in(2.2), pz" = (e - vg)t. From the tautological character of (2.2),

naturally,
((=(e = vp) = =ht) = (hr = (e = 0))) = ((=(e = vp) = =ht) = (hr = (e = vp)™)). G.1

(3.1) means that as the tautological result the conclusion in (2.2) will always keep original in any t;. It only
presents the request from logical consistent explanation given in (2.2), and is purely formality so far. It is not a
positive result in empirical world, for example, empirically false Aristotle’s (—=hq)t* also holds in £, similarly to

3.1).

However, following (3.1), the empirical test to (e = v)% in (2.5) becomes (3.2) correspondingly
(e > o)™ > ((e » vp) A g > mp), k=012, (3.2)

In 3.2), ((e=»vg)Ag— mp)tk as p; is an experimental observation happening in realistic t;, and it is not

formality but practice in the empirical world. (3.1) requires the empirical test to e = v, in (2.2) to conduct in the

11
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temporal series tj, k = 0,1,2,---. In other words, the empirical test to e = vy of (2.2) is requested recursive in

time realistically. That is,

if
a) (e - vy)te is empirically true in (3.2) by L-abduction,
b) (e - vg)t« is empirically true in (3.2) by L-abduction,
c) (e = vy)te+1 is empirically true in (3.2) by L-abduction,
then
d) (e = vy) in (2.5) will be empirically true in t;, k = 0,1,2,---, namely, passes the empirical test in
L-abduction;
and

e) otherwise, (e = vy) in (2.5) will be false in tj, k = 0,1,2,---, namely, fails in the empirical test in

L-abduction.

For example, in Case 1, Galilean e = v, obtains the empirical truth in t,, k = 0,1,2, .-, while Aristotle’s
—hy not. This time-recursive requirement from a quasi-law tautology is generally the same to both physical laws
and geometrical theorems used in realistic space description.

The above discussion is made in terms of time-recursive abduction. In fact, for any recursively measurable
dimension we can introduce the recursive test in an L-abduction as long as Lp; is uncontradictory to this
dimension. And in this case, we call such a dimension the suitable recursive dimension. Not all dimensions must
be the suitable recursive dimension, e.g., all quantum dimensions are contradictory to L; for L; disagrees with
Heisenberg's uncertainty relation.

Letting 1, k =0,1,2,--, be a suitable recursive dimension, we have the general definition of recursive

abduction as follows:

Definition 3. A recursive abduction refers to:

if
a) pz" is empirically true in p,f" - p,’r" by L-abduction,
b) p,* is empirically true in p;* - p,”* by L-abduction,
¢) p,*** is empirically true in p,*** - p,"*** by L-abduction,
then
d) p, in p, - p; will be empirically true in 7, k =0,1,2,---, and becomes pf, namely, passes the
empirical test in L-abduction;
and

e) otherwise, p, in p, - p; will be empirically false in 7., k=0,1,2,-+, namely, fails in the

empirical test in L-abduction.

Different from the mathematical recursive function, if Definition 3 is used in a physical measurement, the
practical operational sense of 73, and 7134, is that £ is randomly selected from k = 0,1,2, ---. Namely, in physical
measurement, we use randomness of k in place of arbitrariness of k in mathematics to make up the recursion. The
randomness interpretation of k£ contains two meanings: first, it allows a new probability argument of natural law’s
universality; and second, it is just the recursive expression for the well familiar repeatability of experimental or
empirical observations in physical studies.

Recursive abduction relies on the combination of (2.9) and (2.10), and impossibly comes true in classical logic

12
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and normal abduction. Recursive abduction reveals the essence of sufficiency for deriving a physical law in
L-abduction. In other words, the universality of a physical law is nothing else but the physical law holding in one
or more suitable recursive dimensions.

Recursive abduction can be used in all suitable recursive dimensions, such as space-recursion, mass-recursion,
speed-recursion, and etc. For space-recursion, it refers to different locations in space; for mass-recursion, it refers
to different quantities of mass; for speed-recursion, it refers to different speeds of motion; and so on. They not only
consist of the verifiable universality of physical laws but also give the possibility to recursively falsify a physical
theory in its inapplicable range, e.g., Newtonian mechanics was falsified in the space-recursion of micro field, in
the mass-recursion of quantum field, and in the speed-recursion in high-speed field. Recursive abduction is the
general character of physics system.

By the similar proofto Corollary 1, we have

Corollary 2. From Theorem 1, if pf from p, = p; holds in 7y, r = 0,1,2,-+-, Lp, will be empirically true

inn, r=0712--.

Corollary 2 means that corresponding to pf, a set of empirically true sentences in Lp, is consistent in 7y,
r=012,--.

Such a set of sentences in Lp,* makes up the foundational explanation to pf, and is meaningful in
corresponding discipline such as physics, geometry, or etc., as mentioned above. Those consistent sentences
involve pf but usually contain more than pf. They are usually distinct from pf, and have their own analytical
value.

From Definition 3, L-abduction is recursive as long as there is a suitable recursive dimension. The recursive

L-abductive schema can be given as follows

Lp, = (oL = P (3.3)
{p, Ve 01 = 2/ @, = p), k=012, 3.4)
where p;"***t = {p",p;",p" ) and . = {p,pr, p ),

(3.3) and (3.4) present an effective logical foundation for physical laws: the physical law is derivable in (3.3),
and its empirical truth value is decidable in (3.4). Specifically, its universality is derivable in the quasi-law
tautological sense and its empirical truth is decidable in the recursive abduction sense. Here the recursion is used
as a feasible thinking manner grounded on natural number system.

For the current probability argument, the insuperable obstacle in Hume’s problem is that the universality of
natural law is produced from and, meanwhile, tested by the same empirical induction; if the induction confirms the
universality it must be infinitely carried on, thus, impossibly finished; all empirical inductions are doomed to be
limited; in this way, any empirical test to the universal natural law always offers a limited inductive sample which
always corresponds to a zero probability in the required infinite induction.

In the schema presented by (3.3) and (3.4), the things all have been changed. The universality of strict natural
law only refers to a requirement of logical consistence from the quasi-law tautology rather than it necessarily
contains something equivalent to the unlimited universal applicability in the empirical world so that it needs the
infinite empirical induction to support. The logical foundation of such universality is formed before, by no means
after, the empirical inductive test pj. It is not the product of empirical induction but a result of effective logical
extension from a natural law to its corresponding quasi-law tautology. The logical extension is ensured by

Theorem 1. Namely, the induction happening in empirical test does nothing to produce the universality but merely
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to carry the ready-made universality to a suitable recursive dimension. This explanation is quite different from the
traditional understanding in the famous inductive problem. In the recursive abduction, theoretically, the quasi-law
tautologically based universality can be tested empirically in limited steps in any suitable recursive dimension
without the problem of infinite induction; and, practically, the ready-made universality can be tested by empirical
induction in a limited inductive sample, in which the probability argument is always feasible. So the universality of
natural law is probabilistically testable by the recursive abduction. The dilemma of inductive problem has been
overcome for it is just resulted from the natural law’s universality producable in a probabilistic examination.

The above recursive feature in L-abduction interprets the acceptance or rejection of a physical law not from
numerously piling up enumerated empirical inductive evidences. And the repeatability of observation in testing a
physical law (for acceptance or rejection) can be interpreted in the above recursive sense as well.

Quasi-law tautology discriminates the strict and non-strict empirical sciences. Physics is the strictest empirical
science because almost of all its laws have their own quasi-law tautologies, and thus, its empirical truth is
determined by recursive abduction, just like geometry. Psychology, biology, and clinical medicine, and etc., all are
sub-strict empirical sciences for some of their empirical truths come from recursive abduction and some from
normal abduction. It is the recursive abduction to contribute the universality to physics and endow the particular
connotation to the universality of physics. In recursive abduction, the universality of physics is verifiable and
falsifiable recursively, just like a geometry used in physical space measurement. Recursive abduction gives a clear,

smooth, and coherent non-monotonic and dynamic reasoning path.

4. Discussion on Hume’s Problem

In Hume’s problem, the continuously besetting difficulty in the history was that all universal natural laws were
sweepingly regarded as the result of empirical induction mixed with common senses; however, any empirical
induction was predestined to be limited and, thus, failed to offer the universal result. There is no effective logical
path for creating a universal natural law purely from empirical induction. Now, from the L-abductive point of view,
we have known that in Hume’s problem one always misunderstood a formal universality derivable from quasi-law
tautology as an empirical conformability about past to future and a time-recursive issue as an infinitely inductive
problem and, hence, sank into the inescapable quagmire.

(3.3) and (3.4) presents an effective logical path for connecting a universal natural law with the finite empirical
observation, in which the universality of a natural law is derivable in (3.3) as a formal result similar to the
geometrical theorem before it is examined empirically, and then, the empirical truth value is decidable in recursive
(3.4) without infinite induction asked. It provides a new foundation for the resolution of Hume’s problem. This
new logical framework clearly distinguishes the universality and the time recursion for a natural law and excludes
the confusion commonly made by Hume and his opponents. The time recursion is a more ultimate feature
independent from the contents of a natural law. They are not equivalently ultimate as thinking elements just like
the natural number in mathematics.

In a quasi-law tautology such as (3.1), letting t;, k = 0,1,2,--, cover the past and future, we go into typical
Hume’s problem. Time recursion as the most ultimate attribute bases natural laws, Hume’s critique, and
counter-proposal to Hume’s critique, and is thus the common ground for they can engaging in a battle. In other
words, Hume’s problem also bases itself on the time recursion. When we discuss Hume’s problem, it is enough to
go on under the concept of time recursion but need not discuss time recursion itself. Or in short, if recursive
abduction is the first-order logic, the natural law, Hume’s critique, and the counter-proposal to Hume’s critique all
are the second-order system with respect to time.

Under the viewpoint of L-abduction, as well-discussed above, the quasi-law tautology and its conclusion will
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keep original irrelevant to the past or future. It is requested by the logical consistent explanation in the quasi-law
tautology, and is a formal requirement just like that in geometry. Hume misunderstood the future truth only
possibly coming from the past inductive one, and was innocence to both the consistent request from a quasi-law
tautology and the empirical test in time-recursive abduction. In fact, the logical consistent explanation in a
quasi-law tautology not only requests that the empirical truth of future must be coherent to the past but also
requests that the past one must be coherent to the future. It is just the feature of any empirical science based on
L-abduction. Hume’s problem to the strict natural law system is a pseudo problem.

In Case 1, introduce the temporal characteristics to L; as follows

(o = =hy) = (e = (hr = vp)"), 4.1
(=g = =hy) = (e = (hy = o)), (42)

where, ()P and ( )F indicate the sentences within ( ) belonging to the past and future, respectively.

Hume’s critique is equivalent to say that one can only accept (4.1) and must reject (4.2). As we had discussed,
(4.1) and (4.2) are equivalent in the time-recursive sense and the consistent explanations and conclusions of (4.1)
and (4.2) keep the same to original L. It is emphasized that (4.1) and (4.2) equivalently and simultaneously hold
just like (2.2), by no means (4.2) must be derived from (4.1). It is a request from the logical consistent explanation
in (2.2) but not an additional empirical hypothesis regarding conformability in the past and future. Its empirical
truth value is determined by L-abduction in time-recursive empirical test. Here, the key point is that L; requests
the same consistent explanation in the past and future among observables h;, h;, vy, and vg,. This feature is well
familiar by us in geometry when we use it to describe the realistic world. And this feature does not exist in normal
empirical inductive conclusion for which there is no any logical consistent explanation given in a quasi-law
tautology. Hume and his opponents all overlooked the logical intercommunity represented by Lp; in the natural
law and geometry, and completely mistook the highlight on natural law.

We can further explain (4.1) and (4.2) by examples to eliminate the possible divergence as follows: Newtonian
mechanics as a theoretical system in its applicable field always keeps its own consistent explanation regardless of it
as a precise empirical theory before the twentieth century or as an approximation after the twentieth century, just
like Euclidean geometry always keeps its own consistence regardless of the more precise empirical observation
accepting or rejecting it. The consistence asks all observables to be consistently related with each other whatever
they are past or future. Hume’s skepticism only suits for questioning the normal empirical inductive process but not
the quasi-law-tautologically based natural law. The twentieth-century negative evidence to Newtonian mechanics
must change the meanings of its ever positive evidence in the seventeenth century, which in fact can be explained
as the good approximation to the twentieth-century one in low-speed and macroscopic phenomena; and vice versa,
the seventeenth-century positive evidence had ever asked the twentieth-century evidence in the future to
consistently agree with it. This is not the attribute of a normal inductive result. For a normal inductive conclusion
such as “Tom always dresses red color”, if we saw Tom dressed green color today, we would regard the inductive
conclusion wrong today but unnecessarily have to change the meanings of past evidence “Tom dressed red color
yesterday”; and vice versa, “Tom dressed red color yesterday” does nothing to consistently ask “Tom would dress
red color in the future”. To the normal empirical inductive result, Hume’s question is proper. The difference
between quasi-law-tautologically based natural laws and normal empirical inductive conclusions can be illustrated
as follows: Newtonian mechanics has consistent explanation excluding contradictory evidences regardless of past
and future, but a normal empirical inductive conclusion only contains the simple accumulation of observable
evidences un-exclusive to the contradiction, without any consistent ask to its contents in any dimension including in

the past-future dimension and, therefore, is suitable to be questioned by Hume’s skepticism. It is all too obvious
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that any empirical support to a consistent theory is logically indifference to the past and future for its logical
consistent explanation is a logical attribute and regardless of time; empirical observables as the contents in the
physical law are always organized together consistently to make the whole so that the future (or past) negative
evidence will be invalid unless it meanwhile consistently changes the past (or future) one and includes the past (or
future) one. The future suitability of a physical law merely refers to nothing but the consistent restriction for all
observables no mater of past or future if time is a suitable recursive dimension. Facing with the empirical test, a
normal empirical inductive conclusion is only a weak and fragile defendant, but a strict natural law has the strong
consistence power to persist in its own “ask” for accepting or rejecting it. By the way, not involving rigorous
logical contents and mainly focusing on the factual outcome, Lakatos [S1] from a historical and philosophical sight,
to some extent, had similarly discussed the same result called “hard core” and “protection zone” of scientific theory.
In this paper, the conclusion is more clear and explicit logically. In this way, a natural law is always universally
applicable to past and future as well as it is universally falsifiable in any time. It is the logical consistent
explanation in a quasi-law tautology to request but not to examine the physical law applicable from past to future in
recursive time dimension. And this attribute of a physical law completely resembles to the consistence between
theorems and their axioms in geometries which need not have to additionally suppose that in a natural law the
contents of future must be conformable to the past.

In recursive L-abduction, any strict natural law is requested consistent in past and future, and simultaneously to
change its meanings in past and future if any. Namely, past requests future, meanwhile, future requests past, they
are originally equivalent in recursive L-abduction; and the future never requests a one-way support from the past.
This is the sense of universality of natural law. Hume and his opponents all mistook the universality as the
inductive result of one-way support from past to future.

This analysis reveals the key role of quasi-law tautology in a physical law system. It is the quasi-law tautology
to distinguish a physical law from the normal empirical commonsense and to have the physical law immunized to
the infection of Hume’s skepticism.

Under the interpretation from L-abduction, the function of empirical induction p; in a scientific theory is to
anchor the logical consistent explanation in empirical phenomena by recursive abduction, but not to provide an
enormous factual aggregation to pile up a natural law. The minimal observational set of p; is {p;r",p;r", pllr"“}.
In the recursive abduction, the effective empirical anchoring asks the clear logical contexts but not the huge
number of evidence accumulation.

Of course, observational repeatability is one of the important derived features of recursive abduction.
Researchers always unconsciously use the repeatability as a practically equivalent substitute for the recursion to
promote the efficiency of scientific discovery and, meanwhile, it absorbs researchers’ sight to deviate from the
essential character of recursive abduction. Numerous empirical evidences are in favor of the discovery of natural
law for two reasons that, first, people easily mistakes in merely one set of observations and the repeatability is
helpful to rule out one’s carelessness; and second, a result derived from recursive L-abduction must contain the
repeatability in all recursive cases, hence, it will be more possible to find a recursive natural law in repeatable
observations than in repeatability-unknown cases. In the first reason, the repeated inductive observation is a
management measure to overcome the human being’s behavioral fault; and in the second reason, the repeated
inductive observation will reduce the discovery cost in scientific activities, is a cost-saving principle. They all are
not the primitive feature of a natural law. In current discussions about Hume’s problem, all participants were often
at sea for they misunderstood a behavioral management measure and a cost-saving principle as the primitive
attribute of natural law.

The discovery of scientific theory is a process to look for consistent explanation among empirical phenomena,

just like geometry to be used in the measurement of physical space. The logical consistent explanation given in
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Lp, requests all elements uncontradictory from each other in all suitable recursive dimensions including, but not
limiting to, the past and future. Hume’s analysis only suits for the critique to the inductive commonsense, in which
however originally no rigorous logical consistent explanation is sought, and to the immature sub-science, such as
penal data model in economics, traditional folk medical diagnosis, and etc., which are however originally liquid
without durable conformability. Hume’s problem is hence not only pseudo to strict natural laws but also redundant,

though is not false, as rational critique to the empirical induction or commonsense.

5. Conclusions

It is concluded from this paper:

1. Case studies reveal the quasi-law tautology functioning in the derivation for any physical law. Quasi-law
tautology combines with abduction naturally lead to recursive abduction.

2. The empirical universality of physical law bases itself on recursive abduction. It refers to nothing else but a
set of consistent physical relations holding in one or more suitable recursive dimensions, just like a consistent
geometry used in the measurement of realistic physical world. In the schema of recursive abduction, a physical law
is always derivable logically and decidable empirically.

3. Hume’s problem and its typical opponent proposals all misunderstood a formal universality derivable from
quasi-law tautology as an empirical conformability about past to future and a time-recursive issue as an infinitely
inductive problem and, thus, sank into the inescapable quagmire. Under the viewpoint of recursive abduction

Hume’s problem naturally vanishes.
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