

Residual entropy and critical behavior of two interacting boson species in a double well

Fabio Lingua ¹, Andrea Richaud ^{2,*} and Vittorio Penna ²

¹ Department of Physics, Clark University, Worcester, Massachusetts 01610, USA; flingua@clarku.edu

² Department of Applied Science and Technology and u.d.r. CNISM, Politecnico di Torino, I-10129 Torino, Italy

* Correspondence: andrea.richaud@polito.it

Abstract: Motivated by the importance of entanglement and correlation indicators in the analysis of quantum systems, we study the equilibrium and the residual entropy in a two-species Bose Hubbard dimer when the spatial phase separation of the two species takes place. We consider both the zero and non-zero-temperature regime. We present different kinds of residual entropies (each one associated to a different way of partitioning the system), and we show that they strictly depend on the specific quantum phase characterizing the two species (supermixed, mixed or demixed) even at finite temperature. To provide a deeper physical insight into the zero-temperature scenario, we apply the fully-analytical variational approach based on $su(2)$ coherent states and provide a considerably good approximation of the entanglement entropy. Finally, we show that the effectiveness of residual entropy as a critical indicator at non-zero temperature is unchanged when considering a restricted combination of energy eigenstates.

Keywords: Entropy; Entanglement; Bose-Hubbard; Dimer; Bosonic mixtures.

1. Introduction

Systems formed by gases of ultracold bosons trapped in homogenous arrays of potential wells (optical lattices) [1] have attracted, in the last two decades, an enormous attention due to the rich variety of phenomena they feature at zero temperature [2,3]. The physical properties of such *quantum fluids* have been shown to be mainly determined by the competition of boson-boson repulsive interactions with the tunneling effect between adjacent wells, causing the boson mobility through the lattice. Among many effects observed in such systems, one of the most significant is the famous superfluid-insulator transition in which, for a boson-boson interaction strong enough, the boson mobility is quantum-mechanically inhibited when the boson density takes integer values [4].

In this framework, introducing in the lattice a second bosonic species interacting with the primary has allowed the realization [5,6] of the so-called *binary* quantum fluids whose complex phenomenology has revealed unexpected effects and behaviors. These are, for example, the formation of new types of insulating phases and superfluidity [7,8], quantum emulsions exhibiting a glassy character [9,10], the deformation of the insulating (Mott) domains accompanying the formation of polaron excitations [11,12], the presence of interspecies entanglement [13], and the spatial separation of the two species (demixing effect) [14,15].

The simplest possible lattice system in which the interplay of two species can be studied is represented by the two-species dimer (TSD), namely, a mixture trapped in a lattice with two wells (dimer). This system, sufficiently simple to allow the use of standard analytic approaches, is however complex enough to exhibit the space-localization effects distinguishing two-species mixtures in larger lattices at zero temperature. The TSD has allowed both a thorough study [16] of such behaviors when the interspecies (repulsive) interaction $W > 0$ is varied and the analytic derivation of the critical value of W for which the mixed species, equally distributed in the two wells, localize in two separated wells. Such an effect, called delocalization-localization (DL) transition, also takes place in the attractive

37 case ($W < 0$) but in the final state both species occupy the same well for $|W|$ strong enough. The
 38 DL transition, characterizing the ground state of the TSD, and the spectral collapse related to this
 39 phenomenon have been studied numerically in [16] and by means of the continuous-variable approach
 40 in [17]. The critical behavior of the TSD has been confirmed by resorting to quantum-correlation
 41 indicators such as the Fisher information, the coherence visibility and the entanglement entropy (EE).
 42 The latter, in particular, has proved particularly sensitive in detecting the macroscopic changes in the
 43 ground-state structure both for repulsive and for attractive interspecies interaction.

44 This motivates our interest for the entanglement entropy and, more in general, for the *residual*
 45 *entropy* at non-zero temperatures in the TSD. In this paper, we perform a systematic study of this
 46 correlation property effecting numerical simulations which include non-zero temperatures. We begin
 47 with studying the zero-temperature regime. To check the robustness of the EE, we determine its
 48 dependence from the interspecies interaction both by considering the exact ground state (calculated
 49 numerically) and by representing the ground state in terms of atomic coherent states (CS). The
 50 CS picture is interesting since, in addition to allow for fully-analytic calculations, its semiclassical
 51 character approximates the system ground state in a form closer to the preparation of the system in
 52 real experiments. As is well known, the EE describes the entanglement property of a physical system
 53 through the Von Neumann entropy of a suitably defined sub-system. In the sequel, we calculate the EE
 54 by partitioning the system in sub-systems such as *i*) the left-well and the right-well bosons, *ii*) bosons
 55 with zero and non-zero momentum, and *iii*) the species-A and species-B bosons.

56 As noted above, a number of new quantum phases has been predicted in the last fifteen years
 57 whose distinctive feature is to manifest at zero temperature. On the other hand, after the realization
 58 of optical lattices trapping ultracold atoms, it has become more and more evident that reducing (and
 59 measuring) the temperature on the nanoscale is an outstanding problem [18]. For this reason, the
 60 detection of zero-temperature phase transitions such as the space separation in bosonic mixtures (or
 61 its simpler dimer version, the DL transition) must more realistically rely on indicators which are
 62 reminiscent of the critical behavior of the system even when temperature is non-zero [19].

63 In this perspective, achieving a good control of the correlation properties for a system undergoing
 64 the DL transition at non-zero temperature certainly represents a useful tool for its observation in
 65 future experiments. For this reason we have thoroughly explored the residual-entropy behavior at
 66 non-zero temperature and have tried to understand the effect of thermal fluctuations in regimes where
 67 they compete with quantum fluctuations. The residual entropy has been calculated numerically by
 68 exploiting the knowledge of the TSD exact spectrum. As in the zero-temperature case, we consider the
 69 reduced thermal density matrix for three different partition schemes of the system based on separating
 70 space modes, momentum modes and atomic species. Finally, to further test the residual entropy as a
 71 critical indicator, we have compared the exact residual entropy with that calculated using a restricted
 72 range of energy levels around the expected average energy.

73 The paper is organized as follows. In Section 2, we introduce the TSD model and review the DL
 74 transition discussing the change of structure it induces in the ground state and the spectral collapse, a
 75 significant property that marks the transition. Section 3 is devoted to defining the equilibrium and the
 76 residual entropy and the relation thereof with the EE. Section 4 contains the results of our numerical
 77 calculations of residual entropy within the previously discussed partition schemes at zero and non-zero
 78 temperature. In Section 5 and Section 6 we compute the residual entropy in the coherent-state and in
 79 the restricted-basis approach, respectively. Section 7 is devoted to concluding remarks.

80 2. The model and the ground-state properties

81 An effective description of ultracold bosons trapped in homogenous arrays of potential wells is
 82 provided by the Bose-Hubbard (BH) model [4] in which local boson operators A_i and A_i^+ represent
 83 the microscopic annihilation and creation processes, respectively, at the i th well. The experimental
 84 realization of this model is currently achieved by means of well-known optical-trapping techniques
 85 [3,20]. These, by combining counter-propagating laser beams, cause the formation of (optical) lattices

86 the sites of which correspond to effective local potentials attracting bosons. In the simplest possible
 87 case of a two-site lattice (a double potential well), the BH Hamiltonian is given by

$$H_a = \frac{U_a}{2} \left[A_L^\dagger A_L^\dagger A_L A_L + A_R^\dagger A_R^\dagger A_R A_R \right] - J_a (A_L^\dagger A_R + A_R^\dagger A_L),$$

88 where L and R refers to the left and right well, respectively, U_a is the boson-boson interaction and J_a is
 89 the hopping amplitude controlling interwell boson exchange. The boson operators A_L , A_L^\dagger , A_R , and
 90 A_R^\dagger satisfy the standard commutator $[A_\sigma, A_\sigma^\dagger] = 1$ with $\sigma = L, R$. If, in addition to species A a second
 91 species B is introduced, the spatial modes become four, A_L , A_R , and B_L , B_R , for the species A and B,
 92 respectively. The resulting mixture is thus described by the two-species dimer Hamiltonian [16]

$$H = H_a + H_b + W(N_L M_L + N_R M_R) \quad (1)$$

93 in which, apart from the single-species BH Hamiltonians H_a and H_b , the significant term is that
 94 depending on interspecies interaction W . This couples the two species through the boson local
 95 populations described by the number operators $N_\sigma = A_\sigma^\dagger A_\sigma$ and $M_\sigma = B_\sigma^\dagger B_\sigma$ with $\sigma = L, R$.

96 When the interspecies interaction W becomes sufficiently strong, the two interacting species
 97 trapped in a double-well potential feature macroscopic localization effects. In particular, a repulsive
 98 interaction tends to spatially separate the species into different wells while an attractive interaction
 99 tends to confines both species in the same well. This represents the DL transition. In the first case this
 100 is characterized by an almost complete localization of the two species in different wells, and thus by a
 101 demixing effect, whereas, in the second case, the attractive interaction leads to a "supermixed" state
 102 with a localization of both species in a single well.

Such effects are confirmed by the numerical calculation of the ground state for different values
 of W . To see this we note that the energy eigenstates can be suitably represented in the basis of
 space-mode Fock states

$$|n_L, m_L, n_R, m_R\rangle := |i, j\rangle_L |N - i, M - j\rangle_R, \quad i \in [0, N], j \in [0, M], \quad (2)$$

103 where labels n_σ and m_σ , describing the local boson populations, are the eigenvalues of number
 104 operators N_σ and M_σ , respectively. The parametrization $n_L = i$, $m_L = j$, $n_R = N - i$ and $m_R = M - j$ has
 105 been assumed to include the property that both operator $N = N_L + N_R$ and operator $M = M_L + M_R$
 106 (representing the total boson numbers of the two species) commute with Hamiltonian H and thus are
 107 conserved quantities. The factorized form of (2) aims to better distinguish left-well from right-well
 108 populations. A generic quantum state is then represented as

$$|\Psi\rangle = \sum_{i=0}^N \sum_{j=0}^M w_{i,j} |i, j\rangle_L |N - i, M - j\rangle_R \quad (3)$$

109 Determining the energy eigenstates thus amounts to calculating coefficients $w_{i,j}$ for which the
 110 eigenvalue equation $H|E\rangle = E|E\rangle$ is fulfilled. For values of W small enough, the ground state $|E_0\rangle$ is
 111 approximated in terms of su(2) coherent states [21]

$$|E_0\rangle \simeq \frac{1}{2^{(N+M)/2} \sqrt{N!M!}} (A_L^\dagger + A_R^\dagger)^N (B_L^\dagger + B_R^\dagger)^M |0, 0\rangle_L |0, 0\rangle_R$$

112 whose dominating components $|i, j\rangle$ can be shown to feature $i \simeq N/2$, $j \simeq M/2$, namely, boson
 113 populations equally distributed in the two wells (delocalized ground state). For large values of
 114 $|W|$, $|E_0\rangle$ can be approximated by

$$|E_0\rangle \simeq \frac{1}{\sqrt{2}} (|N, 0\rangle_L |0, M\rangle_R + |0, M\rangle_L |N, 0\rangle_R), \quad |E_0\rangle \simeq \frac{1}{\sqrt{2}} (|N, M\rangle_L |0, 0\rangle_R + |0, 0\rangle_L |N, M\rangle_R), \quad (4)$$

in the repulsive and attractive case, respectively, well illustrating the space-localized distributions emerging from the delocalization-localization transition [16] and leading to Schrödinger cats with strongly localized component states.

Figure 1, obtained by numerically calculating the ground state in the repulsive case for different W , supplies us with an exact description of the DL transition and of the macroscopic changes in the ground-state structure. A similar behavior characterize the DL transition in attractive case, but the two emerging peaks finally localize around $i = j = 0$ and $i = 30, j = 40$.

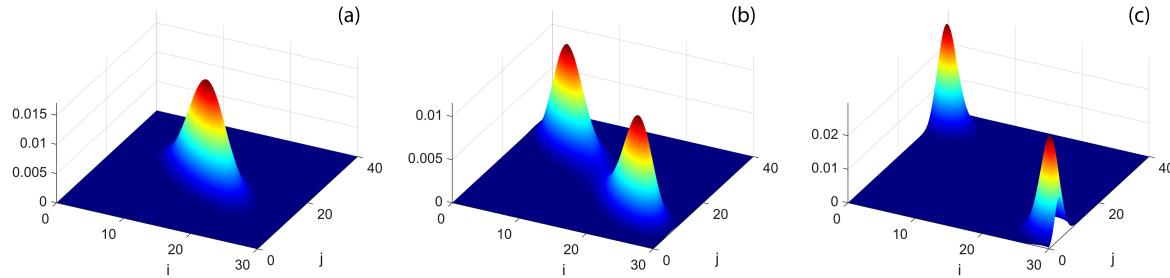


Figure 1. (Color online) Ground-state probabilities $|w_{i,j}|^2$ vs i (left occupation number of species A) and j (left occupation number of species B) associated to space-mode Fock states $|i, j\rangle_L |N - i, M - j\rangle_R$ of equation (3) for boson numbers $N = 30$, $M = 40$ and $U = 0.1$. Panel (a) features localized populations for $W = 0.15$, (b) partially localized populations for $W = 0.168$, and (c) fully separated populations for $W = 0.2$. Energies in units of $J_a = J_b = J$.

The critical behavior of the DL transition has been studied analytically by resorting to the semiquantum approach where boson number operators are approximated in terms of continuous variables [17]. This method has provided the critical value of W at which the transition takes place in the case of twin species ($J_a = J_b = J$, $U_a = U_b = U$). In this approach the Fock states essentially become wave functions depending on the new continuous variables while, for energies low enough, the energy-eigenvalue equation takes the form of the Schrödinger problem for a multidimensional harmonic-oscillator Hamiltonian. The extremal points of the corresponding potential allow one to determine the ground-state configuration, and, in particular, to find the formula

$$W = 2J/N + U$$

defining, for large boson numbers ($N = M \gg 1$), the transition critical point in the parameter space. Interestingly, when W approaches this critical value, the energy spectrum has been shown to undergo a collapse in which the inter-level separation tends to zero. This spectral collapse can be seen as the hallmark of the dynamical transition which features the macroscopic change in the structure both of the ground state (see the previous discussion) and, more in general, of the low-energy excited states described in Ref. [17]. The generalized version of the previous formula for a mixture in a L -well ring lattice has been derived in [22].

3. Equilibrium entropy and residual entropy

The third law of thermodynamics states that a perfect crystal at temperature $T = 0$ exhibits entropy $S = 0$. This entropy is defined as the *Equilibrium Entropy* S_{eq} . However, several physical systems ranging from, e.g., water ice [23,24], carbon monoxide [25], highly pressurized liquid-helium [26], glass systems [27,28], proteins [29], and even black-holes [30,31], seems to manifest a residual content of information (corresponding to a residual entropy) for $T \rightarrow 0$. The presence of such *Residual Entropy* S_R has been generally associated with residual degrees of freedom at $T = 0$ such as, among others, ground-state degeneracy, residual structural disorder, geometrical frustration and entanglement. These physical phenomena act as sources of uncertainty preventing the possibility to acquire knowledge on the exact

146 state of the system, thus resulting as possible sources of information (i.e. a finite, residual value of the
147 entropy).

148 For quantum systems, the residual entropy is in general related to the presence of entanglement
149 in the ground-state through the entanglement entropy. Entanglement entropy is a measure of the
150 “amount of entanglement” in the system. A standard and accepted way to quantify entanglement is
151 through the bipartite Von-Neumann entropy. What is measured by the bipartite entanglement entropy
152 is the mutual information shared between two partitions of the physical system (e. g. Alice and Bob).
153 Given $\hat{\rho}$ the density matrix of the system, and defining two partitions A, B of the Hilbert space \mathcal{H} such
154 that $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$ and $\hat{\rho} = \hat{\rho}_A \otimes \hat{\rho}_B$, the bipartite Von-Neumann entropy is defined as [34]

$$S(\hat{\rho}_A) = -\text{Tr}_A(\hat{\rho}_A \log_2 \hat{\rho}_A), \quad (5)$$

155 where $\hat{\rho}_A = \text{Tr}_B(\hat{\rho})$ ($\hat{\rho}_B = \text{Tr}_A(\hat{\rho})$) is the reduced density matrix of partition A (B) obtained tracing out
156 the degrees of freedom of B (A). Notice that for the same system, in principle, there exists infinitely
157 many possible ways to partitions the Hilbert space \mathcal{H} in two parts. This leads to the consideration that,
158 since the choice of the partition is arbitrary, the measure of entanglement, i.e. the residual entropy,
159 cannot have a global character by definition. We shall see how this is indeed the case in Section 4
160 (and, more specifically, in Subsection 4.4) when we will compute the residual entropy for the TSD for
161 different choices of the partition A - B .

162 3.1. Equilibrium Entropy in the TSD

163 According to quantum statistical mechanics [35,36], the expression of the equilibrium entropy
164 $S_{eq}(T)$ can be derived from the expression of the density operator as

$$S_{eq}(T) = -\text{Tr}(\hat{\rho} \log_2 \hat{\rho}) \quad (6)$$

165 where the (canonical) density operator at finite temperature is defined as

$$\hat{\rho} = \frac{1}{Z} \sum_n e^{-\beta E_n} |\Psi_n\rangle \langle \Psi_n|, \quad (7)$$

166 with E_n representing the energy eigenvalue associated to the energy eigenstate $|\Psi_n\rangle$. Combining
167 Equations (6) and (7) one finds the explicit expression for the equilibrium entropy

$$S_{eq}(T) = \sum_n -\rho_n \log_2 \rho_n, \quad (8)$$

168 with $\rho_n = e^{-\beta E_n}/Z$.

169 Since the ground-state of Hamiltonian (1) cannot be degenerate [36,37], expression (8) is a good
170 definition of equilibrium entropy for the TSD as, for $T = 0$, it exactly satisfies $S_{eq}(0) = 0$. In Figure 2,
171 we show the equilibrium entropy computed for the TSD as a function of the interspecies interaction
172 W/J and effective temperature Tk_B/J . At $T = 0$ one clearly sees that $S_{eq} = 0$ for all values of W/J
173 (black-dashed line). By sufficiently increasing the temperature, two peaks appear at the boundary
174 of the central region where the phase transitions between the mixed and demixed phases occur
175 ($|W|/J \approx 0.16$). Such peaks progressively vanish due to fluctuations when the temperature increases. In
176 Section 4, we will show that, in general, residual entropy exhibits similar features.

177 According to Figure 2, the equilibrium entropy tends to $S_{eq} = 1$ for $T \neq 0$ and if $|W|/J$ is large
178 enough (plot tails). This reflects the fact that two dominating states (those corresponding to the lowest
179 energies E_1 and E_0) provide contributions of about $\frac{1}{2} \log_2 2$ to the limiting value $S_{eq} = 1$. It is important
180 to notice that, in both tails, the first excited level E_1 can be shown to tend to the ground state energy E_0
181 as a consequence of the spectral collapse characterizing the TSD. Accordingly, the smallest non-zero
182 temperature that has been considered ($Tk_B/J = 10^{-4}$) is large enough to populate in a nearly equal way

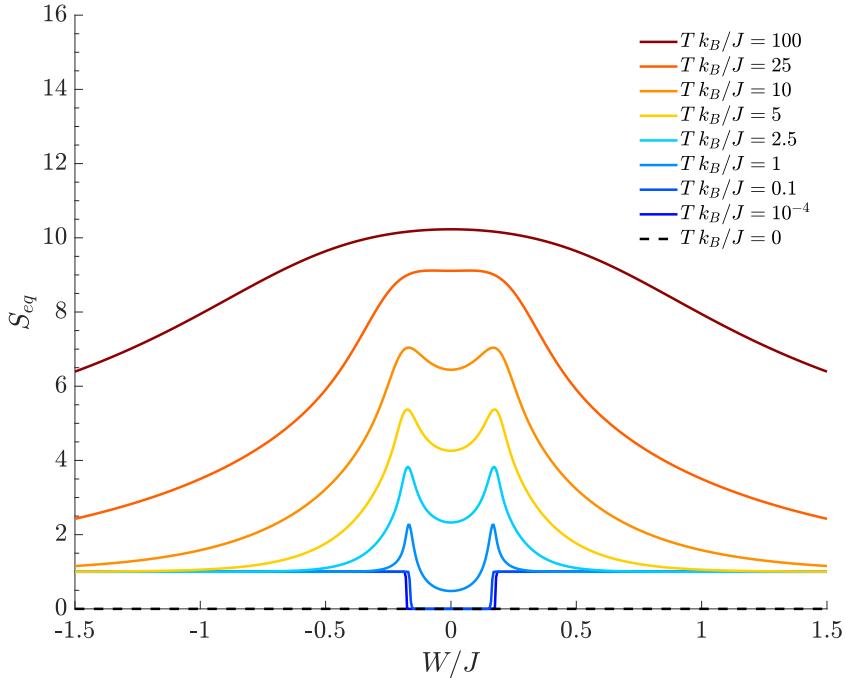


Figure 2. Equilibrium entropy for different choices of the temperature. $N = 30$, $M = 40$, $J = 1$, $U = 0.1$, $k_B = 1$.

183 both the ground state and the first excited level because their separation $E_1 - E_0$ becomes smaller and
 184 smaller for large $|W|/J$.

185 Notice also that, in this regime, the splitting between E_0 and E_1 decreases exponentially (with
 186 the number) of particles to a point that may lie below the actual experimental limit (see Appendix
 187 B for details). We also note that, at high temperatures, the equilibrium entropy tends to the value
 188 $S_{eq} \simeq 10.31 = \log_2 D$ where D is the number of energy levels (i.e. the dimension of the Hilbert space),
 189 showing the fact that all the energy eigenstates are equiprobable with probability $1/D$.

190 *3.2. Residual Entropy in the TSD*

191 In Reference [16] we showed that the TSD manifests non trivial entanglement properties (relevant
 192 to the boson distribution in the two wells) in the ground-state suggesting the presence of a residual
 193 entropy at $T = 0$. This residual information at $T = 0$ is not grasped by (8) as it exhibits $S_{eq}(0) = 0$.

194 A consistent and different definition of the entropy is therefore required in order to be able to
 195 correctly describe the residual quantum information hidden in the ground-state structure. This can be
 196 naturally done by extending the definition of entanglement entropy (5) at finite T in the way suggested
 197 by the expression for the equilibrium entropy (8). We will call this definition of entropy *residual entropy*
 198 at finite temperature $S_R(T)$ in order to distinguish it from the equilibrium entropy $S_{eq}(T)$ of expression
 199 (8).

200 The key difference between definitions (5) and (6) lies in the fact that, in the entanglement entropy,
 201 a reduced density operator $\hat{\rho}_A$ is used. Given a partition of the Hilbert space, the reduced density
 202 operator of \mathcal{H}_A is obtained by tracing out the degrees of freedom of \mathcal{H}_B . The idea is then to compute the
 203 reduced density matrix of the thermal density operator $\hat{\rho}$ defined in (7), and then to use the new density
 204 operator for computing the residual entropy at finite T . Although the partition of the Hilbert space is
 205 obviously independent from the choice of the basis in which the density operator is represented, to
 206 perform the calculation described above is convenient express the density operator (7) in an alternative

207 suitable basis for the partition A - B one has chosen. From the practical point of view, a suitable choice
208 of the basis can give easy access to a partition that in another basis would be really hard to handle
209 computationally. An example of this is shown in Section 4 when we consider the partition between the
210 momentum modes.

211 Let's expand density operator (7) in a convenient basis $\{|\phi_i\rangle\}$ for the choice of the partition. To do
212 so we expand the energy eigenstate

$$|\Psi_n\rangle = \sum_i \sum_j w_{i,j,n} |\phi_i\rangle_A \otimes |\phi_j\rangle_B , \quad (9)$$

213 substitute it in expression (7), and obtain the new expression for the density operator [38]

$$\hat{\rho} \equiv \hat{\rho}(T) = \sum_i \sum_j \sum_{i'} \sum_{j'} C_{i,j,i',j'}(T) |\phi_i\rangle_A \otimes |\phi_j\rangle_B \langle \phi_{j'}| \otimes_A \langle \phi_{i'}| , \quad (10)$$

214 where

$$C_{i,j,i',j'}(T) = \sum_n \frac{e^{-\beta E_n}}{\mathcal{Z}} w_{i,j,n} w_{i',j',n}^* . \quad (11)$$

215 Notice that, coefficients $C_{i,j,i',j'}(T)$ contains both thermal and quantum information as they are obtained
216 by thermal-averaging the quantum amplitudes $w_{i,j,n} w_{i',j',n}^*$ of each energy eigenstate $|\Psi_n\rangle$. By tracing
217 over the degrees of freedom of \mathcal{H}_B is possible to derive the expression of the reduced density operator
218 $\hat{\rho}_A(T)$

$$\hat{\rho}_A(T) = \text{Tr}_B(\hat{\rho}(T)) , \quad (12)$$

219 The residual entropy at finite temperature $S_R(T)$ is then defined as

$$S_R(T) = -\text{Tr}_A(\hat{\rho}_A(T) \log_2 \hat{\rho}_A(T)) . \quad (13)$$

220 The details of this calculation, together with the results of the computation of (12) and (13) for different
221 choices of the partition, are discussed in Section 4.

222 4. Residual entropy at zero and finite temperature

223 As already mentioned, "bipartite entanglement" is well defined when the way to partition the
224 system with respect to a certain physical property is specified. Investigating specific properties of
225 a given system leads to consider specific kinds of entanglement. An effective and standard way
226 to quantify the residual entropy is to compute the Von Neumann entropy according to the scheme
227 discussed in the previous Section. Of course, once the partition is fixed, the computation of the Von
228 Neumann entropy relevant to the reduced density matrix (residual entropy) is independent on the
229 basis chosen to represent physical states, namely, $S(\rho) = S(U\rho U^\dagger)$ for any unitary transformation U
230 which enacts the change of basis.

231 In the sequel, we consider three different kinds of residual entropy, each one associated to a
232 different way of partitioning the system. First, we consider the quite natural partition in terms
233 of left-well bosons and right-well bosons suggested by the representation of physical states in the
234 space-mode Fock basis (2). Then, by representing physical states in the momentum-mode Fock basis,
235 we partition the system in terms of zero-momentum and non-zero-momentum bosons. Finally, we
236 consider the partition of the system distinguishing species-A from species-B bosons, which is again
237 suggested by definition (2) where populations n_L, n_R and m_L, m_R refer to species A and B, respectively.
238 In all three cases we present the results, obtained numerically, both for the zero-temperature scenario,
239 when only the ground state $|\psi_0\rangle$ is involved and for the finite-temperature configuration, when the
240 system is naturally described by means of a thermal density matrix. It is worth remarking that at $T = 0$,
241 the residual entropy reduces to entanglement entropy because classical correlations are suppressed.

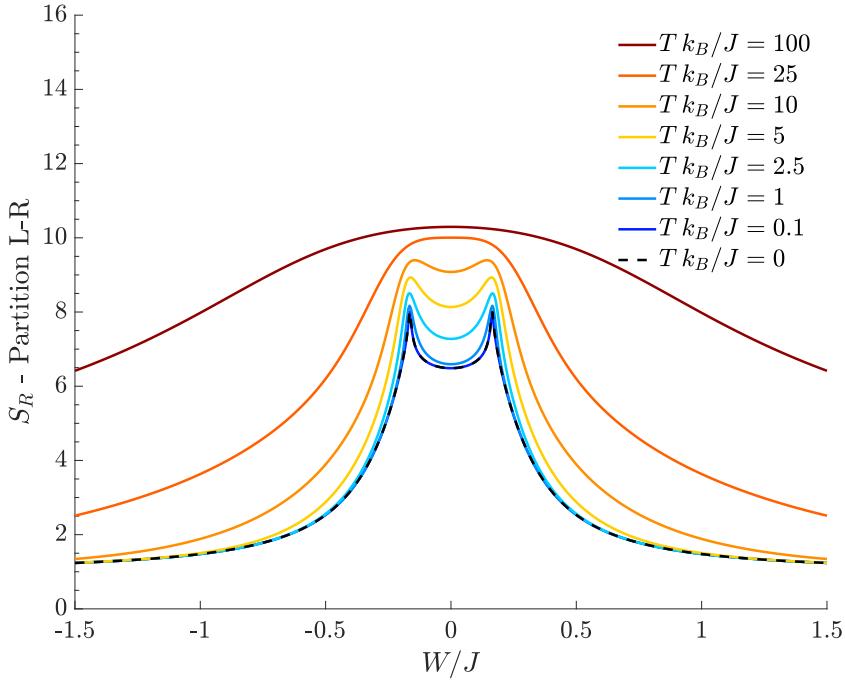


Figure 3. Residual entropy relevant to the L-R partition for different choices of the temperature. $N = 30$, $M = 40$, $J = 1$, $U = 0.1$, $k_B = 1$.

242 4.1. Residual entropy for a partition characterized by spatial modes

243 Let us start by computing the residual entropy S_R by considering the partition of the TDS in terms
 244 of left-well bosons and the right-well bosons. Following Formula (3), a generic physical state $|\psi\rangle$ is
 245 written as

$$|\psi\rangle = \sum_{i=0}^N \sum_{j=0}^M w_{i,j} |i, j\rangle_L |N - i, M - j\rangle_R$$

246 and entails the density matrix of the whole system

$$\hat{\rho} = |\psi\rangle\langle\psi| = \sum_{i=0}^N \sum_{j=0}^M \sum_{i'=0}^N \sum_{j'=0}^M w_{i,j} w_{i',j'}^* |i, j\rangle_L |N - i, M - j\rangle_R \langle N - i', M - j'|_L \langle i', j'|. \quad (14)$$

247 The reduced density matrix relevant to the right-well bosons, obtained tracing out the degrees of
 248 freedom of the left-well bosons, is

$$\hat{\rho}_R = \sum_{k=0}^N \sum_{l=0}^M {}_L\langle k, l | \hat{\rho} | k, l \rangle_L = \sum_{i=0}^N \sum_{j=0}^M |w_{i,j}|^2 |N - i, M - j\rangle_R \langle N - i, M - j|.$$

249 In the presence of a non-zero temperature, the density matrix modifies taking into account the
 250 contributions of the whole energy spectrum. By following the scheme discussed in Subsection 3.2, as
 251 the $T \neq 0$ density matrix is diagonal, one can easily compute the residual entropy (13) finding

$$S_R(\hat{\rho}_R) = - \sum_{i=0}^N \sum_{j=0}^M |C_{i,j}(T)|^2 \log_2 |C_{i,j}(T)|^2, \quad (15)$$

with $C_{i,j}(T)$ given by Formula (11). Figure 3 shows how the residual entropy relevant to right-well bosons varies with respect to W/J , for different temperatures. At $T = 0$, the plot of S_R (black dashed line), which represents the entanglement entropy, exhibits two sharp peaks where the mixing-demixing phase transitions occur. In the region between the two peaks bosons are delocalized and the quantum fluids fully mixed, the left tail corresponds to supermixed states (states where both species are localized in a single well) and, eventually, the right tail is the region where the two species localize in different wells. Both tails feature a genuinely quantum behavior because the relevant ground states correspond to Schrödinger cats, in which the spatial separation gets more and more pronounced as $|W/J|$ increases (see Formula (4)). In fact, the entanglement entropy asymptotically tends to 1, a value which is reminiscent of the double-edged structure of cat states (4) because both their components contribute to Formula (15) with $\frac{1}{2} \log_2 2$. It is worth noticing that, at $T = 0$, S_R is always different from zero in that, even for noninteracting species ($W = 0$), the presence of a non-zero J couples the left and right modes of either species. As expected, one can show numerically that the height of the central minimum of S_R decreases more and more (tending to zero) as the interwell hopping J becomes smaller and smaller.

At temperature $T > 0$, Figure 3 shows that the residual entropy is still able to highlight the difference among mixed, demixed and supermixed phases. The effect of a finite temperature is to smooth the DL phase transitions, an effect which can be clearly appreciated observing the decreasing sharpness of the peaks as T is increased. Interestingly, all the tails of the plotted curves tend to the limiting value 1. For example, in the left tail ($W/J < 0$), this means that, in S_R one has $|C_{0,0}|^2 = |C_{N,M}|^2 \simeq 1/2$ while all the other $|C_{i,j}|^2$ are vanishingly small. The resulting $S_R = 1$ follows from the fact that there exist two dominating macroscopic configurations $|N, M\rangle_L |0, 0\rangle_R$ and $|0, 0\rangle_L |N, M\rangle_R$ whose correlation is mainly due to quantum entanglement for $T \rightarrow 0$ but assumes a more and more classical character for higher temperatures. In the case of the right tail ($W/J > 0$), the same effect is observed but the dominating components are $|C_{N,0}|^2$ and $|C_{0,M}|^2$. Note that, at fixed temperature, such configurations emerge provided that the interspecies interaction $|W|$ is strong enough to contrast the temperature-induced disorder. Of course, for a given value of W/J , one has larger residual entropies at higher temperatures in that increasing T makes more and more energy eigenstates accessible in the thermal superposition ensuing from Formula (7). We conclude by observing that, at high temperatures, in the central region around $W/J = 0$, S_R approaches the limiting value $\log_2 D \approx 10.31$, because $|C_{i,j}|^2 \simeq 1/D$ for all (i, j) where $D = 1271 = (N+1)(M+1)$ (with $N = 30, M = 40$) is the dimension of the Hilbert space. This limiting situation reflects the fact that, at high temperatures, $S_R \rightarrow S_{eq}$ (see Figure 2).

4.2. Residual entropy for a partition characterized by momentum modes

Let us introduce the following momentum-mode operators obtained summing and subtracting usual site-mode operators

$$S_a = \frac{1}{\sqrt{2}}(A_L + A_R), \quad D_a = \frac{1}{\sqrt{2}}(A_L - A_R), \quad S_b = \frac{1}{\sqrt{2}}(B_L + B_R), \quad D_b = \frac{1}{\sqrt{2}}(B_L - B_R),$$

together with the corresponding number operators

$$N_S = S_a^\dagger S_a, \quad N_D = D_a^\dagger D_a, \quad M_S = S_b^\dagger S_b, \quad M_D = D_b^\dagger D_b,$$

which count the number of bosons having vanishing (S) or non-vanishing (D) momentum in the two species. The momentum-mode Fock basis $\{|N_S, N - N_S, M_S, M - M_S\rangle\}$ can be chosen as a new basis against which it is possible to expand the generic state

$$|\psi\rangle = \sum_{n_S=0}^N \sum_{m_S=0}^M w_{n_S, m_S} |n_S, m_S\rangle_S |N - n_S, M - m_S\rangle_D,$$

where we have set $|n_S, N - n_S, m_S, M - m_S\rangle = |n_S, m_S\rangle_S |N - n_S, M - m_S\rangle_D$ in order to emphasize the difference between zero and non-zero momentum quantum numbers. As a consequence, the density matrix relevant to the state is

$$\hat{\rho} = |\psi\rangle\langle\psi| = \sum_{n_S=0}^N \sum_{m_S=0}^M \sum_{n'_S=0}^N \sum_{m'_S=0}^M w_{n_S, m_S} w_{n'_S, m'_S}^* |n_S, m_S\rangle_S |N - n_S, M - m_S\rangle_D |N - n'_S, M - m'_S\rangle_D \langle n'_S, m'_S|.$$

The reduced density matrix relevant to the sub-system of bosons having non-vanishing momentum (modes D's) is obtained by tracing out the degrees of freedom relevant to the sub-system of bosons having zero momentum (modes S's)

$$\hat{\rho}_D = \sum_{n_S=0}^N \sum_{m_S=0}^M |n_S, m_S\rangle_D \langle n_S, m_S| = \sum_{n_S=0}^N \sum_{m_S=0}^M |w_{n_S, m_S}|^2 |N - n_S, M - m_S\rangle_D |N - n_S, M - m_S|.$$

For non-zero temperatures, one must consider the contributions of all the energy levels. Making use of the same scheme discussed in Subsection 3.2, as the reduced density matrix relevant to the thermal superposition is diagonal, the residual entropy (13) is found to be

$$S_R(\hat{\rho}_D) = - \sum_{n_S=0}^N \sum_{m_S=0}^M |C_{n_S, m_S}(T)|^2 \log_2 |C_{n_S, m_S}(T)|^2.$$

Figure 4 shows the residual entropy characterizing the separation between still and circulating bosons in respect of the ratio W/J , for different temperatures. At $T = 0$, residual entropy corresponds to entanglement entropy and its plot (black dashed line) exhibits two sharp discontinuities at the two values of W/J for which the DL phase transitions occur. Such discontinuities separate three quasi-plateaus corresponding to supermixed, mixed and demixed phases. The central region (mixed species) features a quite small entanglement between circulating and still bosons. In fact, if the interspecies coupling W is small compared to the tunneling J and if the ratio U/J is small enough to guarantee superfluid and delocalized bosons, momentum modes S_a and S_b are macroscopically occupied, while D_a and D_b are poorly populated. If the intraspecies repulsion U tends to zero, one can show that the latter momentum modes are not populated at all, and, at $T = 0$, the EE vanishes for $W/J = 0$.

At finite temperatures, the behavior of the residual entropy still mirrors the presence of the three quantum phases. Unlike the behaviors of S_R discussed in Subsection 4.1, where $S_R = 1$ associated to outer plateaus showed that system features two dominating space configurations, here, the value $S_R = 7.2$ implies that, for sufficiently large $|W|/J$, a much larger number of momentum configurations is involved in determining the system correlations.

Figure 4 displays a gap between the plateau $S_R \approx 6.2$ obtained at $T = 0$ (black dashed lines) and the limiting value $S_R \approx 7.2$ of the plateaus obtained at $T \neq 0$ (colored lines). This is due to the fact that, in the tails, the energy gap between the ground state and the first excited level becomes vanishingly small but remains non-zero and so the lowest non-zero temperature $T = 0.1J/k_B$ considered in Figure 4 is already enough to populate both the ground state and the first excited level. The activation of the excited level (absent at $T = 0$) is sufficient to redistribute the boson population thus causing the jump of S_R from 6.2 to 7.2. As noticed for the partition in terms of spatial modes discussed in Section 4.1, i) the maximum value of S_R tends to the extreme value $\log_2 1271 \approx 10.31$ at high temperature and ii) given a certain value of W/J , the residual entropy steadily increases with temperature T because more and more energy eigenstates become statistically accessible.

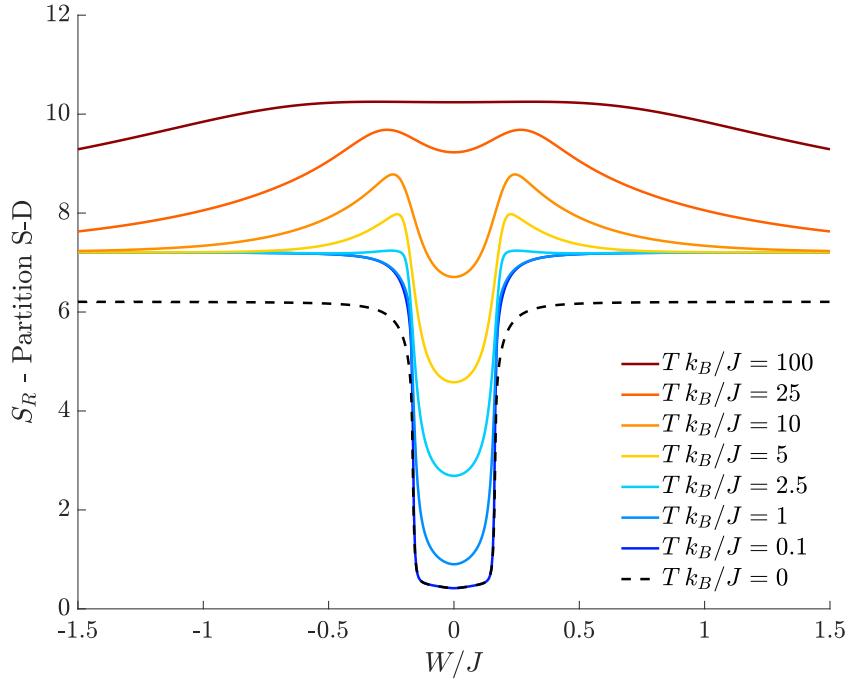


Figure 4. Residual entropy relevant to the partition S-D for different choices of the temperature. $N = 30$, $M = 40$, $J = 1$, $U = 0.1$, $k_B = 1$.

326 4.3. Residual entropy for a partition characterized by boson species

327 A third way to compute the residual entropy consists in partitioning the system in terms of
328 species-A and species-B bosons. We use the representation in terms of space-mode Fock states,
329 although the momentum-mode Fock basis is equally convenient to the job. Starting from density
330 matrix (14), the reduced density matrix relevant to species-B sub-system is obtained by tracing out the
331 degrees of freedom relevant to species-A sub-system

$$\hat{\rho}_B = \sum_{k=0}^N {}_L\langle k| {}_R\langle N-k|\hat{\rho}|k\rangle_L|N-k\rangle_R = \sum_{j=0}^M \sum_{j'=0}^M C_{j,j'}|j\rangle_L|M-j\rangle_R {}_L\langle j'| {}_R\langle M-j'|,$$

332 where we have defined

$$C_{j,j'} = \sum_{n=1}^D \sum_{k=0}^N \frac{e^{-\beta E_n}}{\mathcal{Z}} w_{k,j,n} w_{k,j',n}^*.$$

333 The diagonalization of $\hat{\rho}_B$ provides the eigenvalues $\{\lambda_j\}$ necessary to compute the relevant Von
334 Neumann entropy

$$S_R(\hat{\rho}_B) = - \sum_{j=1}^{M+1} \lambda_j \log_2 \lambda_j.$$

335 Figure 5 shows the residual entropy relevant to species-mode partition scheme as a function
336 of W/J , for different temperatures. As in Figure 3, at zero temperature (black dashed line), two
337 sharp peaks, at which the DL transitions occur, separate the three regions corresponding to the
338 supermixed, mixed and demixed phase. Also in the present case, the outer regions consist of two
339 quasi-plateaus whose height quickly converges to 1, a limiting value which is, once again, reminiscent
340 of the two-component character of cat states (4) (recall that $1 = 2 \times (-\frac{1}{2} \log_2 \frac{1}{2})$). As noted in the

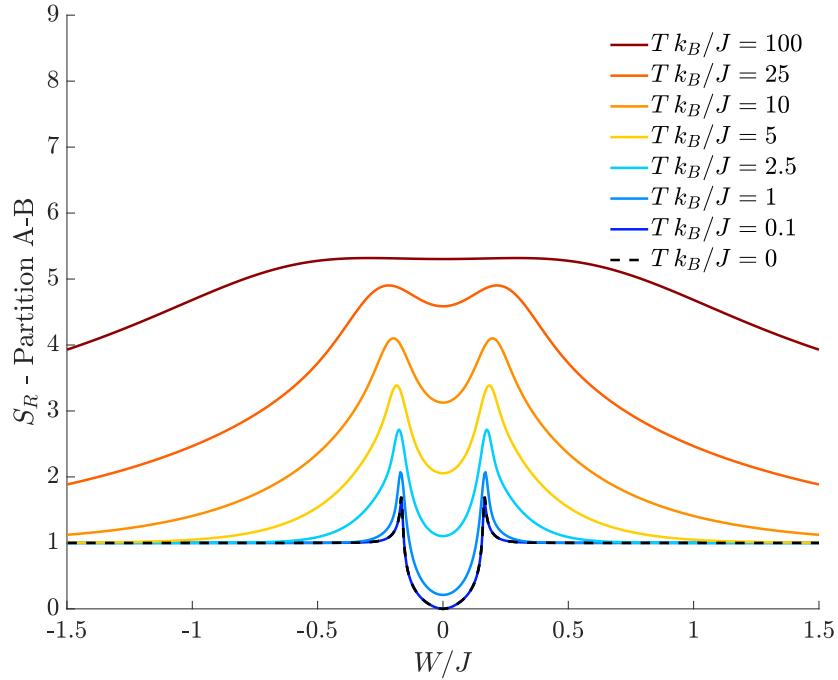


Figure 5. Residual entropy relevant to the A-B partition for different choices of the temperature. $N = 30$, $M = 40$, $J = 1$, $U = 0.1$, $k_B = 1$.

341 previous Subsections, one can show that the zero-temperature EE relevant to the space-mode and the
 342 momentum-mode separation schemes features a central minimum tending to zero for $J \rightarrow 0$ and $U \rightarrow 0$,
 343 respectively. In the current case, where the species-mode separation is adopted, the vanishing of the
 344 minimum of S_R is obtained when the two species are non interacting, namely, for $W = 0$.

345 When the temperature is switched on, the DL phase transitions become less abrupt and the
 346 corresponding peaks in the plots are less sharp. However, as shown in Figure 5, S_R still represents an
 347 effective indicator of the critical behavior in a non-small temperature range. As for the S_R analyzed
 348 in Section 4.1, the residual-entropy plot at non-zero temperatures shows that $S_R \rightarrow 1$ for $|W|/J$ large
 349 enough. Once more, the limiting value $S_R = 1 = \log_2 2$ (which all colored lines of Figure 5 converge to)
 350 highlights how the system features two equiprobable dominating configurations for large interactions.
 351 A non-vanishing T disturbs the formation of such configurations since, in the tails, for a given value of
 352 W/J , the higher the temperature, the more S_R differs from $S_R = 1$. As for the other partition schemes,
 353 for large T , S_R tends to a maximum value, $\log_2 D_B \simeq 5.36$, where $D_B = (M + 1)$ is the dimension of
 354 sub-system-B Hilbert space.

355 4.4. Residual entropy at zero temperature

356 As repeatedly stressed in the previous discussion, in principle, the choice of the partition, is
 357 completely arbitrary and independent on the system under examination. It has more to do with
 358 the concepts of “observer” and “measure” than with the physical system itself, opening interesting
 359 questions on the relation between entropy and quantum information. To emphasize this fact, in Figure 6
 360 we compare the residual entropy at $T = 0$ for the three partition schemes considered above and shows
 361 how the presence of a non-zero residual entropy (i.e. of the EE in the ground-state) strongly depends
 362 on the choice of the partition. In particular, we notice how a strong entanglement in a partition can
 363 result in a weak (or zero) entanglement in another one. This is the case, e.g., of $W/J = 0$ in which the
 364 ground-state is strongly entangled if measured through the partition $L-R$ (finite residual entropy S_R),

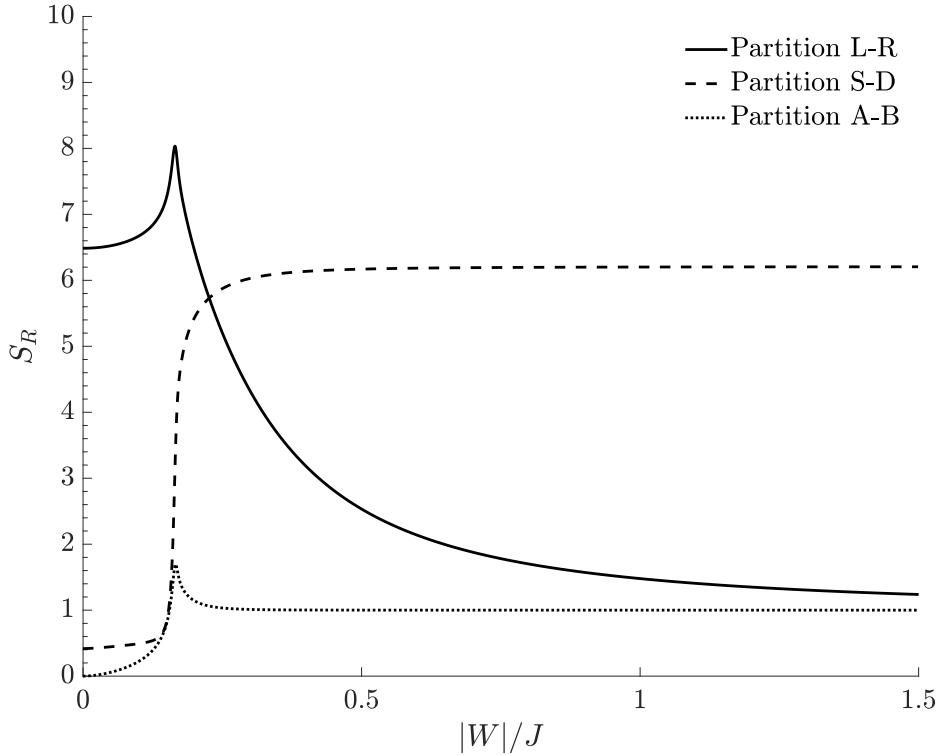


Figure 6. Residual entropies at $T = 0$ as a function of $|W|/J$ for three different partitions of the Hilbert space: partition L - R (continuous line), partition S - D (dashed line), and partition A - B (dotted line). $N = 30$, $M = 40$, $J = 1$, $U = 0.1$.

365 or completely disentangled if measured through the partition A - B (residual entropy $S_R = 0$). In other
 366 words, in the same physical system, while the knowledge of the state of the system in the left (right)
 367 well is strongly correlated with the information on the state in the right (left) well, on the opposite, the
 368 knowledge of the species- A state does not produce information on the species- B state.

369 **5. Calculation of the EE in the coherent-state picture**

370 The coherent-state variational approach has found large application in the study of many-body
 371 quantum systems [39] since, due to their semi-classical character, they provide an effective description
 372 of physical systems and allow one to gain insights into their properties. Also, from the experimental
 373 point of view, coherent states have an important role since their semi-classical character enables one to
 374 achieve a realistic approximation of the quantum state describing the real system.

375 An $su(2)$ coherent state describing single condensate trapped in a dimer is given by [21]

$$|\xi_L, \xi_R\rangle = \frac{1}{\sqrt{N!}} (\xi_L A_L^\dagger + \xi_R A_R^\dagger)^N |0\rangle, \quad (16)$$

376 where $|0\rangle = |0, 0\rangle$ is the boson vacuum state and the normalization condition $|\xi_L|^2 + |\xi_R|^2 = 1$ must be
 377 assumed. Since $\langle \psi_a | A_\sigma^\dagger A_\sigma | \psi_a \rangle = N |\xi_\sigma|^2$, with $\sigma = R, L$, is the expectation value of number operator
 378 $N_\sigma = A_\sigma^\dagger A_\sigma$ then $|\xi_\sigma|^2$ represents the fraction of bosons in the well σ . In the following, we employ
 379 combinations of coherent states (16) (for a single species in a double well) to approximate the cat
 380 structure of the ground state relevant to the TSD system in the strong-interaction regime, both for
 381 $W/J > 0$ and for $W/J < 0$.

382 1. Supermixing (attractive cat). If the interspecies attraction ($W/J < 0$) is large enough, the two
 383 species aggregate together in the same well. Since none of the two wells is privileged with respect
 384 to the other, quantum mechanically both configurations are equally probable, and the system
 385 lives in both states at the same time. By using the notation of Formula (16), the resulting cat state
 386 can be written as

$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left[|\text{Loc}\rangle_{a,L} |\text{Loc}\rangle_{b,L} + |\text{Loc}\rangle_{a,R} |\text{Loc}\rangle_{b,R} \right] = \frac{1}{\sqrt{2}} \left[|\lambda_a, \eta_a\rangle |\lambda_b, \eta_b\rangle + |\eta_a, \lambda_a\rangle |\eta_b, \lambda_b\rangle \right],$$

387 where "Loc" stands for "localized" and entails the fact that $|\eta_c|^2 \ll |\lambda_c|^2$. Following the scheme
 388 discussed in Ref. [40], one can show that the expectation value of the model Hamiltonian reduces
 389 to

$$\begin{aligned} E(\lambda_a, \eta_a, \lambda_b, \eta_b) &= \frac{U}{2} N(N-1) (|\lambda_a|^4 + |\eta_a|^4) - 2JN(\text{Re}\{\lambda_a \eta_a\}) \\ &+ \frac{U}{2} M(M-1) (|\lambda_b|^4 + |\eta_b|^4) - 2JM(\text{Re}\{\lambda_b \eta_b\}) + W (|\lambda_a|^2 |\lambda_b|^2 + |\eta_a|^2 |\eta_b|^2) \end{aligned}$$

390 where the local order parameters $\lambda_a, \lambda_b, \eta_a$, and η_b are complex quantities defined as

$$\lambda_a = \sqrt{1-x_a} e^{i\theta_a}, \quad \eta_a = \sqrt{x_a} e^{i\phi_a}, \quad \lambda_b = \sqrt{1-x_b} e^{i\theta_b}, \quad \eta_b = \sqrt{x_b} e^{i\phi_b}.$$

391 The minimum-energy configuration energy is reached for $\phi_a = \theta_a$, $\theta_b = \phi_b$ and

$$x_a = \frac{J^2}{(NU - U + MW)^2}, \quad x_b = \frac{J^2}{(MU - U + NW)^2}.$$

392 These formulas give the fraction of bosons characterizing the minority component and, correctly,
 393 give zero in the limit $W \rightarrow -\infty$.

394 2. Demixing (repulsive cat). If the interspecies repulsion ($W/J > 0$) is large enough, the two
 395 condensed species separate in different wells. Similarly to what explained in the previous
 396 paragraph, the ground state features a two-sided cat-like structure, because left (right) well
 397 can indistinctly host species A (B). Hence, the quantum state consists of an equally-weighted
 398 superposition of the two possible arrangements

$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left[|\text{Loc}\rangle_{a,L} |\text{Loc}\rangle_{b,R} + |\text{Loc}\rangle_{a,R} |\text{Loc}\rangle_{b,L} \right] = \frac{1}{\sqrt{2}} \left[|\lambda_a, \eta_a\rangle |\eta_b, \lambda_b\rangle + |\eta_a, \lambda_a\rangle |\lambda_b, \eta_b\rangle \right]$$

399 where λ_c, η_c are such that $|\eta_c|^2 \ll |\lambda_c|^2$ and (obviously) $|\lambda_c|^2 + |\eta_c|^2 = 1$, with $c = a, b$. Following the
 400 variational approach described in the previous paragraph, and adopting the same conventions,
 401 we obtain that the variational energy is minimized for $\theta_a = \phi_a$, $\theta_b = \phi_b$ and

$$x_a = \frac{J^2}{(NU - U - MW)^2}, \quad x_b = \frac{J^2}{(MU - U - NW)^2}$$

402 Parameters x_a and x_b represent the fractions of bosons which do not aggregate with the others
 403 and thus make the "demixed phase" not ideal. Notice that, correctly, if $W \rightarrow +\infty$, then $x_{a,b} \rightarrow 0$, i.e.
 404 the demixing gets more and more complete.

405 Both for the supermixing and for the demixing scenario, after computing the fraction of bosons
 406 in each well, it is possible to reconstruct the cat state by superimposing two coherent states. This
 407 procedure, described in Appendix A, allows one to analytically compute the EE between left-well
 408 and right-well bosons, at zero temperature [40]. As shown in Figure 7, the result perfectly
 409 matches the numerical EE, of course in the validity range of this approximation, i.e. in the whole
 410 range of $|W|/J$ except the central region (mixed phase) between the two critical values.

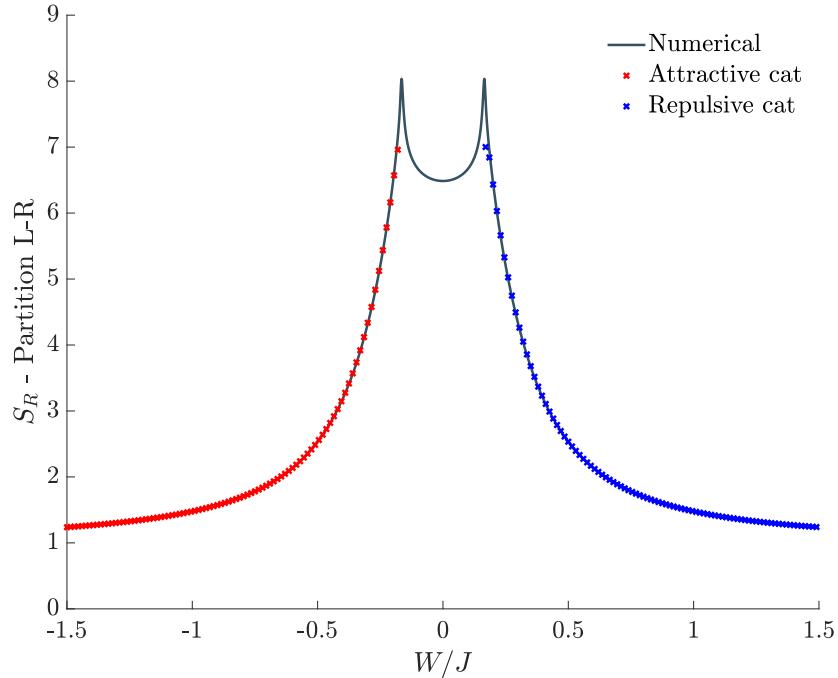


Figure 7. Entanglement entropy between left-well bosons and right-well bosons: comparison between the results derived within the coherent-state approach and the numerical ones.

411 6. Calculation of the residual entropy in a restricted energy basis

412 As already explained, the density operator associated to a thermal mixture of eigenstates is

$$\hat{\rho} = \frac{1}{Z} \sum_{n=1}^D e^{-\beta E_n} |\psi_n\rangle \langle \psi_n|$$

413 where E_n is the energy eigenvalue associated to the energy eigenstate $|\psi_n\rangle$, β is (proportional to)
 414 the inverse temperature and D is the dimension of the Hilbert space of physical states. From
 415 a computational, but also from a conceptual point of view, $\hat{\rho}$ is the superposition of D different
 416 contributions, each one weighted by a different Boltzmann factor. The dimension D rapidly increases
 417 with the number of particles hosted in the system its exact value being $D = (N+1)(M+1)$. As a
 418 consequence, the computation of the thermal density matrix becomes unfeasible even for a relative
 419 small number of bosons. By taking advantage of the well-known equivalence between microcanonical
 420 and canonical ensemble (see, e.g. [38]), for large numbers of particles, we provide an effective way to
 421 approximate a thermal state. To this end, we consider just a restricted set of energy eigenstates, namely
 422 those $|\psi_n\rangle$ whose energy E_n lies in the range $[\langle E \rangle - \sigma_E; \langle E \rangle + \sigma_E]$ where

$$\langle E \rangle = \frac{1}{Z} \sum_{n=1}^D E_n e^{-\beta E_n}, \quad \sigma_E = \sqrt{\langle E^2 \rangle - \langle E \rangle^2}$$

423 are the expectation value of the energy and its standard deviation, respectively. The density matrix
 424 relevant to this restricted thermal state is thus constructed by equally-weighting the contributions
 425 coming from such $|\psi_n\rangle$, i.e.

$$\hat{\rho}_{\text{restricted}} = \frac{1}{N_*} \sum_n^* |\psi_n\rangle \langle \psi_n|$$

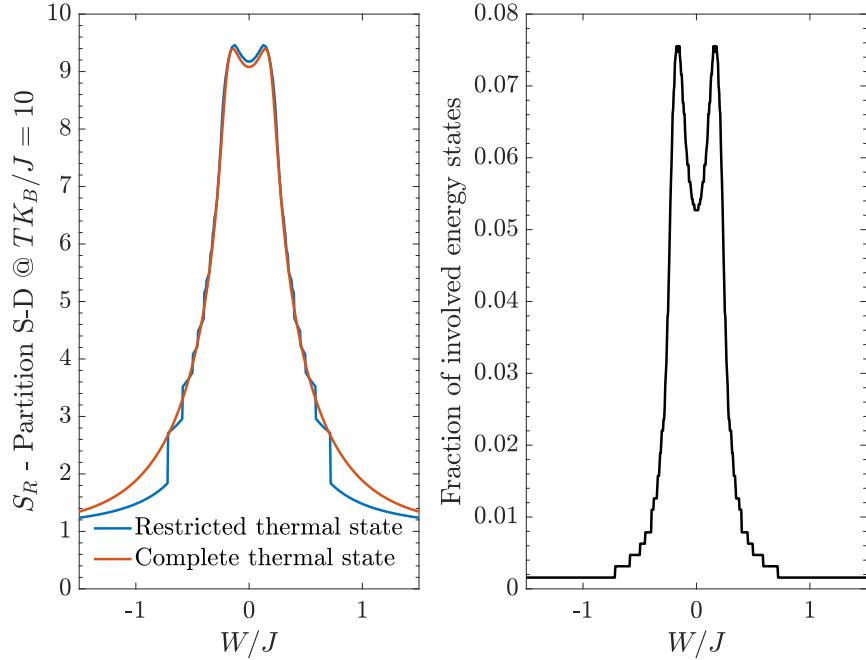


Figure 8. Residual entropy relevant to the partition L-R. Left panel: comparison between the results obtained within the restricted set of eigenstates and the exact ones. Right panel: fraction of energy eigenstates which takes part in the restricted thermal density matrix.

426 where N_* is the number of energy eigenstates whose energies E_n lie in the aforementioned interval.

427 To test the effectiveness of the residual entropy as a critical indicator, we consider the partition
 428 in terms of left-well bosons and right-well bosons, we set a non-zero value of the temperature and
 429 we compare the results obtained from a complete and from a restricted thermal state. The left panel
 430 of Figure 8 shows an overall good agreement between such results, especially in the central region
 431 (small $|W/J|$ values), while the outermost regions feature step-like discontinuities. The presence of such
 432 discontinuities can be understood observing the right panel of Figure 8, which shows the fraction of
 433 energy states involved in the restricted thermal state, N_*/D , as a function of W/J . As W/J increases,
 434 in fact, fewer and fewer energy states join the restricted thermal state and their inherently discrete
 435 character is reflected by the presence of step-like regions, each one corresponding to the activation of a
 436 single energy state.

437 **7. Conclusions**

438 In this work, we have investigated the equilibrium and the residual entropy in a two-species
 439 Bose-Hubbard dimer at zero and non-zero temperature. In Section 2 we have introduced the model
 440 and highlighted the importance of W (the interspecies repulsion) in determining the quantum phase
 441 of the system (supermixed for $W/J \ll 0$, mixed for small $|W/J|$ and demixed for $W/J \gg 0$). In Section 3
 442 we have introduced the concepts of equilibrium and residual entropy commenting on the fact that, at
 443 zero temperature, the latter corresponds to the entanglement entropy.

444 Section 4 has been devoted to the analysis of the residual entropy for three different partitions
 445 of the total system. In this regard, we have stressed the fact that different ways of partitioning
 446 the system into two sub-systems, correspond to different kinds of residual entropies S_R . In all
 447 three cases, S_R features discontinuities where the localization-delocalization phase transitions occur
 448 and quasi-plateaus where two dominating macroscopic configurations emerge. Residual entropy

449 is therefore a valid critical indicator not only at zero temperature (where it corresponds to the
 450 entanglement entropy, a purely quantum correlation), but also at higher temperatures, where it
 451 is influenced by the classical correlation between the sub-systems. Interestingly, we have evidenced
 452 that, at zero temperature, *i*) a non-zero hopping J causes a non-zero entanglement between spatial
 453 modes, *ii*) the intraspecies interaction U contributes to the entanglement between momentum modes,
 454 and *iii*) the interspecies interaction W is responsible for the entanglement between species modes.

455 In Section 5, we have introduced su(2) coherent states and developed a fully-analytic variational
 456 approach apt to describe the supermixed and the demixed phases at zero temperature. The
 457 superposition of two such coherent states has provided a good approximation of the ground state
 458 of the system in a non-small range of W/J , as demonstrated by the comparison with the numerical
 459 results. In Section 6 we have approximated the complete thermal superposition (10) with an incoherent
 460 combination of a reduced number of equally-weighted energy eigenstates and showed that the residual
 461 entropy is still a good critical indicator, well reproducing the exact results obtained numerically.

462 **Supplementary Materials:** No supplemental material has been introduced.

463 **Acknowledgments:** F. L. wish to thank W. Wang for enlightening and fruitful discussions.

464 **Author Contributions:** F. L. and A. R. performed the numerical computation. A. R. has performed the most part
 465 of analytic calculations. F. L., V. P. and A. R. have analyzed the results and equally contributed in writing and
 466 reviewing the manuscript. V. P. supervised the work.

467 **Conflicts of Interest:** The authors declare no conflict of interest.

468 Abbreviations

469 The following abbreviations are used in this manuscript:

470

471 BH: Bose-Hubbard

472 CS: coherent states

473 DL: delocalization-localization

474 EE: entanglement entropy

475 TSD: two-species dimer

476

477 Appendix Entanglement entropy and coherent states

478 On the basis of the coherent-state approach derived in Section 5 and in the same spirit of Ref [40],
 479 we compute the entanglement entropy between left-well bosons and right-well bosons. To begin, let
 480 us define $\rho_{n,m}(i)$ as the probability of having n bosons of species A and m bosons of species B at site i .
 481 The normalization of probability requires that

$$\sum_{n=0}^N \sum_{m=0}^M \rho_{n,m}(i) = 1$$

482 where N is the total number of bosons of species A and M is the total number of bosons of species B.

483 Let us define the single site entropy S_i as follows:

$$S_i = - \sum_{n=0}^N \sum_{m=0}^M \rho_{n,m}(i) \log_2 \rho_{n,m}(i)$$

484 Neglecting the possible presence of cat states (a situation that will be re-inserted a posteriori), a generic
 485 coherent state can be written in the factorized form

$$|\Psi\rangle = \left[\frac{1}{\sqrt{N!}} (\xi_L A_L^\dagger + \xi_R A_R^\dagger)^N |0\rangle \right] \left[\frac{1}{\sqrt{M!}} (\nu_L B_L^\dagger + \nu_R B_R^\dagger)^M |0\rangle \right]$$

486 Of course the normalization conditions $|\xi_L|^2 + |\xi_R|^2 = 1$, $|\nu_L|^2 + |\nu_R|^2 = 1$ must hold. State $|\Psi\rangle$ can be
 487 recast into the form

$$|\Psi\rangle = \left[\sum_{n=0}^N \frac{\sqrt{N!}}{n!(N-n)!} \xi_L^n (A_L^\dagger)^n \xi_R^{N-n} (A_R^\dagger)^{N-n} |0\rangle \right] \left[\sum_{m=0}^M \frac{\sqrt{M!}}{m!(M-m)!} \nu_L^m (B_L^\dagger)^m \nu_R^{M-m} (B_R^\dagger)^{M-m} |0\rangle \right] =$$

$$= \left[\sum_{n=0}^N \frac{\sqrt{N!}}{\sqrt{n!} \sqrt{(N-n)!}} \xi_L^n \xi_R^{N-n} |n, N-n\rangle_a \right] \left[\sum_{m=0}^M \frac{\sqrt{M!}}{\sqrt{m!} \sqrt{(M-m)!}} \nu_L^m \nu_R^{M-m} |m, M-m\rangle_b \right]$$

488 We calculate the reduced density matrix ρ partitioning the system into two sub-systems (left-well
 489 bosons and right-well bosons) and tracing out the degrees of freedom relevant to one of them. For
 490 example

$$\rho = \sum_{n=0}^N \sum_{m=0}^M {}_R\langle n, m | \Psi \rangle \langle \Psi | n, m \rangle_R$$

491 Taking into account the orthogonality of the states, the reduced density matrix which originates from a
 492 coherent state can be written as

$$\rho_{n,m} = \frac{N!M!}{n!m!(N-n)!(M-m)!} \xi_L^n \xi_R^{(N-n)} \nu_L^m \nu_R^{(M-m)} (\xi_L^*)^n (\xi_R^*)^{(N-n)} (\nu_L^*)^m (\nu_R^*)^{(M-m)} =$$

$$= \left[\binom{N}{n} |\xi_L|^{2n} (1 - |\xi_L|^2)^{(N-n)} \right] \left[\binom{M}{m} |\nu_L|^{2m} (1 - |\nu_L|^2)^{(M-m)} \right]$$

493 where the expressions of coefficients $\xi_L = \xi_L(J, U, W)$, $\xi_R = \xi_R(J, U, W)$, $\nu_L = \nu_L(T, U, W)$ and $\nu_R =$
 494 $\nu_R(T, U, W)$ can be computed within the variational approach. In passing, notice that the probability
 495 distribution is correctly normalized, i.e. $\sum_{n=0}^N \sum_{m=0}^M \rho_{n,m} = 1$. The Von Neumann entropy of the
 496 remaining sub-system can be thus computed as

$$S = - \sum_{n=0}^N \sum_{m=0}^M \rho_{n,m} \log_2 \rho_{n,m}$$

497 This quite general procedure needs to be slightly modified in case one is considering cat states. In
 498 fact, the reduced density matrix must take into account the two-sided nature of a cat state and so it
 499 must be written as the average of the densities matrices relevant to simple coherent states, namely

$$\rho_{\text{side L},n,m} = \left[\binom{N}{n} |\xi_L|^{2n} (1 - |\xi_L|^2)^{(N-n)} \right] \left[\binom{M}{m} |\nu_L|^{2m} (1 - |\nu_L|^2)^{(M-m)} \right]$$

$$\rho_{\text{side R},n,m} = \left[\binom{N}{n} |\xi_L|^{2(N-n)} (1 - |\xi_L|^2)^n \right] \left[\binom{M}{m} |\nu_L|^{2(M-m)} (1 - |\nu_L|^2)^m \right]$$

implying

$$\rho_{\text{cat},n,m} = \frac{1}{2} [\rho_{\text{side L},n,m} + \rho_{\text{side R},n,m}]$$

500 Appendix Quasi-degeneracy of the ground-state

501 Due to the spectral-collapse [16,17], for sufficiently strong values of W/J , the TSD ground-state
 502 may appear quasi-degenerate. However the degeneracy of the ground-state is only apparent as
 503 Hamiltonian (1) is non-degenerate [36,37]. As shown in Figure A1 the energy splitting between the
 504 ground-state energy E_0 and the first energy level E_1 decays exponentially as function of the number
 505 of particles per species (N and M). Energy levels E_0 and E_1 differs always by a small, finite, quantity
 506 function of the interactions and the number of particles. This has been verified in Figure A1 down to
 507 computational limit fixed by the machine precision.

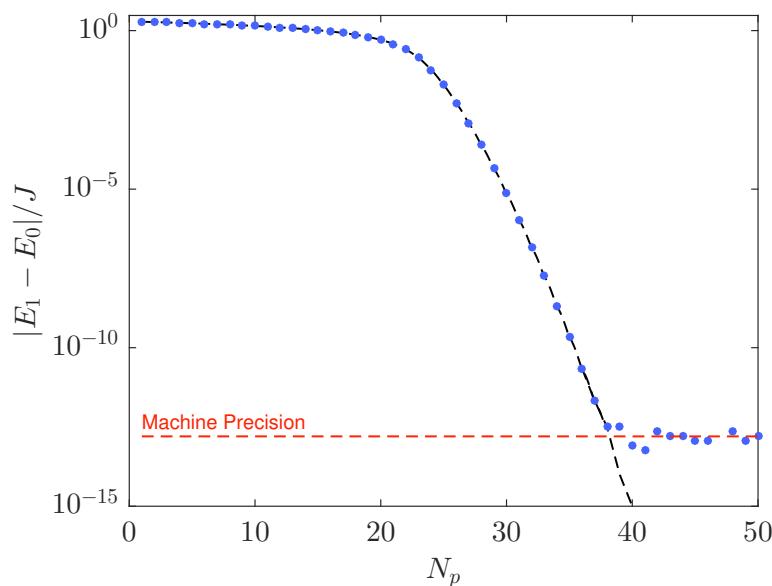


Figure A1. Splitting between the ground-state energy E_0 and the first excited state energy E_1 as function of the number of particle per species ($N = M = N_p$), $J = 1$, $U = 0.1$, $W = 0.2$.

508

- 509 1. Jaksch D.; Zoller P. The cold atom Hubbard toolbox. *Ann. Phys.* **2005**, *315*, 52
- 510 2. Yukalov V. I. Cold Bosons in Optical Lattices. *Laser Phys.* **2009**, *19*, 1
- 511 3. Bloch I.; Dalibard J.; Zwerger W. Many-body physics with ultracold gases. *Rev. Mod. Phys.* **2008**, *80*, 885
- 512 4. Fisher M. P. A.; Weichman P. B.; Grinstein G.; Fisher D. S. Boson localization and the superfluid-insulator transition. *Phys. Rev. B* **1989**, *40*, 546
- 513 5. Catani, J.; Sarlo, L. D.; Barontini, G.; Minardi, F.; and Inguscio M. Degenerate Bose-Bose mixture in a three-dimensional optical lattice. *Phys. Rev. A* **2008**, *77*, 011603
- 514 6. Gadway, B.; Pertot, D.; Reimann, R.; and Schneble, D. Superfluidity of Interacting Bosonic Mixtures in Optical Lattices. *Phys. Rev. Lett.* **2010**, *105*
- 515 7. Kuklov A. B.; and Svistunov B. Counterflow Superfluidity of Two-Species Ultracold Atoms in a Commensurate Optical Lattice. *Phys. Rev. Lett.* **2003**, *90*, 100401
- 516 8. Isacsson A.; Cha M. C.; Sengupta K.; Girvin S. M. Superfluid-insulator transitions of two-species bosons in an optical lattice. *Phys. Rev. B* **2005**, *72*, 184507
- 517 9. Roscilde T.; Cirac J. I. Quantum Emulsion: A Glassy Phase of Bosonic Mixtures in Optical Lattices. *Phys. Rev. Lett.* **2007**, *98*, 190402
- 518 10. Buonsante P.; Giampaolo S. M.; Illuminati F.; Penna V.; Vezzani A. Mixtures of Strongly Interacting Bosons in Optical Lattices. *Phys. Rev. Lett.* **2008**, *100*, 240402
- 519 11. Guglielmino M.; Penna V.; Capogrosso-Sansone B. Mott-insulator-to-superfluid transition in Bose-Bose mixtures in a two-dimensional lattice. *Phys. Rev. A* **2010**, *82*, 021601(R)
- 520 12. Benjamin D.; Demler E. Variational polaron method for Bose-Bose mixtures. *Phys. Rev. A* **2014**, *89*, 033615
- 521 13. Wei W.; Penna V.; Capogrosso-Sansone B. Inter-species entanglement of Bose-Bose mixtures trapped in optical lattices. *New J. Phys.* **2016**, *18* 063002
- 522 14. Jain P.; Moroni S.; Boninsegni M.; Pollet L. Demixing in symmetric supersolid mixtures. *Phys. Rev. A* **2013**, *88*, 033628
- 523 15. Suthar K.; Angom D. Optical-lattice-influenced geometry of quasi-two-dimensional binary condensates and quasiparticle spectra. *Phys. Rev. A* **2016**, *93*, 063608
- 524 16. Lingua, F.; Mazzarella G.; Penna, V. Delocalization effects, entanglement entropy and spectral collapse of boson mixtures in a double well. *J. Phys. B: at. Mol. Opt. Phys.* **2016**, *49*, 205005

537 17. Lingua F.; Penna, V. Continuous-variable approach to the spectral properties and quantum states of the
538 two-component Bose-Hubbard dimer. *Phys. Rev. E* **2017**, *95*, 062142

539 18. McKay D. C.; DeMarco B. Cooling in strongly correlated optical lattices: prospects and challenges. *Rep. Prog.*
540 *Phys.* **2011**, *74*, 54401

541 19. Lingua F.; Capogrosso-Sansone B.; Minardi F.; Penna V. Thermometry of bosonic mixtures in optical lattices
542 via demixing. *Sci. Rep.* **2017**, *5*, 5105

543 20. Morsch O.; Oberthaler M. Dynamics of Bose-Einstein condensates in optical lattices. *Rev. Mod. Phys.* **2006**,
544 *78*, 179

545 21. Buonsante P.; Penna V. Some remarks on the coherent-state variational approach to nonlinear boson models.
546 *J. Phys. A: Math. Theor.* **2008**, *41*, 175301

547 22. Penna V.; Richaud A. Two-species boson mixture on a ring: A group-theoretic approach to the quantum
548 dynamics of low-energy excitations. *Phys. Rev. A* **2017**, *96*, 053631

549 23. DiMarzio, E. A.; Stillinger, F. H. Residual Entropy of Ice. *The Journal of Chemical Physics* **1964**, *40*(6), 1577–1581.

550 24. Lieb E. H. Residual Entropy of Square Ice. *Phys. Rev.* **1967**, *162*, 162.

551 25. Clayton, J.O.; Giauque, W.F. The Heat Capacity and Entropy of Carbon Monoxide. *J. Am. Chem. Soc.* **1932**,
552 *54*, 2610–2626.

553 26. Tournier, R. F.; Bossy, J. Helium-4 Glass Phase: a Model for Liquid Elements. *Chemical Physics Letters* **2016**,
554 *658*, 282–286.

555 27. Jäckle, J. Residual entropy in glasses and spin glasses. *Physica B+C* **1984**, *127*, 79–86.

556 28. Takada, A.; Conradt, R.; Richet, P. Residual entropy and structural disorder in glass: A review of history and
557 an attempt to resolve two apparently conflicting views. *J. Non-Cryst. Sol.* **429** (2015) 33.

558 29. Li, Z.; Raychaudhuri, S.; Wand, A. J. Insights into the local residual entropy of proteins provided by NMR
559 relaxation. *Protein Science* **1996**, *5*, 2647–2650.

560 30. Hubeny, V. E. Covariant residual entropy. *Journal of High Energy Physics* **2014**, *9*, 156.

561 31. Balasubramanian, V.; Chowdhury, B. D.; Czech, B.; de Boer, J.; Heller, M. P. Bulk curves from boundary data
562 in holography. *Phys. Rev. D* **2014**, *89*(8), 86004.

563 32. Wondraczek, L.; Conradt, R. (Eds) Proceedings of the International Workshop on Glass and Entropy. *J.*
564 *Non-Cryst. Sol.* **2009**, *355* 581–758.

565 33. Chow, Y.; Wu, F. Y. Residual entropy and validity of the third law of thermodynamics in discrete spin
566 systems. *Phys. Rev. B* **1987**, *36*(1), 285–288.

567 34. Nielsen, M. A.; Chuang I.L. *Quantum Computation and Quantum Information*; Cambridge University Press,
568 Cambridge, 2000.

569 35. Feynman, R. P. *Statistical Mechanics: A Set of Lectures*; Avalon Publishing, New York, 1998.

570 36. Landau, L. D. and Lifshits, E. M. *Quantum Mechanics*; Pergamon, Oxford, 1957.

571 37. Wang, W.; Penna, V.; Capogrosso-Sansone, B. Analysis and resolution of the ground-state degeneracy of the
572 two-component Bose-Hubbard model. *Phys. Rev. E* **2014**, *90* 022116.

573 38. Huang K.; *Statistical Mechanics*; Wiley, Oxford, 1987.

574 39. Zhang, W. M.; Feng, D. H.; Gilmore, R. Coherent states: theory and some applications. *Rev. Mod. Phys.* **1990**,
575 *62*, 867–927.

576 40. Dell'Anna L.; Mazzarella G.; Penna V.; Salasnich L.; Entanglement entropy and macroscopic quantum states
577 with dipolar bosons in a triple-well potential. *Phys. Rev. A* **2013**, *87*, 053620