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 11 
Abstract: The production of olives and olive oil in the Mediterranean region is one of the most 12 
important cultivation. The continuous changes of the European Common Agricultural Policy (CAP) 13 
towards strengthening the influence of market forces, has increased the necessity for assessing the 14 
efficiency of production protocols or patterns being implemented by the farmers. The case of olive 15 
trees cultivation, despite the fact that it is very important for both farmers and consumers, has not 16 
been in depth analyzed regarding the efficiency of inputs being used during the production process. 17 
This study evaluates the efficiency rates of 100 agricultural holding specialized on olive trees 18 
cultivation in Greece, by implementing a DEA input oriented model. The inputs being used are land, 19 
fertilizers, agrochemicals, labour, and energy. The output being used is the revenue of each holding. 20 
The results quantify the significant differentiation of efficiency scores, providing evidence that there 21 
is space for restructuring the production process, in order to improve efficiency and decrease by this 22 
way the production cost of inefficient farmers. 23 
Keywords: data envelopment analysis; olives; efficiency 24 
 25 
Introduction 26 
The Mediterranean region is the authentic place for olive trees cultivation and olive oil production 27 
since ancient years. The significance of the cultivation is proven via the influence of it on every 28 
tradition and religion being developed, exceeding its importance from the strict limits of dietary 29 
purposes. There is a series of studies verifying the positive impact of olive oil consumption on human 30 
health, being this recognition the motive for the considerable increase of consumption globally. This 31 
excessive demand is the driving force for cultivating olive trees and producing olive oil beyond the 32 
Mediterranean region, where the climate and soil conditions permit this expansion. There are many 33 
such successful cases in America, Asia and Australia. This global recognition of the product can be 34 
either an opportunity or a threat. Perhaps the most obvious is the opportunity being created because 35 
of the increase of demand, but there is also the threat aspect due to the excessive increase of producing 36 
quantities worldwide, suppressing mainly producers’ price towards such levels capable of 37 
jeopardizing the sustainability of the production process. According to Food and Agriculture 38 
Organization (FAO) of the United Nations (UN) the overall olive oil production for 2014 exceeds the 39 
3 million tones, with Spain to be the leader country, holding 59% of global production. Important key 40 
players, regarding production, globally are Italy with 10%, Greece with 7%, Tunisia with 6%, 41 
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Morocco with 4.5%, Turkey with 2.5%, Syria with 3.5%, Algeria with 1.8%, and Portugal with 2.2%. 42 
Outside the Mediterranean the most important countries are Argentina and the USA, with their 43 
production though to be still below 1% [1](FAOSTAT, 2017). It is therefore quite important to 44 
introduce and apply methodology assessments capable and reliable for evaluating the efficiency level 45 
of cultivating and production practices. 46 
The main target of the European Union (EU) Common Agricultural Policy (CAP), especially after the 47 
implementation of the AGENDA 2000 reform, is to improve both operational and environmental 48 
efficiency of primary sectors of member states, aiming by this way to increase their sustainability in 49 
an environment where protectionism is substantially reduced or eliminated. Perhaps AGENDA 2000 50 
can be characterised as the most radical reform, because it established a totally new framework for 51 
subsidies management, decoupled from both crop and animal production[2,3](Manos et al, 2011; 52 
Manos et al, 2013). Additionally, the environmental quantification of this reform is being expressed 53 
by the 20-20-20 strategy which focuses on increasing the energy efficiency by 20%, reducing the CO2 54 
emissions by 20% and produce 20% of overall energy consumed by renewable energy resources 55 
[4](European Commission, 2011). This new era of CAP started in 2005, providing by this way the 56 
ability to the EU to fully comply with the last World Trade Organization (WTO) agreement of the 57 
Uruguay Round [5](European Commission, 2013).  58 

This enforcement of influence of market forces on agricultural income formation increased the 59 
necessity for continuous and more detailed assessment of production costs in agriculture, being this 60 
approach one of the most feasible ways for increasing the efficiency of production processes. Up to 61 
now, not only for agriculture but for many economic sectors as well, the implementation of Data 62 
Envelopment Analysis (DEA) has contributed substantially towards this goal. This non-parametric 63 
approach, in accordance with the absence of a priori assumptions, formulates the essential framework 64 
where it is easily applicable. The ability being provided to the researcher to use multiple inputs and 65 
outputs for efficiency assessment increases the objectivity of the results being obtained when the 66 
objective of the study is real life tasks[6-9](Emrouznejad et al, 2008; Mulwa et al, 2009; Vlontzos and 67 
Pardalos, 2017; Vlontzos and Pardalos, 2017). The reliability and acceptability of DEA is not 68 
questionable due to the fact that is it implemented for various and quite important economic sectors, 69 
like banking, education, and health care. Agricultural production and food processing industries 70 
have been assessed also applying DEA models, trying to evaluate the efficiency rates of inputs used, 71 
as well as the outputs achieved. In this paper DEA is used to assess efficiency of holdings producing 72 
olive oil in operational terms, quantifying by this way their positive or negative impact, providing at 73 
the same time hints for counteractive actions. 74 

 The efficiency issue is not only important on a managerial level, but it is a main issue for policy 75 
assessments too. Policy makers are continuously in a need for new tools aiming in many cases to 76 
improve economic and environmental performance. Therefore, the problem of emission permits 77 
reallocation was reached by the implementation of DEA. The applicability of the methodology was 78 
based upon the fact that there is no need to have under consideration the prices of inputs and outputs, 79 
because the approach is non-parametric. The first implementation was applied for the paper industry 80 
in Sweden [10](Lozano et al, 2009). The same methodology was used for reallocation of emission 81 
permits for the 15 EU member states regarding agricultural GHGs. The results verified that the 82 
reduction and reallocation mechanism applied was fair, benefiting by this way countries operating 83 
up or very close to the efficient frontier being obtained [11](Wu et al, 2013). 84 
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Background 85 
DEA has been introduced, when Farrell (1957) stated the problem of measurement of productive 86 
efficiency [12]. Based on these ideas Charnes et al (1978) developed further this methodological 87 
approach quantifying relative deficiencies of multi-input and multi-output production units [13]. The 88 
most important characteristics of DEA are the use of peer groups, the identification of efficient 89 
operational practices, the setting of targets, the development of efficient strategies, the ability to 90 
monitor efficiency changes over time, and resource allocation [14](Boussofiane et al, 1991).The great 91 
acceptance and usefulness of DEA is proved by the use of it for efficiency assessment of very 92 
important production sectors of the economy, even nowadays [15](Cook and Seiford, 2008). One of 93 
the first implementations of this was for the banking sector [13,16](Charnes et al, 1978; Thanassoulis, 94 
1999). Quite important sector for economies is the energy one. Special research focus has been given 95 
on the electric power plants efficiency on both operational and environmental terms, with DEA being 96 
implemented for this purpose [17,18](Sozen et al, 2010; Arabi et al, 2014). Additionally, DEA has been 97 
used for evaluation of logistics, and more specifically for ports efficiency evaluation, presenting by 98 
this way best management practices in a highly competitive sector of international economy [19] 99 
(Cullinane et al, 2006).Under the same rational there were efficiency evaluation for school units and 100 
educational systems [20,21](Smith and Mayston, 1987; Thanassoulis and Dunstan, 1994) with 101 
satisfactory and widely acceptable results.  102 

Agricultural production efficiency in various cases has been assessed with DEA models, proving 103 
the profound impact of the methodology on primary sectors evaluation. A series of different inputs 104 
and outputs have been used in various combinations, covering by this way the natural, economic and 105 
environmental aspects of agricultural production. The results being obtained have created a specific 106 
know-how on efficiency assessment, by identifying the best mixture of both inputs and outputs, 107 
leading to efficiency measurements, as well as the impact and significance of these aspects on 108 
efficiency scores. DEA has been used for both animal and crop production assessments. Application 109 
of DEA on citrus production lead to specific alternatives on efficiency improvement especially in 110 
areas where small size of agricultural holdings is a major issue, which is the case in many 111 
Mediterranean countries [22](Martinez and Picazo-Tadeo, 2003). The most competitive animal 112 
production sector is the dairy one. In this case two different DEA models have been applied focusing 113 
on natural and economic inputs and outputs. The results obtained verified that it is more important 114 
to combine in efficient way both natural and economic resources than focusing on output 115 
maximization and more specifically milk maximisation [23](Stokes, 2007). On the same trend, a 116 
similar study identified efficiency scores of different combinations of management practices and 117 
feeding [24,25](Heinrichs et al, 2013; Hansson and Ohlmer, 2008). A holistic approach in the same 118 
sector included in the analysis external operational parameters as well as internal operational 119 
characteristics and micro-social issues used to assess efficiency. The results obtained focused on farm 120 
size and management, which can be either a constraint or a driving force [26] (Hansson, 2007). 121 

The increasing significance of the environmental aspect of agricultural production has driven 122 
researches towards assessing the impact of inputs being used in agriculture on eco-efficiency too. It 123 
has been proved that DEA methodology autonomously implemented to assess environmental 124 
efficiency is a widely accepted approach. This acceptance is based upon the accuracy of results for 125 
small data sets and the ability to include undesirable outputs and inputs [27] (Song et al, 2012). For 126 
this reason a combination of Life Cycle Assessment (LCA) and DEA has been used regarding 127 
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evaluating agricultural production on both operational and environmental terms. LCA is a tool for 128 
estimating the possible environmental degradation when a process is being implemented or when a 129 
product is being produced. DEA implementation by using LCA results can lead to super efficiency 130 
analysis to simplify the selection process of reference performers, which is essential in a 131 
benchmarking process [28](Iribarren et al, 2010). The application of LCA and DEA for the dairy sector 132 
provided very useful and applicable results, focusing on reducing the operational cost of dairy farms, 133 
as well as improving their environmental footprint [29,30](Silva and Stefanou, 2003; Iribarren et al, 134 
2011).Quite vital issue for farming is the efficiency assessment of labour management too. 135 
Application of DEA on citrus cultivation lead to specific alternatives focusing on efficiency 136 
improvement in areas where small size of agricultural holdings is a major issue, which is the case in 137 
many Mediterranean countries [22](Martinez and Picazo-Tadeo, 2003). Applications of DEA can be 138 
found also for mussel production, where the targets being obtained can be utilised as virtual 139 
cultivation sites with considerably less input use, achieving simultaneously more output production 140 
[31](Lozano et al, 2008). The fisheries sector is expanding quite fast, due to the continuous increase of 141 
demand for fishes and fish products. At the same time the sector is being characterised by intense 142 
competitiveness and rivalry among firms, increasing the significance of efficiency. Interesting 143 
findings were found when DEA methodology was used to assess both operational and environmental 144 
efficiency. This combination was appropriate for these cases where multiple input/output data 145 
should be used, providing at the same time the ability of not using standard deviations which is 146 
usually the case when working with average inventories [32](Vazquez- Rowe et al, 2010). The 147 
suitability of this methodology was verified for arable crops cultivation too. Iranian holdings 148 
producing soybeans found to be efficient up to 46% of the sample. The most important input 149 
contributors to global warming were irrigation and fertilization by 63% and 34% respectively, 150 
providing a road map for both efficiency improvement and mitigation of environmental degradation 151 
[33](Mohammadi et al, 2013). Following the same methodological approach, DEA was used to assess 152 
energy efficiency of wheat farms, aiming to separate efficient from inefficient farmers on the basis of 153 
inputs being used in a wasteful way and quantify the gap among them. The most important findings, 154 
being at the same time quite impressive, originated that only 18% of growers were technically 155 
efficient, with the overall technical efficiency to be 0.82[34]. It has been observed also that by 156 
implementing energy optimisation the total Greenhouse Gas (GHG) emissions can be reduced 157 
substantially [35](Khoshnevisan et al, 2013). The same methodology was applied for alfalfa 158 
production. In this, 46% of growers were found technically efficient, with the average technical 159 
efficiency to be 0.84. Optimisation of energy use improved the energy use efficiency by 10.6% 160 
[36](Mobtaker et al, 2012). DEA implementation for grape production and vinification verified 161 
quantified inefficiencies in both operational and environmental terms. In NW Spain a necessity for 162 
30%, on average, on inputs reduction was identified, leading to an increase of 28%-39% of 163 
environmental gains, depending on the impact category [37](Vazquez- Rowe et al, 2012). The same 164 
methodology was implemented for the assessment of energy efficiency of grape production. The 165 
main differences between efficient and inefficient farms were focused on the use of chemicals, diesel 166 
fuel and water for irrigation. Education level is positively related with high efficiency scores 167 
[38](Khoshroo et al, 2013) 168 

Another quite important sector is the greenhouse production, which at the same time is quite 169 
competitive too. It is widely accepted that energy costs of greenhouse vegetable production are the 170 
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most important ones, affecting directly feasibility and competitiveness of agricultural holdings. An 171 
input-output analysis quantified the energy efficiency of greenhouses producing vegetables, and 172 
more specifically, tomatoes and cucumbers. The results showed that inputs substantially affecting 173 
energy costs are diesel fuel and fertilizers. Quite important is also the energy ratio for the two 174 
cultivations, which is 0.69 and 1.48 respectively. In pure economic terms it is indicated that tomato 175 
cultivation is more profitable, compared with the cucumber one [39](Heidari and Omid, 2010). In a 176 
similar study, energy use efficiency in greenhouse was assessed comparing again tomato and 177 
cucumber production, the results showed that there is a difference between them, with technical 178 
efficiency scores to be on average 0.94, signifying the increased competitiveness of the sector. 179 
Regarding energy efficiency, about 25.15% of the total input energy could be saved without reducing 180 
tomato yield [40](Pahlavan et al, 2011). Implementation of DEA for the determination of energy 181 
efficiency in greenhouse cucumber production having included in this analysis the GHG emissions 182 
as an undesirable output, the technical efficiency was calculated, with 27% of the sample being 183 
efficient. In this study CO2 emissions were included as the major GHG undesirable output 184 
[41](Khoshnevisan et al, 2013). The most intensive cultivation though in greenhouses is floriculture. 185 
Rose production in greenhouses is a typical case of it, being at the same time absolutely necessary to 186 
keep efficiency rates quite high due to the high intensity of rivalry characterising the sector. Possible 187 
inefficiencies have a direct impact on competitiveness. Such an assessment demonstrated average 188 
technical efficiency up to 0.83 and input energy savings of about 43.59% on average can be achieved 189 
without reducing rose yield. This percentage can be considered as very important [42](Pahlavan et al, 190 
2012).  191 

The impact of CAP on farming efficiency, as it was mentioned above, is a continuous issue for 192 
both farmers and EU policy makers. DEA use to olive-growing farms proposed an allocation system 193 
for subsidies, having in mind the new subsidy administrative scheme. Farm efficiencies were 194 
calculated by decomposing DEA scores by means of internalising both positive and negative 195 
externalities of agricultural activity [43] (Amores and Contreras, 2009). The DEA model when it was 196 
applied for policy efficiency measurement has proved to be a quite appropriate tool. When the issue 197 
was the assessment of regional inefficiencies for industry sectors, the calculation of efficiency scores 198 
of lead sectors, as an evaluation perspective of their future competiveness, proved to be a reliable 199 
methodology [44](Dinc and Haynes, 1999). The same trend can be followed regarding development 200 
policies. It is accepted that public investments, mainly in infrastructure, aim to attract private 201 
investments. Efficiency assessment of such public policy was calculated by the use of DEA, 202 
identifying investment mixtures attracting successfully private investments [45-48](Karkazis and 203 
Thanassoulis, 1998; Abello et al, 2002; Papajorgji and Pardalos, 2005; Zopounidis and Pardalos, 2010). 204 
Finally, assessing rural development policies with DEA quantified the impact of them on 205 
employment generation in rural areas, being at the same time a useful tool for reallocation of 206 
resources among different areas maximising by this way policy efficiency [49](Vennesland, 2005). 207 
The same approach when applied for the evaluation of local actions for LEADER+ project in Greece 208 
identified inefficiencies regarding inputs use and proposed corrective alternatives aiming to increase 209 
the total efficiency of this project [50](Vlontzos et al, 2014). 210 

There are several studies on olive oil efficiency assessment. Special focus was given on eco-211 
efficiency and presented the linkages between eco-inefficiency and input management. The use of 212 
DEA for olive trees cultivation provided the ability to measure inefficiencies related with resources 213 
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management like land and water, in Andalusia were especially water availability is a crucial issue 214 
for both inhabitants and cultivations [51](Gomez-Limon et al, 2011). Spanish olive growers were 215 
proven to be quite eco-efficient with inefficiencies to be closely related with technical inefficiencies. 216 
Eco-efficiency was boosted via implementation of agri-environmental projects like university 217 
education [52,53](Picazo-Tadeo et al, 2010; Picazo-Tadeo et al, 2012). Eco-efficiency is closely related 218 
with land use management too[54] (Kuosmanen and Kortelainen, 2005). 219 

 220 
Material and methods 221 
The scope of this study was the assessment of efficiency levels of olive trees cultivation. This field 222 
research took place at Pilio Mountain of the Region of Thessaly, in Central Greece.  223 
 224 
Figure 1: Field research placement 225 

 226 
During the 2016 cultivation period 100 farms participated in this research, by reporting inputs usage, 227 
as well as the outputs being obtained. More specifically, the inputs being monitored were the acreage 228 
in Ha of each farm, and the annual costs of energy, agrochemicals, fertilizers, and labour. As outputs 229 
were considered the olive oil quantities produced from each farm and the revenue being achieved. 230 
The majority of farmers were male, up to 82% and the average age level was 56.4 years old. The 231 
classification of education level of the sample consists of 19% primary school, 14% high school, 32% 232 
secondary school, and 35% university graduates. The following table presents the descriptive 233 
statistics of both inputs and outputs being used for this research. 234 

 235 
Table 1: Descriptive statistics of inputs and outputs 236 

 237 
 Mean Standard Dev. Min. Max 

Acreage 28.17 47.53 5 400 

Fertilizers 270.20 271.12 120 4,000 

Fungicides 41.90 133.33 110 2,500 

Pesticides 139.88 102.19 150 4,500 

Labour 2418 687.58 1,200 120,000 

Energy 574.25 344.81 60 11,000 

Yield 1,058.95 442.91 150 15,000 

Revenue 3,455.01 2,410.34 1,000 60,000 
  Source: Own calculations 238 
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In this paper the input-oriented envelopment model is applied assuming Variable Returns to Scale 239 
(VRS). The VRS model allows for variations in returns to scale. Input oriented models aim to 240 
maximize the proportional decrease in input variables. The choice of one model or the other is based 241 
on the characteristics of the dataset analyzed. Taking the circumstance into account of imperfect 242 
competition, constraints, finance, etc., Banker, Charnes and Cooper(1984)have extended DEA to the 243 
case of variable returns to scale (VRS). This model distinguishes between pure technical efficiency 244 
and scale efficiency (SE), identifying if increasing, decreasing or constant returns to scale are present. 245 
The following DEA model is estimated in order to measure the technical efficiency of the olive oil 246 
producing farms sample: 247 
 248 

CRS Model 
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where j is the number of observations of the Decision Making Unit (DMU)s. Each observed DMUj 250 
(j=1,2,…,n), uses m inputs xij(i=1,2,…,m) to produce s outputs yrj(r=1,2,…,s). The efficient frontier is 251 
determined by these n observations. There are two properties to ensure that a piecewise linear 252 
approximation has been developed to the efficient frontier and the area dominated by the frontier. 253 
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evaluation is inefficient and has to decrease its input levels. The non-zero optimal 
*
j represents the 262 

benchmarks for a specific DMU under evaluation. 263 
 264 
Results 265 
 266 
The findings of the implementation of the above model are being presented in the following tables. 267 

 268 
Table 2: DEA VRS efficiency scores 269 

Average 0.860 

Standard Deviation 0.092 

Min 0.576 

Max 1.000 
 270 

Table 3: Efficiency classification of DMUs 271 
0.50<Score<0.59 1 DMU 

0.60<Score<0.69 4 DMUs 

0.70<Score<0.79 18 DMUs 

0.80<Score<0.89 34 DMUs 

0.90<Score 43 DMUs 
 272 
The above findings provide useful information about the quantitative and qualitative characteristics 273 
of olive orchards farms. Despite the fact that the variance of the structural characteristics of farms is 274 
quite high, the efficiency results do not follow the same trend. Only 23% of the sample succeeded 275 
efficiency scores below 0.80, while the 43% of the sample achieved efficiency score between 0.9 and 276 
1. This classification can be considered as satisfactory, providing at the same time space for 277 
substantial improvements regarding cultivating practices. 278 
Given the common production technology among the farmers, the efficiency variations could be 279 
attributed to several characteristics exogenous to the production function [55](Battese and Coelli, 280 
1995). In order to define the effect of the exogenous factors on the efficiency of farmers, the scores 281 
obtained by the model 1.2 are regressed on selected demographic and socioeconomic characteristics 282 
of the farmers under consideration.  283 
This variation of efficiency scores is quite important to be justified. One critical issue to be defined 284 
before conducting the regression analysis is the selection of its functional form. More precisely, given 285 
the fact that efficiency scores obtained by DEA modelsare point estimates without statistical 286 
distribution renders the estimations of a parametric regression such as this of Ordinary Least Squares 287 
is biased. To overcome this difficulty, [55]Simar and Wilson (2007) proposed a truncated regression 288 
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with parametric bootstrapping which leads to more accurate and consistent results. Under the 289 

truncated regression, the distribution of the error term  2,0~  Nj  is assumed to be uniformly 290 

truncated with zero mean (before truncation) and unknown variance 2
 . We specify the truncation 291 

limit at the maximum DEA score ( =1) and we obtain the parameters estimations using maximum 292 
likelihood procedure with 1000 bootstrap replications. 293 
In total, five variables were selected to represent the exogenous factors of production. Two variables, 294 
namely and  are quantitative whilst the variables ,  and  have a 295 
dummy form. Table 4 presents the main descriptive statistics of the two continuous variables. As can 296 
be seen the mean age of the farmers is 56 years whilst values are ranging from 21 to 90 years. It should 297 
be noted that 64% of the farmers are over 50 years old and 46% are exceeding the 60 years. These 298 
figures denote that ageing is a dominant characteristic of local farmers. In addition, the mean land 299 
per farmer is estimated at 2.8 Ha. The variable present quite high variability as this is testified by the 300 
ratio of st. dv to mean and by the large distance between the minimum value (1) and the maximum 301 
value (400).  302 
 303 

Table 4. Descriptive Statistics of the Continuous Exogenous Variables 304 
Statistics   

Mean 56 2.8 
St.Dv. 15 4.7 
Min 21 0.1 
Max 90 40.0 

Source: Own calculations 305 

As for the dummy variables, the variable  takes the value of 1 when the total received 306 
subsidies per farmer exceeds 5,000€ and 0 if else. The variable  receives a value of 1 if the farmer 307 
has completed university studies and 0 if else and finally the variable  receives the value of 1 for 308 
male farmers and 0 for female farmers. Having defined the variables the regression analysis is 309 
performed by solving the Model 1.3: 310 

 51 2 3 4 1, 2,...,100           oi i i i i iE ff Age Land Subsidies Edu Sex i  311 

Eff  = Efficiency Scores extracted by Model 1.2 

 Age, Land  = The Continuous Independent Variables  

  Subsidies, Edu, Sex  = The Dummy Independent Variables  

o  = The Constant Term 

 j  = 

The Regression Coefficients Under Estimation 

 1 5j ,...,  

 312 
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For comparative reasons both the estimations extracted by a simple truncated regression and these 313 
extracted by the bootstrapped regression are presented in Table 5. The value of the Wald Chi-Square 314 
statistic and the statistical significance of the estimation for both models denotes that we can reject 315 
the null hypothesis that all the parameters are equal to zero. As far as the estimated coefficients of 316 
the models are concerned, these are similar in both models in terms of the direction between the 317 
regressors and the dependent variable and the statistical significance of estimations. The only 318 

difference is the lowest statistical significance for the estimation of Subsidies  that was found under 319 

the bootstrapped model. In general, statistical significance was found for the Land ,Subsidies  and320 

Sex coefficients whereas for the other two variables the model application returned ambiguous 321 

estimations.  322 

 323 

Table 5. Results of the Truncated Regression Model Application 324 

 
Truncated Regression 

Bootstrapped Truncated 
Regression 

Parameter Estimation Std. Err. Estimation Std. Err. 

Age  0.0001 0.0003 0.0001 0.0003 

Land  -0.0033*** 0.0002 -0.0033*** 0.0005 

Subsidies  0.1004*** 0.0298 0.1004* 0.0590 

Edu  -0.0023 0.0106 -0.0023 0.0005 

Sex  0.0263** 0.0127 0.0263** 0.0121 

o  0.9042*** 0.0228 0.9042*** 0.0271 

  0.0473 0.0038 0.0473 0.0037 
Loglikelihood 161.4406 161.4406 
Wald chi2(5) 251.8000 71.6300 
Prob> chi2 0.0000 0.0000 

Statistical significance: (***) at 0.01 level (**) at 0.05 level (*) at 0.10 level 

 325 

The Land variable was found to be negatively connected to the farmers’ efficiency, meaning that 326 
farmers with larger cultivation areas seem to be less effective than those with smaller areas.  In 327 
addition, the positive estimation for Subsidies coefficient denotes that as subsidies increase the 328 

farmers become more efficient. Moreover, the positive sign of the Sex  estimation signifies that for 329 

the considered farmers’ sample men tend to employ more efficient production means than women. 330 
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Finally, farmers’ age seems to be positively connected to their efficiency whereas the opposite stands 331 
for their education level. Nevertheless, since both estimations lack of statistical significance no safe 332 
conclusions could be drawn for their relationship with the efficiency of farmers.     333 

 334 
Conclusions 335 
From the above analyses it is obvious that there is considerable potential for efficiency improvement 336 
regarding olive orchards cultivation. The representative characteristics of the sample signify the most 337 
important parameters needed to be changed in order efficiency to be increased. These parameters are 338 
better utilization of subsidies being received. Quite important is the fact that the Land factor is 339 
negatively related to efficiency scores. This outcome reflects the impact of the previous subsidy 340 
scheme, before the implementation of Agenda 2000, where the amount of subsidies received was 341 
coupled with the olive oil quantities being produced by the farmers. After the total decoupling of 342 
subsidies from production these amounts are stagnated even if the acreage of holdings is bigger. It is 343 
evident that even though the subsidy administration scheme has changed 12 years ago, the spillover 344 
effect of the previous status is still present. Finally, there is a need for training, especially for women, 345 
having as target the adoption of new knowledge about cultivation practices, aiming to bridge the gap 346 
between the two sexes. 347 
 348 
 349 
 350 
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