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Abstract: Motivated by the importance of entanglement and correlation indicators in the analysis1

of quantum systems, we study the equilibrium and the residual entropy in a two-species Bose2

Hubbard dimer when the spatial phase separation of the two species takes place. We consider both3

the zero and non-zero-temperature regime. We present different kinds of residual entropies (each one4

associated to a different way of partitioning the system), and we show that they strictly depend on5

the specific quantum phase characterizing the two species (supermixed, mixed or demixed) even at6

finite temperature. To provide a deeper physical insight into the zero-temperature scenario, we apply7

the fully-analytical variational approach based on su(2) coherent states and provide a considerbly8

good approximation of the entanglement entropy. Finally, we show that the effectiveness of residual9

entropy as a critical indicator at non-zero temperature is unchanged when considering a restricted10

combination of energy eigenstates.11
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1. Introduction13

Systems formed by gases of ultracold bosons trapped in homogenous arrays of potential wells14

(optical lattices) [1] have attracted, in the last two decades, an enormous attention due to the rich15

variety of phenomena they feature at zero temperature [2,3]. The physical properties of such quantum16

fluids have been shown to be mainly determined by the competition of boson-boson repulsive17

interactions with the tunneling effect between adjacent wells, causing the boson mobility through18

the lattice. Among many effects observed in such systems, one of the most significant is the famous19

superfluid-insulator transition in which, for a boson-boson interaction strong enough, the boson20

mobility is quantum-mechanically inhibited when the boson density takes integer values [4].21

In this framework, introducing in the lattice a second bosonic species interacting with the primary22

has allowed the realization [5,6] of the so-called binary quantum fluids whose complex phenomenology23

has revealed unexpected effects and behaviors. These are, for example, the formation of new types24

of insulating phases and superfluidity [7,8], quantum emulsions exhibiting a glassy character [9,10],25

the deformation of the insulating (Mott) domains accompanying the formation of polaron excitations26

[11,12], the presence of interspecies entanglement [13], and the spatial separation of the two species27

(demixing effect) [14,15].28

The simplest possible lattice system in which the interplay of two species can be studied is29

represented by the two-species dimer (TSD), namely, a mixture trapped in a lattice with two wells30

(dimer). This system, sufficiently simple to allow the use of standard analytic approaches, is however31

complex enough to exhibit the space-localization effects distinguishing two-species mixtures in larger32

lattices at zero temperature. The TSD has allowed both a thorough study [16] of such behaviors when33

the interspecies (repulsive) interaction W > 0 is varied and the analytic derivation of the critical value34

of W for which the mixed species, equally distributed in the two wells, localize in two separated35

wells. Such an effect, called delocalization-localization (DL) transition, also takes place in the attractive36
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case (W < 0) but in the final state both species occupy the same well for ∣W∣ strong enough. The37

DL transition, characterizing the ground state of the TSD, and the spectral collapse related to this38

phenomenon have been studied numerically in [16] and by means of the continuous-variable approach39

in [17]. The critical behavior of the TSD has been confirmed by resorting to quantum-correlation40

indicators such as the Fisher information, the coherence visibility and the entanglement entropy (EE).41

The latter, in particular, has proved particularly sensitive in detecting the macroscopic changes in the42

ground-state structure both for repulsive and for attractive interspecies interaction.43

This motivates our interest for the entanglement entropy and, more in general, for the residual44

entropy at non-zero temperatures in the TSD. In this paper, we perform a systematic study of this45

correlation property effecting numerical simulations which include non-zero temperatures. We begin46

with studying the zero-temperature regime. To check the robustness of the EE, we determine its47

dependence from the interspecies interaction both by considering the exact ground state (calculated48

numerically) and by representing the ground state in terms of atomic coherent states (CS). The49

CS picture is interesting since, in addition to allow for fully-analytic calculations, its semiclassical50

character approximates the system ground state in a form closer to the preparation of the system in51

real experiments. As is well known, the EE describes the entanglement property of a physical system52

through the Von Neumann entropy of a suitably defined sub-system. In the sequel, we calculate the EE53

by partitioning the system in sub-systems such as i) the left-well and the right-well bosons, ii) bosons54

with zero and non-zero momentum, and iii) the species-A and species-B bosons.55

As noted above, a number of new quantum phases has been predicted in the last fifteen years56

whose distinctive feature is to manifest at zero temperature. On the other hand, after the realization57

of optical lattices trapping ultracold atoms, it has become more and more evident that reducing (and58

measuring) the temperature on the nanoscale is an outstanding problem [18]. For this reason, the59

detection of zero-temperature phase transitions such as the space separation in bosonic mixtures (or60

its simpler dimer version, the DL transition) must more realistically rely on indicators which are61

reminescent of the critical behavior of the system even when temperature is non-zero [19].62

In this perspective, achieving a good control of the correlation properties for a system undergoing63

the DL transition at non-zero temperature certainly represents a useful tool for its observation in64

future experiments. For this reason we have thoroughly explored the residual-entropy behavior at65

non-zero temperature and have tried to understand the effect of thermal fluctuations in regimes where66

they compete with quantum fluctuations. The residual entropy has been calculated numerically by67

exploiting the knowledge of the TSD exact spectrum. As in the zero-temperature case, we consider the68

reduced thermal density matrix for three different partition schemes of the system based on separating69

space modes, momentum modes and atomic species. Finally, to further test the residual entropy as a70

critical indicator, we have compared the exact residual entropy with that calculated using a restricted71

range of energy levels around the expected average energy.72

The paper is organized as follows. In Section 2, we introduce the TSD model and review the DL73

transition discussing the change of structure it induces in the ground state and the spectral collapse, a74

significant property that marks the transition. Section 3 is devoted to defining the equilibrium and the75

residual entropy and the relation thereof with the EE. Section 4 contains the results of our numerical76

calculations of residual entropy within the previously discussed partition schemes at zero and non-zero77

temperature. In Section 5 and Section 6 we compute the residual entropy in the coherent-state and in78

the restricted-basis approach, respectively. Section 7 is devoted to concluding remarks.79

2. The model and the ground-state properties80

An effective description of ultracold bosons trapped in homogenous arrays of potential wells is81

provided by the Bose-Hubbard (BH) model [4] in which local boson operators Ai and A+
i represent82

the microscopic annihilation and creation processes, respectively, at the ith well. The experimental83

realization of this model is currently achieved by means of well-known optical-trapping techniques84

[3,20]. These, by combining counter-propagating laser beams, cause the formation of (optical) lattices85
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the sites of which correspond to effective local potentials attracting bosons. In the simplest possible86

case of a two-site lattice (a double potential well), the BH Hamiltonian is given by87

Ha =
Ua

2
[A†

L A†
L AL AL + A+

R A+
R AR AR] − Ja(A+

L AR + A+
R AL),

where L and R refers to the left and right well, respectively, Ua is the boson-boson interaction and Ja is88

the hopping amplitude controlling interwell boson exchange. The boson operators AL, A+
L , AR, and89

A+
R satisfy the standard commutator [Aσ, A+

σ] = 1 with σ = L, R. If, in addition to species A a second90

species B is introduced, the spatial modes become four, AL, AR, and BL, BR, for the species A and B,91

respectively. The resulting mixture is thus described by the two-species dimer Hamiltonian [16]92

H = Ha + Hb +W(NL ML + NR MR) (1)

in which, apart from the single-species BH Hamiltonians Ha and Hb, the significant term is that93

depending on interspecies interaction W. This couples the two species through the boson local94

populations described by the number operators Nσ = A+
σ Aσ and Mσ = B+σ Bσ with σ = L, R.95

When the interspecies interaction W becomes sufficiently strong, the two interacting species96

trapped in a double-well potential feature macroscopic localization effects. In particular, a repulsive97

interaction tends to spatially separate the species into different wells while an attractive interaction98

tends to confines both species in the same well. This represents the DL transition. In the first case this99

is characterized by an almost complete localization of the two species in different wells, and thus by a100

demixing effect, whereas, in the second case, the attractive interaction leads to a “supermixed" state101

with a localization of both species in a single well.102

Such effects are confirmed by the numerical calculation of the ground state for different values
of W. To see this we note that the energy eigenstates can be suitably represented in the basis of
space-mode Fock states

∣nL, mL, nR, mR⟩ ∶= ∣i, j⟩L∣N − i, M − j⟩R, i ∈ [0, N], j ∈ [0, M], (2)

where labels nσ and mσ, describing the local boson populations, are the eigenvalues of number103

operators Nσ and Mσ, respectively. The parametrization nL = i, mL = j, nR = N − i and mR = M − j has104

been assumed to include the property that both operator N = NL + NR and operator M = ML + MR105

(representing the total boson numbers of the two species) commute with Hamiltonian H and thus are106

conserved quantities. The factorized form of (2) aims to better distinguish left-well from right-well107

populations. A generic quantum state is then represented as108

∣Ψ⟩ =
N
∑
i=0

M
∑
j=0

wi,j ∣i, j⟩L∣N − i, M − j⟩R (3)

Determining the energy eigenstates thus amounts to calculating coefficients wi,j for which the109

eigenvalue equation H∣E⟩ = E∣E⟩ is fulfilled. For values of W small enough, the ground state ∣E0⟩ is110

approximated in terms of su(2) coherent states [21]111

∣E0⟩ ≃
1

2(N+M)/2√N!M!
(A+

L + A+
R)

N (B+L + B+R)
M ∣0, 0⟩L∣0, 0⟩R

whose dominating components ∣i, j⟩ can be shown to feature i ≃ N/2, j ≃ M/2, namely, boson112

populations equally distributed in the two wells (delocalized ground state). For large values of113

∣W∣, ∣E0⟩ can be approximated by114

∣E0⟩ ≃
1√
2
(∣N, 0⟩L∣0, M⟩R + ∣0, M⟩L∣N, 0⟩R), ∣E0⟩ ≃

1√
2
(∣N, M⟩L∣0, 0⟩R + ∣0, 0⟩L∣N, M⟩R), (4)
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in the repulsive and attractive case, respectively, well illustrating the space-localized distributions115

emerging from the delocalization-localization transition [16] and leading to Schrödinger cats with116

strongly localized component states.117

Figure 1, obtained by numerically calculating the ground state in the repulsive case for different118

W, supplies us with an exact description of the DL transition and of the macroscopic changes in the119

ground-state structure. A similar behavior characterize the DL transition in attractive case, but the two120

emerging peaks finally localize around i = j = 0 an i = 30, j = 40.121

Figure 1. (Color online) Ground-state probabilities ∣wi,j∣
2 vs i (left occupation number of species A)

and j (left occupation number of species B) associated to space-mode Fock states ∣i, j⟩L∣N − i, M − j⟩R of
equation (3) for boson numbers N = 30, M = 40 and U = 0.1. Panel (a) features localized populations
for W = 0.15, (b) partially localized populations for W = 0.168, and (c) fully separated populations for
W = 0.2. Energies in units of Ja = Jb = J.

The critical behavior of the DL transition has been studied analytically by resorting to the122

semiquantum approach where boson number operators are approximated in terms of continuous123

variables [17]. This method has provided the critical value of W at which the transition takes place124

in the case of twin species (Ja = Jb = J, Ua = Ub = U). In this approach the Fock states essentially125

become wave functions depending on the new continuous variables while, for energies low enough,126

the energy-eigenvalue equation takes the form of the Schrödinger problem for a multidimensional127

harmonic-oscillator Hamiltonian. The extremal points of the corresponding potential allow one to128

determine the ground-state configuration, and, in particular, to find the formula129

W = 2J/N +U

defining, for large boson numbers (N = M ≫ 1), the transition critical point in the parameter space.130

Interestingly, when W approaches this critical value, the energy spectrum has been shown to undergo131

a collapse in which the inter-level separation tends to zero. This spectral collapse can be seen as the132

hallmark of the dynamical transition which features the macroscopic change in the structure both of133

the ground state (see the previous discussion) and, more in general, of the low-energy excited states134

described in Ref. [17]. The generalized version of the previous formula for a mixture in a L-well ring135

lattice has been derived in [22].136

3. Equilibrium entropy and residual entropy137

The third law of thermodynamics states that a perfect crystal at temperature T = 0 exhibits entropy138

S = 0. This entropy is defined as the Equilibrium Entropy Seq. However, several physical systems ranging139

from, e.g., water ice [23,24], carbon monoxide [25], highly pressurized liquid-helium [26], glass systems140

[27,28], proteins [29], and even black-holes [30,31], seems to manifest a residual content of information141

(corresponding to a residual entropy) for T → 0. The presence of such Residual Entropy SR has been142

generally associated with residual degrees of freedom at T = 0 such as, among others, ground-state143

degeneracy, residual structural disorder, geometrical frustration and entanglement. These physical144

phenomena act as sources of uncertainty preventing the possibility to acquire knowledge on the exact145
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state of the system, thus resulting as possible sources of information (i.e. a finite, residual value of the146

entropy).147

For quantum systems, the residual entropy is in general related to the presence of entanglement148

in the ground-state through the entanglement entropy. Entanglement entropy is a measure of the149

“amount of entanglement” in the system. A standard and accepted way to quantify entanglement is150

through the bipartite Von-Neumann entropy. What is measured by the bipartite entanglement entropy151

is the mutual information shared between two partitions of the physical system (e. g. Alice and Bob).152

Given ρ̂ the density matrix of the system, and defining two partitions A, B of the Hilbert spaceH such153

thatH = HA⊗HB and ρ̂ = ρ̂A ⊗ ρ̂B, the bipartite Von-Neumann entropy is defined as [34]154

S(ρ̂A) = −TrA( ρ̂A log2 ρ̂A), (5)

where ρ̂A = TrB( ρ̂) ( ρ̂B = TrA( ρ̂)) is the reduced density matrix of partition A (B) obtained tracing out155

the degrees of freedom of B (A). Notice that for the same system, in principle, there exists infinitely156

many possible ways to partitions the Hilbert spaceH in two parts. This leads to the consideration that,157

since the choice of the partition is arbitrary, the measure of entanglement, i.e. the residual entropy,158

cannot have a global character by definition. We shall see how this is indeed the case in Section 4159

(and, more specifically, in Subsection 4.4) when we will compute the residual entropy for the TSD for160

different choices of the partition A-B.161

3.1. Equilibrium Entropy in the TSD162

According to quantum statistical mechanics [35,36], the expression of the equilibrium entropy163

Seq(T) can be derived from the expression of the density operator as164

Seq(T) = −Tr( ρ̂ log2 ρ̂) (6)

where the (canonical) density operator at finite temperature is defined as165

ρ̂ = 1
Z ∑n

e−βEn ∣Ψn⟩⟨Ψn∣ , (7)

with En representing the energy eigenvalue associated to the energy eigenstate ∣Ψn⟩. Combining166

Equations (6) and (7) one finds the explicit expression for the equilibrium entropy167

Seq(T) = ∑
n
−ρn log2 ρn , (8)

with ρn = e−βEn/Z .168

Since the ground-state of Hamiltonian (1) cannot be degenerate [36,37], expression (8) is a good169

definition of equilibrium entropy for the TSD as, for T = 0, it exactly satisfies Seq(0) = 0. In Figure 2,170

we show the equilibrium entropy computed for the TSD as a function of the interspecies interaction171

W/J and effective temperature TkB/J. At T = 0 one clearly sees that Seq = 0 for all values of W/J172

(black-dashed line). By sufficiently increasing the temperature, two peaks appear at the boundary173

of the central region where the phase transitions between the mixed and demixed phases occur174

(∣W∣/J ≈ 0.16). Such peaks progressively vanish due to fluctuations when the temperature increases. In175

Section 4, we will show that, in general, residual entropy exhibits similar features.176

According to Figure 2, the equilibrium entropy tends to Seq = 1 for T ≠ 0 and if ∣W∣/J is large177

enough (plot tails). This reflects the fact that two dominating states (those corresponding to the lowest178

energies E1 and E0) provide contributions of about 1
2 log2 2 to the limiting value Seq = 1. It is important179

to notice that, in both tails, the first excited level E1 can be shown to tend to the ground state energy E0180

as a consequence of the spectral collapse characterizing the TSD. Accordingly, the smallest non-zero181

temperature that has been considered (TkB/J = 10−4) is large enough to populate in a nearly equal way182
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Figure 2. Equilibrium entropy for different choices of the temperature. N = 30, M = 40, J = 1, U = 0.1,
kB = 1.

both the ground state and the first excited level because their separation E1 − E0 becomes smaller and183

smaller for large ∣W∣/J.184

Notice also that, in this regime, the splitting between E0 and E1 decreases exponentially (with185

the number) of particles to a point that may lie below the actual experimental limit (see Appendix186

B for details). We also note that, at high temperatures, the equilibrium entropy tends to the value187

Seq ≃ 10.31 = log2 D where D is the number of energy levels (i.e. the dimension of the Hilbert space),188

showing the fact that all the energy eigenstates are equiprobable with probability 1/D.189

3.2. Residual Entropy in the TSD190

In Reference [16] we showed that the TSD manifests non trivial entanglement properties (relevant191

to the boson distribution in the two wells) in the ground-state suggesting the presence of a residual192

entropy at T = 0. This residual information at T = 0 is not grasped by (8) as it exhibits Seq(0) = 0.193

A consistent and different definition of the entropy is therefore required in order to be able to194

correctly describe the residual quantum information hidden in the ground-state structure. This can be195

naturally done by extending the definition of entanglement entropy (5) at finite T in the way suggested196

by the expression for the equilibrium entropy (8). We will call this definition of entropy residual entropy197

at finite temperature SR(T) in order to distinguish it from the equilibrium entropy Seq(T) of expression198

(8).199

The key difference between definitions (5) and (6) lies in the fact that, in the entanglement entropy,200

a reduced density operator ρ̂A is used. Given a partition of the Hilbert space, the reduced density201

operator ofHA is obtained by tracing out the degrees of freedom ofHB. The idea is then to compute the202

reduced density matrix of the thermal density operator ρ̂ defined in (7), and then to use the new density203

operator for computing the residual entropy at finite T. Although the partition of the Hilbert space is204

obviously independent from the choice of the basis in which the density operator is represented, to205

perform the calculation described above is convenient express the density operator (7) in an alternative206



7 of 20

suitable basis for the partition A-B one has chosen. From the practical point of view, a suitable choice207

of the basis can give easy access to a partition that in another basis would be really hard to handle208

computationally. An example of this is shown in Section 4 when we consider the partition between the209

momentum modes.210

Let’s expand density operator (7) in a convenient basis {∣φi⟩} for the choice of the partition. To do211

so we expand the energy eigenstate212

∣Ψn⟩ = ∑
i
∑

j
wi,j,n ∣φi⟩A ⊗ ∣φj⟩B , (9)

substitute it in expression (7), and obtain the new expression for the density operator [38]213

ρ̂ ≡ ρ̂(T) = ∑
i
∑

j
∑
i′
∑
j′

Ci,j,i′,j′(T)∣φi⟩A ⊗ ∣φj⟩B B⟨φj′ ∣ ⊗A ⟨φi′ ∣ , (10)

where214

Ci,j,i′,j′(T) = ∑
n

e−βEn

Z
wi,j,nw∗

i′ j′,n . (11)

Notice that, coefficients Ci,j,i′,j′(T) contains both thermal and quantum information as they are obtained215

by thermal-averaging the quantum amplitudes wi,j,nw∗
i′,j′,n of each energy eigenstate ∣Ψn⟩. By tracing216

over the degrees of freedom ofHB is possible to derive the expression of the reduced density operator217

ρ̂A(T)218

ρ̂A(T) = TrB(ρ̂(T)), (12)

The residual entropy at finite temperature SR(T) is then defined as219

SR(T) = −TrA( ρ̂A(T) log2 ρ̂A(T)) . (13)

The details of this calculation, together with the results of the computation of (12) and (13) for different220

choices of the partition, are discussed in Section 4.221

4. Residual entropy at zero and finite temperature222

As already mentioned, “bipartite entanglement" is well defined when the way to partition the223

system with respect to a certain physical property is specified. Investigating specific properties of224

a given system leads to consider specific kinds of entanglement. An effective and standard way225

to quantify the residual entropy is to compute the Von Neumann entropy according to the scheme226

discussed in the previous Section. Of course, once the partition is fixed, the computation of the Von227

Neumann entropy relevant to the reduced density matrix (residual entropy) is independent on the228

basis chosen to represent physical states, namely, S(ρ) = S(UρU†) for any unitary transformation U229

which enacts the change of basis.230

In the sequel, we consider three different kinds of residual entropy, each one associated to a231

different way of partitioning the system. First, we consider the quite natural partition in terms232

of left-well bosons and right-well bosons suggested by the representation of physical states in the233

space-mode Fock basis (2). Then, by representing physical states in the momentum-mode Fock basis,234

we partition the system in terms of zero-momentum and non-zero-momentum bosons. Finally, we235

consider the partition of the system distinguishing species-A from species-B bosons, which is again236

suggested by definition (2) where populations nL, nR and mL, mR refer to species A and B, respectively.237

In all three cases we present the results, obtained numerically, both for the zero-temperature scenario,238

when only the ground state ∣ψ0⟩ is involved and for the finite-temperature configuration, when the239

system is naturally described by means of a thermal density matrix. It is worth remarking that at T = 0,240

the residual entropy reduces to entanglement entropy because classical correlations are suppressed.241
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Figure 3. Residual entropy relevant to the L-R partition for different choices of the temperature. N = 30,
M = 40, J = 1, U = 0.1, kB = 1.

4.1. Residual entropy for a partition characterized by spatial modes242

Let us start by computing the residual entropy SR by considering the partition of the TDS in terms243

of left-well bosons and the right-well bosons. Following Formula (3), a generic physical state ∣ψ⟩ is244

written as245

∣ψ⟩ =
N
∑
i=0

M
∑
j=0

wi,j ∣i, j⟩L ∣N − i, M − j⟩R

and entails the density matrix of the whole system246

ρ̂ = ∣ψ⟩⟨ψ∣ =
N
∑
i=0

M
∑
j=0

N
∑
i′=0

M
∑
j′=0

wi,jw
∗
i′,j′ ∣i, j⟩L ∣N − i, M − j⟩R R⟨N − i′, M − j′∣ L⟨i

′, j′∣. (14)

The reduced density matrix relevant to the right-well bosons, obtained tracing out the degrees of247

freedom of the left-well bosons, is248

ρ̂R =
N
∑
k=0

M
∑
l=0

L⟨k, l∣ρ̂∣k, l⟩L =
N
∑
i=0

M
∑
j=0

∣wi,j∣2 ∣N − i, M − j⟩R R⟨N − i, M − j∣.

In the presence of a non-zero temperature, the density matrix modifies taking into account the249

contributions of the whole energy spectrum. By following the scheme discussed in Subsection 3.2, as250

the T ≠ 0 density matrix is diagonal, one can easily compute the residual entropy (13) finding251

SR(ρ̂R) = −
N
∑
i=0

M
∑
j=0

∣Ci,j(T)∣2 log2 ∣Ci,j(T)∣2, (15)
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with Ci,j(T) given by Formula (11). Figure 3 shows how the residual entropy relevant to right-well252

bosons varies with respect to W/J, for different temperatures. At T = 0, the plot of SR (black dashed253

line), which represents the entanglement entropy, exhibits two sharp peaks where the mixing-demixing254

phase transitions occur. In the region between the two peaks bosons are delocalized and the quantum255

fluids fully mixed, the left tail corresponds to supermixed states (states where both species are localized256

in a single well) and, eventually, the right tail is the region where the two species localize in different257

wells. Both tails feature a genuinely quantum behavior because the relevant ground states correspond258

to Schrödinger cats, in which the spatial separation gets more and more pronounced as ∣W∣/J increases259

(see Formula (4)). In fact, the entanglement entropy asymptotically tends to 1, a value which is260

reminiscent of the double-edged structure of cat states (4) because both their components contribute to261

Formula (15) with 1
2 log2 2. It is worth noticing that, at T = 0, SR is always different from zero in that,262

even for noninteracting species (W = 0), the presence of a non-zero J couples the left and right modes263

of either species. As expected, one can show numerically that the height of the central minimum of SR264

decreases more and more (tending to zero) as the interwell hopping J becomes smaller and smaller.265

At temperature T > 0, Figure 3 shows that the residual entropy is still able to highlight the266

difference among mixed, demixed and supermixed phases. The effect of a finite temperature is to267

smooth the DL phase transitions, an effect which can be clearly appreciated observing the decreasing268

sharpness of the peaks as T is increased. Interestingly, all the tails of the plotted curves tend to269

the limiting value 1. For example, in the left tail (W/J < 0), this means that, in SR one has ∣C0,0∣2 =270

∣CN,M∣2 ≃ 1/2 while all the other ∣Ci,j∣2 are vanishingly small. The resulting SR = 1 follows from271

the fact that there exist two dominating macroscopic configurations ∣N, M⟩L∣0, 0⟩R and ∣0, 0⟩L∣N, M⟩R272

whose correlation is mainly due to quantum entanglement for T → 0 but assumes a more and more273

classical character for higher temperatures. In the case of the right tail (W/J > 0), the same effect is274

observed but the dominating components are ∣CN,0∣2 and ∣C0,M∣2. Note that, at fixed temperature, such275

configurations emerge provided that the interspecies interaction ∣W∣ is strong enough to contrast the276

temperature-induced disorder. Of course, for a given value of W/J, one has larger residual entropies at277

higher temperatures in that increasing T makes more and more energy eigenstates accessible in the278

thermal superposition ensuing from Formula (7). We conclude by observing that, at high temperatures,279

in the central region around W/J = 0, SR approaches the limiting value log2 D ≈ 10.31, because280

∣Ci,j∣2 ≃ 1/D for all (i, j) where D = 1271 = (N + 1)(M + 1) (with N = 30, M = 40) is the dimension of the281

Hilbert space. This limiting situation reflects the fact that, at high temperatures, SR → Seq (see Figure282

2).283

4.2. Residual entropy for a partition characterized by momentum modes284

Let us introduce the following momentum-mode operators obtained summing and subtracting285

usual site-mode operators286

Sa =
1√
2
(AL + AR), Da =

1√
2
(AL − AR), Sb =

1√
2
(BL + BR), Db =

1√
2
(BL − BR),

together with the corresponding number operators287

NS = S†
aSa, ND = D†

a Da, MS = S†
bSb, MD = D†

b Db,

which count the number of bosons having vanishing (S) or non-vanishing (D) momentum in the two288

species. The momentum-mode Fock basis {∣NS, N − NS, MS, M − MS⟩} can be chosen as a new basis289

against which it is possible to expand the generic state290

∣ψ⟩ =
N
∑

nS=0

M
∑

mS=0
wnS ,mS ∣nS, mS⟩S∣N − nS, M −mS⟩D,
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where we have set ∣nS, N − nS, mS, M −mS⟩ = ∣nS, mS⟩S∣N − nS, M −mS⟩D in order to emphasize the291

difference between zero and non-zero momentum quantum numbers. As a consequence, the density292

matrix relevant to the state is293

ρ̂ = ∣ψ⟩⟨ψ∣ =
N
∑

nS=0

M
∑

mS=0

N
∑

n′S=0

M
∑

m′S=0
wnS ,mS w∗

n′S ,m′S
∣nS, mS⟩S∣N − nS, M −mS⟩D D⟨N − n′S, M −m′

S∣ S⟨n
′
S, m′

S∣.

The reduced density matrix relevant to the sub-system of bosons having non-vanishing294

momentum (modes D’s) is obtained by tracing out the degrees of freedom relevant to the sub-system295

of bosons having zero momentum (modes S’s)296

ρ̂D =
N
∑

nS=0

M
∑

mS=0
S⟨nS, mS∣ρ̂∣nS, mS⟩S =

N
∑

nS=0

M
∑

mS=0
∣wnS ,mS ∣

2 ∣N − nS, M −mS⟩D D⟨N − nS, M −mS∣.

For non-zero temperatures, one must consider the contributions of all the energy levels. Making use of297

the same scheme discussed in Subsection 3.2, as the reduced density matrix relevant to the thermal298

superposition is diagonal, the residual entropy (13) is found to be299

SR(ρ̂D) = −
N
∑

nS=0

M
∑

mS=0
∣CnS ,mS(T)∣2 log2 ∣CnS ,mS(T)∣2.

Figure 4 shows the residual entropy characterizing the separation between still and circulating bosons300

in respect of the ratio W/J, for different temperatures. At T = 0, residual entropy corresponds301

to entanglement entropy and its plot (black dashed line) exhibits two sharp discontinuities at the302

two values of W/J for which the DL phase transitions occur. Such discontinuities separate three303

quasi-plateaus corresponding to supermixed, mixed and demixed phases. The central region (mixed304

species) features a quite small entanglement between circulating and still bosons. In fact, if the305

interspecies coupling W is small compared to the tunneling J and if the ratio U/J is small enough306

to guarantee superfluid and delocalized bosons, momentum modes Sa and Sb are macroscopically307

occupied, while Da and Db are poorly populated. If the intraspecies repulsion U tends to zero, one308

can show that the latter momentum modes are not populated at all, and, at T = 0, the EE vanishes for309

W/J = 0.310

At finite temperatures, the behavior of the residual entropy still mirrors the presence of the three311

quantum phases. Unlike the behaviors of SR discussed in Subsection 4.1, where SR = 1 associated312

to outer plateaus showed that system features two dominating space configurations, here, the value313

SR = 7.2 implies that, for sufficiently large ∣W∣/J, a much larger number of momentum configurations314

is involved in determining the system correlations.315

Figure 4 displays a gap between the plateau SR ≈ 6.2 obtained at T = 0 (black dashed lines) and316

the limiting value SR ≈ 7.2 of the plateaus obtained at T ≠ 0 (colored lines). This is due to the fact that,317

in the tails, the energy gap between the ground state and the first excited level becomes vanishingly318

small but remains non-zero and so the lowest non-zero temperature T = 0.1J/kB considered in Figure 4319

is already enough to populate both the ground state and the first excited level. The activation of the320

excited level (absent at T = 0) is sufficient to redistribute the boson population thus causing the jump321

of SR from 6.2 to 7.2. As noticed for the partition in terms of spatial modes discussed in Section 4.1,322

i) the maximum value of SR tends to the extreme value log2 1271 ≈ 10.31 at high temperature and ii)323

given a certain value of W/J, the residual entropy steadily increases with temperature T because more324

and more energy eigenstates become statistically accessible.325



11 of 20

Figure 4. Residual entropy relevant to the partition S-D for different choices of the temperature. N = 30,
M = 40, J = 1, U = 0.1, kB = 1.

4.3. Residual entropy for a partition characterized by boson species326

A third way to compute the residual entropy consists in partitioning the system in terms of327

species-A and species-B bosons. We use the representation in terms of space-mode Fock states,328

although the momentum-mode Fock basis is equally convenient to the job. Starting from density329

matrix (14), the reduced density matrix relevant to species-B sub-system is obtained by tracing out the330

degrees of freedom relevant to species-A sub-system331

ρ̂B =
N
∑
k=0

L⟨k∣ R⟨N − k∣ρ̂∣k⟩L∣N − k⟩R =
M
∑
j=0

M
∑
j′=0

Cj,j′ ∣j⟩L∣M − j⟩R L⟨j′∣ R⟨M − j′∣,

where we have defined332

Cj,j′ =
D
∑
n=1

N
∑
k=0

e−βEn

Z
wk,j,nw∗

k,j′,n.

The diagonalization of ρ̂B provides the eigenvalues {λj} necessary to compute the relevant Von333

Neumann entropy334

SR(ρ̂B) = −
M+1
∑
j=1

λj log2 λj.

Figure 5 shows the residual entropy relevant to species-mode partition scheme as a function335

of W/J, for different temperatures. As in Figure 3, at zero temperature (black dashed line), two336

sharp peaks, at which the DL transitions occur, separate the three regions corresponding to the337

supermixed, mixed and demixed phase. Also in the present case, the outer regions consist of two338

quasi-plateaus whose height quickly converges to 1, a limiting value which is, once again, reminiscent339

of the two-component character of cat states (4) (recall that 1 = 2 × (− 1
2 log2

1
2)). As noted in the340
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Figure 5. Residual entropy relevant to the A-B partition for different choices of the temperature. N = 30,
M = 40, J = 1, U = 0.1, kB = 1.

previous Subsections, one can show that the zero-temperature EE relevant to the space-mode and the341

momentum-mode separation schemes features a central minimum tending to zero for J → 0 and U → 0,342

respectively. In the current case, where the species-mode separation is adopted, the vanishing of the343

minimum of SR is obtained when the two species are non interacting, namely, for W = 0.344

When the temperature is switched on, the DL phase transitions become less abrupt and the345

corresponding peaks in the plots are less sharp. However, as shown in Figure 5, SR still represents an346

effective indicator of the critical behavior in a non-small temperature range. As for the SR analyzed347

in Section 4.1, the residual-entropy plot at non-zero temperatures shows that SR → 1 for ∣W∣/J large348

enough. Once more, the limiting value SR = 1 = log2 2 (which all colored lines of Figure 5 converge to)349

highlights how the system features two equiprobable dominating configurations for large interactions.350

A non-vanishing T disturbs the formation of such configurations since, in the tails, for a given value of351

W/J, the higher the temperature, the more SR differs from SR = 1. As for the other partition schemes,352

for large T, SR tends to a maximum value, log2 DB ≃ 5.36, where DB = (M + 1) is the dimension of353

sub-system-B Hilbert space.354

4.4. Residual entropy at zero temperature355

As repeatedly stressed in the previous discussion, in principle, the choice of the partition, is356

completely arbitrary and independent on the system under examination. It has more to do with357

the concepts of “observer” and “measure” than with the physical system itself, opening interesting358

questions on the relation between entropy and quantum information. To emphsize this fact, in Figure 6359

we compare the residual entropy at T = 0 for the three partition schemes considered above and shows360

how the presence of a non-zero residual entropy (i.e. of the EE in the ground-state) strongly depends361

on the choice of the partition. In particular, we notice how a strong entanglement in a partition can362

result in a weak (or zero) entanglement in another one. This is the case, e.g., of W/J = 0 in which the363

ground-state is strongly entangled if measured through the partition L-R (finite residual entropy SR),364
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Figure 6. Residual entropies at T = 0 as a function of ∣W∣/J for three different partitions of the Hilbert
space: partition L-R (continuous line), partition S-D (dashed line), and partition A-B (dotted line).
N = 30, M = 40, J = 1, U = 0.1.

or completely disentangled if measured through the partition A-B (residual entropy SR = 0). In other365

words, in the same physical system, while the knowledge of the state of the system in the left (right)366

well is strongly correlated with the information on the state in the right (left) well, on the opposite, the367

knowledge of the species-A state does not produce information on the species-B state.368

5. Calculation of the EE in the coherent-state picture369

The coherent-state variational approach has found large application in the study of many-body370

quantum systems [39] since, due to their semi-classical character, they provide an effective description371

of physical systems and allow one to gain insights into their properties. Also, from the experimental372

point of view, coherent states have an important role since their semi-classical character enables one to373

achieve a realistic approximation of the quantum state describing the real system.374

An su(2) coherent state describing single condensate trapped in a dimer is given by [21]375

∣ξL, ξR⟩ =
1√
N!

(ξL A†
L + ξR A†

R)
N
∣0⟩, (16)

where ∣0⟩ = ∣0, 0⟩ is the boson vacuum state and the normalization condition ∣ξL∣2 + ∣ξR∣2 = 1 must be376

assumed. Since ⟨ψa∣A†
σ Aσ∣ψa⟩ = N∣ξσ∣2, with σ = R, L, is the expectation value of number operator377

Nσ = A†
σ Aσ then ∣ξσ∣2 represents the fraction of bosons in the well σ. In the following, we employ378

combinations of coherent states (16) (for a single species in a double well) to approximate the cat379

structure of the ground state relevant to the TSD system in the strong-interaction regime, both for380

W/J > 0 and for W/J < 0.381
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1. Supermixing (attractive cat). If the interspecies attraction (W/J < 0) is large enough, the two382

species aggregate together in the same well. Since none of the two wells is privileged with respect383

to the other, quantum mechanically both configurations are equally probable, and the system384

lives in both states at the same time. By using the notation of Formula (16), the resulting cat state385

can be written as386

∣Ψ⟩ = 1√
2
[∣Loc⟩a,L∣Loc⟩b,L + ∣Loc⟩a,R∣Loc⟩b,R] =

1√
2
[∣λa, ηa⟩∣λb, ηb⟩ + ∣ηa, λa⟩∣ηb, λb⟩],

where "Loc" stands for "localized" and entails the fact that ∣ηc∣2 ≪ ∣λc∣2. Following the scheme387

discussed in Ref. [40], one can show that the expectation value of the model Hamiltonian reduces388

to389

E(λa, ηa, λb, ηb) =
U
2

N(N − 1) (∣λa∣4 + ∣ηa∣4) − 2JN(Re{λaηa})

+U
2

M(M − 1) (∣λb∣4 + ∣ηb∣4) − 2JM(Re{λbηb}) +W (∣λa∣2∣λb∣2 + ∣ηa∣2∣ηb∣2)

where the local order parameters λa, λb, ηa, and ηb are complex quantities defined as390

λa =
√

1− xaeiθa , ηa =
√

xaeiφa , λb =
√

1− xbeiθb , ηb =
√

xbeiφb .

The minimum-energy configuration energy is reached for φa = θa, θb = φb and391

xa =
J2

(NU −U + MW)2 , xb =
J2

(MU −U + NW)2 .

These formulas give the fraction of bosons characterizing the minority component and, correctly,392

give zero in the limit W → −∞.393

2. Demixing (repulsive cat). If the interspecies repulsion (W/J > 0) is large enough, the two394

condensed species separate in different wells. Similarly to what explained in the previous395

paragraph, the ground state features a two-sided cat-like structure, because left (right) well396

can indistinctly host species A (B). Hence, the quantum state consists of an equally-weighted397

superposition of the two possible arrangements398

∣Ψ⟩ = 1√
2
[∣Loc⟩a,L∣Loc⟩b,R + ∣Loc⟩a,R∣Loc⟩b,L] =

1√
2
[∣λa, ηa⟩∣ηbλb⟩ + ∣ηa, λa⟩∣λb, ηb⟩]

where λc, ηc are such that ∣ηc∣2 ≪ ∣λc∣2 and (obviously) ∣λc∣2 + ∣ηc∣2 = 1, with c = a, b. Following the399

variational approach described in the previous paragraph, and adopting the same conventions,400

we obtain that the variational energy is minimized for θa = φa, θb = φb and401

xa =
J2

(NU −U − MW)2 , xb =
J2

(MU −U − NW)2

Parameters xa and xb represent the fractions of bosons which do not aggregate with the others402

and thus make the "demixed phase" not ideal. Notice that, correctly, if W → +∞, then xa,b → 0, i.e.403

the demixing gets more and more complete.404

Both for the supermixing and for the demixing scenario, after computing the fraction of bosons405

in each well, it is possible to reconstruct the cat state by superimposing two coherent states. This406

procedure, described in Appendix A, allows one to analytically compute the EE between left-well407

and right-well bosons, at zero temperature [40]. As shown in Figure 7, the result perfectly408

matches the numerical EE, of course in the validity range of this approximation, i.e. in the whole409

range of ∣W∣/J except the central region (mixed phase) between the two critical values.410
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Figure 7. Entanglement entropy between left-well bosons and right-well bosons: comparison between
the results derived within the coherent-state approach and the numerical ones.

6. Calculation of the residual entropy in a restricted energy basis411

As already explained, the density operator associated to a thermal mixture of eigenstates is412

ρ̂ = 1
Z

D
∑
n=1

e−βEn ∣ψn⟩⟨ψn∣

where En is the energy eigenvalue associated to the energy eigenstate ∣ψn⟩, β is (proportional to)413

the inverse temperature and D is the dimension of the Hilbert space of physical states. From414

a computational, but also from a conceptual point of view, ρ̂ is the superposition of D different415

contributions, each one weighted by a different Boltzmann factor. The dimension D rapidly increases416

with the number of particles hosted in the system its exact value being D = (N + 1)(M + 1). As a417

consequence, the computation of the thermal density matrix becomes unfeasible even for a relative418

small number of bosons. By taking advantage of the well-known equivalence between microcanonical419

and canonical ensemble (see, e.g. [38]), for large numbers of particles, we provide an effective way to420

approximate a thermal state. To this end, we consider just a restricted set of energy eigenstates, namely421

those ∣ψn⟩ whose energy En lies in the range [⟨E⟩ − σE; ⟨E⟩ + σE] where422

⟨E⟩ = 1
Z

D
∑
n=1

Ene−βEn , σE =
√

⟨E2⟩ − ⟨E⟩2

are the expectation value of the energy and its standard deviation, respectively. The density matrix423

relevant to this restricted thermal state is thus constructed by equally-weighting the contributions424

coming from such ∣ψn⟩, i.e.425

ρ̂restricted =
1

N∗

∗
∑
n
∣ψn⟩⟨ψn∣
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Figure 8. Residual entropy relevant to the partition L-R. Left panel: comparison between the results
obtained within the restricted set of eigenstates and the exact ones. Right panel: fraction of energy
eigenstates which takes part in the restricted thermal density matrix.

where N∗ is the number of energy eigenstates whose energies En lie in the aforementioned interval.426

To test the effectiveness of the residual entropy as a critical indicator, we consider the partition427

in terms of left-well bosons and right-well bosons, we set a non-zero value of the temperature and428

we compare the results obtained from a complete and from a restricted thermal state. The left panel429

of Figure 8 shows an overall good agreement between such results, especially in the central region430

(small ∣W∣/J values), while the outermost regions feature step-like discontinuities. The presence of such431

discontinuities can be understood observing ethe right panel of Figure 8, which shows the fraction of432

energy states involved in the restricted thermal state, N∗/D, as a function of W/J. As W/J increases,433

in fact, fewer and fewer energy states join the restricted thermal state and their inherently discrete434

character is reflected by the presence of step-like regions, each one corresponding to the activation of a435

single energy state.436

7. Conclusions437

In this work, we have investigated the equilibrium and the residual entropy in a two-species438

Bose-Hubbard dimer at zero and non-zero temperature. In Section 2 we have introduced the model439

and highlighted the importance of W (the interspecies repulsion) in determining the quantum phase440

of the system (supermixed for W/J ≪ 0, mixed for small ∣W∣/J and demixed for W/J ≫ 0). In Section 3441

we have introduced the concepts of equilibrium and residual entropy commenting on the fact that, at442

zero temperature, the latter corresponds to the entanglement entropy.443

Section 4 has been devoted to the analysis of the residual entropy for three different partitions444

of the total system. In this regard, we have stressed the fact that different ways of partitioning445

the system into two sub-systems, correspond to different kinds of residual entropies SR. In all446

three cases, SR features discontinuities where the localization-delocalization phase transitions occur447

and quasi-plateaus where two dominating macroscopic configurations emerge. Residual entropy448
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is therefore a valid critical indicator not only at zero temperature (where it corresponds to the449

entanglement entropy, a purely quantum correlation), but also at higher temperatures, where it450

is influenced by the classical correlation between the sub-systems. Interestingly, we have evidenced451

that, at zero temperature, i) a non-zero hopping J causes a non-zero entanglement between spatial452

modes, ii) the intraspecies interaction U contributes to the entanglement between momentum modes,453

and iii) the interspecies interaction W is responsible for the entanglement between species modes.454

In Section 5, we have introduced su(2) coherent states and developed a fully-analytic variational455

approach apt to describe the supermixed and the demixed phases at zero temperature. The456

superposition of two such coherent states has provided a good approximation of the ground state457

of the system in a non-small range of W/J, as demonstrated by the comparison with the numerical458

results. In Section 6 we have approximated the complete thermal superposition (10) with an incoherent459

combination of a reduced number of equally-weighted energy eigenstates and showed that the residual460

entropy is still a good critical indicator, well reproducing the exact results obtained numerically.461
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Abbreviations468

The following abbreviations are used in this manuscript:469

470

BH: Bose-Hubbard471

CS: coherent states472

DL: delocalization-localization473

EE: entanglement entropy474

TSD: two-species dimer475

476

Appendix Entanglement entropy and coherent states477

On the basis of the coherent-state approach derived in Section 5 and in the same spirit of Ref [40],478

we compute the entanglement entropy between left-well bosons and right-well bosons. To begin, let479

us define ρn,m(i) as the probability of having n bosons of species A and m bosons of species B at site i.480

The normalization of probability requires that481

N
∑
n=0

M
∑
m=0

ρn,m(i) = 1

where N is the total number of bosons of species A and M is the total number of bosons of species B.482

Let us define the single site entropy Si as follows:483

Si = −
N
∑
n=0

M
∑
m=0

ρn,m(i) log2 ρn,m(i)

Neglecting the possible presence of cat states (a situation that will be re-inserted a posteriori), a generic484

coherent state can be written in the factorized form485

∣Ψ⟩ = [ 1√
N!

(ξL A†
L + ξR A†

R)
N
∣0⟩] [ 1√

M!
(νLB†

L + νRB†
R)

M
∣0⟩]
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Of course the normalization conditions ∣ξL∣2 + ∣ξR∣2 = 1, ∣νL∣2 + ∣νR∣2 = 1 must hold. State ∣Ψ⟩ can be486

recast into the form487

∣Ψ⟩ = [
N
∑
n=0

√
N!

n! (N − n)!
ξn

L (A†
L)

n
ξN−n

R (A†
R)

N−n
∣0⟩] [

M
∑
m=0

√
M!

m! (M −m)!
νm

L (B†
L)

m
νM−m

R (B†
R)

M−m
∣0⟩] =

=
⎡⎢⎢⎢⎣

N
∑
n=0

√
N!

√
n!

√
(N − n)!

ξn
LξN−n

R ∣n, N − n⟩a

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

M
∑
m=0

√
M!

√
m!

√
(M −m)!

νm
L νM−m

R ∣m, M −m⟩b

⎤⎥⎥⎥⎦
We calculate the reduced density matrix ρ partitioning the system into two sub-systems (left-well488

bosons and right-well bosons) and tracing out the degrees of freedom relevant to one of them. For489

example490

ρ =
N
∑
n=0

M
∑
m=0

R⟨n, m∣Ψ⟩⟨Ψ∣n, m⟩R

Taking into account the orthogonality of the states, the reduced density matrix which originates from a491

coherent state can be written as492

ρn,m = N!M!
n!m!(N − n)!(M −m)!

ξn
Lξ
(N−n)
R νm

L ν
(M−m)
R (ξ∗L)

n(ξ∗R)
(N−n)(ν∗L)

m(ν∗R)
(M−m) =

= [(N
n
)∣ξL∣2n(1− ∣ξL∣2)(N−n)] [(M

m
)∣νL∣2m(1− ∣νL∣2)(M−m)]

where the expressions of coefficients ξL = ξL(J, U, W), ξR = ξR(J, U, W), νL = νL(T, U, W) and νR =493

νR(T, U, W) can be computed within the variational approach. In passing, notice that the probability494

distribution is correctly normalized, i.e. ∑N
n=0∑

M
m=0 ρn,m = 1. The Von Neumann entropy of the495

remaining sub-system can be thus computed as496

S = −
N
∑
n=0

M
∑
m=0

ρn,m log2 ρn,m

This quite general procedure needs to be slightly modified in case one is considering cat states. In497

fact, the reduced density matrix must take into account the two-sided nature of a cat state and so it498

must be written as the average of the densities matrices relevant to simple coherent states, namely499

ρside Ln,m = [(N
n
)∣ξL∣2n(1− ∣ξL∣2)(N−n)] [(M

m
)∣νL∣2m(1− ∣νL∣2)(M−m)]

ρside Rn,m = [(N
n
)∣ξL∣2(N−n)(1− ∣ξL∣2)n] [(M

m
)∣νL∣2(M−m)(1− ∣νL∣2)m]

implying

ρcatn,m = 1
2
[ρside Ln,m + ρside Rn,m]

Appendix Quasi-degeneracy of the ground-state500

Due to the spectral-collapse [16,17], for sufficiently strong values of W/J, the TSD ground-state501

may appear quasi-degenerate. However the degeneracy of the ground-state is only apparent as502

Hamiltonian (1) is non-degenerate [36,37]. As shown in Figure A1 the energy splitting between the503

ground-state energy E0 and the first energy level E1 decays exponentially as function of the number504

of particles per species (N and M). Energy levels E0 and E1 differs always by a small, finite, quantity505

function of the interactions and the number of particles. This has been verified in Figure A1 down to506

computational limit fixed by the machine precision.507
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Figure A1. Splitting between the ground-state energy E0 and the first excited state energy E1 as function
of the number of particle per species (N = M = Np), J = 1, U = 0.1, W = 0.2.
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