

1 Article

2 **Comparison of Anthocyanin and Polyphenolics in**
3 **Purple Sweetpotato (*Ipomoea batatas* L.) Grown in**
4 **Different Locations in Japan**5 **Koji Ishiguro ^{1,*}, Toshikazu Kuranouchi ², Yumi Kai ³ and Kenji Katayama ²**6 ¹ Hokkaido Agricultural Research Center, NARO, Shinsei, Memuro, Kasai, Hokkaido 082-0081, Japan;
7 kuro@affrc.go.jp (K.I.)8 ² Institute of Crop Science, NARO, Kannondai, Tsukuba, Ibaraki 305-8518, Japan; kurasan@affrc.go.jp (T.K.);
9 kenktym@affrc.g.jp (K.K.)10 ³ Kyushu-Okinawa Agricultural Research Center, NARO, Yokoichi, Miyakonojo, Miyazaki 885-0091, Japan;
11 yumi@affrc.go.jp (Y.K.)

12 * Correspondence: kuro@affrc.go.jp; Tel.: +81-155-62-2721

13 **Abstract:** The health benefits of purple sweetpotato, which is used as an edible food in its natural
14 state and in processed foods and as a natural color pigment, have been recognized. In Japan,
15 sweetpotato has been economically produced in regions below 36°4'N latitude, however, cultivation
16 areas are beginning to expand further north. The anthocyanin and polyphenolics in purple
17 sweetpotatoes cultivated in different locations; I (42°92' N, 143°04' E), II (35°99' N, 140°01' E), and III
18 (31°72' N, 131°03' E), were compared over two years. Total anthocyanin and polyphenolic contents
19 in purple sweetpotatoes tended to be high in location I. Their contents significantly differed over
20 the two years in locations I and III and was dependent on temperature during cultivation. The
21 anthocyanin and polyphenolic compositions differed between locations. The peonidin/cyanidin
22 ratios were higher in location III compared with I and II in all varieties. The relative amount of
23 chlorogenic acid was higher in location I, while the amount of 3,4- and 4,5-dicaffeoylquinic acids
24 were higher in location III, suggesting that the variability of the anthocyanin and polyphenolic
25 content and composition was dependent on cultivation conditions. This study suggested that
26 northern areas in Japan are an alternative production area and may yield higher amounts of
27 anthocyanin and polyphenolics.28 **Keywords:** purple sweetpotato; anthocyanin; polyphenolics; caffeoylquinic acid; temperature30 **1. Introduction**31 Sweetpotato (*Ipomoea batatas* L.) is a tropical and subtropical root crop originally from central
32 America or south America. It can be cultivated under a wide range of climatic conditions, between
33 30° and 40° latitude in both hemispheres, and in many countries, including Asia, Africa, America and
34 Oceania [1]. In Japan, sweetpotato is grown in regions below about 36°4'N latitude to produce starch,
35 a distilled alcoholic drink, processed foods, natural color pigment and edible food. Sweetpotato has
36 a number of health benefits due to its content of anthocyanins, carotenoids, polyphenolics, vitamins,
37 minerals and dietary fibers [2].38 Purple sweetpotatoes, which contain anthocyanins in their flesh, have been developed over the
39 last two decades [2]. Their production has gradually increased in the south of Japan and processed
40 foods containing purple sweetpotato have been developed and become widely available since the
41 first variety, Ayamusasaki, was released [3]. The major coloring constituents in purple sweetpotato
42 have been identified as anthocyanin, peonidins and cyanidins, named as YGM-1a, YGM-1b, YGM-2,
43 YGM-3, YGM-4b, YGM-5a, YGM-5b and YGM-6 [4]. Anthocyanin extracts, or the purified form, have
44 been shown to have many physiological functions *in vitro* and *in vivo*: anti-oxidation [5],

45 antimutagenicity [6], antihyperglycemic [7], anti-atherosclerotic [8], hepatoprotective and anti-
46 hypertension [9] effects have been reported.

47 Sweetpotato storage roots contain polyphenolics, which are mainly caffeoylquinic acid
48 derivatives, namely, caffeic acid (CA), chlorogenic acid (ChA), 3,4-di-O-caffeoylquinic acid (3,4-
49 diCQA), 3,5-di-O-caffeoylquinic acid (3,5-diCQA) and 4,5-di-O-caffeoylquinic acid (4,5-diCQA) [2].
50 Caffeoylquinic acids have been shown to exhibit radical scavenging activity [10], antimutagenicity
51 [11], anticancer activity [12], anti-hyperglycemic activity [13], anti-inflammatory activity [14], anti-
52 HIV activity [15], and inhibit melanin production [16] *in vitro* or *in vivo*. Polyphenolics also play an
53 important role in *in vivo* defense systems against insects and other pathogens: the caffeoylquinic acids
54 in sweetpotato roots have antifungal and antiviral activities [17, 18]. The concentration of these
55 polyphenolics has been reported to increase as a function of stress, i.e., wounding, infection, drought,
56 and storage at low temperature [19-22].

57 Sweetpotato cultivation has spread to the north region of Japan where they have been shown to
58 have a higher content of sugars [23], however, a comparison of the physiological components, such
59 as anthocyanins and polyphenolics, in sweetpotatoes grown in different locations has not yet been
60 performed. In this study, we evaluated the differences in anthocyanin and polyphenolics in purple
61 sweetpotatoes cultivated in different locations from north to south in Japan over two years. The
62 contents and components of anthocyanin and polyphenolics were compared in three varieties and
63 three locations. Correlations between the anthocyanin and polyphenolic contents over the two years
64 were evaluated. In addition, the relationship between climate conditions to sweetpotato contents and
65 components, and the expected advantages of cultivation in the north region are discussed.

66 2. Results

67 2.1. Anthocyanin content and composition of purple sweetpotatoes cultivated in different locations

68 The anthocyanin content and composition of three purple sweetpotato varieties cultivated in
69 three different locations were analyzed in 2015 and 2016. Eight known anthocyanins, YGM-1a, YGM-
70 1b, YGM-2, YGM-3, YGM-4b, YGM-5a, YGM-5b and YGM-6 were detected in all three varieties
71 cultivated in different locations. In 2015, the total anthocyanin content in the Murasaki (MM)
72 sweetpotato variety was highest in location III \geq I \geq II (Table 1). The total content in Purple Sweet
73 Lord (PSL) was highest in location I $>$ III $>$ II (Table 1). The total content in Akemurasaki (AKM) was
74 significantly higher in location I than in III (Table 1). The anthocyanin composition showed different
75 patterns in both the varieties and locations. Peonidin type anthocyanins (YGM-4b, 5a, 5b and 6) were
76 dominant in MM and PSL, and the peonidin/cyanidin ratio was highest in MM among the three
77 varieties in all locations. The peonidin/cyanidin ratio was lowest in AKM, and the proportion of
78 cyanidin type anthocyanins (YGM-1a, 1b, 2 and 3; 57.20%) was higher than that of the peonidin type
79 (42.79%) in AKM cultivated in location I (Table 1). The peonidin/cyanidin ratios were higher in
80 location III than I and II in all sweetpotato varieties. In 2016, the total anthocyanin contents were
81 significantly decreased in locations I and III (Figure 1). The reduction rate in MM, PSL and AKM was
82 41.4%, 42.9% and 22.3% in location I and 64.9%, 67.5% and 52.6% in location III, respectively. The
83 anthocyanin content in MM and PSL did not significantly differ between 2015 and 2016 in location II.
84 This resulted in a relatively higher order of location II in anthocyanin content in MM and PSL in 2016
85 compared to 2015. In 2016, the total anthocyanin content in MM was significantly higher in location
86 II, followed by I then III; in PSL it was significantly higher in I, followed by II then III; in AKM it was
87 significantly higher in location I than in III (Table 2). The anthocyanin composition in the three
88 varieties was similar between 2016 and 2015, except for the peonidin/cyanidin ratio of PSL in location
89 III, which was decreased from 3.1 to 1.4. The anthocyanin content of purple sweetpotato tended to be
90 higher in location I, with a higher ratio of cyanidin type anthocyanins.

91

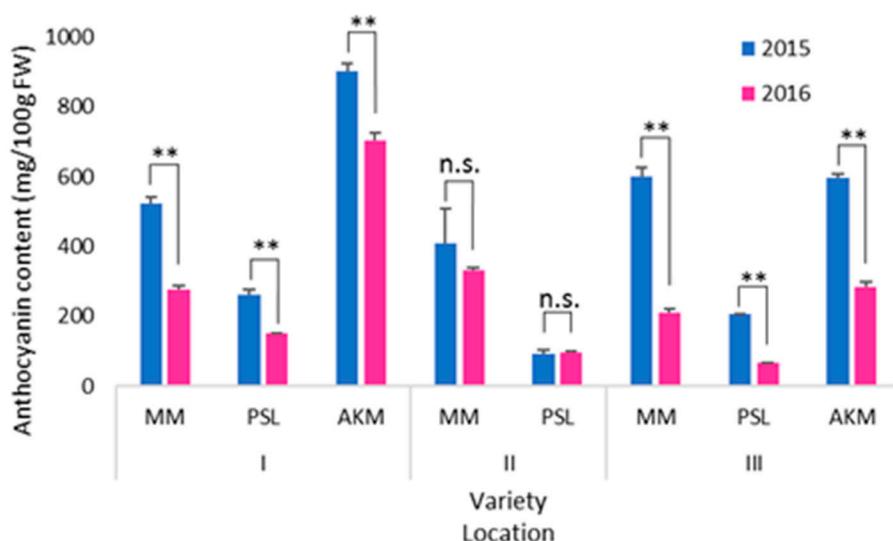
92

93 **Table 1.** Anthocyanin content and composition of purple sweetpotatoes cultivated in different locations in 2015.

Variety	Location	YGM (mg/100g FW)			
		Cyanidin	Peonidin	Total	Peonidin/Cyanidin
MM	I	131.09 ± 2.72 ^a (25.05)	392.24 ± 14.72 ^{ab} (74.95)	523.33 ± 16.30 ^{ab}	3.0
	II	103.69 ± 20.51 ^b (25.27)	306.71 ± 76.41 ^b (74.73)	410.40 ± 96.92 ^b	3.0
	III	123.89 ± 8.07 ^{ab} (20.64)	476.39 ± 16.52 ^a (79.36)	600.28 ± 24.57 ^a	3.8
PSL	I	92.70 ± 4.93 ^a (35.42)	169.02 ± 8.65 ^a (64.58)	261.72 ± 12.91 ^a	1.8
	II	32.69 ± 2.88 ^c (34.89)	61.01 ± 8.13 ^c (65.11)	93.70 ± 11.00 ^c	1.9
	III	49.44 ± 0.71 ^b (24.19)	154.91 ± 1.69 ^b (75.81)	204.35 ± 2.25 ^b	3.1
AKM	I	516.38 ± 11.24 ^a (57.20)	386.30 ± 10.14 ^a (42.79)	902.69 ± 20.95 ^a	0.8
	II	263.97 ± 6.28 ^b (44.19)	333.38 ± 4.98 ^b (55.81)	597.35 ± 11.19 ^b	1.3

94 Data are presented as mean ± SD (n=4). Proportions of cyanidin and peonidin (%) in each variety cultivated
95 in each location are shown in parentheses. MM, Murasakimasari; PSL, Purple Sweet Lord; AKM,
96 Akemurasaki. Location I, 143°04'E / 42°92'N; location II, 140°04'E / 35°99N; location III, 131°03'E / 31°72'N.
97 Cyanidin: sum of the contents of YGM 1a, 1b, 2 and 3. Peonidin: sum of the contents of YGM 4b, 5a, 5b
98 and 6. Comparisons of the contents of cyanidin and peonidin and total anthocyanin in each variety among
99 locations were performed by ANOVA and multiple regression analysis was performed by Tukey's test.
100 Different letters indicate statistically significant differences among locations in each variety at P<0.01.

101


102 **Table 2.** Anthocyanin content and composition of purple sweetpotatoes cultivated in different locations in 2016.

Variety	Location	YGM (mg/100g FW)			
		Cyanidin	Peonidin	Total	Peonidin/Cyanidin
MM	I	64.44 ± 3.47 ^b (23.30)	212.14 ± 18.53 ^b (76.70)	276.58 ± 11.97 ^b	3.3
	II	71.97 ± 1.97 ^a (21.74)	259.08 ± 5.77 ^a (78.26)	331.05 ± 7.71 ^a	3.6
	III	47.14 ± 2.34 ^c (22.36)	163.68 ± 8.18 ^c (77.64)	210.82 ± 10.50 ^c	3.5
PSL	I	49.03 ± 1.26 ^a (32.79)	100.48 ± 1.82 ^a (67.21)	149.51 ± 3.06 ^a	2.0
	II	30.54 ± 1.49 ^b (32.38)	63.79 ± 4.40 ^b (67.62)	94.33 ± 5.89 ^b	2.1
	III	27.63 ± 0.25 ^c (41.67)	38.68 ± 0.30 ^c (58.33)	66.31 ± 0.54 ^c	1.4
AKM	I	319.36 ± 9.62 ^a (45.51)	382.36 ± 12.79 ^a (54.49)	701.73 ± 22.41 ^a	1.2
	II	117.51 ± 8.35 ^b (41.48)	165.74 ± 7.49 ^b (58.51)	283.26 ± 15.81 ^b	1.4

103 Data are presented as mean ± SD (n=4). Proportions of cyanidin and peonidin (%) in each variety cultivated
104 in each location are shown in parentheses. MM, Murasakimasari; PSL, Purple Sweet Lord; AKM,
105 Akemurasaki. Location I, 143°04'E / 42°92'N; location II, 140°04'E / 35°99N; location III, 131°03'E / 31°72'N.
106 Cyanidin: sum of the contents of YGM 1a, 1b, 2 and 3. Peonidin: sum of the contents of YGM 4b, 5a, 5b
107 and 6. Comparisons of the contents of cyanidin and peonidin and total anthocyanin in each variety among
108 locations were performed by ANOVA and multiple regression analysis was performed by Tukey's test.
109 Different letters indicate statistically significant differences among locations in each variety at P<0.01.

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

Figure 1. Total anthocyanin content in purple sweetpotatoes cultivated in different locations in 2015 and 2016. Vertical bars represent SD (n=4). MM, Murasaki; PSL, Purple Sweet Lord; AKM, Akemurasaki. Location I, 143°04'E / 42°92'N; location II, 140°04'E / 35°99'N; location III, 131°03'E / 31°72'N. Comparisons between the contents in 2015 and 2016 in each variety cultivated in each location were performed by Student's t test; *P<0.01. n.s., not significant.

125

126

2.2. Polyphenolic content and composition of purple sweetpotatoes cultivated in different locations

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

The polyphenolic content and composition of three purple sweetpotato varieties cultivated in three different locations were evaluated in 2015 and 2016. Five known caffeoylquinic acids, ChA, CA, 3,4-diCQA, 3,5-diCQA and 4,5-diCQA, were detected by HPLC in all the varieties cultivated in different locations. The total polyphenolic content in MM differed according to its location of growth: in 2015 the content, from high to low, was in the order of location I > II > III. In PSL, the order was location I > III > II (Table 3). The polyphenolic content in AKM was significantly higher in sweetpotatoes grown in location I compared with III (Table 3). ChA and 3,5-diCQA were the major polyphenolics in all three varieties cultivated in any location. The composition of polyphenolics differed slightly between varieties and locations. ChA was more dominant in MM and AKM compared with 3,5-diCQA, while 3,5-diCQA was more dominant in PSL. The relative amounts of ChA in MM and AKM were higher in location I, while the relative amounts of 3,4- and 4,5-diCQA in MM and AKM were higher in location III (Table 3). The relative amounts of each caffeoylquinic acid in PSL did not differ between the locations. In 2016, the total polyphenolic contents were significantly decreased in locations I and III (Figure 2). The reduction rate in MM, PSL and AKM were 37.4%, 33.6% and 29.3% in location I and 68.7%, 92.7% and 81.0% in location III, respectively. The total content of polyphenolics in MM and PSL did not significantly differ between 2015 and 2016 in location II. This resulted in a relatively higher order of polyphenolic content in location II: total polyphenolic content in MM was significantly higher in locations I and II compared with location III, and the content in PSL was significantly higher in location I, followed by location II then III (Table 4). The content in AKM was significantly higher in location I compared with III similar to 2015 (Table 4). There were no significant differences in the polyphenolic composition between locations I and II in 2015 and 2016, however, 3,4- and 4,5-CQA were more abundant in location III. The results suggest that the polyphenolic content of purple sweetpotato tended to be higher in location I, with a higher ratio of ChA.

152
153**Table 3.** Polyphenolic content and composition of purple-fleshed sweetpotatoes cultivated in different locations in 2015.

Variety	Location	Caffeoylquinic acids (mg/100g FW)					
		ChA	CA	3,4-diCQA	3,5-diCQA	4,5-diCQA	Total
MM	I	314.35 ± 12.87 ^a (54.88)	0.56 ± 0.09 ^a (0.10)	17.37 ± 1.62 ^{ab} (3.03)	234.60 ± 8.66 ^a (40.95)	5.96 ± 0.39 ^b (1.04)	572.84 ± 21.90 ^a
	II	177.14 ± 46.19 ^b (49.99)	0.29 ± 0.13 ^b (0.08)	13.52 ± 3.18 ^b (3.82)	159.88 ± 31.67 ^b (45.12)	3.51 ± 0.65 ^c (0.99)	354.34 ± 80.01 ^b
	III	102.46 ± 11.77 ^c (48.13)	0.37 ± 0.05 ^{ab} (0.17)	19.65 ± 0.56 ^a (9.23)	83.39 ± 18.21 ^c (39.17)	7.02 ± 0.40 ^a (3.30)	212.89 ± 21.56 ^c
PSL	I	124.45 ± 7.70 ^a (40.75)	0.76 ± 0.07 ^a (0.25)	2.83 ± 0.32 ^a (0.93)	173.75 ± 10.49 ^a (56.89)	3.63 ± 0.24 ^a (1.19)	305.42 ± 18.58 ^a
	II	22.60 ± 8.34 ^c (43.42)	0.22 ± 0.08 ^b (0.42)	0.96 ± 0.47 ^b (1.84)	27.68 ± 11.39 ^c (53.18)	0.59 ± 0.19 ^c (1.13)	52.04 ± 20.37 ^c
	III	87.59 ± 1.40 ^b (41.36)	0.16 ± 0.03 ^b (0.08)	2.06 ± 0.36 ^a (0.97)	119.10 ± 2.89 ^b (56.25)	2.84 ± 0.09 ^b (1.34)	211.76 ± 4.17 ^b
AKM	I	302.33 ± 13.23 ^a (56.27)	0.68 ± 0.19 ^b (0.13)	4.31 ± 1.33 (0.80)	226.02 ± 9.51 ^a (42.07)	3.91 ± 0.15 ^a (0.73)	537.25 ± 22.58 ^a
	II	44.94 ± 2.86 ^b (43.56)	1.39 ± 0.07 ^a (1.35)	3.59 ± 0.81 (3.48)	50.30 ± 5.10 ^b (48.76)	2.94 ± 0.11 ^b (2.85)	103.16 ± 8.04 ^b

154 Data are presented as mean ± SD (n=4). Relative amounts of individual caffeoylquinic acids (%) in each variety
 155 cultivated in each location are shown in parentheses. MM, Murasakimasari; PSL, Purple Sweet Lord; AKM,
 156 Akemurasaki. Location I, 143°04'E / 42°92'N; location II, 140°04'E / 35°99'N; location III, 131°03'E / 31°72'N.
 157 Comparison of the content of each caffeoylquinic acid and total content in each variety among locations were
 158 performed by ANOVA and multiple regression analysis was performed by Tukey's test. Different letters indicate
 159 statistically significant differences among locations in each variety at P<0.01.


160

Table 4. Polyphenolic content and composition of purple-fleshed sweetpotatoes cultivated in different locations in 2016.

Variety	Location	Caffeoylquinic acids (mg/100g FW)					
		ChA	CA	3,4-diCQA	3,5-diCQA	4,5-diCQA	Total
MM	I	190.78 ± 24.75 ^a (53.23)	0.39 ± 0.04 ^b (0.11)	11.58 ± 1.92 ^b (3.23)	152.10 ± 19.38 ^a (42.44)	3.53 ± 0.56 ^b (0.98)	358.38 ± 46.58 ^a
	II	125.32 ± 3.68 ^b (40.42)	0.62 ± 0.07 ^a (0.20)	36.04 ± 1.58 ^a (11.62)	143.38 ± 5.09 ^a (46.25)	4.67 ± 0.38 ^a (1.51)	310.03 ± 10.06 ^a
	III	19.29 ± 2.05 ^c (28.29)	0.43 ± 0.13 ^b (0.64)	14.00 ± 1.47 ^b (20.99)	27.87 ± 3.11 ^b (41.78)	5.11 ± 0.47 ^a (7.66)	60.70 ± 7.15 ^b
PSL	I	89.80 ± 7.78 ^a (44.26)	0.48 ± 0.04 ^b (0.24)	1.80 ± 0.16 ^a (0.89)	108.94 ± 9.27 ^a (53.70)	1.86 ± 0.18 ^a (0.92)	202.88 ± 17.35 ^a
	II	18.17 ± 2.23 ^b (36.18)	0.67 ± 0.08 ^a (1.33)	1.47 ± 0.20 ^b (2.93)	29.53 ± 6.18 ^b (58.80)	0.38 ± 0.10 ^b (0.76)	50.22 ± 6.43 ^b
	III	7.54 ± 0.31 ^c (48.80)	0.57 ± 0.04 ^{ab} (3.69)	0.90 ± 0.08 ^c (5.83)	6.18 ± 0.54 ^c (40.00)	0.26 ± 0.02 ^b (1.68)	15.45 ± 0.92 ^c
AKM	I	220.70 ± 11.28 ^a (58.13)	0.87 ± 0.20 (0.23)	5.02 ± 0.11 ^a (1.32)	149.92 ± 4.97 ^a (39.48)	3.18 ± 0.11 ^a (0.84)	379.67 ± 16.29 ^a
	II	7.57 ± 0.79 ^b (38.56)	0.85 ± 0.06 (4.33)	2.53 ± 0.54 ^b (12.89)	7.49 ± 0.61 ^b (38.16)	1.19 ± 0.10 ^b (6.06)	19.62 ± 1.31 ^b

163 Data are presented as mean ± SD (n=4). Relative amounts of individual caffeoylquinic acids (%) in each variety
 164 cultivated in each location are shown in parentheses. MM, Murasakimasari; PSL, Purple Sweet Lord; AKM,
 165 Akemurasaki. Location I, 143°04'E / 42°92'N; location II, 140°04'E / 35°99'N; location III, 131°03'E / 31°72'N.
 166 Comparison of the content of each caffeoylquinic acid and total content in each variety among locations were
 167 performed by ANOVA and multiple regression analysis was performed by Tukey's test. Different letters indicate
 168 statistically significant differences among locations in each variety at P<0.01.

169
170
171

Figure 2. Total caffeoylquinic acid content of purple sweetpotatoes cultivated in different locations in 2015 and 2016. Vertical bars represent SD (n=4). MM, Murasakiimasari; PSL, Purple Sweet Lord; AKM, Akemurasaki. Location I, 143°04'E / 42°92'N; location II, 140°04'E / 35°99'N; location III, 131°03'E / 31°72'N. Comparisons between the contents in 2015 and 2016 in each variety cultivated in each location were performed by Student's t test, *P<0.01. n.s., not significant.

2.3. Relationship between anthocyanin content, caffeoylquinic acid content and climate conditions over two years.

The total anthocyanin content positively correlated with the total caffeoylquinic acid content in 2015 ($r = 0.5475, P < 0.01$) and 2016 ($r = 0.6967, P < 0.01$) (Table 5). In addition, total anthocyanin content and total caffeoylquinic acid content in 2015 were highly correlated with those in 2016 (anthocyanin, $r = 0.8696, P < 0.01$; caffeoylquinic acid, $r = 0.9035, P < 0.01$) (Table 5), although the contents were significantly different in locations I and III between the two years.

Precipitation, temperature, sunshine duration and accumulated temperature during cultivation of the purple sweetpotato varieties in the three locations in 2015 and 2016 were compared. Precipitation was, by far, the highest in location III, in both 2015 and 2016 (Table 6). Sunshine duration and accumulated temperature in 2015 and 2016 were lower in location I than II and III (Table 6). The average mean temperature, mean maximum temperature and mean minimum temperature were in the order of, lowest to highest, location I < II < III in 2015 and location I < II < III in 2016 (Figure 3). The temperatures were lower in 2015 compared with 2016 in the latter stages of cultivation in location I and throughout cultivation in location III (Figure 3). The differences between mean maximum temperature and mean minimum temperature were highest in locations I and III in 2015 (Table 6). Within the climate parameters, temperature is suggested to have the most influence on the anthocyanin and polyphenolic content, because their contents tended to be higher in the location with the lowest temperature: in 2015, their contents were higher in locations I and III which were recorded to have lower temperatures than in 2016.

210
211**Table 5.** Correlation coefficient between total anthocyanin content and
total caffeoylquinic acid content in 2015 and 2016.

212

	2015 Ant	2015 CQA		2016 Ant	2016 CQA	
2015 Ant	-					
2015 CQA	0.5475		-			
2016 Ant	0.8696	**	0.6376	**	-	
2016 CQA	0.4828	**	0.9035	**	0.6967	**

213

Results are expressed as Pearson correlation coefficients with an indicated level of significance. Data with ** was significant at $P < 0.01$ (n=32). 2015 Ant, total anthocyanin content in 2015; 2015 CQA, total caffeoylquinic acid content in 2015; 2016 Ant, total anthocyanin content in 2016; 2016 CQA, total caffeoylquinic acid content in 2016.

214

215

216

217

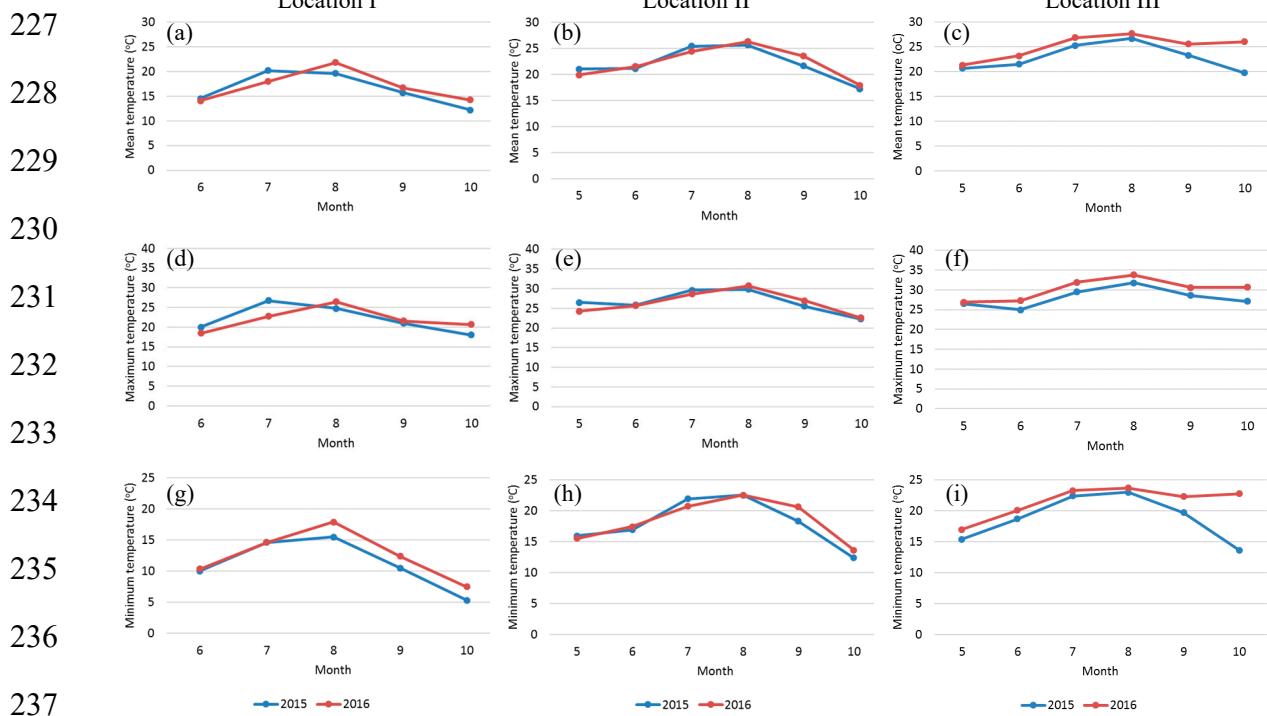
218

219

220

Table 6. Weather data during cultivation in 2015 and 2016.

Location	Month	Precipitation		Sunshine Duration		Accumulated		Max – Min	
		(mm)		(h)		Temperature (°C)		Temperature (°C)	
I	Jun	29	180	126	109	378	394	10	8
	Jul	56	135	188	91	627	558	12	8
	Aug	119	419	118	126	606	676	9	9
	Sep	112	138	155	120	471	500	11	9
	Oct	8	14	32	31	61	57	13	13
	Sum ¹	323	884	618	478	2,144	2,185	55	47
II	May	8	24	55	17	147	139	11	9
	Jun	173	106	135	141	632	644	9	8
	Jul	193	96	186	146	787	755	8	8
	Aug	101	299	146	177	795	815	7	8
	Sep	360	243	117	100	647	705	7	6
	Oct	44	51	150	108	414	430	10	9
III	Sum ¹	878	818	789	689	3,420	3,488	52	48
	May	30	99	67	113	228	160	11	10
	Jun	1095	855	61	80	644	697	6	7
	Jul	567	648	123	165	786	834	7	9
	Aug	378	117	182	223	828	860	9	10
	Sep	161	531	146	129	700	767	9	8
221	Oct	12	34	64	21	158	130	13	8
	Sum ¹	2,241	2,282	641	730	3,344	3,448	56	52


222
223

The data are expressed as the mean of each month during cultivation. ¹ Sum of the data of each month. ² Max-Min Temperature is the difference between the mean maximum temperature and mean minimum temperature. Location I, 143°04'E / 42°92'N; location II, 140°04'E / 35°99'N; location III, 131°03'E / 31°72'N.

224

225

226

Figure 3. Mean temperature in location I (a), II (b) and III (c), mean maximum temperature in location I (d), II (e) and III (f) and mean minimum temperature in location I (g), II (h) and III (i) in 2015 (blue lines) and 2016 (red lines). Location I, $143^{\circ}04'E$ / $42^{\circ}92'N$; location II, $140^{\circ}04'E$ / $35^{\circ}99'N$; location III, $131^{\circ}03'E$ / $31^{\circ}72'N$.

242

243 3. Discussion

244 The anthocyanin and polyphenolic contents in plants are affected by environmental conditions,
 245 such as temperature and light [24-26]. In the case of sweetpotato, temperature may be the most
 246 influential factor on their contents, because it is an underground crop. The content of anthocyanins
 247 in the periderm of sweetpotatoes was higher when grown in lower temperature growth chambers
 248 [27]. A highly negative correlation was recognized between soil temperature and anthocyanin
 249 content in the flesh of purple sweetpotato [28]. In this study, anthocyanin content tended to be higher
 250 in location I, which is in the north of Japan and had the lowest temperatures during cultivation. This
 251 suggests that the north region of Japan is a good location for sweetpotato growth to maximize
 252 anthocyanin pigment production. In 2015, the anthocyanin content was relatively high in location III
 253 as well as in location I. One possible reason for this, may be a lower soil temperature in location III
 254 since an agricultural mulching film, which is used to warm soil, was not applied. Another possible
 255 explanation is that the difference between the day and night temperatures affected accumulation of
 256 anthocyanin [29]: the difference between maximum and minimum temperatures during cultivation
 257 was relatively high in location III in 2015 (Table 6). The difference in anthocyanin content between
 258 2015 and 2016 in location I is suggested to be due to lower temperatures and larger differences
 259 between maximum and minimum temperatures in 2015. The reduction in anthocyanin was more
 260 prominent in MM and PSL compared with AKM. MM and PSL are peonidin dominant varieties and
 261 it may be that they are more sensitive to temperature. The anthocyanin composition differed between
 262 cultivation locations. The peonidin/cyanidin ratio was higher in location III compared with I and II
 263 in 2015. Peonidin is produced by the methylation of the precursor cyanidin [30]. In sweetpotato cell
 264 culture, temperature significantly affected the peonidin/cyanidin ratio. A low temperature ($15^{\circ}C$) favored
 265 suppressed accumulation of peonidin-based pigments and a higher temperature ($25-30^{\circ}C$) favored

266 methylation [31]. It is possible that temperature effects methyltransferase activity, which would
267 change peonidin production, however, locational differences in the peonidin/cyanidin ratio was not
268 clear in 2016. The effect of environmental conditions on anthocyanin composition requires further
269 study.

270 The polyphenolic content also tended to be higher in location I during the two years cultivation.
271 During the two study years, the polyphenolic content was considerably different between locations
272 I and III where the temperatures were higher in 2016 compared with 2015. It is suggested that the
273 temperature during cultivation has a large influence on the polyphenolic content. Caffeoylquinic
274 acids and anthocyanins are synthesized via the phenylpropanoid pathway and the biosynthetic
275 pathway of phenolic compounds is closely related to that of anthocyanin [32]. Accumulation of
276 polyphenolics and anthocyanins in sweetpotato storage roots is regulated by the MYB-domain-
277 containing transcription factor, IbMYB1 [33]. Overexpression of IbMYB1 led to higher polyphenolic
278 acid and anthocyanin levels in storage roots. In the transgenic sweetpotato, expression of the genes
279 involved in the anthocyanin metabolic pathway, including genes involved in the early production
280 steps of caffeoylquinic acids, such as phenyl alanine ammonia lyase (PAL) and cinnamate 4-
281 hydroxylase (C4H), were elevated [34]. Genes related to the phenylpropanoid pathway were highly
282 expressed at a low temperature [25]. We found higher accumulation of caffeoylquinic acids and
283 anthocyanin in purple sweetpotatoes cultivated in the northern location and in the year with lower
284 temperatures, probably due to elevation of gene expression at low temperatures. ChA was more
285 abundant in location I which is located in the north of Japan. Kojima et al. reported that ChA was
286 enzymatically converted to 3,5-diCQA in a one-step reaction [35]. The enzyme activity required to
287 catalyze this reaction may be lower at low temperatures. The biosynthetic pathway of caffeoylquinic
288 acids has not been well studied. Our results will help in the understanding of the relationship
289 between environmental conditions and polyphenolic composition.

290 4. Materials and Methods

291 4.1. Reagents and chemicals

292 Chlorogenic acid was obtained from Sigma-Aldrich Japan Co., LLC. (Tokyo, Japan). 3,4-diCQA,
293 4,5-diCQA and 3,5-diCQA, were purchased from ChemFaces (Wuhan, China). Purified YGM-6 (96 %
294 purity) was used as a standard for anthocyanin analysis by HPLC. Other reagents were purchased
295 from Wako Pure Chemicals Ind. (Osaka, Japan).

296 4.2. Sample preparation

297 Three purple sweetpotato varieties were grown in three different locations in Japan in 2015 and
298 2016. Cultivation location, variety, transplanted and harvested day, growth duration, soil type and
299 climate in the cultivation field are summarized in Table 7. Murasaki (MM) is a standard variety
300 used in food pigment production and contains a medium content of anthocyanin: it is mostly
301 cultivated in location III. Akemurasaki (AKM) is also mostly cultivated in location III, used in food
302 pigment production and has a high content of anthocyanin. Purple Sweet Lord (PSL) is used as an
303 edible food, has a low content of anthocyanin and is mainly cultivated in location II. The experimental
304 locations were as follows: location I, Memuro, Hokkaido (longitude, 143°04'E; latitude, 42°92'N);
305 location II, Tsukubamirai, Ibaraki (longitude, 140°04'E; latitude, 35°99'N); location III, Miyakonojo,
306 Miyazaki (longitude, 131°03'E; latitude, 31°72'N). The sweetpotatoes were cultivated using the
307 standard local methods, including planting and harvesting dates, and with or without mulching film.
308 Harvested sweetpotatoes were freeze-dried and held at -35 °C until analysis. Freeze-dried samples
309 were used for anthocyanin and polyphenolic analyses.

310 4.3. Anthocyanin analyses

311 Anthocyanins were extracted according to the method by Oki *et al.* [36]. One g of the freeze-
312 dried samples was vigorously mixed in 9 mL of the extraction solution
313 (methanol/water/trifluoroacetic acid = 40/60/0.5), mixed using a vortex mixer and sonicated in a water
314 bath at 37 °C for 5 min followed by continuous warming for 10 min. The extract was then centrifuged
315
316

317 at 1,900 x g for 15 min and the supernatant was recovered. Extraction solution (8 mL) was added to
318 the residue, and the extraction was repeated twice more. The extracts were combined and made up
319 to 25 mL. A portion of the extract was filtered through a 0.45 μ m membrane, and the anthocyanins
320 were determined quantitatively by high-performance liquid chromatography (HPLC), as described
321 [37]. The HPLC system consisted of two pumps (model LC-20AD; Shimadzu, Kyoto, Japan), an auto-
322 injector (model SIL-20AC; Shimadzu, Kyoto, Japan), a column oven (model CTO-20AC; Shimadzu,
323 Kyoto, Japan) and a photodiode array detector (model SPD-M20A; Shimadzu, Kyoto, Japan). A
324 reversed phase column was used (250 x 4.6 mm i.d., Cadenza CD-C18, 3 μ m; Imtakt Corp., Kyoto,
325 Japan). The mobile phase consisted of water containing 0.4% formic acid (A) and 50% acetonitrile
326 containing 0.4% formic acid (B). The elution profile was as follows: a linear gradient of 25% to 53% B
327 from 0 to 40 min, and 25% B from 41 to 60 min at a flow rate of 0.6 mL/min. The column oven was set
328 at 30 °C. Anthocyanins, YGM-1a, YGM-1b, YGM-2, YGM-3, YGM-4b, YGM-5a, YGM-5b and YGM-6,
329 were identified by their retention time and the UV-vis spectra. Quantification of anthocyanins was
330 performed using a YGM-6 external standard method based on detection at 520 nm. Each anthocyanin
331 was quantified using each specific conversion factor [37] and expressed as mg/100 g fresh weight
332 (FW).

333

334 *3.4. Polyphenolic analyses*

335 Polyphenolics were extracted as previously reported [22]. Freeze-dried samples (100 mg) were
336 vigorously mixed in 10 mL of 80% ethanol, and boiled at 100 °C for 5 min. A portion of the extract
337 was filtered through a 0.45 μ m membrane, and the caffeoylquinic acids were determined
338 quantitatively by HPLC, as described, with slight modification [22]. The HPLC system was the same
339 as for anthocyanin analysis. A reversed phase column was used (75 x 4.6 mm i.d., 3 μ m, Cadenza CD-
340 C18; Imtakt, Kyoto, Japan). The mobile phase consisted of water containing 0.2% formic acid (A) and
341 acetonitrile (B). The elution profile was as follows: a linear gradient of 8% to 30% B from 0 to 23 min,
342 and 8% B from 23.01 to 30 min at a flow rate of 1 mL/min. The column oven was set at 40 °C.
343 Caffeoylquinic acids were identified by their retention time and the UV-vis spectra of standards.
344 Quantification of caffeoylquinic acids was performed using an external standard based on detection
345 at 326 nm. Caffeoylquinic acids were quantified as mg/100 g FW.

346

347 *3.5. Climate conditions*

348 Climate conditions in 2015 and 2016, including precipitation, mean temperature, mean
349 maximum temperature, mean minimum temperature and sunshine duration, were cited in three
350 cultivation locations using data provided by the Automated Meteorological Data Acquisition System
351 (AMeDAS).

352

353 *3.6. Statistical analysis*

354 Four replications were performed for all analyses and data are shown as average \pm standard
355 deviation (SD). One way analysis of variance was performed to evaluate the differences in the
356 contents of anthocyanin and polyphenolics among variety and location. The year differences in the
357 contents of anthocyanin and polyphenolics were evaluated by Student's *t*-test. The Pearson
358 correlation coefficient was used to show the correlation between the content of anthocyanin and
359 caffeoylquinic acids using individual data from 4 replications in 2015 and 2016.

360

361

362

363

364

365

366

367
368**Table 7.** Location, variety, transplanted/harvested day, soil type and climate in the cultivation field in 2015 and 2016.

Location	Latitude/	Variety	Transplant/Harvest	Soil Type	Climate ¹
	Longitude		(Growth Duration)		
I	143°04'E/	MM, PSL,	Early Jun/Early Oct	Brown volcanic ash soil	Subarctic wet
	49°92'N	AKM	(about 120 days)		
II	140°01'E/	MM, PSL	Late May/Late Oct	Andosol	Warm and humid
	35°99'N		(about 150 days)		
III	131°03'E/	MM, PSL,	Mid-Late May/Early Oct	Andosol	Warm and humid
	31°72'N	AKM	(about 140-150 days)		

369 ¹Kööppen-Geiger classification. Location I, 143°04'E / 42°92'N; location II, 140°04'E / 35°99'N; location III,
370 131°03'E / 31°72'N.

371

372 **5. Conclusions**

373 The accumulation of anthocyanin and polyphenolic acids was higher in purple sweetpotatoes
374 cultivated in a northern location (location I), suggesting that lower temperatures enhanced their
375 contents. The varieties used for natural pigment production, such as MM and AKM, are cultivated in
376 southern location (location III). Our study showed that a northern location could be used as an
377 alternative area for purple sweetpotato growth for natural pigment production. Our results suggest
378 that the amounts of anthocyanin and polyphenolics easily fluctuates and are influenced by climate
379 conditions, particularly temperature during cultivation. The cultivation of purple sweetpotato in a
380 northern region could compensate for decrease in pigment production by high temperatures in
381 southern location. The purple sweetpotato varieties used for edible food, such as PSL, are usually
382 cultivated at lower latitudes, such as location II and III: a northern location may also be a suitable
383 area for such varieties, because the sugar content is higher [23] and health benefits due to the higher
384 contents of anthocyanin and polyphenolics are expected.
385

386 **Acknowledgments:** This work was supported by a grant from the Science and Technology Research Promotion
387 Program for Agriculture, Forestry, Fisheries and Food industry. The authors are grateful to Dr. Satoshi Yokota,
388 Dr. Shigenobu Takigawa, Dr. Chie Endo, Dr. Takahiro Noda and Ms. Minako Saito for their assistance.389 **Author Contributions:** K.I. and K.K. conceived and designed the experiments; K.I., T.K. and Y.K. performed the
390 experiments; K.I. analyzed the data and wrote the paper. All the co-authors reviewed and approved the
391 manuscript.392 **Conflicts of Interest:** The authors declare no conflict of interest.393 **References**

1. Cultivation harvesting and storage of sweet potato products. Available online: <http://www.fao.org/docrep/003/T0554E/T0554E14.htm> (accessed on 1 Dec 2017).
2. Tanaka, M.; Ishiguro, K.; Oki, T.; Okuno, S., Functional components in sweetpotato and their genetic improvement. *Breeding Sci.* **2017**, *67* (1), 52-61, DOI:10.1270/jsbbs.16125.
3. Yoshinaga, M., New cultivar "Ayamurasaki" for colorant production. *Sweetpotato Res. Front* **1995**, *2*, 1.
4. Terahara, N.; Shimizu, T.; Kato, Y.; Nakamura, M.; Maitani, T.; Yamaguchi, M.; Goda, Y., Six diacylated anthocyanins from the storage roots of purple sweet potato, *Ipomoea batatas*. *Biosci. Biotech. Bioch.* **1999**, *63* (8), 1420-1424., DOI:10.1271/bbb.63.1420.
5. Kano, N.; Takayanagi, T.; Harada, K.; Makino, K.; Ishikawa, F., Antioxidative activity of anthocyanins from purple sweet potato, *Ipomoera batatas* cultivar Ayamurasaki. *Biosci. Biotech. Bioch.* **2005**, *69* (5), 979-988.

404 6. Yoshimoto, M.; Okuno, S.; Yamaguchi, M.; Yamakawa, O., Antimutagenicity of deacylated anthocyanins
405 in purple-fleshed sweetpotato. *Biosci. Biotech. Bioch.* **2001**, *65* (7), 1652-1655, DOI: 10.1271/bbb.65.1652.

406 7. Matsui, T.; Ebuchi, S.; Kobayashi, M.; Fukui, K.; Sugita, K.; Terahara, N.; Matsumoto, K., Anti-
407 hyperglycemic effect of diacylated anthocyanin derived from *Ipomoea batatas* cultivar Ayamurasaki can
408 be achieved through the alpha-glucosidase inhibitory action. *J. Agr. Food Chem.* **2002**, *50* (25), 7244-7248,
409 DOI: 10.1021/jf025913m.

410 8. Miyazaki, K.; Makino, K.; Iwadate, E.; Deguchi, Y.; Ishikawa, F., Anthocyanins from Purple Sweet Potato
411 *Ipomoea batatas* Cultivar Ayamurasaki Suppress the Development of Atherosclerotic Lesions and Both
412 Enhancements of Oxidative Stress and Soluble Vascular Cell Adhesion Molecule-1 in Apolipoprotein E-
413 Deficient Mice. *J. Agr. Food Chem.* **2008**, *56* (23), 11485-11492, DOI: 10.1021/jf801876n.

414 9. Suda, I.; Oki, T.; Masuda, M.; Kobayashi, M.; Nishiba, Y.; Furuta, S., Physiological functionality of purple-
415 fleshed sweet potatoes containing anthocyanins and their utilization in foods. *JARQ* **2003**, *37* (3), 167-173.

416 10. Yoshimoto, M.; Kurata, R.; Okuno, S.; Ishiguro, K.; Yamakawa, O.; Tsubata, M.; Mori, S.; Takagaki, K.,
417 Nutritional value and physiological functions of sweetpotato leaves. *Acta Hort.* **2006**, *703*, 107-116.

418 11. Yoshimoto, M.; Yahara, S.; Okuno, S.; Islam, M.; Ishiguro, K.; Yamakawa, O., Antimutagenicity of mono-,
419 di-, and tricaffeoylquinic acid derivatives isolated from sweetpotato (*Ipomoea batatas* L.) leaf. *Biosci. Biotech.*
420 *Bioch.* **2002**, *66* (11), 2336-2341.

421 12. Kurata, R.; Adachi, M.; Yamakawa, O.; Yoshimoto, M., Growth suppression of human cancer cells by
422 polyphenolics from sweetpotato (*Ipomoea batatas* L.) leaves. *J. Agr. Food Chem.* **2007**, *55* (1), 185-190, DOI:
423 10.1021/jf0620259.

424 13. Matsui, T.; Ebuchi, S.; Fujise, T.; Abesundara, K.; Doi, S.; Yamada, H.; Matsumoto, K., Strong
425 antihyperglycemic effects of water-soluble fraction of Brazilian propolis and its bioactive constituent, 3,4,5-
426 tri-o-caffeoylquinic acid. *Biol. Pharm. Bull.* **2004**, *27* (11), 1797-1803, DOI: 10.1248/bpb.27.1797.

427 14. Peluso, G.; Defeo, V.; Desimone, F.; Bresciano, E.; Vuotto, M., Studies on the inhibitory effects of
428 caffeoylquinic acids on monocyte migration and superoxide ion production. *J. Nat. Products.* **1995**, *58* (5),
429 639-646, DOI: 10.1021/np50119a001.

430 15. Mahmood, N.; Moore, P.; Detommasi, N.; Desimone, F.; Colman, S.; Hay, A.; Pizza, C., Inhibition of HIV-
431 infection by caffeoylquinic acid-derivatives. *Antivir. Chem. Chemoth.* **1993**, *4* (4), 235-240.

432 16. Shimozono, H.; Kobori, M.; Shinmoto, H.; Tsushida, T., Suppression of the melanogenesis of mouse
433 melanoma B 16 cells by sweet potato extract. *J. Jpn. Soc. Food Sci.* **1996**, *43* (3), 313-317.

434 17. Harrison, H.; Peterson, J.; Clark, C.; Snook, M., Sweetpotato periderm components inhibit in vitro growth
435 of root rotting fungi. *Hortscience* **2001**, *36* (5), 927-930.

436 18. Peterson, J.; Harrison, H.; Snook, M.; Jackson, D., Chlorogenic acid content in sweetpotato germplasm:
437 Possible role in disease and pest resistance. *Allelopathy J.* **2005**, *16* (2), 239-249.

438 19. Uritani, I., Biochemistry on postharvest metabolism and deterioration of some tropical tuberous crops. *Bot.*
439 *Bull. Acad. Sinica* **1999**, *40* (3), 177-183.

440 20. Reyes, L.; Villarreal, J.; Cisneros-Zevallos, L., The increase in antioxidant capacity after wounding depends
441 on the type of fruit or vegetable tissue. *Food Chem.* **2007**, *101* (3), 1254-1262.

442 21. Harrison, H.; Peterson, J., Simulated drought induces high caffeic acid contents in storage root periderm of
443 greenhouse grown sweetpotatoes. *Hortscience* **2006**, *41* (1), 277-278.

444 22. Ishiguro, K.; Yahara, S.; Yoshimoto, M., Changes in polyphenolic content and radical-scavenging activity
445 of sweetpotato (*Ipomoea batatas* L.) during storage at optimal and low temperatures. *J. Agric. Food Chem.*
446 **2007**, 10773-10778, DOI: 10.1021/jf072256v

447 23. Nakamura, Y.; Kuranouchi, T.; Ohara-Takada, A.; Katayama, K., The Effects of beta-Amylase Activity and
448 Starch Pasting Temperature on Maltose Generation in Steamed Storage Roots of Sweet Potato. *J. Jpn. Soc.*
449 *Food Sci.* **2014**, *61* (12), 577-585, DOI: 10.3136/nskk.61.577.

450 24. Schwartz, E.; Tzulker, R.; Glazer, I.; Bar-Ya'akov, I.; Wiesman, Z.; Tripler, E.; Bar-Ilan, I.; Fromm, H.;
451 Borochov-Neori, H.; Holland, D.; Amir, R., Environmental Conditions Affect the Color, Taste, and
452 Antioxidant Capacity of 11 Pomegranate Accessions' Fruits. *J. Agric. Food Chem.* **2009**, *57* (19), 9197-9209,
453 DOI: 10.1021/jf901466c.

454 25. Matsushita, K.; Sakayori, T.; Ikeda, T., The effect of high air temperature on anthocyanin concentration and
455 the expressions of its biosynthetic genes in strawberry 'Sachinoka'. *Environ. Control Biol.* **2016**, *54* (2), 101-
456 107, DOI: 10.2525/ecb.54.101.

457 26. Takos, A. M.; Jaffé, F. W.; Jacob, S. R.; Bogs, J.; Robinson, S. P.; Walker, A. R., Light-induced expression of
458 a MYB gene regulates anthocyanin biosynthesis in red apples. *Plant Physiol.* **2006**, *142* (3), 1216-32, DOI:
459 10.1104/pp.106.088104.

460 27. Villavicencio, L.; Blankenship, S.; Yencho, G.; Thomas, J.; Raper, C., Temperature effect on skin adhesion,
461 cell wall enzyme activity, lignin content, anthocyanins, growth parameters, and periderm histochemistry
462 of sweetpotato. *J. Am. Soc. Hortic. Sci.* **2007**, *132* (5), 729-738.

463 28. Kobayashi, T.; Ikoma, H.; Mochida, H., Effect of cultural conditions on anthocyanin content of purple-
464 colored sweetpotato. *Sweetpotato Res. Front* **1998**, *6*, 2.

465 29. Tomas-Barberan, F.; Espin, J., Phenolic compounds and related enzymes as determinants of quality in fruits
466 and vegetables. *J. Sci. Food Agr.* **2001**, *81* (9), 853-876, DOI: 10.1002/jsfa.885.

467 30. Holton, T.; Cornish, E., Genetics and biochemistry of anthocyanin biosynthesis. *Plant Cell* **1995**, *7* (7), 1071-
468 1083, DOI: 10.1105/tpc.7.7.1071.

469 31. Konczak, I.; Terahara, N.; Yoshimoto, M.; Nakatani, M.; Yoshinaga, M.; Yamakawa, O., Regulating the
470 composition of anthocyanins and phenolic acids in a sweetpotato cell culture towards production of
471 polyphenolic complex with enhanced physiological activity. *Trends Food Sci. Tech.* **2005**, *16* (9), 377-388,
472 DOI: 10.1016/j.tifs.2005.02.007.

473 32. Vogt, T., Phenylpropanoid Biosynthesis. *Mol. Plant* **2010**, *3* (1), 2-20, DOI: 10.1093/mp/ssp106.

474 33. Mano, H.; Ogasawara, F.; Sato, K.; Higo, H.; Minobe, Y., Isolation of a regulatory gene of anthocyanin
475 biosynthesis in tuberous roots of purple-fleshed sweet potato. *Plant Physiol.* **2007**, *143* (3), 1252-1268, DOI:
476 10.1104/pp.106.094425.

477 34. Park, S. C.; Kim, Y. H.; Kim, S. H.; Jeong, Y. J.; Kim, C. Y.; Lee, J. S.; Bae, J. Y.; Ahn, M. J.; Jeong, J. C.; Lee,
478 H. S.; Kwak, S. S., Overexpression of the IbMYB1 gene in an orange-fleshed sweet potato cultivar produces
479 a dual-pigmented transgenic sweet potato with improved antioxidant activity. *Physiol. Plant* **2015**, *153* (4),
480 525-37, DOI: 10.1111/ppl.12281.

481 35. Kojima, M.; Kondo, T., An enzyme in sweet-potato root which catalyzes the conversion of chlorogenic acid,
482 3-caffeoquinic acid, to isochlorogenic acid, 3,5-dicaffeoylquinic acid. *Agr. Biol. Chem. Tokyo* **1985**, *49* (8),
483 2467-2469.

484 36. Oki, T.; Sawai, Y.; Sato-Furukawa, M.; Suda, I., Validation of pH Differential Method for the Determination
485 of Total Anthocyanin Content in Black Rice and Black Soybean with Interlaboratory Comparison. *Bunseki
486 Kagaku* **2011**, *60* (10), 819-824.

487 37. Terahara, N.; Oki, T.; Matsui, T.; Fukui, K.; Sugita, K.; Matsumoto, K.; Suda, I., Simultaneous determination
488 of major anthocyanins in purple sweet potato. *J. Jpn. Soc. Food Sci.* **2007**, *54* (1), 33-38.

489 **Sample Availability:** Samples of the compounds are not available from the authors.