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Abstract

New exact solutions to conformable time fractional EW and modified
EW equations are constructed by using Sine-Gordon expansion approach.
The fractional traveling wave transform and homogeneous balance have sig-
nificant roles in the solution procedure. The predicted solution is of the
form of some finite series of multiplication of powers of cos and sin func-
tions. The relation among trigonometric and hyperbolic functions in sense
of Sine-Gordon expansion gives opportunity to construct the solutions in
terms of hyperbolic functions.
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1 Introduction

In the recent several decades, many developments in computer algebra field have
been witnessed. These developments have also lead to solve many nonlinear PDE
problems symbolically due to faster symbolic algebraic manipulations when com-
pared with study with pencil. Moreover, more methods have been introduced and
implemented to lots of nonlinear PDEs. The prominent ones of those methods are
various types of simple ansatz techniques with positive integer powers [1–3]. First
integral method [4–6] is an alternative technique to simple ansatzes to construct
exact solutions to nonlinear PDEs. Exp function method [7, 8] assumes the pre-
dicted solutions as a finite series of some particular functions. (G′/G) expansion
method [9, 10] is an alternative that approaches the solution with a finite power
series of a function satisfying a particular ODE. Trigonometric and hyperbolic type
solutions to nonlinear PDEs can be determined by implementation of sine-cosine
approach [11–13].
Later on, the implementations of those methods have been extended to solutions
of fractional nonlinear PDEs [14–23]. Existence of some particular traveling wave
transforms has given opportunity to exact solutions to fractional PDEs with non-
linear terms. Physical interpretation of fractional derivatives has been compre-
hended deeply by examining plots of solutions in both time fractional and space-
time fractional cases.
Even though there exist various definitions of fractional derivative in the literature,
we focus time fractional equal width equation (fEWE)

Dγ
t u+ puux + qDγ

t uxx = 0, t > 0 (1)

and time fractional modified equal width equation (fmEWE)

Dγ
t u+ pu2ux + qDγ

t uxx = 0, t > 0 (2)

where u is function of the independent variables t and x, p and q are real parame-
ters. One should note that Dγ

t is conformal fractional derivative operator defined
in [24]. The original of the fEWE with integer order appeared in the study of
Morrison et al. [25]. This equation (when γ = 1) has a simple relation with the
well-known RLW or BBM equation. The integer ordered EWE has singular wave
solutions expressed in forms of powers of sech function [25].

2 Fractional Derivative in Conformable Sense

γ.th order conformable derivative of a function y = y(t) is defined as

Dγ
t (y(t)) = lim

τ→0

y(t+ τt1−γ)− y(t)

τ
, t > 0, γ ∈ (0, 1]. (3)
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where y = y(t) : [0,∞) → R [24]. This recent definition of fractional derivative
satisfies the following properties.

Theorem 1 Let u = u(t) and y = y(t) are γ-differentiable for all positive t. Then,

• Dγ
t (d1u(t) + d2y(t)) = d1D

γ
t (u(t)) + d2D

γ
t (y(t))

• Dγ
t (tm) = mtm−γ,∀m ∈ R

• Dγ
t (d3) = 0, for all constant function u(t) = d3

• Dγ
t (u(t)y(t)) = u(t)Dγ

t (y(t)) + y(t)Dγ
t (u(t))

• Dγ
t (u(t)

y(t)
) =

y(t)Dγ
t (u(t))− u(t)Dγ

t (y(t))

y2(t)

• Dγ
t (u(t)) = t1−γ du(t)

dt

for ∀d1, d2, d3 ∈ R [26, 27].

Many significant properties like the chain rule, Laplace transform and Taylor series
expansion are valid for this definition of fractional derivative operator [28].

Theorem 2 Let u = u(t) be an γ-conformable differentiable function. Then,

Dγ
t (u ◦ y)(t) = t1−γy′(t)u′(y(t)) (4)

where y = y(t) is defined in the range of u(t) and differentiable in the classical
sense.

3 Sine-Gordon Equation (SGE) Approach

Consider the one dimensional SGE of the form

∂2u

∂x2
− ∂2u

∂t2
= m2 sinu, m is constant (5)

where u = u(x, t). The traveling wave transform in one dimension u(x, t) = U(η)
with η = a(x− νtα/α) reduces the SGE to the ODE

d2U

dη2
=

m2

a2(1− ν2)
sinU (6)
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where ν indicates the velocity of the wave described in the traveling wave transform
[29]. Some algebra and substitutions converts the transformed equation to(

d(U/2)

dη

)2

=
m2

a2(1− ν2)
sin2 U/2 + C (7)

where C is integration constant and assumed zero. Assume that H̃(η) = U(η)/2
and m2/(a2(1− ν2)) = 1. Then, (7) takes the form

d(H̃)

dη
= sin H̃ (8)

Thus, (8) gives the following relations

sin H̃(η) =
2ceη

c2e2η + 1

∣∣∣∣
c=1

= sech η (9)

or

cos H̃(η) =
c2e2η − 1

c2e2η + 1

∣∣∣∣
c=1

= tanh η (10)

where c 6= 0 is integral constant.
On the other hand, the governing fractional PDE

Ω(u,Dγ
t u, ux, D

2γ
tt u, uxx, . . .) = 0 (11)

is reduced to an ODE of the form

Ω̃(U,U ′, U ′′, . . .) = 0 (12)

by using the fractional traveling wave transform u(x, t) = U(η) with the transform
variable η = a(x− νtγ/γ). Then, a predicted solution to (12) of the form

U(η) = A0 +
s∑
i=1

tanhi−1(η) (Bi sech η + Ai tanh η) (13)

is constructed. This solution can be expressed in terms of w as

U(H̃) = A0 +
s∑
i=1

cosi−1(H̃)
(
Bi sin H̃ + Ai cos H̃

)
(14)

due to the relations (9) - (10). The solution process begins by finding s by the
help of homogenous balance procedure for (12). The determination of s gives the
exact power of the solution in series of trigonometric and hyperbolic functions.
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After substitution of the predicted solution (14) into (12) and some algebra, the
coefficients of powers of sin H̃ cos H̃ are assumed as zero. Thus, an algebraic sys-
tem of equations are obtained. This system is solved for the predicted solution
coefficients A0, A1, B1, . . . and one or both of transform coefficients a, ν. If one can
find a solution satisfying the conditions given above, then, the solutions are con-
structed by using (9) - (10) and η. The final forms of the solutions are written by
substitution of x and t with the relations of transform parameters a and ν instead
of η.

4 Solutions to the conformable time fractional

EWE

The time fractional EWE of the form (1) is reduced to the ODE

−aνU +
1

2
paU2 − qνa3U

′′
= C (15)

where C is constant by the use of fractional traveling wave transform. The balance
between U2 and U

′′
gives s = 2. Thus, the predicted solution is constructed as

U(η) = A0 + A1 cos H̃ +B1 sin H̃ + A2 cos2 H̃ +B2 cos H̃ sin H̃ (16)

Substitution of the predicted solution (16) into (15) gives

−
(

cos
(
H̃ (η)

))2
aν A2 − cos

(
H̃ (η)

)
aν A1 − sin

(
H̃ (η)

)
aν B1 + 1/2

(
cos
(
H̃ (η)

))4
apA2

2 + 1/2
(

cos
(
H̃ (η)

))2
apA1

2

+ 1/2
(

sin
(
H̃ (η)

))2
apB1

2 − C + 2 cos
(
H̃ (η)

)(
sin
(
H̃ (η)

))2
a3ν qA1 −

(
cos
(
H̃ (η)

))3
a3ν qB2 sin (w (η))

−
(

cos
(
H̃ (η)

))2
a3ν qB1 sin

(
H̃ (η)

)
+ 4

(
cos
(
H̃ (η)

))2 (
sin
(
H̃ (η)

))2
a3ν qA2 + 5 cos

(
H̃ (η)

)(
sin
(
H̃ (η)

))3
a3ν qB2

− 2
(

sin
(
H̃ (η)

))4
a3ν qA2 + (sin (w (η)))3 a3ν qB1 + 1/2 apA0

2 − aν A0 − cos
(
H̃ (η)

)
sin
(
H̃ (η)

)
aν B2

+ 1/2
(

cos
(
H̃ (η)

))2 (
sin
(
H̃ (η)

))2
apB2

2 +
(

cos
(
H̃ (η)

))3
apA1A2 +

(
cos
(
H̃ (η)

))2
apA0A2 + cos

(
H̃ (η)

)
apA0A1

+ sin
(
H̃ (η)

)
apA0B1 +

(
cos
(
H̃ (η)

))3
sin
(
H̃ (η)

)
apA2B2 +

(
cos
(
H̃ (η)

))2
sin
(
H̃ (η)

)
apA1B2

+
(

cos
(
H̃ (η)

))2
sin (w (η)) apA2B1 + cos

(
H̃ (η)

)(
sin
(
H̃ (η)

))2
apB1B2

+ cos
(
H̃ (η)

)
sin
(
H̃ (η)

)
apA0B2 + cos

(
H̃ (η)

)
sin
(
H̃ (η)

)
apA1B1 = 0

(17)

Following usage of some trigonometric identities and simplifications, the coeffi-
cients of multiplications of powers of sin and cos functions are equated to zero. The
solution of this resultant algebraic system of equations for Ai, i = 1, 2, 3, Bj, j =
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1, 2 and the transform coefficients a and/or ν gives

ν =

√
2Cp

q2a5 − a
, A0 = −

(5a2q − 1)

√
2Cp

q2a5 − a
p

, A1 = 0, A2 =

6a2q

√
2Cp

q2a5 − a
p

, B1 = 0, B2 = 6qa

√
−

2aC

pq2a4 − p

ν =

√
2Cp

q2a5 − a
, A0 = −

(5a2q − 1)

√
2Cp

q2a5 − a
p

, A1 = 0, A2 =

6a2q

√
2Cp

q2a5 − a
p

, B1 = 0, B2 = −6qa

√
−

2aC

pq2a4 − p

ν = −

√
2Cp

q2a5 − a
, A0 = −

(5a2q − 1)

√
2Cp

q2a5 − a
p

, A1 = 0, A2 =

6a2q

√
2Cp

q2a5 − a
p

, B1 = 0, B2 = 6qa

√
−

2aC

pq2a4 − p

ν = −

√
2Cp

q2a5 − a
, A0 = −

(5a2q − 1)

√
2Cp

q2a5 − a
p

, A1 = 0, A2 =

6a2q

√
2Cp

q2a5 − a
p

, B1 = 0, B2 = −6qa

√
−

2aC

pq2a4 − p

ν =

√
2Cp

16q2a5 − a
, A0 = −

(8a2q − 1)

√
2Cp

16q2a5 − a
p

, A1 = 0, A2 =

12a2q

√
2Cp

16q2a5 − a
p

, B1 = 0, B2 = 0

ν = −

√
2Cp

16q2a5 − a
, A0 =

(8a2q − 1)

√
2Cp

16q2a5 − a
p

, A1 = 0, A2 = −
12a2q

√
2Cp

16q2a5 − a
p

, B1 = 0, B2 = 0

(18)

Using these values of coefficients, the solutions to fractional EWE (1) are expressed
explicitly as

u1,2,3,4(x, t) = −
(5a2q − 1)

√
2Cp

q2a5 − a
p

+

6a2q

√
2Cp

q2a5 − a
p

tanh2 a(x− ν
tγ

γ
)± 6qa

√
−

2aC

pq2a4 − p
tanh a(x− ν

tγ

γ
) sech a(x− ν

tγ

γ
)

(19)

for ν = ±
√

(2Cp)/(q2a5 − a). Similarly,

u5,6(x, t) = ∓
(8a2q − 1)

√
2Cp

16q2a5 − a
p

±
12a2q

√
2Cp

16q2a5 − a
p

tanh2 a(x− ν
tγ

γ
)

(20)

for ν = ±
√

(2Cp)/(16q2a5 − a). We demonstrate the solution u5(x, t) for some
particular choices of parameters as a = −1/2, q = 1/2, p = −1, C = −1. These
parameters gives the particular form of the solution as

u(x, t) =
√

12 tanh2

(
−x

2
−
√

48tγ

6γ

)
(21)

This solution is simulated for various values of γ in Fig 1(a)-1(d). This solution
models propagation of a negative pulse along the negative x-direction without
changing its shape and height. When γ = 0.20, the initial pulse of propagates
faster at the beginning but after some time it slows down, Fig 1(a). Increase of
γ towards 1 directly effects the velocity of the pulse and the propagation velocity
approaches some constant value. Finally, γ = 1 causes a constant velocity, Fig
1(d). The shape and height of the initial pulse are conserved during propagation.

6

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 December 2017                   doi:10.20944/preprints201712.0188.v1

http://dx.doi.org/10.20944/preprints201712.0188.v1


(a) γ = 0.20 (b) γ = 0.40

(c) γ = 0.70 (d) γ = 1

Figure 1: The solution u5(x, t) for various derivative orders

5 Solutions to the conformable time fractional

mEWE

The fractional traveling wave transform reduces the mEWE to

−aνU +
1

3
paU3 − qνa3U

′′
= C (22)

where C is integration constant. The homogeneous balance between U3 and U
′′

gives s = 1. Thus, the predicted solution takes the form

U(H̃) = A0 + A1 cos H̃ +B1 sin H̃ (23)
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in terms of w. Substitution of this solution into (22)gives

2 cos
(
H̃ (η)

)(
sin
(
H̃ (η)

))2

a3ν qA1 +
(

sin
(
H̃ (η)

))3

a3ν qB1 + 1/3
(

cos
(
H̃ (η)

))3

apA1
3

+
(

cos
(
H̃ (η)

))2

sin
(
H̃ (η)

)
apA1

2B1 + cos
(
H̃ (η)

)(
sin
(
H̃ (η)

))2

apA1B1
2

+ 1/3
(

sin
(
H̃ (η)

))3

apB1
3 +

(
cos
(
H̃ (η)

))2

apA0A1
2 + 2 cos

(
H̃ (η)

)
sin
(
H̃ (η)

)
apA0A1B1

+
(

sin
(
H̃ (η)

))2

apA0B1
2 + cos

(
H̃ (η)

)
apA0

2A1 + sin
(
H̃ (η)

)
apA0

2B1 + 1/3 apA0
3

−
(

cos
(
H̃ (η)

))2

a3ν qB1 sin
(
H̃ (η)

)
− cos

(
H̃ (η)

)
aν A1 − sin

(
H̃ (η)

)
aν B1 − aν A0 − C = 0

(24)
Using some trigonometric identities and simplifications, we equate the coefficients
of powers of multiplications of cos and sin functions and the constants to zero.
Thus, we find a system of algebraic equations. Solution of this system for a, ν,
A0, A1, B1 and C gives

a =

√
−1

q
,A0 = 0,A1 = 0,B1 =

√
6ν

p

a =

√
−1

q
,A0 = 0,A1 = 0,B1 = −

√
6ν

p

a = −
√
−1

q
,A0 = 0,A1 = 0,B1 =

√
6ν

p

a = −
√
−1

q
,A0 = 0,A1 = 0,B1 = −

√
6ν

p

(25)

for C = 0 and arbitrary ν. Thus, the solutions to (2) are constructed as

u7,8 = ±
√

6ν

p
sech

(√
−1

q
(x− ν t

γ

γ
)

)
(26)

and

u9,10 = ±
√

6ν

p
sech

(
−
√
−1

q
(x− ν t

γ

γ
)

)
(27)

A particular form of the solution u9(x, t) is determined as

u(x, t) =
√

30 sech

(
x− 5tγ

γ

)
(28)

by using the parameters as ν = 5, q = −1, p = 1. This solution models propagation
of an initial positive pulse along x-axis. As time proceeds, the initial pulse travels
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by keeping its shape and height. This particular solution is depicted for various
values of γ in Fig 2(a)-2(d) in some finite domain of x and t. When γ is 0.20 and
0.40, we observe that the pulse moves faster at the beginning, but slows down as
time goes, Fig 2(a)-2(b). The change of velocity is hardly observed for γ = 0.70,
Fig 2(c). The velocity is constant with the choice γ = 1, Fig 2(d).

(a) γ = 0.20 (b) γ = 0.40

(c) γ = 0.70 (d) γ = 1

Figure 2: The solution u9(x, t) for various derivative orders

6 Conclusion

SGE method was implemented to extract the exact solutions to conformable fEWE
and fmEWE equations. Fractional traveling wave transform reduces the governing
equation to some ODEs. The homogeneous balance principle has a significant
role to determine the degree of the series of the solutions. The solutions consist
of multiplications of powers of sech and tanh functions. Once the degree and

9
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structure of predicted solution was determined, it was directly substituted into
the resultant ODE. The algebraic system constructed by equating the coefficients
to zero was solved to determine the coefficients of the predicted solution and the
parameters of fractional traveling wave transform. Illustrations of some particular
forms of the solutions indicate the effects of γ to the initial pulses.
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