When extract building from high resolution remote sensing image with meter/sub-meter accuracy, the shade of trees and interference of roads are the main factors of reducing the extraction accuracy. Proposed a Bayesian Convolutional Neural Networks(BCNET) model base on standard fully convolutional networks(FCN) to solve these problems. First take building with no shade or artificial removal of shade as Sample-A, woodland as Sample-B, road as Sample-C. Set up 3 sample libraries. Learn these sample libraries respectively, get their own set of feature vector; Mixture Gauss model these feature vector set, evaluate the conditional probability density function of mixture of noise object and roofs; Improve the standard FCN from the 2 aspect:(1) Introduce atrous convolution. (2) Take conditional probability density function as the activation function of the last convolution. Carry out experiment using unmanned aerial vehicle(UVA) image, the results show that BCNET model can effectively eliminate the influence of trees and roads, the building extraction accuracy can reach 97%.
Keywords:
Subject: Computer Science and Mathematics - Analysis
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.