

1 Article

2

The development of a 1-D integrated hydro- 3 mechanical model based on flume tests, to unravel 4 different hydrological triggering processes of debris 5 flows

6 **Theo W.J. van Asch** ^{1,2}, **Bin Yu** ², **Wei Hu** ²7 ¹. Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TC, Utrecht, the Netherlands.8 ². State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of
9 Technology, Chengdu, Sichuan, 610059, P.R. China; 471174592@qq.com ; 513933225@qq.com.10 * Corresponding author: Th.W.J. van Asch Nachtegaalstraat 6 4116 BP Buren The Netherlands;
11 t.w.j.vanasch@uu.nl Tel: 00 31 344 57144912
13 **Abstract:** Many studies, which try to analyze conditions for debris flow development, ignore
14 the type of initiation. Therefore this paper deals with the following questions: What type of hydro-
15 mechanical triggering mechanisms for debris flows can we distinguish in upstream channels of
16 debris flow prone gullies? Which are the main parameters controlling the type and temporal
17 sequence of these triggering processes and what is their influence on the meteorological thresholds
18 for debris flow initiation? A series of laboratory experiments were carried out in a flume, 8 m long
19 and with a width of 0.3 m. to detect the conditions for different types of triggering mechanisms. The
20 flume experiments show a sequence of hydrological processes triggering debris flows, namely
21 erosion and transport by intensive overland flow and by infiltrating water causing failure of
22 channel bed material. On the basis of these experiments an integrated hydro-mechanical model was
23 developed, which describes Hortonian and Saturation overland flow, maximum sediment
24 transport, through flow and failure of bed material. The model was calibrated and validated using
25 process indicator values measured during the experiments in the flume. Virtual model simulations,
26 carried out in a schematic hypothetical source area of a catchment show that slope angle and
27 hydraulic conductivity of the bed material determine the type and sequence of these triggering
28 processes. It was also clearly demonstrated that the type of hydrological triggering process and the
29 influencing geometrical and hydro-mechanical parameters may have a great influence on rainfall
30 intensity-duration threshold curves for the start of debris flows.31 **Keywords:** triggering of debris flows; overland flow; infiltration; laboratory experiments;
32 modelling; rain intensity-duration threshold curves.33
34

1 Introduction

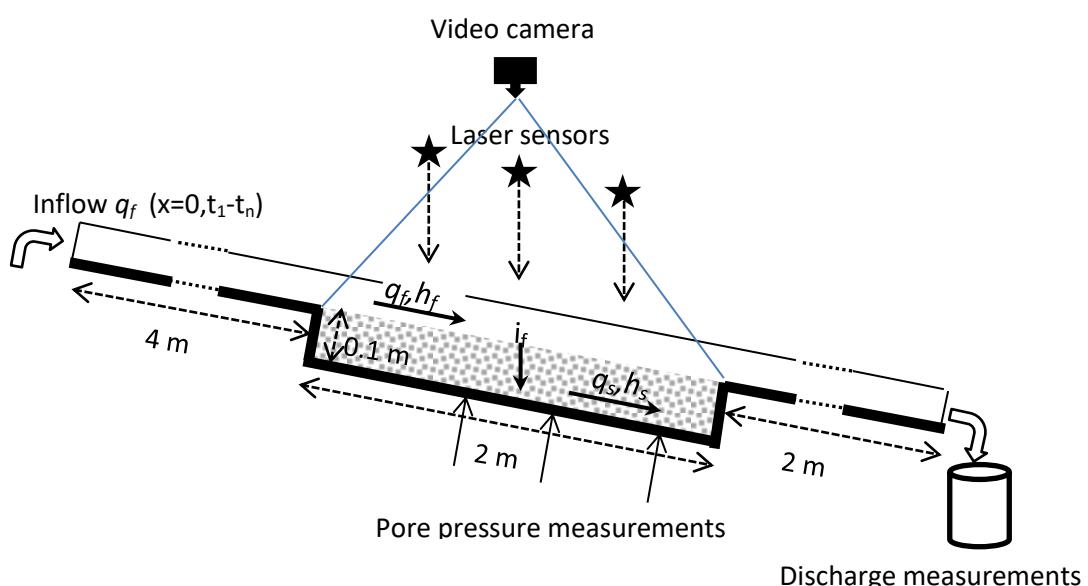
35 A debris flow is one of the most dangerous types of mass movement because depending on the
36 rheology and topography it can reach a very high speed and large run-out distance. Important
37 study aspects are the mechanism and boundary condition of the initiation process of a debris flow,
38 because it determines the meteorological threshold conditions and further evolution and it will
39 provide clues for future mitigation strategies [1].40 One can make different classifications of initiation mechanisms based on different viewpoints
41 [1] It was among others [2-3], who stressed the importance of the infiltration capacity of the soil as a
42 key factor for either the development of shallow landslides or surficial erosion and transport of
43 material by overland flow, that might create different types of flow like mass movements. Effective
44 overland flow driven triggering processes are mainly concentrated in channels where high water
45 discharges, severe erosion and transport lead to high solid concentrations generating debris flows

46 [4-9]. Material is supplied to these debris flows by detachment and transport of the bed material but
47 also through lateral erosion of the channel bed. The channel can be partly or totally blocked by
48 landslide dams. High run off discharges eroding these landslide dams can also lead to initiation
49 and rapid grow of debris flows ([10-12]. Landslide damming can also be initiated by rapid incision
50 of the channel bed destabilizing the side walls [13]. With infiltrating driven triggering mechanisms,
51 shallow landslides are generated, which may or may not transform into debris flows. This failure
52 mechanism by infiltrating water can occur in channel beds filled with loose material [14] and on
53 planar slopes where shallow landslides can also transform into debris flows [15-18]. The
54 transformation of a failed mass into a debris flow is rather complex and depends on various hydro-
55 mechanical processes related to pore pressure development and supply of abundant overland flow
56 water further mobilizing the failed mass ([19-23].

57 Several authors analyzed partly the role of hydro-mechanical and morphometric factors
58 controlling the type of initiation of debris flows. Berti [24] analyzed the hydrological factors for the
59 generation of debris flows in typical source areas in the Italian Alps by modelling channel overland
60 in the channel bed from a source area as a response to rainfall impulses. Kean [25] proposed an
61 integrated hydro-geotechnical dynamic model to describe sediment transport by overland flow and
62 consequent mass failure transforming into debris flow surges. Hu [26] highlighted the initial soil
63 moisture and thus infiltration capacity as a controlling factor for the type of initiation: wet soils
64 created mainly surficial run-off and erosion and incision, bank failure, damming and debris flow
65 development while dry soils showed mainly infiltration and landslide failure and debris flow
66 initiation .[1] Zhuang focused more on the slope gradient as a controlling factor for different types
67 of initiation. Their flume studies revealed that at gentler slope gradients around $10^{\circ} \pm 2^{\circ}$, incision
68 and bank failure is dominant, creating channel damming and dam failure, inducing debris flows.
69 At intermediate slopes around $15^{\circ} \pm 3^{\circ}$ erosion of bed material occur at high discharges. The high
70 sediment transport capacity with high sediment concentrations is sufficient to create debris flows.
71 At steeper slopes around $21^{\circ} \pm 4^{\circ}$ bed failure by infiltrating overland flow water with debris flow
72 formation is the most dominant process.

73 Meteorological thresholds for the initiation of debris flows are closely related to the process of
74 initiation. In many studies about these meteorological thresholds, no clear distinction was made
75 between the types of triggering ([27]. The assessment of these thresholds in relation to various
76 morphometric and geological factors was made in most cases using statistical techniques [28-30].

77 Until now only isolated aspects of the hydrological triggering system of debris flows has been
78 studied. There is a need for a comprehensive frame work which gives insight in the controlling
79 factors for the evolution of different triggering systems in upstream channels of debris flow gullies.
80 Therefore this paper will try to give answers on the following questions:


- 81 1. What type of hydro-mechanical triggering mechanisms for debris flows can we
82 distinguish in upstream channels of debris flow prone gullies?
- 83 2. Which are the main parameters and in what way are they controlling the type and
84 temporal sequence of these triggering processes?
- 85 3. What is the influence of hydro-mechanical parameters and related triggering processes
86 on the meteorological thresholds for debris flow initiation?

87 In order to answer these questions we have carried out a number of flume tests to detect the
88 conditions for different types of hydro-mechanical triggering mechanisms of debris flows (Section
89 2). Based on the process information revealed by these experiments we will develop an integrated
90 hydro-mechanical model describing these triggering processes (Section 3). The model will be
91 calibrated and validated using indicator values obtained from the processes measured in the flume
92 (Section 4). Virtual model simulations will be carried out in a schematic hypothetical source area of
93 a catchment to make a frame work of the type and sequence of these triggering processes as a
94 function of slope angle and the hydraulic conductivity of the bed material (Section 5). The model
95 will also be used for sensitivity analyses to study the influence of important geometrical and hydro-
96 mechanical parameters and the related type of initiation process on rainfall intensity-duration
97 threshold curves, for the start of debris flows (Section 6).

98

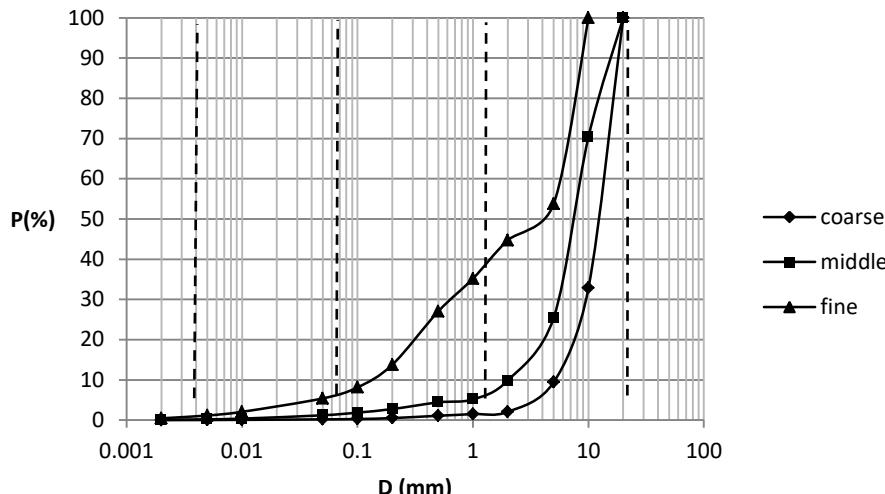
99 **2 Flume tests to reveal types of debris flow triggering**100 *2.1 Set up of the flume experiments*

101 A flume was designed to see whether we could simulate in an 1D frame work the initiation of
 102 debris flows by different hydro-mechanical triggering mechanisms. (Figure 1). The flume has a length of 8 m and a width of 0.3 m. The material simulating the channel bed with a thickness of 0.1 m and a width of 0.3 m is positioned at a distance of 4 m from the top of the flume and has a length of 2 m. The material was brought into the flume in layers of about 2 cm and was slightly compacted (dry density see Table 1). There is an outflow at a distance of 2 m from the lower end of the channel bed (Figure 1). The water is entered at the upper end of the flume with a controlled discharge simulating run on water from an upstream area.

109

Figure 1: Design of the flume test. For explanation of the parameters see text

Particle size class	Friction ϕ (°)	Density γ kNm^{-3}	Hydraulic conductivity (m s^{-1})	D_{30} (mm)	D_{50} (mm)	D_{90} (mm)
Coarse	34.6	15.4	4.91E-03	9	11	18
Medium	33.7	16.3	3.28E-03	4	6	16
Fine	29.2	19.5	0.54E-03	0.7	1.6	8


110

111 **Table I.** Hydro-mechanical characteristics of three types of bed material, used in the flume tests.

112 Friction means friction angle of the material in degrees. $D_{30/50}$ means that 30/50% of the sample has a lower diameter than what is indicated in the column.

113

114 Three types of material were used in the experiments with different grain size distributions
 115 (Figure 2). We could vary the slope angle of the flume between 14° and 20° . The initial moisture
 116 content of the flume material was more or less dry. The initial moisture content is important for the
 117 infiltration capacity but since we used in the laboratory a large influx of water from above into
 118 coarse bed material, we ignored the effect of the Sorpetivity (related to the initial moisture content)
 on the infiltration capacity of the bed material.

119

120 Figure 2: Cumulative grain size distribution of the three bed materials, used in the flume tests

121 The friction of the three materials was measured with the conventional direct shear apparatus
 122 [31]. The hydraulic conductivity of saturated cylindrical soil samples of the three grainsizes was
 123 measured with a constant head gradient between the upper and lower end of the sample ([32].
 124 Table I gives further information about the friction, hydraulic conductivity and gradient of the
 125 materials used for the experiments.

126 Pore pressure was measured at three places (Figure 1) at the bottom of the flume. The pore
 127 pressure sensors, type :YP4049, were produced by Yom Technology Company. The measuring
 128 range of pore pressure is from -100kPa to +100kPa.

129 Laser sensors (ZLDS100 ZSY Group; resolution 0.03 % FS) at three points with a spacing of 0.5
 130 m (Figure 1) were used to monitor topographical heights, especially with the aim to monitor abrupt
 131 changes in relief due to bed failure.

132 In addition video-recordings were performed (Figure 1) to follow the sequence of processes in
 133 the course of the experiments. During the process of overland flow erosion, samples were taken six
 134 times for more or less steady state conditions at the outlet of the Flume (Figure 1). The discharge of
 135 water with sediments was collected in baskets during 5 seconds. The sediments were sieved, dried
 136 and weighted to measure the concentration of the fluid.

137 An integrated model (Section 3) for surface and sub surface flow, sediment transport and bed
 138 slope stability was developed to describe the processes in the flume, which was used later to
 139 analyze the sequence of different initiation processes at the field scale.

140 *2.2 Observations on different types of hydrological triggering mechanisms in flume tests.*

141 The flume tests were carried out in order to reveal different types of hydrological triggering
 142 mechanisms, which may create debris flows and to establish indicators related to these triggering
 143 processes which will be used to calibrate and validate our theoretical model (Section 4) During the
 144 flume tests with the three bed materials under different slope angles, observation were carried out
 145 by means of video images and the laser sensors. Some of the observed process indicators are given
 146 in Table II

147

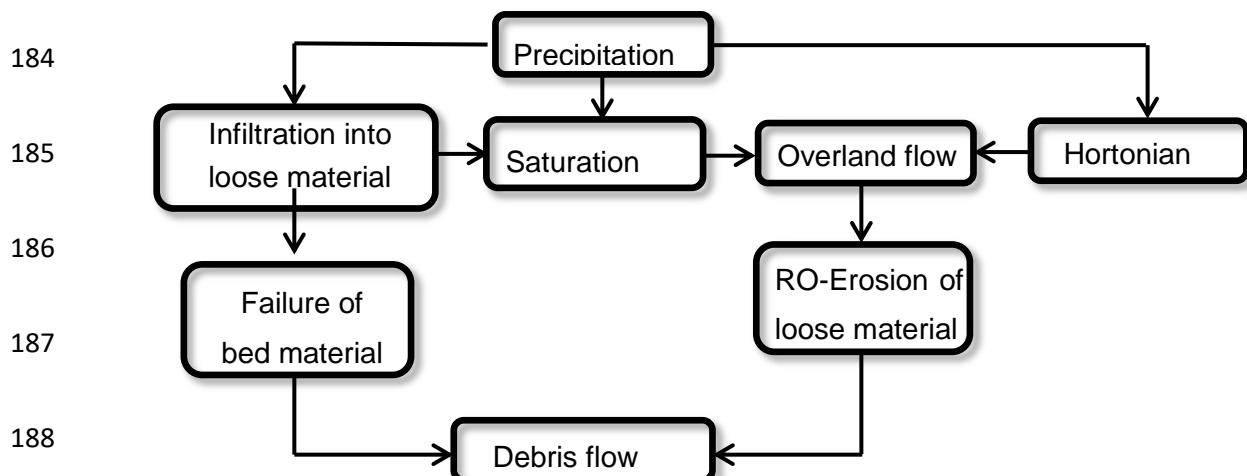
148

Grain size	Slope	Inflow $\text{l/s}^{-1}\text{m}^{-1}$	Time to run-off initiation (sec)		Time to bed failure (sec)	
Coarse 0.0049	20^0	0,18	402		411	c
	18^0	0,22	103		110	
	16^0	0,29	63		72	
	15^0	0,40	73			
	14^0	0,41	59			
Medium 0.0033	20^0	0,11	168	a	168	
	18^0	0,13	140		140	
	16^0	0,16	54		106	
	15^0	0,18	27			
	14^0	0,19	46			
Fine 0.00054	20^0	0,03	30	b	270	d
	18^0	0,06	220		613	
	16^0	0,09	90		270	
	15^0	0,10	110			
	14^0	0,11	102			

149

150 **Table II.** Observed time to overland flow and bed failure, overland flow type and failure mode in
 151 flume experiments for three types of bed material and for different bed slope angles: a) Saturation
 152 overland flow; b) Hortonian overlandflow; c) slow continuous bed failure; d) rapid failure; nf: no
 153 failure.

154 In slope hydrology two types of overland flow can be distinguished: Saturation overland flow
 155 and Hortonian overland flow [32]. These two types could be distinguished during the different
 156 flume experiments (Table II). Saturation overland flow was characterized, after complete saturation
 157 of the soil, by a more or less spatially randomly ponding of water at the soil surface, while
 158 Hortonian overland flow, which occurs when the rainfall intensity or supply of overland flow water
 159 is larger than the infiltration capacity of the soil, showed a more concentrated continuous flow over
 160 the length of the flume bed. According to these visual indicators we could establish a boundary
 161 between Saturation overland flow and Hortonian overland flow, which in our flume tests was
 162 found in the medium grain size materials at a slope gradient of 16^0 (Table II). This could be verified
 163 with our model simulation (see below Section 4.2). For courser materials (Ks values of $4.19\text{E-}03$ and
 164 $3.28\text{E-}03 \text{ m s}^{-1}$) and higher slope angles ($> 16^0$) the time to Saturation overland flow is immediately
 165 followed by failure or with a small delay until 9 seconds. Also one can clearly observe that the time
 166 to Saturation overland flow (and thus failure) is decreasing with decreasing slope angle (Table II) .


167 Hortonian overland flow [32].was initiated in most cases on the finer sediments, which is
 168 ascribed to the lower infiltration capacity ($K_s = 0.54\text{E-}03 \text{ m s}^{-1}$). Bed failure in this case occurred a
 169 certain time after the start of Hortonian overland flow with a time lag ranging between 35 and 160
 170 seconds (Table II), because in this case, due to the lower percolation rate it takes time to bring the
 171 groundwater in the bed material to a critical failure level.

172 Bed failure initiation is controlled by the bed gradient and the internal friction of the material
 173 and occurred in our experiments on slopes of approximately 16 degrees and higher. At lower slope
 174 angles no bed failure occurred (nf in Table II) and sediment delivery occurred only by overland
 175 flow erosion

176 The medium and coarse materials show bed failure characterized by slow movements over the
 177 total depth combined with fast surficial entrainment of grains by saturated overland flow.
 178 Movement of bed material is slow and continuous or sometimes intermittent showing a surging

179 pattern (Table II). Instead of the slow and more flow like movements observed for the medium and
 180 coarse sediments, failure of the fine sediments occurred suddenly with a very rapid surge of more
 181 or less coherent blocks followed by fluidization, (Table II).

182 Sediment transport by overland flow on these steep slopes reached volumetric concentrations
 183 between 0.46 and 0.64, which is characteristic for debris flows

184
 185
 186
 187
 188
 189 **Fig 3.** Schematic diagram showing the different initiation processes of debris flows in channels

190 We can conclude on the basis of these observations that the flume tests carried out with the
 191 three materials revealed three types of processes, which created debris flows in these range of
 192 slopes gradients namely debris flow Initiation by Hortonian Overland flow Erosion (RHE-I),
 193 Saturation Overland flow Erosion (RsE-I) and by Bed Failure (BF-I). The occurrence and sequence
 194 of these processes seems to be controlled by slope gradient and hydraulic conductivity of the bed
 195 sediment. Figure 3 gives a schematic overview of these process types.

196 3 Integrated model (1D) for debris flow initiation in upstream channels

197 The flume tests observations brought us to the concept of the triggering of debris flows caused
 198 by Hortonian and Saturation overland flow initiating surficial erosion of bed material. Bed failure
 199 and entrainment of material was initiated by infiltration and subsurface flow leading to instability.
 200 First we have to simulate the hydrological component of the triggering mechanisms of debris flows.
 201 For that we need the mass balance equation for overland (Eq.(1a)) and through flow (Eq.(1b)) ,
 202 which is given by :

$$203 \frac{\partial q_f}{\partial x} + \frac{\partial h_f}{\partial t} = B_1 \quad (1a)$$

$$204 \frac{\partial q_s}{\partial x} + \frac{\partial h_s}{\partial t} = B_2 \quad (1b)$$

205 where q_f is overland flow discharge per unit width ($\text{m}^3\text{m}^{-1}\text{s}^{-1}$); q_s is subsurface discharge per unit
 206 width ($\text{m}^3\text{m}^{-1}\text{s}^{-1}$); h_f is thickness of overland flow (m); h_s (m) is thickness of subsurface flow, ∂x (m) is
 207 distance along the slope ∂t is the time (s) and $B1-2$ are terms (m s^{-1}) describing the inflow or outflow
 208 of water from the flow system, which is defined as follows:

$$210 B_1 = \begin{bmatrix} r - i_f & (a) \\ 0 - i_f & (b) \end{bmatrix} \quad (2a)$$

$$211 B_2 = i_f \quad (2b)$$

212 where r (m s^{-1}) describes the external input of rain into and i_f (m s^{-1}) the outflow of water by
 213 infiltration out of the overland flow system (Eq. (2a)) (see also Figure 1). When there is no supply of
 214 rain, like in our flume experiments: $r=0$. In the case of subsurface flow i_f in Eq.(2b) is considered
 215 now as an inflow term of the subsurface flow system. If $h_f/\Delta t$ is larger than the infiltration capacity
 216 K_s (m s^{-1}) of the bed material the latter one is the limiting factor. Therefore the infiltration term i_f of

218 Eq. (2) is the minimum (min) value of the infiltration capacity K_s (m s^{-1}) and the current water depth
 219 (h_f), which can infiltrate in one time step Δt into the bed material:

$$220 \quad i_f = \min(K_s, h_f / \Delta t) \quad (3)$$

221

222 We introduce here a general momentum equation for the water flow processes [33]:

$$223 \quad h_f = \alpha_f q_f^{\beta_f} \quad (4a)$$

$$224 \quad h_s = \alpha_s q_s^{\beta_s} \quad (4b)$$

225

226 For turbulent overland flow the parameters α_f and β_f in Eq.(4a) can be defined as follows :

$$227 \quad \alpha_f = \left(\frac{n}{S_0^{0.5}} \right)^{0.6} \text{ and } \beta_f = 0.6 \quad (5)$$

228

where n is Manning's n and S_0 the slope gradient of the bed material.

229

For subsurface flow we can write according to Darcy's law:

$$230 \quad q_s = K_s \sin \theta \quad h_s \rightarrow h_s = \frac{1}{K_s \sin \theta} q_s \quad (6)$$

231

232 where q_s is the amount of subsurface flow water per unit width ($\text{m}^3 \text{m}^{-1} \text{s}^{-1}$); θ is slope angle (degrees)
 233 and h_s is the height of the flowing water component in the soil matrix (m). By comparing Eq.(6) with
 234 the general momentum Eq. (4b) we can define the parameters

235 α_s and β_s for subsurface flow:

$$236 \quad \alpha_s = \frac{1}{K_s \sin \theta} \text{ and } \beta_s = 1 \quad (7)$$

237

238 A combination of the mass balance Eq.(1) with Eq.(4) delivers an expression for overland flow
 239 or subsurface flow discharge (q_f, q_s) [33]:

$$240 \quad \frac{\partial q_f}{\partial x} + \alpha_f \beta_f q_f^{(\beta_f, s-1)} \frac{\partial q_f}{\partial t} = B_1 \quad (8a)$$

$$241 \quad \frac{\partial q_s}{\partial x} + \alpha_s \beta_s q_s^{(\beta_s-1)} \frac{\partial q_s}{\partial t} = B_2 \quad (8b)$$

242

243 The 1D model is implemented in a fixed Eulerian frame where the variation in water flow
 244 variables is described at fixed coordinate points at a distance Δx along the slope as a function of
 245 time step Δt . A numerical solution for Eq.(8) is given by [33]:

$$246 \quad q_{x+1}^{t+1} = \frac{\frac{\Delta t}{\Delta x} q_x^{t+1} + \alpha \beta q_{x+1}^t \left(\frac{q_{x+1}^t + q_{x+1}^{t+1}}{2} \right)^{\beta-1} + \Delta t \left(\frac{B_{x+1}^{t+1} + B_{x+1}^t}{2} \right)}{\frac{\Delta t}{\Delta x} + \alpha \beta \left(\frac{q_{x+1}^t + q_{x+1}^{t+1}}{2} \right)^{\beta-1}} \quad (9)$$

247

248 where q_x, α and β should be read as $q_{f,s}, \alpha_{f,s}$ and $\beta_{f,s}$ respectively.

249

To simulate the initiation of debris flows by mass failure we used the equation for the infinite
 250 slope equilibrium model [31], which is the trigger for failure:

$$251 \quad F = \frac{(\gamma_s z \cos \theta - p) \tan \phi}{\gamma_s z \sin \theta} \quad (10a)$$

$$252 \quad p = \gamma_w h_s \cos \theta \quad (10b)$$

253

254 where F is the safety factor; failure occurs when $F=1$; γ_s and γ_w are the saturated bulk density of the
 255 material and water respectively; ϕ is friction angle of the material; z and h_s are the thickness of the
 256 soil and the height of the groundwater layer respectively h_s can be solved with Eq. (9) and Eq.(6)
 257 respectively.

258

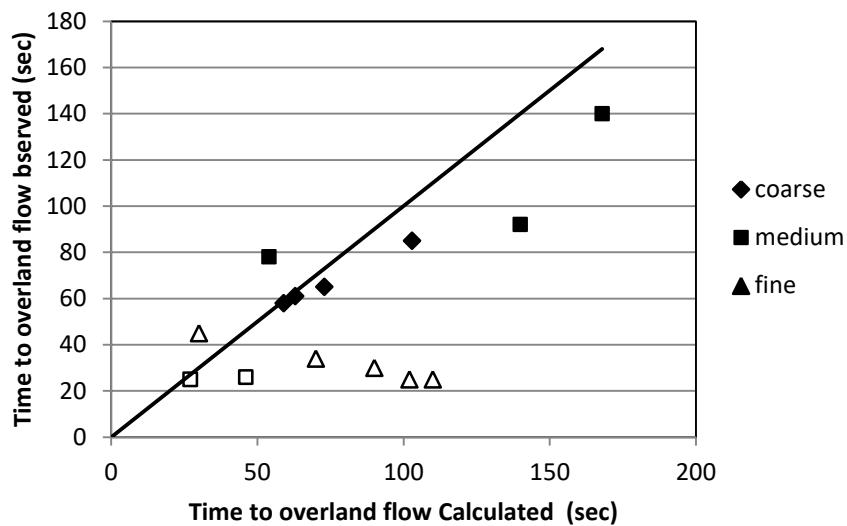
The overall stability of the bed material expressed with the safety factor (F) for the infinite
 259 slope model is calculated as an average of the safety factor of the different nodes. The inflow of
 260 water into the flume is coming from upstream and therefore the pore pressure gradient is
 261 decreasing downstream. This means that the safety factor is always increasing downstream and
 262 therefore the average approach of the safety factor over the length of the sample in the flume seems
 263 a reasonable approximation of the overall safety factor.

264 For estimating the transport capacity on steep slopes Rickenmann [34-35] proposed a bedload
265 transport equation based on a shear stress approach, where discharge, bed slope gradient and
266 material grading are used as parameters to characterize flow hydraulics.

267 For steeper slopes, in the range of $0.03 < S < 0.2$ ($1.7^\circ - 11.3^\circ$) Rickenmann [34] performed a
268 regression analysis with the steep flume data on bed load transport obtained at ETH Zurich that
269 resulted in the equation:

270
$$q_{solid} = \frac{12.6}{(d_s - 1)^{1.6}} \left(\frac{D_{90}}{D_{30}} \right)^{0.2} (q_f - q_c) S^2 \quad (11)$$

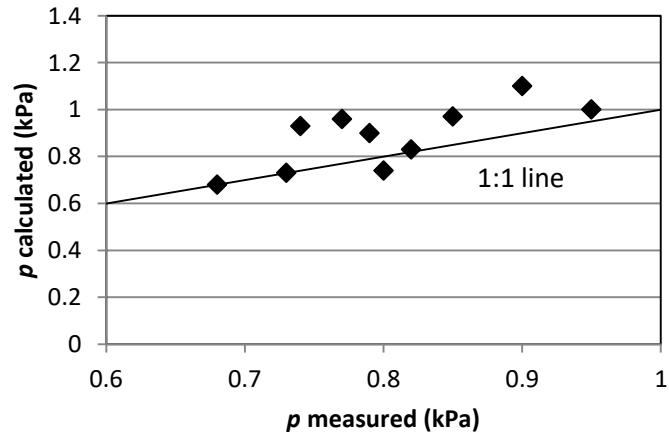
271 where D_{90} and D_{30} are grain sizes at which 90% and 30% respectively by weight of the material are
272 finer; d_s is the mass density of the solids and S is the slope gradient and q_c is the critical flow
273 discharge for bed load entrainment. The experimental slopes were in the range of $0.03 > S > 0.20$. (1.7° -
274 11.3°) and the D_{90} of the material ranged between 0.9 and 2 cm and D_{30} between 0.06 and 1 cm with
275 inflow rates of 10-30 l/s. In the section below we will calibrate Eq.(11) for the steeper slopes in our
276 flumes.


277 The integrated model developed in this section is able to describe the different types of hydro-
278 mechanical triggering mechanisms for debris flows. It delivers us the physical parameters, which
279 controls these processes, which will be applied in our virtual simulations in Section 5 and 6

280 In the next section (4) we will calibrate our model on some process indicator values obtained from
281 our flume tests.

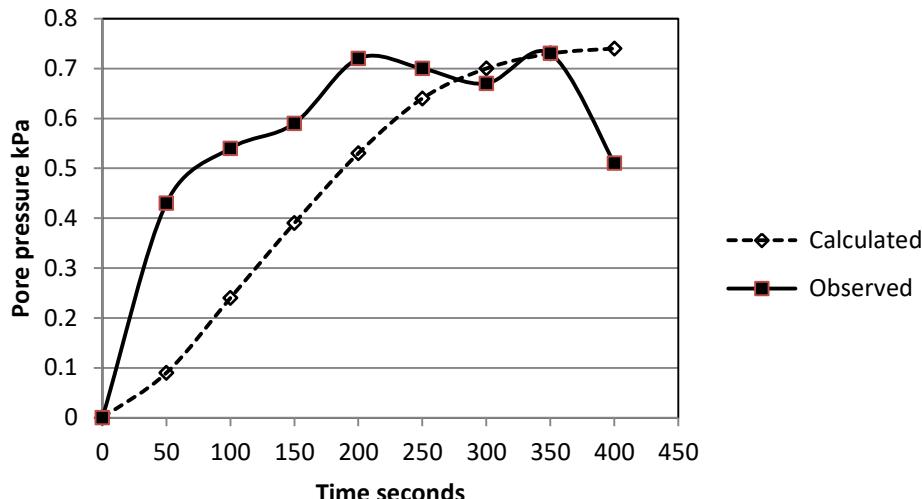
283 **4. Calibration and validation of the theoretical model on the basis of flume test results**

284 . We will use here a number of process indicator values measured during the flume
285 experiments to calibrate and validate the outcomes of our theoretical model. These are: Saturation
286 or Hortonian overland flow, time to overland flow, maximum pore pressure, time to bed failure
287 and solid concentration by overland flow erosion. Hortonian overland flow and the time to
288 Hortonian overland flow in the model is declared when surface water h_f reaches the lower end of
289 the bed material while the bed material is still not saturated ($h_s < Z_s$). Saturation overland flow and
290 the time towards it, is declared when $h_s = Z_s$ over the entire bed. Pore pressure is calculated each
291 time step according to Eq (10b). The discharge of $h_f + h_s$ is reported each time step at the end of the
292 flume. Bed failure is declared as said before when the average Safety factor F over the bed length
293 reaches the value of 1.


294 For the flume simulations the distance between the nodes (Δx) was 0.1 m and the time interval
295 (Δt) was 0.2 seconds.

296 **Figure 4.** Observed and calculated time to Saturation overland flow (black symbols) and Hortonian
297 overland flow (open symbols)

Figure 4 shows the relation between observed and calculated time to overland flow for the different flume tests. There is a moderate 1:1 correlation between observed and predicted time to overland flow for the medium and coarse sediments and for the fine sediments, showing Hortonian overland flow, there is no correlation at all. However the model was able to predict the type of overland flow according to what was observed during the flume tests (see Table II).


303 Despite the malfunctioning of some pore pressure sensors we were able to make a 1:1
304 comparison between the average maximum measured pore pressure for the three sensors (Figure 1)
305 and the average calculated maximum pore pressure (Figure 5).

306

Fig 5. Maximum pore pressure measured during flume tests in relation to calculated pore pressures.

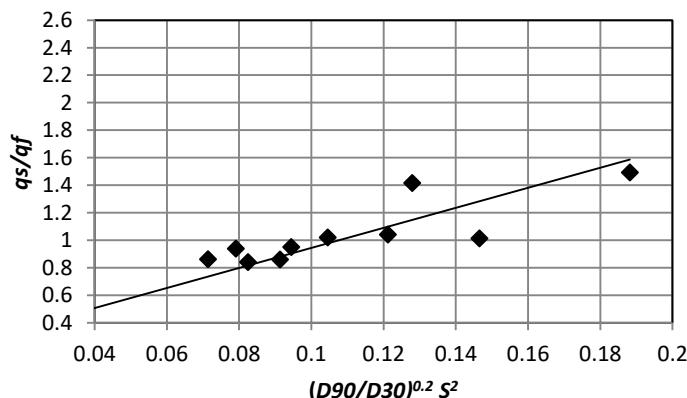
308 The Figure shows that in many cases there is a slight overestimation of the calculated pore
309 pressure. Time series of measured pore pressure of the three sensors compared to modelled
310 temporal pore pressure development showed that in most cases the onset towards maximum pore
311 pressure for the three sensors is more irregular compared to the calculated development of the pore
312 pressures (Figure 6). This can be ascribed to the heterogeneity of the sediment or (and) the
313 imperfect response of the sensors.

314

315 Fig 6 Example of the rise in pore pressure (measured /calculated) due to infiltration of run-on water
 316 in the bed material (Test:Medium grain size /20°)

317 In relation to pore pressure development we compared the time to failure for the different test
 318 runs on the different materials. Since the time towards average maximum calculated and measured
 319 pore pressure coincided more or less, one would expect also corresponding calculated and
 320 measured failure times. Table II and Figure 7 show that the match between observed and calculated
 321 failure time is reasonable except for two outliers (coarse-20°; fine-18°). Further we can observe that
 322 the calculated time to failure is underestimated for the coarse material and overestimated for
 323 practically all the tests on the medium and fine materials. The deviations between calculated and
 324 observed values must be ascribed to heterogeneity of the material, deviating friction values, and
 325 incorrect assessment of the overall safety factor.

326


327 Figure 7: Observed and calculated time of failure of bed material during the flume tests.

328 We calibrated also the parameters of the Rickenmann [35] equation, (Eq.11) on our flume tests,
 329 which were carried out on slopes ranging between $0.25 > S > 0.36$ (14°-20°), with grain sizes for
 330 $0.9 > d_{90} > 2$ and $0,05 > d_{30} > 1$ cm and with flow rates $0,5 > q > 15$ $l\ s^{-1}\ m^{-1}$. Figure 8 shows the best linear fit
 331 between q_{solid}/q_f and $(d_{90}/d_{30})^{0.2}S^2$, which delivered the following modified equation for slopes
 332 between 14° and 20°:

$$333 q_{solid} = 7.28 \left(\frac{d_{90}}{d_{30}} \right)^{0.2} q_f S^2 \quad (12a)$$

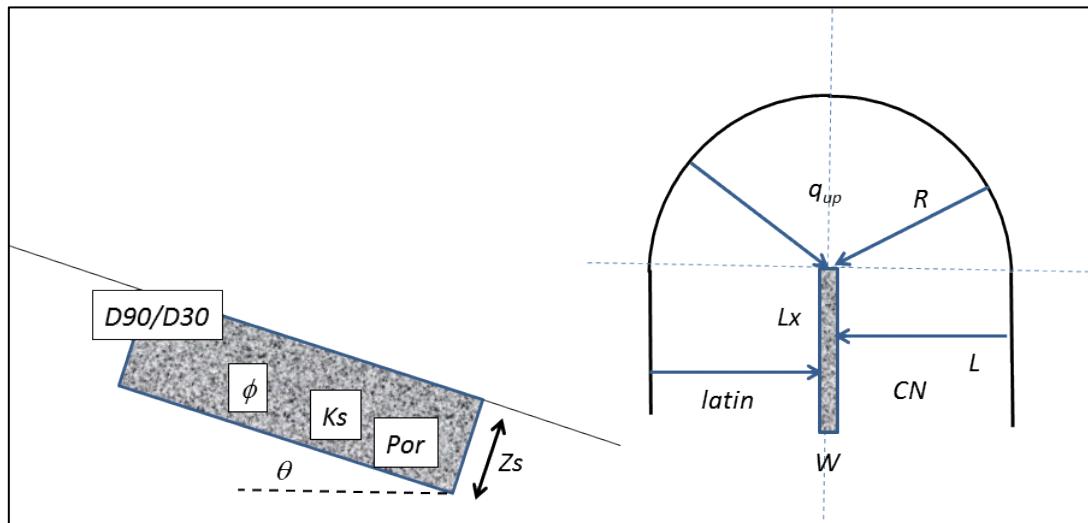
334 which gives for $d_s=2.6$:

335
$$q_{solid} = \frac{15.44}{(d_s-1)^{1.6}} \left(\frac{D_{90}}{D_{30}} \right)^{0.2} q_f S^2 \quad (12b)$$

336

337 **Figure 8.** Calibration of Rickenmann's bedload equation for steeper slopes in our flume tests
338 between 14 and 20 degrees.

339 The calibration revealed that q_c in Eq.(11) becomes zero or practical zero in Eq.(12). At slopes
340 larger than 15° the down slope component of the grain weight may reduce the critical shear stress τ_c
341 which in our case obviously reduced to nearly zero.


342 We may conclude that the model is able to predict in a reasonable way essential process
343 indicators for different hydrological triggering processes of debris flows in upstream channels. In
344 the next section we will apply the model on the field scale to predict hydro-mechanical triggering
345 patterns for debris flows as a function of the hydrological conductivity of the bed material and the
346 channel slope gradient.

347 **5. Hydro-mechanical triggering patterns for debris flows in relation to hydrologic conductivity
348 of bed materials and channel gradient**

349 *5.1. The design of a schematic source area at the field scale.*

350 First we will design a virtual landscape of a potential debris flow source area where our model
351 can be applied to analyze the influence of terrain parameters on the type of triggering mechanisms
352 (Section 5.2) and the meteorological thresholds of debris flows (Section 6).

353 Figure 9 shows this virtual source area, which is linked to an upstream channel filled with bed
354 material receiving surface water from the surrounding slopes to initiate a potential debris flow. This
355 geomorphological setting resembles more or less the source areas described among others by Coe
356 [7] and Berti [24]. The upstream area of our hypothetical catchment has a radius R . The channel is
357 further surrounded by lateral slopes with a length L . The length of the channel bed is L_x , the width
358 W and the slope angle is θ . The hydraulic conductivity of the bed material is K_s , the porosity Por
359 and the friction angle ϕ . (Figure 9).

360

361 Figure 9: Morphometric and hydro-mechanical parameters, which were used for model simulations
 362 of debris flow initiation. For an explanation see Table 3 and text. D90/D30: 90% and 30% lower than
 363 grainsize D90 and D30 respectively : ϕ : friction angle; K_s : hydraulic conductivity; Por :porosity; Z_s :
 364 depth of material; θ : slope angle, q_{up} : water that flows into the upper end of the channel bed; R :
 365 radius of source area above the channel; L_x and W : length and width of the channel bed; L : length of
 366 lateral contributing slope; latin: lateral inflow of water to the channel; CN: curve number value for
 367 the soil hydrological and land use characteristics of the contributing slopes.

368 The sink term B in (1) and (8) is now adapted to the field scene and given by:

$$369 B = 2latin + r - i_f \quad (13)$$

370

371 where $latin$ ($m s^{-1}$) is the lateral inflow of overland flow water from the slopes along the channel
 372 (Figure 9) , r direct rain intensity input to the channel bed and i_f infiltration rate into the bed (see
 373 Eq.(3)). The lateral inflow is calculated for these sensitivity analyses in a simple way, assuming
 374 steady state conditions in the mass balance equation for overland flow:

$$375 latin = \frac{r_{cn}L}{W} \quad (14)$$

376

377 r_{cn} (m/s) is calculated using the Curve Number method [36], L is the length of the lateral slope
 378 and W the width of the channel (see Figure 9). In our simulations we selected overland flow
 379 supplying slopes with soils with moderate to slow infiltration rates and a poor condition grass
 380 cover, which corresponds to a Curve Number(CN) of about 80. The CN number, reflecting the
 381 hydrological soil characteristics, land use and antecedent soil moisture conditions that we can
 382 expect in high mountainous areas, was chosen arbitrarily and was kept constant in our simulations.
 383 The overland flow water that flows into the upper end of the channel bed, which is given by q_{up} (m^2
 384 s^{-1}) (Figure 9)

$$385 q_{up} = \frac{r_{cn}0.5\pi R^2 \cos\theta}{W} \quad (15)$$

386 5.2 The influence of the hydraulic conductivity (K_s) and slope (θ) of the channel bed on the type and sequence
 387 of hydrologic triggering processes for debris flows

388 In the flume we could observe the effect of slope angle and hydraulic conductivity on the type
 389 and sequence of triggering processes, which may lead to the initiation of debris flows. In this
 390 section we will investigate with our theoretical model the effect of these two factors at the
 391 catchment scale. The values of the other factors used in our model simulations are shown in bold as
 392 default parametric values ($Z_s, \phi, W, L_x, Por, R, L, n$ bed) in Table III (see also Figure 9).

<i>Ks for RE-I</i>	0.001- <i>0.0025</i> -0.005 m s ⁻¹	<i>Lx</i>	50- <i>100</i> -200 m
<i>Ks for BF-I</i>	0.001- <i>0.01</i> -0.1 ms ⁻¹	<i>Por</i>	0.4- <i>0.3</i> -0.2
<i>Zs</i>	2- <i>4</i> -6m	<i>R</i>	250- <i>350</i> -450 m
<i>ϕ</i>	28- <i>32</i> -36	<i>L</i>	250- <i>350</i> -450 m
<i>θ</i>	16 ^o - <i>20</i> -28 ^o	<i>n bed</i>	<i>0.08</i>
<i>W</i>	2- <i>4</i> -6-m		

394 **Table III.** Default values (bold italic) and maximum and minimum values of input parameters for
 395 Overland flow Erosion (RE-I) and Bed Failure (BF-I) triggering debris flows. Ks: saturated hydraulic
 396 conductivity; Zs: thickness of bed material; ϕ :friction angle of material; θ : slope angle of channel
 397 bed; W and Lx :width and length of channel bed respectively; Por: available volumetric pore space;
 398 R radius of source area ; L: length of lateral slopes ; n: Manning's n of bed material.

399 Table IV gives the range in Ks values (first row) and bed slope angles (first column), which
 400 were used in our simulations to study the effect of these parameters on the hydro-mechanical
 401 process development at the catchment scale. For these simulations two rain scenarios were used
 402 with an intensity of 80 mm (Table IVa) and 40 mm per hour (Table IVb) respectively. The Tables
 403 show domains with different shades of gray with various combinations of hydro-mechanical
 404 triggering processes. In the white sections no debris flow initiation is expected to develop in the
 405 source area because of a too low sediment concentration of the overland flow. Table IVa shows that
 406 in the domain $\theta= 28^{\circ}$ - 20° and $Ks= 0.001$ - 0.005 m s⁻¹, the debris flow is initiated in the first stage by
 407 Hortonian overland flow erosion (R_hE-I). The overland flow discharge reaches a steady state after a
 408 certain relatively short time. During the steady state groundwater will rise by infiltration of run-on
 409 water until failure of the bed material, which happens between 1.7 and 11.2 minutes depending on
 410 the slope θ and Ks. In Table IVa we see a dramatic drop in discharge between slopes with Ks =0.001
 411 and 0.005. The last Ks-value reaches a significant boundary which determines whether or not a
 412 debris flow can be initiated by Hortonian overland flow transport.

413

80 mm		Ks	0.001 m s ⁻¹		0.005 m s ⁻¹		0.01 m s ⁻¹		0.1 m s ⁻¹		
Slope	Initiat		Time	Dischar	Time	Dischar	Time	Dischar	Time	Dischar	Concent
degrees	proc.		min.	Is m ⁻¹	min.	Is m ⁻¹	min.	Is m ⁻¹	min.	Is m ⁻¹	II ¹
28	R _h E-I	1.0	912	1.3	139						0.47
	BF-I	5.4		1.7		2.4		3.0			
24	R _h E-I	1.0	783	1.3	119						0.39
	BF-I	8.4		2.3		2.8		3.1			
20	R _h E-I	1.1	683	1.4	104						0.30
	BF-I	11.2		2.9		3.1		3.1			
16	R _h E-I	1.1	606	1.5	92						0.21
	R _s E-I	14.2	732	3.7	733	3.7	732	3.6	705		
12	R _h E-I	1.2	550	1.5	83						0.13
	R _s E-I	14.8	666	3.9	665	3.8	664	3.6	646		

414

a

415

40 mm		Ks	0.001 m s ⁻¹		0.005 m s ⁻¹		0.01 m s ⁻¹		0.1 m s ⁻¹		Concent
Slope degrees	Initiat proc.	Time min.	Dischar I s m ⁻¹	II ¹							
28	R _h E-I	1.5	162							0.47	
	BF-I	5.8		7.2		7.9		8.0			
24	R _h E-I	1.6	139							0.39	
	BF-I	8.8		7.8		8.2		8.3			
20	R _h E-I	1.7	121							0.30	
	BF-I	11.7		8.5		8.5		8.4			
16	R _h E-I	1.8	108							0.21	
	R _s E-I	14.8	234	9.5	235	9.4	233	9.3	208		
12	R _h E-I	1.9	98							0.13	
	R _s E-I	15.0	214	9.6	213	9.5	212	9.2	170		

416

b

417 **Table IV.** Time sequence of different initiation processes R_hE-I and R_sE-I,(erosion by Hortonian and
 418 Saturation overland flow respectively) and BF-I (bed failure) in relation with hydraulic conductivity
 419 (Ks) and slope angle of bed material. Further are given the discharge (Discharg) and solid
 420 concentration (Concent) during R_hE-I and R_sE-I. Table 4a and 4b: simulated rain intensities of 80 mm
 421 and 40 mm respectively.

422 It is confirmed by Table IVb with a lower rain input (40 mm) where at $Ks \geq 0.005$, no initiation
 423 by Hortonian overland flow is possible anymore.

424 Going back to Table IV-a: in the domain $\theta=16^\circ-12^\circ$ and $Ks= 0.001-0.005 \text{ ms}^{-1}$ slope failure does
 425 not occur. The debris flow is initiated by overland flow. First by Hortonian overland flow and later
 426 when the groundwater has reached the surface by Saturation overland flow. Discharge is relatively
 427 low when there is Hortonian overland flow, while obviously discharge dramatically increases at
 428 Saturation overland flow. However due to the lower slope angles, the volumetric sediment
 429 concentration is low (0.21 at 16° and 0.13 at 12° , (Table IV-a last column), which means the flow
 430 changes from a hyper concentrated flow into a water flood with conventional suspended load and
 431 bed load.

432 At higher conductivities in the domain $Ks=0.01-0.1 \text{ m/s}$ and $\theta=28^\circ-20^\circ$, bed failure seems the
 433 most dominant process (Table IVa). Due to the larger Ks values, infiltration into the bed is more
 434 important than overland flow discharge. The bed material turns out to be partly saturated in the
 435 upper part due to the larger upstream inflow, creating partly Saturation overland flow and
 436 Hortonian overland flow. However within one minute after the run off discharge reached the lower
 437 end of the bed, failure of the bed material occurred already. Therefore the contribution of overland
 438 flow to the transport of debris by overland flow can be ignored.

439 In the domain $K_s=0.01-0.1$ m/s and lower slope gradients ($\theta=16^\circ-12^\circ$) there is no slope failure
 440 but only Saturation overland flow, (Table IVa) with low sediment concentrations in most cases not
 441 enough to call it a debris flow.

442 Table IV-b shows the simulation results with an intensity of 40 mm per hour. The domains
 443 with a specific combination of hydro-mechanical triggers still exist. There is only a shift of the
 444 boundary for the K_s -values with no Hortonian overland flow (>0.005 m/s) to the left. The Tables
 445 IVa and b show a decrease in overland flow discharge and increase in time to bed failure with a
 446 decreasing slope angle. Around 16 degrees the channel bed is stable but still steep enough to have
 447 transport capacities with concentrations in the domain of a hyper concentrated flow. These are
 448 induced by Hortonian and Saturation overland flow at lower K_s values and only Saturation
 449 overland flow at higher K_s values. At lower slope angles (see slopes around 12 degrees) sediment
 450 concentrations are too low to call it a debris flow. Table V gives a summary of the type and
 451 sequence of initiation processes related to different K_s and slope angle values.

40mm	K_s values	0.001 m s^{-1}	0.005 m s^{-1}	0.01 m s^{-1}	0.05 m s^{-1}	0.1 m s^{-1}		
<i>Gradient</i>	<i>Flow type</i>	<i>Initiation process</i>		<i>Initiation process</i>				
28°		t1: Hortonian overland flow						
24°	Debris flow			t1: Bed failure				
20°		t2: Bed failure						
16°	Hyper concentrated flow	t1: Hortonian overland flow		t1: Saturation overland flow				
12°	No debris flow	t2: Saturation overland flow		t1: Saturation overland flow				
		t1: Hortonian overland flow						
		t2: Saturation overland flow						

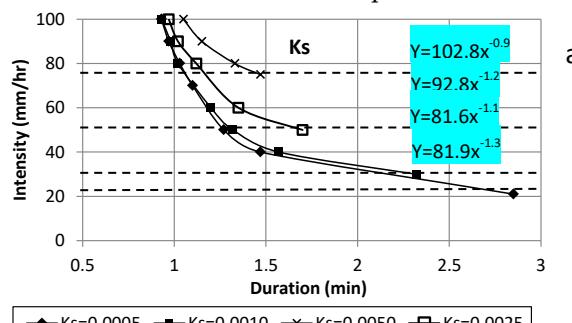
452 Table V: Sequence of different initiation processes for debris (hyper concentrated) flows in relation
 453 to the hydraulic conductivity and slope of the channel bed material. Simulated rain intensity is 40
 454 mm.

455 We designed a framework, which gives insight in what kind of debris flow initiation can be
 456 expected for a given slope gradient and hydraulic conductivity of the material. In the next section
 457 we will give an impression how different hydro-mechanical parameters of triggering processes can
 458 influence meteorological thresholds for debris flows..

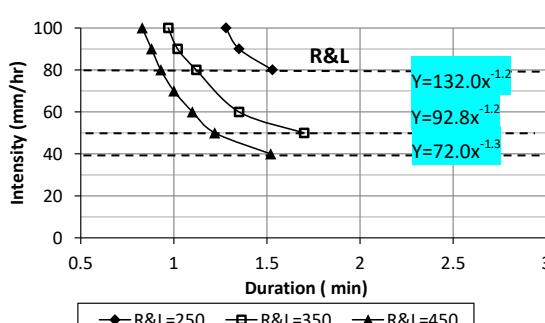
459

460

461

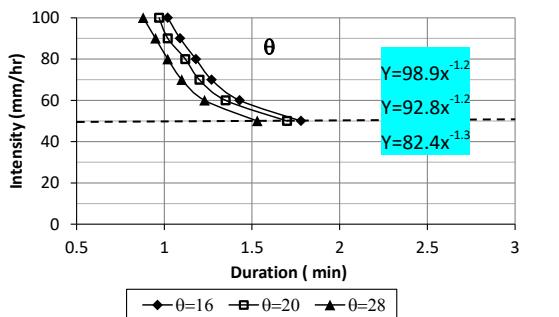

462

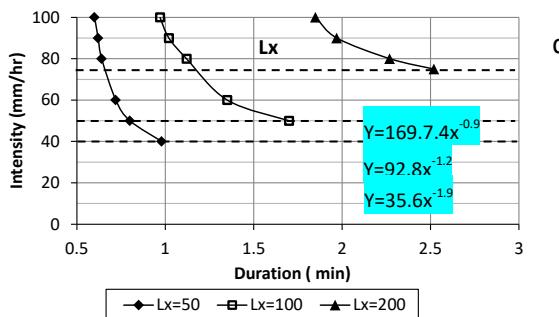
463


464 **6. Sensitivity analyses for parameters influencing the rain Intensity-Duration (I-D) threshold
465 curves for different initiation processes of debris flows**

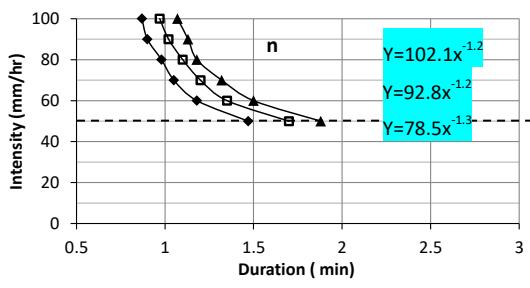
466 In the foregoing we revealed the influence of K_s and bed slope gradient on the sequence of
467 processes mechanisms involved in the initiation of debris flows. We want to investigate here the
468 effect of the other parameters (including K_s and slope gradient) on rainfall thresholds in terms of
469 Intensity Duration (I-D) curves for the triggering of debris flows by two main process mechanism:
470 initiation by Hortonian overlandflow (R_hE-I) and bed failure (BF-I). As we have seen in Table IV
471 and V, debris flow initiation by Saturation overland flow (R_sE-I) can only take place around 16
472 degrees At lower slope angles sediment concentrations are too low to call it a debris flow (Table IV).
473 At higher slope angles we have bed failure before Saturation overland flow can take place.

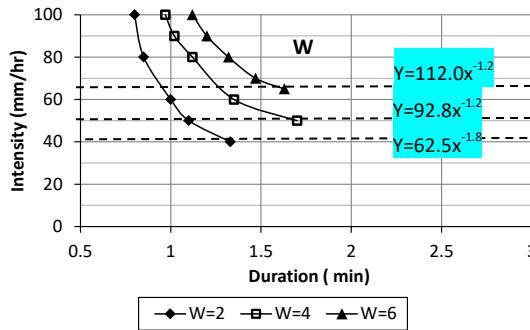
474 Figure 10 shows the effect of different parameters on the I-D curves for debris flows initiated
475 by Hortonian overland flow. The intensity and duration value of a rain event which creates
476 overland flow that just reaches the end of the channel bed with a sediment concentration of >0.2 , is
477 defined by us as a threshold rain event for debris flow initiation. The intensity and duration values
478 for a variety of different critical rain events were plotted in a graph with on the y-axis the intensity
479 and on x-axis the duration. In this way an Intensity Duration (ID) curve can be constructed. Table
480 III gives an overview of the range of the different parameters and the default values (in bold italic),
481 which were used in the simulation and which give a realistic representation of geometric and
482 geotechnical parameters for source area conditions The threshold curves for debris flow initiation
483 by Hortonian overland flow are shown in Figure 10. In this figure the threshold curves, which are
484 constructed, using the default values given in table III, are depicted with open rectangular markers.
485 They are equal in all the sub-figures. This enables one to compare for the different parameters the
486 difference between the ultimate curves and the default curve. For each selected parametric value
487 there is an ultimate minimum rain intensity below which not enough overland flow and thus a
488 debris flow can be initiated, irrespective


a


b

489


490


491

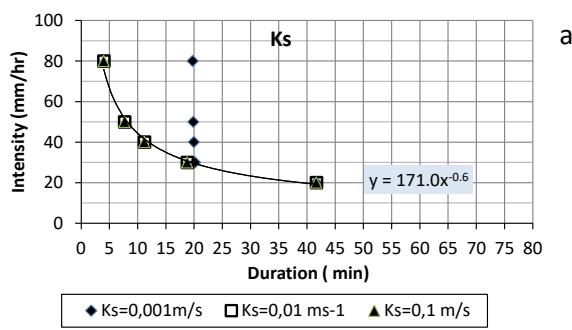
492

493

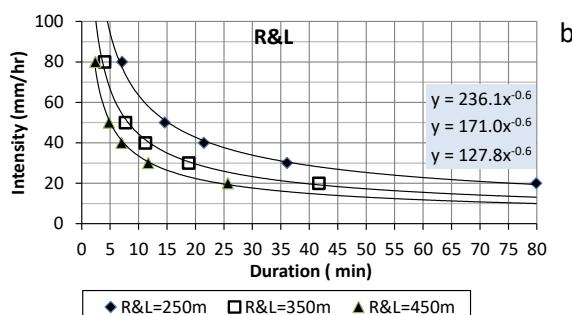
494

495 **Figure 10.** I-D curves for debris flow initiation by Hortonian overland flow in relation to different
 496 geometrical and hydrological parameters. For the definition of parameters see Table III.

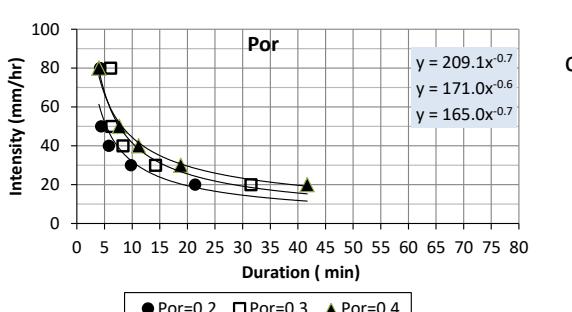
497 the duration (D) of the rain event (see horizontal dotted lines). The simulations show that at
 498 intensities below this critical dotted line the overland flow water never reach the lower end of the
 499 bed due to a too high infiltration rate on its pathway compared to the supplied amount of water ((
 500 direct rain input and surrounding overland flow) and finally bed failure may be the primary
 501 triggering process.

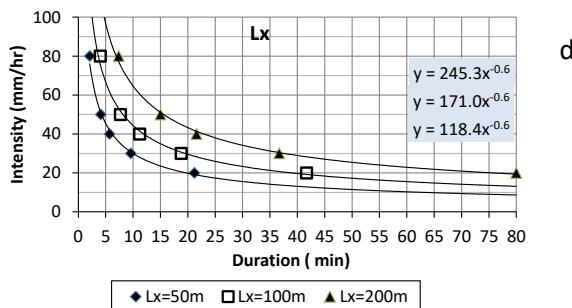

502 The most obvious selected parameter for overland flow initiation is the hydraulic conductivity
 503 K_s . Other parameters are related to geometry of the source area (see Figure 6) like length of the

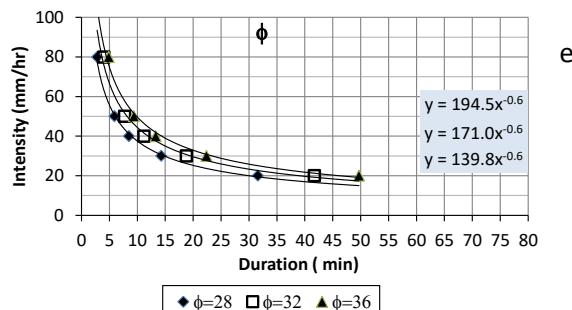
504 lateral slopes along the channel (L), radius of the upstream area of the channel (R) Length (Lx) and
 505 width (W) of the channel bed, channel bed gradient (θ) and further Manning's n of the bed
 506 material.

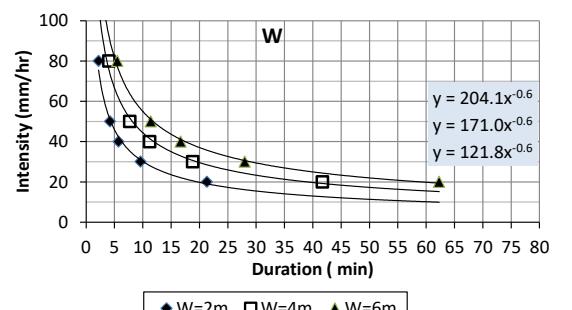

507 We saw in the forgoing that Hortonian overland flow plays a dominant role for Ks values $<$
 508 0.005 m s^{-1} . Figure 10 a shows the influence of the Ks value on the I-D threshold curves for run off
 509 erosion initiation (R_{hE-I}). The range of Ks values is chosen between 0.0005 and 0.005 m s^{-1} . The
 510 Figure shows that for Ks values lower than 0.001 m s^{-1} there is nearly no effect of Ks on the position
 511 of the I-D curve but there is a difference in the minimum intensity values (dotted lines) below
 512 which no debris flow can occur. A slight difference can be observed for lower intensities ($<60 \text{ mm}$
 513 hr^{-1}). Higher Ks values ($> 0.001 \text{ m s}^{-1}$) have a larger influence on the I-D curves. (Figure 10a)

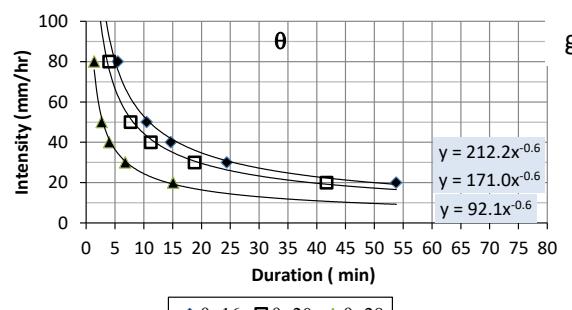
514 The simulations show that the scale of the source area and lateral slopes ($R&L$), the length of
 515 the river bed (Lx) and the width of the bed (W) have the largest effect on the position of the
 516 threshold curve for the initiation of debris flow by Hortonian overland flow (Figure 10 b,d,f
 517 respectively). The threshold curves are less sensible for the effect of the slope gradient θ and
 518 Manning's n of the bed material (Figure 10 c,e respectively).

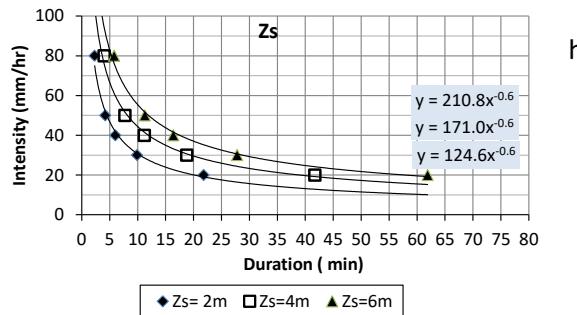

519


a


b


c


523

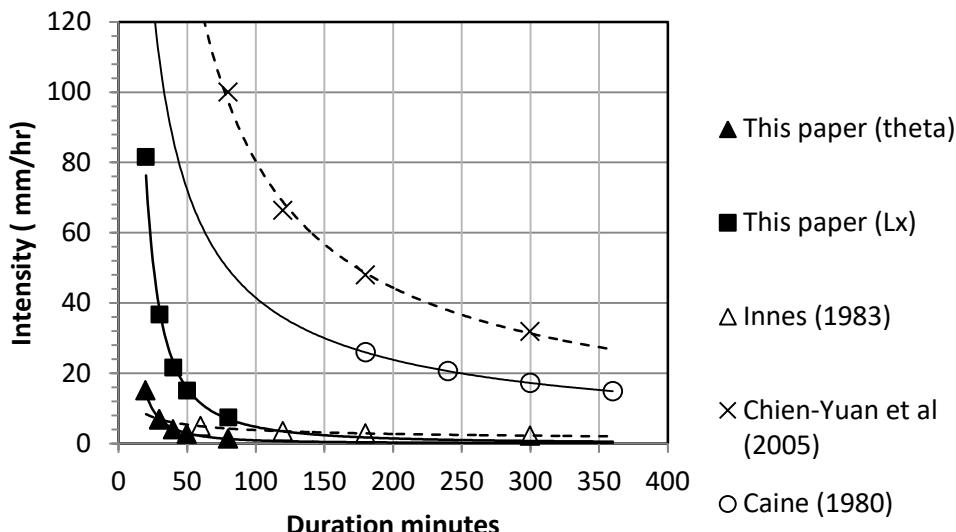

524

525

526

527

528 **Figure 11.** I-D curves for debris flow initiation by bed failure in relation to different geometrical and
529 hydro-mechanical parameters. For the definition of parameters see Table III.


530 Figure 11 shows the influence of the different geotechnical and geometrical factors on the
531 threshold values for the triggering of debris flows by bed failure. The range in K_s values for which
532 bed failure (BF-I) is the dominant process is chosen between 0.001 and 0.1 m s^{-1} with a default value
533 of 0.01 m s^{-1} . The effect of the selected range in geometric values $R&L$, L_x , W , θ , and Z_s (Figure 11
534 b,d,f,g,h respectively) seems to be more or less the same. Less effect has the porosity Por of the bed
535 material and the ϕ values (Figure 8 c,e respectively). No effect has the hydraulic conductivity K_s
536 (Figure 8a), which is related to the simplicity of the model describing instantaneous downward
537 percolation for these high permeable bed materials. Interesting is to see that at lower K_s values
538 (around 0.001 m s^{-1}) and higher rain intensities the rate of groundwater storage and therefore the
539 critical duration for failure is nearly the same (Figure 8a).

540 The I-D curves obtained by our simulations suggest that the duration range is strongly
541 influenced by the type of initiation. Debris flows initiated by Hortonian overland flow seems to be
542 initiated within several minutes while debris flow initiated by bed failure within one to two hours.
543 I-D curves find in the literature give threshold curves with a larger duration range of one to several
544 hours. The relative quick response to debris flow initiation can be explained by the large effect we
545 give in our simulations to the contributing slopes with sparse vegetation and low infiltration rates,
546 which in other areas may be minor due to higher infiltration rates of denser vegetation and lower
547 overland flow rates. The use of the curve number method also explains the quick response to
548 initiation; because it does not take into account the effect of the initial moisture content which for
549 dry soils gives larger infiltration rates and time to ponding in the first period of a rain event. It also
550 does not simulate the travel time towards the channel. The relative quick response for channel bed
551 failure initiation was also found by Berti [24] dealing with nearly impermeable rock slopes in the
552 source area.

553

554

(θ)

555

556 **Fig 12.** Ultimate variation in I-D curves as a result of our sensitivity analyzes compared to the
 557 maximum difference in I-D curves found world wide.

558 Fig 12 compares two extreme I-D curves [38-39] and one in between the two [37] obtained
 559 world- wide with the two extreme curves produced in our simulation, The minimum curve in our
 560 simulation is related to the maximum channel slope (28°) and the maximum threshold curve is
 561 related to the largest length (L_x) of the channel bed. Fig.12 shows that a simple variation of
 562 parameters for the initiation of debris flows in channel beds of source areas, gives already a
 563 significant range in variation compared to the range in threshold values for debris flows
 564 worldwide. The Figure shows that, for reasons given above, our simulated curves are positioned in
 565 the lower part of the domain covered by all the curves obtained from different parts of the world.

566 We have shown in this section that the I-D curves for debris flows triggered by over land flow
 567 and bed failure are especially sensitive to the morphometric parameters of the source area and less
 568 sensitive to the hydro-mechanical parameters. The I-D curves for debris flows, triggered by the
 569 overland flow process are more sensitive to these parameters than the I-D curves related to the bed
 570 failure triggering process (compare Figure 10 and 11). The sensitivity of these curves for these
 571 process parameters cover a range, which is quite significant compared with the ultimate range of I-
 572 D curves found world wide

573

574

575 **7. Discussion**

576 This paper unraveled the effect of different hydro-mechanical processes on the initiation of
577 debris flows. It is focused on the initiation in channels and it gives a detailed insight in the influence
578 of different hydro-mechanical process mechanisms in the source area on the type of debris flow
579 initiation. It shows how the hydrologic conductivity (K_s) and slope gradient (θ) determine the
580 sequence of various process mechanisms.

581 Our simulations suggest that the type of initiation and related factors have also a clear
582 influence on the values of the I-D curve as shown in Fig 10 and 11. These I-D curves, determined by
583 our two simulated process mechanisms, Hortonian overland flow and bed failure show a relative
584 quick response of debris flow initiation compared to what is generally provided by the literature.
585 Our calculations were focused on the initiation of debris flows in the source area in channel beds
586 surrounded by slopes with scarce vegetation and rather impermeable soils. A quick response
587 (within one hour) was also observed by Berti [24] where, as in our simulations, debris flows were
588 initiated in the source area by the dominant effect of run-on water to the channel delivered by a
589 bare impermeable catchment upstream.

590 The assessment of rainfall threshold values for debris flow initiation are based in most cases on
591 statistical empirical approaches using large data sets without detailed knowledge of the different
592 triggering processes and its influencing factors [2, 29]. Our quantitative approach to analyze the
593 threshold conditions for debris flow initiation gives a more detailed insight in the effect of different
594 parameters than the indicative parameters used in statistical techniques. Apart from the fact that no
595 distinction is made in the mechanism of initiation, important morphometric characteristics, like
596 channel width, slope length thickness of bed material etc, are ignored in most cases. As a
597 consequence the prediction of the probability debris flow initiation on the basis of rainfall for
598 individual catchments can be very inaccurate. Further investigations must reveal the accuracy of
599 both approaches to predict the initiation of debris flows.

600 The CN value, which we used in the simulation of overland flow on the contributing slopes,
601 reflects in a lumped way the dynamic soil and land use characteristics. Especially the amount of
602 storage of water before the time to ponding and thus the estimate of the total overland flow
603 production of a rain event can be rather inaccurate especially for rain events with shorter durations.
604 The use of a more detailed infiltration model incorporating the effect of the initial moisture content
605 will give better predictions. However in this paper we did not unravel in detail the effect of these
606 soil and land use characteristics on threshold conditions for debris flow initiation but uses a
607 constant CN value as input for the run-on simulation to the channel bed. Initial moisture conditions
608 in the channel bed, which will affect the permeability and hence the boundary conditions for the
609 initiation of overland flow were not considered either in this paper. The effect of the initial moisture
610 content of the bed material is minor due to the large amounts of influx of water and the relative
611 coarse material in the channel bed.

612 In this paper we mentioned the transport capacity of overland flow as a limiting factor for the
613 initiation of debris flows. On slopes ($<\pm 16^\circ$) sediment concentrations are too low (<0.2) to call it a
614 debris or hyper concentrated flow. For these lower channel gradients we did not consider the effect
615 of the delivery of extra material by side wall collapses and failure of landslide dams [1, 13], which
616 may lead downstream to a rapid loading of the fluid and an instantaneous transformation into a
617 debris flow

618 The initiation of debris flows by bed failure is also more complex since it depends on certain
619 boundary conditions related to pore pressure development at failure and a large amount of run off
620 water, which must be supplied during failure to keep the material moving [20, 22, 23].

621 It is interesting to analyze the potential in development further downstream of debris flows
622 triggered by bed failure (BF-I) with high solid concentrations. On steeper slopes failure of the bed
623 material occurs under lower groundwater heights (h_s) and therefore after failure much additional
624 overland flow water is needed to maintain the movement further down slope. Important is also the

625 mechanism of erosion and erosive power of both types of debris flows further downstream in order
626 to grow to a mature debris flow [6, 40-43].

627 8. Conclusions

628 We could distinguish in our flume tests three types of hydro-mechanical processes which may
629 trigger debris flows in channel beds of first order source areas. These are erosion and transport by
630 intensive Horton overland flow (RO_h-I), Saturation overland flow (RO_s-I) and by infiltrating water
631 causing failure of channel bed material (BF-I). On the basis of these flume tests an integrated hydro-
632 mechanical model was developed, which was calibrated and validated with a number of process
633 indicators measured during the flume tests. We were able to assess by means of this model the
634 influence of important parameters on the mode of debris flow initiation. The hydraulic conductivity
635 of the bed sediments is an important factor controlling the type and sequence of processes
636 triggering debris flows. At lower K_s values Hortonian overland will be the first process to start
637 debris flows followed by bed failure or Saturation overland flow. At higher K_s values triggering by
638 Hortonian overland flow is not possible anymore in this relatively coarse bed material and
639 triggering by bed failure will be the dominant process if the slope gradient is steep enough (>16°).
640 Therefore the slope gradient of the channel bed is a second important factor controlling the type of
641 hydro-mechanical triggering. On gentler slopes which remain stable under saturated conditions,
642 Saturation overland flow might create debris flows if slope gradient is not too gentle and therefore
643 sediment concentration too low to call it a debris flow.

644 We further analyzed also the effect of different important morphometric and hydro-
645 mechanical parameters on meteorological thresholds for triggering debris flows by overland flow
646 or bed failure respectively. With respect to overland flow triggering, the morphometric factors
647 related to the size of the source area and width and length of the channel bed have the largest
648 influence on the position of the I-D curves. Meteorological thresholds for bed failure triggering are
649 also sensitive to morphometric parameters while the hydro mechanical parameters have relative
650 less influence on these threshold values.

651 **Individual contribution of authors:** Van Asch, Yu and Hu conceived and designed the experiments; Yu
652 performed the hydro-mechanical measurements on the materials and performed the experiments; Van Asch
653 and Yu analyzed the data; Van Asch did the modelling and wrote the paper."

654 References

- 655 1. Zhuang, J.; Cui, P Peng J.; Hu, K.; Iqbal, J. Initiation process of debris flows on different slopes due to
656 surface flow and trigger-specific strategies for mitigating post-earthquake in old Beichuan County, China.
657 Environmetal. Earth Sciences. 2013 68, 1391–1403; DOI 10.1007/s12665-012-1837-2.
- 658 2. Cuomo, S.; Della Sala, M. Rainfall-induced infiltration, runoff and failure in steep unsaturated shallow
659 soil deposits. Eng. Geol. 2013, 162, 118–127.
- 660 3. Cuomo, S.; Della Sala, M.; Novita, A. Physically based modelling of soil erosion induced by rainfall in
661 small mountain basins. Geomorph. 2015, 243, 106-115.
- 662 4. Berti, M.; Genevois, R.; Simoni, S.; Tecca P.R. Field observations of a debris flow event in the Dolomites.
663 Geomorph. 1999, 29, 265–274.
- 664 5. Armanini, A.; Gregoretti C. Triggering of debris flow by overland flow: a comparison between theoretical
665 and experimental results. Proceedings 2nd International Conference on Debris flow Hazards Mitigation,
666 Taipei, Taiwan; Wieczorek, Naeser Eds. 2000, 117–124.
- 667 6. Takahashi, T.. Initiation and flow of various types of debris flow. Proceedings 2nd International
668 Conference on Debris Flow Hazards Mitigation: Mechanics, Prediction and Assessment, Taipei, Taiwan;
669 Wieczorek , Naeser ,Eds. 2000, 15–25
- 670 7. Coe, J.A.; Kinner, D.A.; Godt, J.W.. Initiation conditions for debris flows generated by runoff at Chalk
671 Cliffs, central Colorado. Geomorph. 2008, 96, 270–297.
- 672 8. Yu, B. Research on the prediction of debris flows triggered in channels. Natural Hazards, 2011, 58, 391-
673 406; DOI 10.1007/s11069-010-9673-8.

674 9. Van Asch, Th.W.J.; Tang, C.; Zhu, J.; Alkema, D. An integrated model to assess critical rainfall thresholds
675 for the critical run-out distances of debris flows. *Nat. Hazards*, 2014, 70 (1), 299–311.

676 10. Tang, C.; Rengers, N.; Van Asch, T.W.J.; Yang, Y.H.; Wang, G.F. Triggering conditions and depositional
677 characteristics of a disastrous debris-flow event in Zhouqu city, Gansu Province, northwestern China.
678 *Nat. Hazards Earth Syst. Sci.*, 2011, 11, 2903–2912.

679 11. Cui, P.; Zhou, G.G.D.; Zhu, X.H.; Zhang, J.Q.. Scale amplification of natural debris flows caused by
680 cascading landslide dam failures. *Geomorph.* 2013, 182, 173–189.

681 12. Zhou, G.G.D.; Cui, P.; Chen, H.Y.; Zhu, X.H.; Tang, J.B.; Sun, Q.C. Experimental study on cascading
682 landslide dam failures by upstream flows. *Landslides* 2013, 10 (5), 633–643.

683 13. Hu, W.; Xu, Q.; van Asch, T.W.J.; Zhu, X.; Xu, Q.Q.. Flume tests to study the initiation of huge debris
684 flows after the Wenchuan earthquake in S-WChina. *Eng. Geol.*, 2015a, 182, 121–129.

685 14. Cannon, S.H.; Kirkham, R.M.; Parise, M. Wildfire-related debris flow initiation processes, Storm King
686 Mountain, Colorado. *Geomorph.* 2001, 39, 171–188.

687 15. Hungr, O.; Evans, S.G.; Bovis, M.J.; Hutchinson, J.N. A review of the classification of landslides of the
688 flow type. *Environmental. and Engineering. Geosciences.*, 2001, 7(3), 221–238.

689 16. Malet, J-P.; Laigle, D.; Remaître, A.; Maquaire, O. Triggering conditions and mobility of debris flows
690 associated to complex earthflows. *Geomorph.*, 2005, 66, 215–235.

691 17. Cascini, L.; Cuomo, S.; Della Sala, M. Spatial and temporal occurrence of rainfall induced shallow
692 landslides of flow type: a case of Sarno-Quindici, Italy. *Geomorph.*, 2011, 126(1–2), 148–158.

693 18. Zhang, S.; Zhang, L.M.; Peng, M.; Zhang, L.L.; Zhao, H.F.; Chen, H.X. Assessment of risks of loose
694 landslide deposits formed by the 2008 Wenchuan earthquake. *Nat. Hazards and Earth Syst. Sci* 2012, 12,
695 1381–1392; DOI:10.5194/nhess-12-1381-2012

696 19. Iverson, R.M.; Reid, M.E.; LaHusen, R.G. Debris flow mobilization from landslides. *Ann. Rev. of Earth*
697 *Plan. Sci.* 1997, 25, 85–138.

698 20. Fuchu, D.; Lee, C.F.; Sijing, W. Analysis of rainstorm-induced slide-debris flows on natural terrain of
699 Lantau Island, Hong Kong. *Eng. Geol.*, 1999, 51, 279–290.

700 21. Gabet, E.J.; Mudd, S.M. The mobilization of debris flows from shallow landslides. *Geomorph.*, 2006, 74,
701 207–218.

702 22. Van Asch, Th.W.J.; Malet, J-P. Flow-type failures in fine-grained soils: an important aspect in landslide
703 hazard analysis. *Nat. Hazards and Earth Syst Sci* 2009, 9, 1703–1711.

704 23. Hu, W.; Donga, X.J.; Xua, Q.; Wang, G.H.; Van Asch, T.W.J.; Hicher, P.Y.. Initiation processes for overland
705 flow generated debris flows in the Wenchuan earthquake area of China. *Geomorph.*, 2016, 253, 468–47.

706 24. Berti, M.; Simoni, A.. Experimental evidences and numerical modelling of debris flow initiated by
707 channel runoff. *Landslides*, 2005, 2, 171–182; DOI: 10.1007/s10346-005-0062-4.

708 25. Kean, J. W.; McCoy, S.W.; Tucker, G.E.; Staley, D.M.; Coe, J.A. Runoff-generated debris flows:
709 Observations and modeling of surge initiation, magnitude, and frequency. *J. Geophys. Res. Earth Surf.*,
710 2013, 118, 2190–2207; DOI:10.1002/jgrf.20148.

711 26. Hu, W.; Xu, Q.; Wang, G.H.; van Asch, T.W.J.; Hicher, P.Y. Sensitivity of the initiation of debris flow to
712 initial soil moisture. *Landslides*, 2015, 12, 1139–1145; DOI: 10.1007/s10346-014-0529-2.

713 27. Liu, C.; Dong, J.; Peng, Y.; Huang, H. Effects of strong ground motion on the susceptibility of gully type
714 debris flows. *Eng. Geol.* 2009, 104(3–4), 241–253.

715 28. Chang, T.C.; Chien, Y.H. The application of genetic algorithm in debris flow prediction. *Environmental*
716 *Geology.*, 2007, 53, 339–347.

717 29. Tiranti, D.; Bonetto, S.; Mandrone, G. Quantitative basin characterization to refine debris-flow triggering
718 criteria and processes: an example from the Italian Western Alps. *Landslides* 2008, 5, 45–57.

719 30. Yu, B.; Li, L.; Wu, Y.; Chu, S. A formation model for debris flows in the Chenyulan River Watershed,
720 Taiwan. *Natural Hazards* 2013, 68, 745–762; DOI: 10.1007/s11069-013-0646-6.

721 31. Smith, G.N.; Smith, I.G.N. *Elements of Soil Mechanics* 7th ed.; Blackwell Science Ltd Oxford, UK, 1988; 494
722 pp.; ISBN 0-632-04126-9.

723 32. Hendriks, M.R. *Introduction to physical Hydrology*, 1st ed. Oxford University press: Oxford, UK, 2010;
724 331 pp.; ISBN 978-0-19-929684-2.

725 33. Chow, V.T.; Maidment, D.R.; Mays, L.W.. *Applied hydrology*. McGraw-Hill Book company: New York,
726 USA, 1988, 572 pp. ISBN 0-07-010810-2.

727 34. Rickenmann, D.. Hyperconcentrated flow and sediment transport at steep slopes. *Journal of Hydraulic*
728 *Engineering* 1991, 117 (11), 1419-1439.

729 35. Rickenmann, D. Comparison of bed load transport in torrents and gravel bed streams. *Water Resources*
730 *Research* 2001, 37(2), 3295-3305.

731 36. USDA-SCS. *National Engineering Handbook, Section 4:Hydrology 1985*, USDA-SCS.Washington
732 D.C,USA.

733 37. Caine, N.; The rainfall intensity duration control of shallow landslides and debris flows. *Geogr. Ann. A*
734 *Phys. Geogr.* 1980, 62(1/2), 23-27.

735 38. Innes, J.L. Debris flows. *Progr. Phys. Geogr.* 1983, 7(4,) 469-501; DOI:org/10.1177/030913338300700401

736 39. Chien-Yuan.;C.;Tien-Chien, C.; Fan-Chieh,Y.;Wen-Hui,Y.;Chun-Chieh,T. Rainfall duration and debris-
737 flow initiated studies for real-time monitoring. *Environ. Geol.* 2005, 47, pp. 715-724, DOI: 10.1007/s00254-
738 004-1203-0

739 40. McDougall, S.; Hungr, O. Dynamic modelling of entrainment in rapid landslides. *Can. Geotech. J.* 2005,
740 42, 1437-1448.

741 41. Medina, V.; Hürlimann. M.; Bateman, A.. Application of FLATModel, a 2D finite volume code, to debris
742 flows in the northeastern part of the Iberian Peninsula. *Landslides* 2008, 5, 127-142.

743 42. Iverson, R.M.;Reid, M.E.; Logan, M.; LaHausen, R.G.; Godt, J.W.; Griswold, J.P. Positive feedback and
744 momentum growth during debris-flow entrainment of wet bed sediment. *Nature Geosciences.* 2011. 4,
745 116-121.

746 43. Quan Luna, B.; Remaître, A.; Van Asch, Th.W.J.; Malet, J-P.; Van Westen, C.J. Analysis of debris flow
747 behavior with a one dimensional run-out model incorporating entrainment. *Eng. Geol.* 2012, 128, 63-75.