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Abstract: Motivated by the importance of entanglement and correlation indicators in the analysis
of quantum systems, we study the equilibrium and the residual entropy in a two-species Bose
Hubbard dimer when the spatial phase separation of the two species takes place. We consider both
the zero and non-zero-temperature regime. We present different kinds of residual entropies (each one
associated to a different way of partitioning the system), and we show that they strictly depend on
the specific quantum phase characterizing the two species (supermixed, mixed or demixed) even at
finite temperature. To provide a deeper physical insight into the zero-temperature scenario, we apply
the fully-analytical variational approach based on su(2) coherent states and provide a considerbly
good approximation of the entanglement entropy. Finally, we show that the effectiveness of residual
entropy as a critical indicator at non-zero temperature is unchanged when considering a restricted
combination of energy eigenstates.

Keywords: Entropy; Entanglement; Bose-Hubbard; Dimer; Bosonic mixtures.

1. Introduction

Systems formed by gases of ultracold bosons trapped in homogenous arrays of potential wells
(optical lattices) [1] have attracted, in the last two decades, an enormous attention due to the rich
variety of phenomena they feature at zero temperature [2,3]. The physical properties of such quantum
fluids have been shown to be mainly determined by the competition of boson-boson repulsive
interactions with the tunneling effect between adjacent wells, causing the boson mobility through
the lattice. Among many effects observed in such systems, one of the most significant is the famous
superfluid-insulator transition in which, for a boson-boson interaction strong enough, the boson
mobility is quantum-mechanically inhibited when the boson density takes integer values [4].

In this framework, introducing in the lattice a second bosonic species interacting with the primary
has allowed the realization [5,6] of the so-called binary quantum fluids whose complex phenomenology
has revealed unexpected effects and behaviors. These are, for example, the formation of new types
of insulating phases and superfluidity [7,8], quantum emulsions exhibiting a glassy character [9,10],
the deformation of the insulating (Mott) domains accompanying the formation of polaron excitations
[11,12], the presence of interspecies entanglement [13], and the spatial separation of the two species
(demixing effect) [14,15].

The simplest possible lattice system in which the interplay of two species can be studied is
represented by the two-species dimer (TSD), namely, a mixture trapped in a lattice with two wells
(dimer). This system, sufficiently simple to allow the use of standard analytic approaches, is however
complex enough to exhibit the space-localization effects distinguishing two-species mixtures in larger
lattices at zero temperature. The TSD has allowed both a thorough study [16] of such behaviors when
the interspecies (repulsive) interaction W > 0 is varied and the analytic derivation of the critical value
of W for which the mixed species, equally distributed in the two wells, localize in two separated
wells. Such an effect, called delocalization-localization (DL) transition, also takes place in the attractive
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case (W < 0) but in the final state both species occupy the same well for |W| strong enough. The
DL transition, characterizing the ground state of the TSD, and the spectral collapse related to this
phenomenon have been studied numerically in [16] and by means of the continuous-variable approach
in [17]. The critical behavior of the TSD has been confirmed by resorting to quantum-correlation
indicators such as the Fisher information, the coherence visibility and the entanglement entropy (EE).
The latter, in particular, has proved particularly sensitive in detecting the macroscopic changes in the
ground-state structure both for repulsive and for attractive interspecies interaction.

This motivates our interest for the entanglement entropy and, more in general, for the residual
entropy at non-zero temperatures in the TSD. In this paper, we perform a systematic study of this
correlation property effecting numerical simulations which include non-zero temperatures. We begin
with studying the zero-temperature regime. To check the robustness of the EE, we determine its
dependence from the interspecies interaction both by considering the exact ground state (calculated
numerically) and by representing the ground state in terms of atomic coherent states (CS). The
CS picture is interesting since, in addition to allow for fully-analytic calculations, its semiclassical
character approximates the system ground state in a form closer to the preparation of the system in
real experiments. As is well known, the EE describes the entanglement property of a physical system
through the Von Neumann entropy of a suitably defined sub-system. In the sequel, we calculate the EE
by partitioning the system in sub-systems such as i) the left-well and the right-well bosons, ii) bosons
with zero and non-zero momentum, and iii) the species-A and species-B bosons.

As noted above, a number of new quantum phases has been predicted in the last fifteen years
whose distinctive feature is to manifest at zero temperature. On the other hand, after the realization
of optical lattices trapping ultracold atoms, it has become more and more evident that reducing (and
measuring) the temperature on the nanoscale is an outstanding problem [18]. For this reason, the
detection of zero-temperature phase transitions such as the space separation in bosonic mixtures (or
its simpler dimer version, the DL transition) must more realistically rely on indicators which are
reminescent of the critical behavior of the system even when temperature is non-zero [19].

In this perspective, achieving a good control of the correlation properties for a system undergoing
the DL transition at non-zero temperature certainly represents a useful tool for its observation in
future experiments. For this reason we have thoroughly explored the residual-entropy behavior at
non-zero temperature and have tried to understand the effect of thermal fluctuations in regimes where
they compete with quantum fluctuations. The residual entropy has been calculated numerically by
exploiting the knowledge of the TSD exact spectrum. As in the zero-temperature case, we consider the
reduced thermal density matrix for three different partition schemes of the system based on separating
space modes, momentum modes and atomic species. Finally, to further test the residual entropy as a
critical indicator, we have compared the exact residual entropy with that calculated using a restricted
range of energy levels around the expected average energy.

The paper is organized as follows. In Section 2, we introduce the TSD model and review the DL
transition discussing the change of structure it induces in the ground state and the spectral collapse, a
significant property that marks the transition. Section 3 is devoted to defining the equilibrium and the
residual entropy and the relation thereof with the EE. Section 4 contains the results of our numerical
calculations of residual entropy within the previously discussed partition schemes at zero and non-zero
temperature. In Section 5 and Section 6 we compute the residual entropy in the coherent-state and in
the restricted-basis approach, respectively. Section 7 is devoted to concluding remarks.

2. The model and the ground-state properties

An effective description of ultracold bosons trapped in homogenous arrays of potential wells is
provided by the Bose-Hubbard (BH) model [4] in which local boson operators A; and A] represent
the microscopic annihilation and creation processes, respectively, at the ith well. The experimental
realization of this model is currently achieved by means of well-known optical-trapping techniques
[3,20]. These, by combining counter-propagating laser beams, cause the formation of (optical) lattices
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the sites of which correspond to effective local potentials attracting bosons. In the simplest possible
case of a two-site lattice (a double potential well), the BH Hamiltonian is given by
_ % T gt + A+ _ + +
H, = > ATATALAL + ARARARAR| - To(AT AR + ARAL),

where L and R refers to the left and right well, respectively, U, is the boson-boson interaction and J; is
the hopping amplitude controlling interwell boson exchange. The boson operators Ay, A}, Ag, and
A}, satisfy the standard commutator [A,, A;] = 1 with o = L, R. If, in addition to species A a second
species B is introduced, the spatial modes become four, Ay, Agr, and By, By, for the species A and B,
respectively. The resulting mixture is thus described by the two-species dimer Hamiltonian [16]

H = H, + Hy + W(N. M| + NgMR) 1)

in which, apart from the single-species BH Hamiltonians H, and Hj;, the significant term is that
depending on interspecies interaction W. This couples the two species through the boson local
populations described by the number operators N, = Ay A, and M, = By B, with o = L, R.

When the interspecies interaction W becomes sufficiently strong, the two interacting species
trapped in a double-well potential feature macroscopic localization effects. In particular, a repulsive
interaction tends to spatially separate the species into different wells while an attractive interaction
tends to confines both species in the same well. This represents the DL transition. In the first case this
is characterized by an almost complete localization of the two species in different wells, and thus by a
demixing effect, whereas, in the second case, the attractive interaction leads to a “supermixed"” state
with a localization of both species in a single well.

Such effects are confirmed by the numerical calculation of the ground state for different values
of W. To see this we note that the energy eigenstates can be suitably represented in the basis of
space-mode Fock states

|7’ZL, mrp,nR, mR) = |l/])L|N_ i/M_j>R/ i€ [OIN]/ jE [0/ M]/ (2)

where labels 1, and m,, describing the local boson populations, are the eigenvalues of number
operators N, and My, respectively. The parametrization n; =i, my =j, ng = N-iand mr = M - j has
been assumed to include the property that both operator N = Ny + Nr and operator M = M, + Mg
(representing the total boson numbers of the two species) commute with Hamiltonian H and thus are
conserved quantities. The factorized form of (2) aims to better distinguish left-well from right-well
populations. A generic quantum state is then represented as

N M
[¥) =20 2 wij i, )N =i, M=j)g ®)
i=0j=0
Determining the energy eigenstates thus amounts to calculating coefficients w;; for which the
eigenvalue equation H|E) = E|E) is fulfilled. For values of W small enough, the ground state |E) is
approximated in terms of su(2) coherent states [21]

1
- 2(N+M)/2,/NTMT
whose dominating components [i,j) can be shown to feature i ~ N/2, j ~ M/2, namely, boson
populations equally distributed in the two wells (delocalized ground state). For large values of
|W|, |Ep) can be approximated by

IEo) (A7 +AR)Y (B +B3)™ 10,0)00,0)x

£0) = ~7=(IN,0)1/0, M)x + 0, MILIN, O} ). [Eo) = —=(IN, M)LIO,0)x + 0, 00N, M)x), (4
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in the repulsive and attractive case, respectively, well illustrating the space-localized distributions
emerging from the delocalization-localization transition [16] and leading to Schrodinger cats with
strongly localized component states.

Figure 1, obtained by numerically calculating the ground state in the repulsive case for different
W, supplies us with an exact description of the DL transition and of the macroscopic changes in the
ground-state structure. A similar behavior characterize the DL transition in attractive case, but the two
emerging peaks finally localize around i = j = 0 an i = 30, j = 40.

(@) (b) (@

0.015
0.01

0.005 - 40

20

20

i 30 O j ; 30 O j ; 30 O j

Figure 1. (Color online) Ground-state probabilities |wi,j|2 vs i (left occupation number of species A)
and j (left occupation number of species B) associated to space-mode Fock states |i, j); [N —i, M - j) of
equation (3) for boson numbers N = 30, M = 40 and U = 0.1. Panel (a) features localized populations
for W = 0.15, (b) partially localized populations for W = 0.168, and (c) fully separated populations for
W =0.2. Energies in units of J, = [, = J.

The critical behavior of the DL transition has been studied analytically by resorting to the
semiquantum approach where boson number operators are approximated in terms of continuous
variables [17]. This method has provided the critical value of W at which the transition takes place
in the case of twin species (J, = [, = |, U; = U}, = U). In this approach the Fock states essentially
become wave functions depending on the new continuous variables while, for energies low enough,
the energy-eigenvalue equation takes the form of the Schrodinger problem for a multidimensional
harmonic-oscillator Hamiltonian. The extremal points of the corresponding potential allow one to
determine the ground-state configuration, and, in particular, to find the formula

W=2]/N+U

defining, for large boson numbers (N = M > 1), the transition critical point in the parameter space.
Interestingly, when W approaches this critical value, the energy spectrum has been shown to undergo
a collapse in which the inter-level separation tends to zero. This spectral collapse can be seen as the
hallmark of the dynamical transition which features the macroscopic change in the structure both of
the ground state (see the previous discussion) and, more in general, of the low-energy excited states
described in Ref. [17]. The generalized version of the previous formula for a mixture in a L-well ring
lattice has been derived in [22].

3. Equilibrium entropy and residual entropy

The third law of thermodynamics states that a perfect crystal at temperature T = 0 exhibits entropy
S = 0. This entropy is defined as the Equilibrium Entropy S.;. However, several physical systems ranging
from, e.g., water ice [23,24], carbon monoxide [25], highly pressurized liquid-helium [26], glass systems
[27,28], proteins [29], and even black-holes [30,31], seems to manifest a residual content of information
(corresponding to a residual entropy) for T — 0. The presence of such Residual Entropy S has been
generally associated with residual degrees of freedom at T = 0 such as, among others, ground-state
degeneracy, residual structural disorder, geometrical frustration and entanglement. These physical
phenomena act as sources of uncertainty preventing the possibility to acquire knowledge on the exact
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state of the system, thus resulting as possible sources of information (i.e. a finite, residual value of the
entropy).

For quantum systems, the residual entropy is in general related to the presence of entanglement
in the ground-state through the entanglement entropy. Entanglement entropy is a measure of the
“amount of entanglement” in the system. A standard and accepted way to quantify entanglement is
through the bipartite Von-Neumann entropy. What is measured by the bipartite entanglement entropy
is the mutual information shared between two partitions of the physical system (e. g. Alice and Bob).
Given p the density matrix of the system, and defining two partitions A, B of the Hilbert space H such
that  =H 4 @ Hp and p = 04 ® pp, the bipartite Von-Neumann entropy is defined as [34]

S(Pa)=-Tra( pa log, pa), ®)

where p4 =Trg( p) (pp = Tra( p)) is the reduced density matrix of partition A (B) obtained tracing out
the degrees of freedom of B (A). Notice that for the same system, in principle, there exists infinitely
many possible ways to partitions the Hilbert space H in two parts. This leads to the consideration that,
since the choice of the partition is arbitrary, the measure of entanglement, i.e. the residual entropy,
cannot have a global character by definition. We shall see how this is indeed the case in Section 4
(and, more specifically, in Subsection 4.4) when we will compute the residual entropy for the TSD for
different choices of the partition A-B.

3.1. Equilibrium Entropy in the TSD

According to quantum statistical mechanics [35,36], the expression of the equilibrium entropy
Seq(T) can be derived from the expression of the density operator as

Seq(T) = —Tr( 4 10g2 p) (6)

where the (canonical) density operator at finite temperature is defined as

p=5 T )

with E, representing the energy eigenvalue associated to the energy eigenstate [¥,). Combining
Equations (6) and (7) one finds the explicit expression for the equilibrium entropy

Seq(T) = Z —pnlog, pn , (8)

with p,, = e PEn/ 2,

Since the ground-state of Hamiltonian (1) cannot be degenerate [36,37], expression (8) is a good
definition of equilibrium entropy for the TSD as, for T = 0, it exactly satisfies S¢;(0) = 0. In Figure 2,
we show the equilibrium entropy computed for the TSD as a function of the interspecies interaction
W/] and effective temperature Tkg/]. At T = 0 one clearly sees that S,; = 0 for all values of W/]
(black-dashed line). By sufficiently increasing the temperature, two peaks appear at the boundary
of the central region where the phase transitions between the mixed and demixed phases occur
(IW|/] = 0.16). Such peaks progressively vanish due to fluctuations when the temperature increases. In
Section 4, we will show that, in general, residual entropy exhibits similar features.

According to Figure 2, the equilibrium entropy tends to Se; = 1 for T # 0 and if |W|/] is large
enough (plot tails). This reflects the fact that two dominating states (those corresponding to the lowest
energies E; and Ep) provide contributions of about % log, 2 to the limiting value S,; = 1. It is important
to notice that, in both tails, the first excited level E; can be shown to tend to the ground state energy Ey
as a consequence of the spectral collapse characterizing the TSD. Accordingly, the smallest non-zero
temperature that has been considered (Tkp/J = 10~%) is large enough to populate in a nearly equal way



6 of 20

16 -
i —Tky/J =100
I —Thkp/J =25
14 - Tkp/J =10
i Tkp/J =5
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—Tky/J =10

- = Tkg/J=0

-1.5 -1 -0.5 0 0.5 1 1.5
w/J

Figure 2. Equilibrium entropy for different choices of the temperature. N =30, M=40,]=1,U=0.1,
kg =1.

both the ground state and the first excited level because their separation E; — Eg becomes smaller and
smaller for large |W|/].

Notice also that, in this regime, the splitting between Ey and E; decreases exponentially (with
the number) of particles to a point that may lie below the actual experimental limit (see Appendix
B for details). We also note that, at high temperatures, the equilibrium entropy tends to the value
Seq ~10.31 = log, D where D is the number of energy levels (i.e. the dimension of the Hilbert space),
showing the fact that all the energy eigenstates are equiprobable with probability 1/D.

3.2. Residual Entropy in the TSD

In Reference [16] we showed that the TSD manifests non trivial entanglement properties (relevant
to the boson distribution in the two wells) in the ground-state suggesting the presence of a residual
entropy at T = 0. This residual information at T = 0 is not grasped by (8) as it exhibits S¢;(0) = 0.

A consistent and different definition of the entropy is therefore required in order to be able to
correctly describe the residual quantum information hidden in the ground-state structure. This can be
naturally done by extending the definition of entanglement entropy (5) at finite T in the way suggested
by the expression for the equilibrium entropy (8). We will call this definition of entropy residual entropy
at finite temperature Sg(T) in order to distinguish it from the equilibrium entropy Se;(T) of expression
(8).

The key difference between definitions (5) and (6) lies in the fact that, in the entanglement entropy,
a reduced density operator p 4 is used. Given a partition of the Hilbert space, the reduced density
operator of H 4 is obtained by tracing out the degrees of freedom of #p. The idea is then to compute the
reduced density matrix of the thermal density operator p defined in (7), and then to use the new density
operator for computing the residual entropy at finite T. Although the partition of the Hilbert space is
obviously independent from the choice of the basis in which the density operator is represented, to
perform the calculation described above is convenient express the density operator (7) in an alternative
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suitable basis for the partition A-B one has chosen. From the practical point of view, a suitable choice
of the basis can give easy access to a partition that in another basis would be really hard to handle
computationally. An example of this is shown in Section 4 when we consider the partition between the
momentum modes.

Let’s expand density operator (7) in a convenient basis {|¢;)} for the choice of the partition. To do
so we expand the energy eigenstate

[¥n) = Z Zwi,j,n lpi)a ®|¢j)B )
i
substitute it in expression (7), and obtain the new expression for the density operator [38]
p=p(T) = zl: ZJ: ; ; Cijir it (D)lpi)a ® |¢j)B B{Pjr| ®a (Pir] , (10)
where
¢PEn
Cijirjr(T) = Zn: — wi,j,nw;j,,n ) (11)

Notice that, coefficients C; ; » (T contains both thermal and quantum information as they are obtained
by thermal-averaging the quantum amplitudes wl-,]-,nwi*,,j,/n of each energy eigenstate |¥,). By tracing
over the degrees of freedom of Hp is possible to derive the expression of the reduced density operator

pA(T)

pa(T) =Trp(p(T)), (12)

The residual entropy at finite temperature Sg(T) is then defined as

SR(T) ==Tra( pa(T) log, pa(T)) . (13)

The details of this calculation, together with the results of the computation of (12) and (13) for different
choices of the partition, are discussed in Section 4.

4. Residual entropy at zero and finite temperature

As already mentioned, “bipartite entanglement” is well defined when the way to partition the
system with respect to a certain physical property is specified. Investigating specific properties of
a given system leads to consider specific kinds of entanglement. An effective and standard way
to quantify the residual entropy is to compute the Von Neumann entropy according to the scheme
discussed in the previous Section. Of course, once the partition is fixed, the computation of the Von
Neumann entropy relevant to the reduced density matrix (residual entropy) is independent on the
basis chosen to represent physical states, namely, S(p) = S(UpU") for any unitary transformation U
which enacts the change of basis.

In the sequel, we consider three different kinds of residual entropy, each one associated to a
different way of partitioning the system. First, we consider the quite natural partition in terms
of left-well bosons and right-well bosons suggested by the representation of physical states in the
space-mode Fock basis (2). Then, by representing physical states in the momentum-mode Fock basis,
we partition the system in terms of zero-momentum and non-zero-momentum bosons. Finally, we
consider the partition of the system distinguishing species-A from species-B bosons, which is again
suggested by definition (2) where populations ny, ng and mp, mpg refer to species A and B, respectively.
In all three cases we present the results, obtained numerically, both for the zero-temperature scenario,
when only the ground state |ifp) is involved and for the finite-temperature configuration, when the
system is naturally described by means of a thermal density matrix. It is worth remarking that at T =0,
the residual entropy reduces to entanglement entropy because classical correlations are suppressed.
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[ —Tkg/J =100
14l —Tky/J =25
I Tkp/J =10
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<= Tkg/J=0

Sk - Partition L-R
oo

w/J

Figure 3. Residual entropy relevant to the L-R partition for different choices of the temperature. N = 30,
M=40,]=1,U=0.1,kg=1.

4.1. Residual entropy for a partition characterized by spatial modes

Let us start by computing the residual entropy Sg by considering the partition of the TDS in terms
of left-well bosons and the right-well bosons. Following Formula (3), a generic physical state i) is
written as

N M

) =22 wijlij)p IN=i, M=j)g

i=0j=0
and entails the density matrix of the whole system

M N M

N
p=lp)wl=2>> > > wijwili,j) IN=i, M=) o(N=i", M=f'| | (i’,]] (14)
i=0j=0i'=0,'=0

The reduced density matrix relevant to the right-well bosons, obtained tracing out the degrees of
freedom of the left-well bosons, is

N M N M ) . . . .
pr=2 > kol 1), =30 3 |wijl” IN=i, M=j)g (N ~i, M~jl.
k=01=0 i=0 =0

In the presence of a non-zero temperature, the density matrix modifies taking into account the
contributions of the whole energy spectrum. By following the scheme discussed in Subsection 3.2, as
the T # 0 density matrix is diagonal, one can easily compute the residual entropy (13) finding

N M

Sr(PR) = - ZO ZO |Ci,;(T)I? log, |Ci,/(T)I?, (15)
1=0 =
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with C; j(T) given by Formula (11). Figure 3 shows how the residual entropy relevant to right-well
bosons varies with respect to W/], for different temperatures. At T = 0, the plot of Sg (black dashed
line), which represents the entanglement entropy, exhibits two sharp peaks where the mixing-demixing
phase transitions occur. In the region between the two peaks bosons are delocalized and the quantum
fluids fully mixed, the left tail corresponds to supermixed states (states where both species are localized
in a single well) and, eventually, the right tail is the region where the two species localize in different
wells. Both tails feature a genuinely quantum behavior because the relevant ground states correspond
to Schrodinger cats, in which the spatial separation gets more and more pronounced as |W|/] increases
(see Formula (4)). In fact, the entanglement entropy asymptotically tends to 1, a value which is
reminiscent of the double-edged structure of cat states (4) because both their components contribute to
Formula (15) with % log, 2. It is worth noticing that, at T = 0, Sy is always different from zero in that,
even for noninteracting species (W = 0), the presence of a non-zero | couples the left and right modes
of either species. As expected, one can show numerically that the height of the central minimum of Sg
decreases more and more (tending to zero) as the interwell hopping | becomes smaller and smaller.

At temperature T > 0, Figure 3 shows that the residual entropy is still able to highlight the
difference among mixed, demixed and supermixed phases. The effect of a finite temperature is to
smooth the DL phase transitions, an effect which can be clearly appreciated observing the decreasing
sharpness of the peaks as T is increased. Interestingly, all the tails of the plotted curves tend to
the limiting value 1. For example, in the left tail (W/] < 0), this means that, in Sk one has \CO,0|2 =
|Cn,m* ~ 1/2 while all the other |Cz‘,j|2 are vanishingly small. The resulting Sg = 1 follows from
the fact that there exist two dominating macroscopic configurations [N, M), [0,0) and [0,0); [N, M)
whose correlation is mainly due to quantum entanglement for T' - 0 but assumes a more and more
classical character for higher temperatures. In the case of the right tail (W/] > 0), the same effect is
observed but the dominating components are |Cy o|* and |Co y1|*. Note that, at fixed temperature, such
configurations emerge provided that the interspecies interaction |W| is strong enough to contrast the
temperature-induced disorder. Of course, for a given value of W/], one has larger residual entropies at
higher temperatures in that increasing T makes more and more energy eigenstates accessible in the
thermal superposition ensuing from Formula (7). We conclude by observing that, at high temperatures,
in the central region around W/] = 0, Sg approaches the limiting value log, D ~ 10.31, because
\Cl-,j|2 ~1/D for all (i,j) where D = 1271 = (N +1)(M + 1) (with N = 30, M = 40) is the dimension of the
Hilbert space. This limiting situation reflects the fact that, at high temperatures, Sg — S,; (see Figure
2).

4.2. Residual entropy for a partition characterized by momentum modes

Let us introduce the following momentum-mode operators obtained summing and subtracting
usual site-mode operators

1 1 1 1
S,=—=(Ar + AR), D,=—(A; - Ag), Sy, = — (B + Bg), Dy, = —(B; - Br),
4 \/E( L+AR) a \/E( L - AR) b \/E( L +Br) b \/§( L-Br)

together with the corresponding number operators

Ns=8%S,, Np=D!D,, Ms=5}S,,  Mp=DiD,

which count the number of bosons having vanishing (S) or non-vanishing (D) momentum in the two
species. The momentum-mode Fock basis {|Ns, N - Ng, Mg, M - Mg)} can be chosen as a new basis
against which it is possible to expand the generic state

N M
|¢) = Z Z Wng,mg |nS/mS>S|N_nS/M_mS>D/

1’1520 mS:O
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where we have set |ng, N — ng,mg, M —mg) = |ng,mg)s|N - ng, M — mg) in order to emphasize the
difference between zero and non-zero momentum quantum numbers. As a consequence, the density
matrix relevant to the state is

N M N M
=lpNl= Y X DD Wagmstly g Ins,ms)sIN — s, M=ms)y (N = g, M~ (1, m).
0

ng=0mg=0nl=0my=

The reduced density matrix relevant to the sub-system of bosons having non-vanishing
momentum (modes D’s) is obtained by tracing out the degrees of freedom relevant to the sub-system
of bosons having zero momentum (modes S’s)

N M N M
pp=Y Y slng,mslplns,ms)g=">" > |wngmsl*IN—ng, M~ms)p p{N-ng, M-mg].

715207}15:0 715207}15:0

For non-zero temperatures, one must consider the contributions of all the energy levels. Making use of
the same scheme discussed in Subsection 3.2, as the reduced density matrix relevant to the thermal
superposition is diagonal, the residual entropy (13) is found to be

N M
SR(PD) == 22 2. |Cugms (T) 108y [Cug s (T)I.
ng=0mg=0

Figure 4 shows the residual entropy characterizing the separation between still and circulating bosons
in respect of the ratio W/J, for different temperatures. At T = 0, residual entropy corresponds
to entanglement entropy and its plot (black dashed line) exhibits two sharp discontinuities at the
two values of W/] for which the DL phase transitions occur. Such discontinuities separate three
quasi-plateaus corresponding to supermixed, mixed and demixed phases. The central region (mixed
species) features a quite small entanglement between circulating and still bosons. In fact, if the
interspecies coupling W is small compared to the tunneling | and if the ratio U/] is small enough
to guarantee superfluid and delocalized bosons, momentum modes S, and S; are macroscopically
occupied, while D, and D, are poorly populated. If the intraspecies repulsion U tends to zero, one
can show that the latter momentum modes are not populated at all, and, at T = 0, the EE vanishes for
W/J =0.

At finite temperatures, the behavior of the residual entropy still mirrors the presence of the three
quantum phases. Unlike the behaviors of Sk discussed in Subsection 4.1, where Sg = 1 associated
to outer plateaus showed that system features two dominating space configurations, here, the value
Sg = 7.2 implies that, for sufficiently large |W|/], a much larger number of momentum configurations
is involved in determining the system correlations.

Figure 4 displays a gap between the plateau S ~ 6.2 obtained at T = 0 (black dashed lines) and
the limiting value S ~ 7.2 of the plateaus obtained at T # 0 (colored lines). This is due to the fact that,
in the tails, the energy gap between the ground state and the first excited level becomes vanishingly
small but remains non-zero and so the lowest non-zero temperature T = 0.1]/kp considered in Figure 4
is already enough to populate both the ground state and the first excited level. The activation of the
excited level (absent at T = 0) is sufficient to redistribute the boson population thus causing the jump
of Sg from 6.2 to 7.2. As noticed for the partition in terms of spatial modes discussed in Section 4.1,
i) the maximum value of Sg tends to the extreme value log, 1271 ~ 10.31 at high temperature and ii)
given a certain value of W/], the residual entropy steadily increases with temperature T because more
and more energy eigenstates become statistically accessible.
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4.3. Residual entropy for a partition characterized by boson species

A third way to compute the residual entropy consists in partitioning the system in terms of
species-A and species-B bosons. We use the representation in terms of space-mode Fock states,
although the momentum-mode Fock basis is equally convenient to the job. Starting from density
matrix (14), the reduced density matrix relevant to species-B sub-system is obtained by tracing out the
degrees of freedom relevant to species-A sub-system

N
Z (k| R(N —Klplk) IN - k) E%ZO Cijr NLIM =g (| (M=,
k=0 j=0j

where we have defined

*
ZUk/]"n wk,]‘/,n .

The diagonalization of pp provides the eigenvalues {A;} necessary to compute the relevant Von
Neumann entropy

M+1
Sr(pB) = Z Ajlog, A;

Figure 5 shows the residual entropy relevant to species-mode partition scheme as a function
of W/J, for different temperatures. As in Figure 3, at zero temperature (black dashed line), two
sharp peaks, at which the DL transitions occur, separate the three regions corresponding to the
supermixed, mixed and demixed phase. Also in the present case, the outer regions consist of two
quasi-plateaus whose height quickly converges to 1, a limiting value which is, once again, reminiscent
of the two-component character of cat states (4) (recall that 1 = 2 x (—% log, %)) As noted in the
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previous Subsections, one can show that the zero-temperature EE relevant to the space-mode and the
momentum-mode separation schemes features a central minimum tending to zero for ] - 0and U - 0,
respectively. In the current case, where the species-mode separation is adopted, the vanishing of the
minimum of Sg is obtained when the two species are non interacting, namely, for W = 0.

When the temperature is switched on, the DL phase transitions become less abrupt and the
corresponding peaks in the plots are less sharp. However, as shown in Figure 5, Sy still represents an
effective indicator of the critical behavior in a non-small temperature range. As for the Sg analyzed
in Section 4.1, the residual-entropy plot at non-zero temperatures shows that Sg — 1 for |W|/] large
enough. Once more, the limiting value Sg =1 = log, 2 (which all colored lines of Figure 5 converge to)
highlights how the system features two equiprobable dominating configurations for large interactions.
A non-vanishing T disturbs the formation of such configurations since, in the tails, for a given value of
W/], the higher the temperature, the more Sk differs from Sg = 1. As for the other partition schemes,
for large T, Sk tends to a maximum value, log, Dg ~ 5.36, where Dg = (M + 1) is the dimension of
sub-system-B Hilbert space.

4.4. Residual entropy at zero temperature

As repeatedly stressed in the previous discussion, in principle, the choice of the partition, is
completely arbitrary and independent on the system under examination. It has more to do with
the concepts of “observer” and “measure” than with the physical system itself, opening interesting
questions on the relation between entropy and quantum information. To emphsize this fact, in Figure 6
we compare the residual entropy at T = 0 for the three partition schemes considered above and shows
how the presence of a non-zero residual entropy (i.e. of the EE in the ground-state) strongly depends
on the choice of the partition. In particular, we notice how a strong entanglement in a partition can
result in a weak (or zero) entanglement in another one. This is the case, e.g., of W/] = 0 in which the
ground-state is strongly entangled if measured through the partition L-R (finite residual entropy Sg),
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or completely disentangled if measured through the partition A-B (residual entropy Sg = 0). In other
words, in the same physical system, while the knowledge of the state of the system in the left (right)
well is strongly correlated with the information on the state in the right (left) well, on the opposite, the
knowledge of the species-A state does not produce information on the species-B state.

5. Calculation of the EE in the coherent-state picture

The coherent-state variational approach has found large application in the study of many-body
quantum systems [39] since, due to their semi-classical character, they provide an effective description
of physical systems and allow one to gain insights into their properties. Also, from the experimental
point of view, coherent states have an important role since their semi-classical character enables one to
achieve a realistic approximation of the quantum state describing the real system.

An su(2) coherent state describing single condensate trapped in a dimer is given by [21]

6L, CR) = \/1\]—, (eLAf + §RA;<)N 0), (16)
where |0) = |0,0) is the boson vacuum state and the normalization condition |&;|? + |&g|*> = 1 must be
assumed. Since ((,|ALAs|¢.) = N|&[?, with o = R, L, is the expectation value of number operator
N, = AL A, then |&,|* represents the fraction of bosons in the well ¢. In the following, we employ
combinations of coherent states (16) (for a single species in a double well) to approximate the cat
structure of the ground state relevant to the TSD system in the strong-interaction regime, both for

W/J >0 and for W/J <0.
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1. Supermixing (attractive cat). If the interspecies attraction (W/J < 0) is large enough, the two

species aggregate together in the same well. Since none of the two wells is privileged with respect
to the other, quantum mechanically both configurations are equally probable, and the system
lives in both states at the same time. By using the notation of Formula (16), the resulting cat state
can be written as

1 1
[t) = 7 [Loc), [Loc), ; + |LOC>H,R|LOC)IJ,R:| =/
where "Loc" stands for "localized" and entails the fact that |77¢|> < |A¢|>. Following the scheme
discussed in Ref. [40], one can show that the expectation value of the model Hamiltonian reduces
to

[IM, Bl Ao 1) + o Aad s Ag)

u
E(Aa,Ma, Ay, 1) = EN(N -1) (|)‘a|4 + |’7ﬂ|4) ~2JN(Re{Aqa1a})
u
+ MM =1) (1A + ") 2T M(Re{ Ay }) + W (1AaP bl + 72 )
where the local order parameters A4, Ay, #7,, and 7, are complex quantities defined as

Ag=vV1- xaeie", Ha = xaei"’”, Ap=+/1- xbeieb, Ny = \/xbei‘i’b.

The minimum-energy configuration energy is reached for ¢, = 0,, 6, = ¢, and

5 I

T NU—U+ MW YT (MU U+ NW)2

These formulas give the fraction of bosons characterizing the minority component and, correctly,
give zero in the limit W — —co.

. Demixing (repulsive cat). If the interspecies repulsion (W/] > 0) is large enough, the two

condensed species separate in different wells. Similarly to what explained in the previous
paragraph, the ground state features a two-sided cat-like structure, because left (right) well
can indistinctly host species A (B). Hence, the quantum state consists of an equally-weighted
superposition of the two possible arrangements

1 1
[¥) = 7 ILoc), r[Loc), g + |L0C)a,R|LOC)b,L] = \/E[Mar’?a)mb/\b) + 12, Aa)Ap, 1)
where A, 77 are such that |17¢[> < |A¢|> and (obviously) [A¢|> + |5c|* = 1, with ¢ = a, b. Following the

variational approach described in the previous paragraph, and adopting the same conventions,
we obtain that the variational energy is minimized for 6, = ¢, 0}, = ¢, and

2 J2
TINU-U-MW2 P (MU-U-NW)?
Parameters x,; and x; represent the fractions of bosons which do not aggregate with the others
and thus make the "demixed phase" not ideal. Notice that, correctly, if W — +co, then x,, — 0, i.e.
the demixing gets more and more complete.

Xa

Both for the supermixing and for the demixing scenario, after computing the fraction of bosons
in each well, it is possible to reconstruct the cat state by superimposing two coherent states. This
procedure, described in Appendix A, allows one to analytically compute the EE between left-well
and right-well bosons, at zero temperature [40]. As shown in Figure 7, the result perfectly
matches the numerical EE, of course in the validity range of this approximation, i.e. in the whole
range of |W|/] except the central region (mixed phase) between the two critical values.
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Figure 7. Entanglement entropy between left-well bosons and right-well bosons: comparison between
the results derived within the coherent-state approach and the numerical ones.

6. Calculation of the residual entropy in a restricted energy basis

As already explained, the density operator associated to a thermal mixture of eigenstates is

o BE
7 2B

N \

where E; is the energy eigenvalue associated to the energy eigenstate [¢f;,), B is (proportional to)
the inverse temperature and D is the dimension of the Hilbert space of physical states. From
a computational, but also from a conceptual point of view, p is the superposition of D different
contributions, each one weighted by a different Boltzmann factor. The dimension D rapidly increases
with the number of particles hosted in the system its exact value being D = (N+1)(M +1). As a
consequence, the computation of the thermal density matrix becomes unfeasible even for a relative
small number of bosons. By taking advantage of the well-known equivalence between microcanonical
and canonical ensemble (see, e.g. [38]), for large numbers of particles, we provide an effective way to
approximate a thermal state. To this end, we consider just a restricted set of energy eigenstates, namely
those [¢,,) whose energy Ej, lies in the range [(E) — 0f; (E) + o | where

LR ) 2
== Y Eqne P, op=\/(E?)-(E)
n=1

are the expectation value of the energy and its standard deviation, respectively. The density matrix
relevant to this restricted thermal state is thus constructed by equally-weighting the contributions
coming from such |¢,), i.e.

*
prestrlcted = Ni zn:
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where N, is the number of energy eigenstates whose energies E;; lie in the aforementioned interval.

To test the effectiveness of the residual entropy as a critical indicator, we consider the partition
in terms of left-well bosons and right-well bosons, we set a non-zero value of the temperature and
we compare the results obtained from a complete and from a restricted thermal state. The left panel
of Figure 8 shows an overall good agreement between such results, especially in the central region
(small |W|/] values), while the outermost regions feature step-like discontinuities. The presence of such
discontinuities can be understood observing ethe right panel of Figure 8, which shows the fraction of
energy states involved in the restricted thermal state, N, /D, as a function of W/]. As W/] increases,
in fact, fewer and fewer energy states join the restricted thermal state and their inherently discrete
character is reflected by the presence of step-like regions, each one corresponding to the activation of a
single energy state.

7. Conclusions

In this work, we have investigated the equilibrium and the residual entropy in a two-species
Bose-Hubbard dimer at zero and non-zero temperature. In Section 2 we have introduced the model
and highlighted the importance of W (the interspecies repulsion) in determining the quantum phase
of the system (supermixed for W/] <« 0, mixed for small |W|/] and demixed for W/] > 0). In Section 3
we have introduced the concepts of equilibrium and residual entropy commenting on the fact that, at
zero temperature, the latter corresponds to the entanglement entropy.

Section 4 has been devoted to the analysis of the residual entropy for three different partitions
of the total system. In this regard, we have stressed the fact that different ways of partitioning
the system into two sub-systems, correspond to different kinds of residual entropies Sg. In all
three cases, Sg features discontinuities where the localization-delocalization phase transitions occur
and quasi-plateaus where two dominating macroscopic configurations emerge. Residual entropy
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is therefore a valid critical indicator not only at zero temperature (where it corresponds to the
entanglement entropy, a purely quantum correlation), but also at higher temperatures, where it
is influenced by the classical correlation between the sub-systems. Interestingly, we have evidenced
that, at zero temperature, i) a non-zero hopping J causes a non-zero entanglement between spatial
modes, ii) the intraspecies interaction U contributes to the entanglement between momentum modes,
and 7ii) the interspecies interaction W is responsible for the entanglement between species modes.

In Section 5, we have introduced su(2) coherent states and developed a fully-analytic variational
approach apt to describe the supermixed and the demixed phases at zero temperature. The
superposition of two such coherent states has provided a good approximation of the ground state
of the system in a non-small range of W/], as demonstrated by the comparison with the numerical
results. In Section 6 we have approximated the complete thermal superposition (10) with an incoherent
combination of a reduced number of equally-weighted energy eigenstates and showed that the residual
entropy is still a good critical indicator, well reproducing the exact results obtained numerically.
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The following abbreviations are used in this manuscript:

BH: Bose-Hubbard

CS: coherent states
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EE: entanglement entropy
TSD: two-species dimer

Appendix Entanglement entropy and coherent states

On the basis of the coherent-state approach derived in Section 5 and in the same spirit of Ref [40],
we compute the entanglement entropy between left-well bosons and right-well bosons. To begin, let
us define py, (i) as the probability of having n bosons of species A and m bosons of species B at site i.
The normalization of probability requires that

=

N
>
n=0

where N is the total number of bosons of species A and M is the total number of bosons of species B.

Pnm(i) =1
0

m

Let us define the single site entropy S; as follows:

N M . .
Si=- Z Pn,m (1) 108y On,m ()
n=0m=0

Neglecting the possible presence of cat states (a situation that will be re-inserted a posteriori), a generic
coherent state can be written in the factorized form

)= | @t eal)" |

1

(vB} +vrBR)" [0)

g
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Of course the normalization conditions |& [> +|[Eg|?> =1, |vg|* + [vr[> = 1 must hold. State [¥) can be
recast into the form

N VvV N! n n _n N-n M v M! m m —-m M-m

%) = Lz:%) mﬁ (AL) &R ™" (Ak) |0>] |:mZ::O Vi (BI)" v (BR) |0)] =
[ VYN vy, S VML o ]
) [Zo NN ”)“] [mz_omm” Vi, M=y

We calculate the reduced density matrix p partitioning the system into two sub-systems (left-well
bosons and right-well bosons) and tracing out the degrees of freedom relevant to one of them. For
example

Mz
Mz

o= R(n/m‘lPHTmlm)R

0

Il
o
i

n

Taking into account the orthogonality of the states, the reduced density matrix which originates from a
coherent state can be written as

_ N'M‘ n (N—}’l) m (M—m) *\1 * (N—i’l) *\ 1 * (M_m) _
= n!m!(N—n)!(M—m)!ngR VL VR (6r)"(8Rr) (vp)"(vr) =

[ )ectra-te Py [ (e -yt

where the expressions of coefficients {1 = ¢ (J, U, W), ¢r = ¢r(J,U, W), vp = v (T, U, W) and vy =
vr(T, U, W) can be computed within the variational approach. In passing, notice that the probability
distribution is correctly normalized, i.e. ZnN=o Z%:o onm = 1. The Von Neumann entropy of the
remaining sub-system can be thus computed as

Pn,m

N M
S=- Z Z Pn,m 10g2 On,m

n=0m=0
This quite general procedure needs to be slightly modified in case one is considering cat states. In

fact, the reduced density matrix must take into account the two-sided nature of a cat state and so it
must be written as the average of the densities matrices relevant to simple coherent states, namely

pugetnn = | () )P (=1 PYO | [ P - Py - |

paitersn = | (3 )E P a1y |[ (P - Py

implying

1
Pcatym = E [Pside Lum + Pside Rn,m]

Appendix Quasi-degeneracy of the ground-state

Due to the spectral-collapse [16,17], for sufficiently strong values of W/], the TSD ground-state
may appear quasi-degenerate. However the degeneracy of the ground-state is only apparent as
Hamiltonian (1) is non-degenerate [36,37]. As shown in Figure A1l the energy splitting between the
ground-state energy Ep and the first energy level E; decays exponentially as function of the number
of particles per species (N and M). Energy levels Ey and E; differs always by a small, finite, quantity
function of the interactions and the number of particles. This has been verified in Figure A1 down to
computational limit fixed by the machine precision.
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