

Solvent Free-Microwave Green Extraction of Essential Oil from Orange Peel

**(*Citrus sinensis* L.): Effects on Shelf Life of Flavored Liquid Whole Eggs during Storage
under Commercial Retail Conditions**

Malek Aboudaou^{1,2}, Mohamed Amine Ferhat³, Mohamed Hazzit², Agustín Ariño⁴, Djamel

Djenane*¹

¹Laboratory of Food Quality and Food Safety. University Mouloud MAMMERI, P.O. Box 17 RP. Tizi-Ouzou, 15000. Algeria.

10 ²Department of Food Science and Technology. National Institute of Agronomy, avenue Hassan Badi El-Harrach,
11 Alger, 16200. Algeria.

³Laboratory of Bioactive Substances and Valorization of Biomasse, Ecole Normale Supérieure, Vieux-Kouba, P.O. Box 92. Alger, 16050. Algeria.

14 ⁴Department of Animal Production and Food Science, Laboratory of Food Quality and Food Safety. Faculty of
15 Veterinary Sciences. University of Zaragoza, C/Miguel Servet, 177, 50013, Zaragoza, Spain

*Corresponding author: E-mail: djenane6@yahoo.es, Tlf.: (+213) 779 001 384; Fax.: (+213) 26 18 61 37

 orcid.org/0000-0003-4050-4329

21 **Abstract:** A possible way to valorize citrus peels, which are byproducts of the juice
22 extraction industry, is to use them as natural biopreservatives. In this paper we present early
23 results from a compared Solvent Free Microwave Extraction (SFME) with Hydro-Distillation
24 (HD) and Cold Pressing (CP) of essential oils (EOs) using fresh orange peel (*Citrus sinensis*
25 L. var. Valencia late), a by-product in the production of orange juice in Algeria. The EOs
26 were analyzed by gas chromatography coupled to mass spectrometry (GC-MS). All extracted
27 *C. sinensis* EOs were chemotype limonene (94.64 to 95.48%). SFME is performed without
28 added any solvent or water. SFME increases EO yield and eliminate wastewater treatment,
29 resulting in a great progress in terms of time and cost efficiency. In its second part, the present
30 study was conducted to evaluate “*in vitro*”, the antioxidant activities of Solvent Free
31 Microwave (SFM) extracted orange EO by using the DPPH• (2,2-di-phenyl-1-picrilhydrazyl)

32 free radical scavenging assay. The ability of orange EO to scavenge the free radical DPPH•
33 was high, exceeding 80%. The result of the DPPH assay gives an IC₅₀ range value of 89.25
34 µg/mL (0.09 mg/mL) for the studied sample. Accordingly to the scientific literature, *C.*
35 *sinensis* EO tested in the present study presented strong antioxidant activity, when looking to
36 its values of AAI = 1.12 µg/mL. The feasibility of biopreservation used EOs as an alternative
37 to synthetic techniques for liquid whole egg (LWE) stored under commercial retail conditions
38 was investigated. The orange EO extracted by SFM was screened for its antibacterial and
39 antioxidant activities in LWE at concentrations of 0.1, 0.3 and 0.5%. The TBA-RS results
40 showed that the EO treatments significantly (p < 0.05) reduced the lipid oxidation in LWE.
41 The long term oxidative, microbial and organoleptical stability of the LWE during display
42 was positively influenced by orange EO treatments. Therefore, the results obtained here
43 confirm that EO treatment as a promising technology to extend the commercial shelf-life of
44 liquid egg products during retail/display.

45

46 **Keywords** orange peel essential oil; green extraction; liquid whole eggs; biopreservation;
47 shelf-life

48

49

50

51

52 **1. Introduction**

53

54 In terms of international trade of orange fruits, the main citrus-producing countries, such
55 as Brazil, the United States, China, India, Spain, Mexico, Egypt and Turkey [1] were
56 produced in 2014, 140 Mt of these fruits, about 60% of world production. Algerian
57 production in orange fruits estimated at 571 000 tons/year, which is the 3rd in the Arab
58 Maghreb Union and 19th producers in the world [2]. The climatic conditions of Algeria are
59 favorable for the production of most citrus fruits.

60 Citrus by-product resulting from the citrus processing represents a source of various
61 bioactive molecules such as EOs [3]. Interest in taking profit from waste products of the juice
62 industry, permit to minimize adverse effects of by-products in the environment. Generally, the
63 pharmaceutical and food industries are using citrus oils as flavoring for masking other added
64 ingredients in abundant quantity in the processed product.

65 Worldwide, consumers' enthusiasm for natural products and increasingly severe
66 legislations in respect of synthetic substances, EOs can be a good alternative for the food
67 industry. The citrus EOs and their constituents are suitable for use in foods as biological
68 agents or for their flavor, in pharmaceutical industries for its anti-inflammatory and
69 antimicrobial properties. In addition, great amount of these oils is also used in cosmetic
70 industries.

71 During the last few years, a great expectation for green chemistry was recorded by
72 various industries. Environmentally friendly and low cost ecological extraction techniques are
73 becoming more attractive. Therefore, in recent years, conventional techniques, such as HD,
74 tend to be replaced by various novel extraction techniques, such as microwave-assisted
75 extraction (MAE). This technique is largely focused on finding technological solutions to

76 diminish or even prevent the use of organic solvents in extraction processes to obtain more
77 products with higher added value. Meanwhile, this technique is considered a novel with better
78 extraction yields, decreased extraction times and prevents the degradation of thermolabile
79 compounds and thus prevents the antioxidant activity loss of the plant extract [4].

80 Recently, LWE is preferred for food industry and for households for his easy and
81 commode use. According to its biological nature, is an easily perishable animal food under
82 conventional cooled storage, its shelf life is limited due to the oxidation and microbial
83 development. Both considered a major concern for food technologists due to the loss of
84 quality associated with those processes [5]. The citrus EOs represents a significant source of
85 bioactive compounds with potential prophylactic properties for the development of functional
86 foods [6]. Generally, to destroy microorganisms in liquid egg products, heat treatments were
87 commonly employed that can improve microbial safety and increase shelf life of products, but
88 can have negative effects on the functional properties of egg proteins, which results in
89 technologically unattractive products [7]. In this scenario, the search for new strategies and
90 new biopreservative agents for stabilization of liquid eggs has become a central goal for food
91 industry. EOs can be an interesting alternative to improve traditional heat treatments to reduce
92 their intensity and therefore reduce their adverse effects on food quality. To the best of our
93 knowledge, there is no published report regarding the biological effectiveness of SFM orange
94 peel EO in egg products. The aims of this study were (i) to describe a fast solvent free
95 microwave extraction of orange EO, (ii) to assess “*in vitro*” its antioxidant activity (DPPH
96 method) of extracted EO, (iii) The application of this EO in a food matrix for biopreservative
97 purposes.

98

99 **2. Materials and Methods**

100

101 *2.1. Collection of fresh peel orange fruit*

102

103 Fresh oranges, variety Valencia (*Citrus sinensis* L.) were collected from healthy trees in

104 full bloom during sunny days at the end of January of 2015, in province of Metidja (Algeria).

105 The whole fresh fruits were then extensively washed with distilled water (20 °C). Only the

106 fresh orange peels were recovered for subsequent extraction. Citrus fruits were peeled to

107 separate the external part of the orange (flavedo), giving a yield of ~ 15% (w/w) of the peel

108 with respect to the whole fruit.

109

110 *2.2. List of chemicals and reagents*

111

112 All reagents and solvents used in the extractions were of analytical grade. All chemicals

113 were purchased from represented Algerian Chemical Society (Sigma–Aldrich, Chemistry-

114 GmbH, Germany; Biochem, Chemopharma, Spain; Merck; Darmstadt, Germany).

115

116 *2.3. Essential oils extraction*

117

118 SFME has been performed using the “DryDist” microwave oven illustrated in **Figure 1**.

119 In a typical microwave accelerated distillation (MAD) procedure performed at atmospheric

120 pressure, 200 g of fresh orange peels were heated using a fixed power of 200 W for 10

121 minutes. The extraction was continued at 100 °C until no more EO was obtained. SFME is

122 based on a relatively simple principle; this method involves placing plant material in a

123 microwave reactor, without any added solvent or water. The internal heating of the *in situ*

124 water within the plant material distends the plant cells and leads to rupture of the glands and
125 oleiferous receptacles. This process thus frees EO which is evaporated by the *in situ* water of
126 the plant material. A cooling system outside the microwave oven condensed the distillate
127 continuously. The excess of water was refluxed to the extraction vessel in order to restore the
128 *in situ* water to the plant material. For comparison, 200 g of fresh orange peels were submitted
129 to HD with a Clevenger-type apparatus according to the European Pharmacopoeia and
130 extracted with 2 L of water for 3 hours (until no more EO was obtained). Another comparison
131 has been made by CP procedure. EO is collected from 1 kg of whole orange fruit using an
132 automated cold pressing machine. The epidermis and oil glands were lacerate by a needle,
133 creating areas of compression in the peel, surrounded by areas of lower pressure, across which
134 the oil flows to the exterior. The oil is carried down to a decantation vessel in a stream of
135 water, the emulsion being collected and then separated by centrifugation. The orange peel
136 extractions provide a liquid limpid, mobile EO of yellowish color with a very strong and
137 persistent odor of orange. Its density at 20 °C was ~ 0.82 g/mL, its refraction index at 20 °C
138 was ~ 1.49, while its boiling point was ~ 52 °C. The EOs were collected and stored in
139 darkness in opaque sealed vials at 4 °C until further analysis and use in bioassays.

140

141 2.4. GC-FID and GC-MS analysis

142

143 The EOs were analyzed by gas chromatography coupled to mass spectrometry (GC-MS)
144 (Hewlett-Packard computerized system comprising a 6890 gas chromatograph coupled to a
145 5973A mass spectrometer) using two fused-silica-capillary columns with different stationary
146 phases. The non-polar column was HP5MS™ (30 m × 0.25 mm × 0.25 µm film thickness) and
147 the polar one was a Stabilwax™ consisting of Carbowax™-PEG (60 m × 0.2 mm × 0.25 mm
148 film thickness). GC-MS spectra were obtained using the following conditions: carrier gas He;
149 flow rate 0.3 mL/min; split-less mode; injection volume 1 µL; injection temperature 250 °C;
150 the oven temperature programme was 60 °C for 8 min increased at 2 °C/min to 250 °C and
151 held at 250 °C for 5 min; the ionisation mode used was electronic impact at 70 eV. The
152 relative percentage of the components was calculated from GC-FID peak areas. Most
153 constituents were tentatively identified by comparison of their GC Kovats retention indices
154 (RI), determined with reference to an homologous series of C5–C28 n-alkanes and with those
155 of authentic standards available in the authors' laboratory. Identification was confirmed when
156 possible by comparison of their mass spectral fragmentation patterns with those stored in the
157 MS database (National Institute of Standards and Technology and Wiley libraries) and with
158 mass spectra literature data [8]. Then listed according to Kovat's retention index calculated in
159 GC on apolar HP-5MS column.

160

161 2.5. *In vitro assay for antioxidant activity*

162 2.5.1. *DPPH radical-scavenging activity*

163

164 The ability of the SFM extracted EO to scavenge 1,1-diphenyl-2 picrylhydrazyl Radical

165 (DPPH•) was estimated. Pure EO was dissolved in 5% (vol/vol) Dimethyl Sulfoxide (DMSO),

166 and then EO dilutions were made to obtain different concentrations (50 to 450 µg/mL).

167 Aliquots 4 ml of DPPH (100 µg/L) methanol solution was taken in a test tube, and then mixed

168 well with 4 ml of EO DMSO solution. Then, the mixture was vortexed using a vortex mixer

169 (Cyclo-mixer) and incubated in the dark at ambient temperature (25 ± 1 °C) for 30 min.

170 Decreasing of absorbance of tested mixtures was monitored every 1 min for 30 min at 517 nm

171 using a Perkin–Elmer Lambda 25 UV/Vis spectrophotometer. The absorbance was read

172 against pure methanol at 517 nm and the percentage of DPPH radical scavenging activity

173 (RSA) was calculated using the following equation:

174

$$\text{RSA (\%)} = [(\text{Abs}_{(\text{DPPH})} - \text{Abs}_{(\text{EO})}) / \text{Abs}_{(\text{DPPH})}] \times 100 \quad (1)$$

175

176 where $\text{Abs}_{(\text{DPPH})}$ is the absorbance value at 517 nm of the methanolic solution of DPPH and

177 $\text{Abs}_{(\text{EO})}$ is the absorbance value at 517 nm for the EO extracts.

178 The RSA was also expressed as the IC_{50} value (µg/mL), the concentration required to

179 cause 50% of DPPH inhibition. The percentage of scavenged DPPH• was plotted against the

180 EO extract concentration, and that required to quench 50% of initial DPPH radical was

181 obtained from the graph by linear regression. A lower IC_{50} value indicates greater antioxidant

182 activity. Synthetic antioxidant reagent butylated hydroxytoluene (BHT) was used as the

183 positive control. To standardize DPPH results, the antioxidant activity index (AAI), proposed

184 by Scherer and Godoy [9] was calculated as follows Eq. (4):

185

$$\text{AAI} = \text{DPPH in reaction mixture } (\mu\text{g/mL}) / \text{IC}_{50} \text{ } (\mu\text{g/mL}) \quad (2)$$

186

187 Studied EO was classified as showing poor antioxidant activity when $\text{AAI} < 0.5$, moderate
188 antioxidant activity when $0.5 < \text{AAI} < 1.0$, strong antioxidant activity when $1.0 < \text{AAI} < 2.0$,
189 and very strong when $\text{AAI} > 2.0$.

190

191 *2.6. Biopreservative effects in LWE*

192 *2.6.1. Preparation of LWE*

193

194 Eggs were surface-disinfected by immersion for 1 min in a dilute solution of ethanol
195 (70%), washed twice by immersion in distilled and sterile water, and left in a dry place to
196 remove excess water on the surface until using for “*in vivo*” assays. Just before experiments
197 were carried out, the eggs content (separately, egg whites and egg yolks) were removed under
198 aseptic conditions, and collected in sterile containers. When albumen was separated from
199 yolk, care was taken to ensure that albumen was not contaminated by the yolk content. The
200 chalaza was removed and the separated egg fractions were then homogenised for 2 min at
201 4000 rpm, using a commercial blender (31BL44, Waring, USA). To prepare 100 mL of LWE
202 samples, 33.25 mL of egg yolk were mixed with 66.75 mL of egg white; this proportion is the
203 normal average composition of whole egg and was used to attain a constant white to yolk
204 relationship. The proportion of albumen and yolk greatly affects processing characteristics of
205 LWE products and this proportion is mainly characterized by different moisture percentages,
206 total solids content and fat content [10,11].

207 The total LWE obtained were centrifuged at $103 \times g$ for 2 min using a Heraeus
208 Megafuge 1.0R to eliminate any residual air. EO was added directly into LWE at a final

209 concentration between 0.1-0.5%. All samples were placed under continuous lighting (1000
210 lux) in display cases at 4 ± 1 °C for 8 days, simulating commercial retail/display conditions.
211 The positions of the samples in display cases (~ 80 cm under fluorescent tube) were rotated to
212 minimize abuse light and temperature intensities at the surface of product.

213 Fat contents are analyzed according to the method of Folch et al. [12]. The pH of the
214 LWE was measured using a micro pH-meter model 2001 (Crison Instruments, Barcelona,
215 Spain) after homogenizing 3 g of the product in 27 mL of distilled water for 10 s at 1300 rpm
216 using a Ultra-Turrax T25 macerator (Janke & Kunkel, Staufen, Germany).

217

218 *2.6.2. Thiobarbituric Acid Assay*

219

220 To measure the potential antioxidant capacity of studied EO and to evaluate the
221 extension of the lipid oxidation on the LWE samples, the determination of the amount of the
222 formed 2-thiobarbituric acid-reactive substances (TBARS) was undertaken, according to
223 protocol developed by Djenane et al. [13]. The results were expressed as mg of MDA/kg of
224 LWE and calculated using a standard curve prepared with 1,1,3,3-tetramethoxypropane. The
225 Percentage inhibition rate (IR%) respect to the control was calculated as follows:

226

$$\text{IR\%} = [(C_{(\text{sample})} - T_{(\text{sample})})/C_{(\text{sample})}] \times 100 \quad (3)$$

227

228 Where C is the number of TBA-RS in the untreated samples (LWE prepared without EO
229 addition: control) and T is the number of TBA-RS in the treated samples.

230

231 *2.6.3. Psychrotrophic bacteria analysis in LWE*

232

233 A sample of 10 g was removed aseptically and transferred to a stomacher bag containing
234 90 mL of sterile peptone water (PW) solution (0.1%), and was homogenized at room
235 temperature. Further serial decimal dilutions were prepared in PW solution (0.1%). The
236 appropriate dilutions were subsequently used for enumeration of microorganisms. Total
237 Psychrotrophic bacteria counts were determined using plate count agar (PCA) after incubation
238 at 7 °C for 10 days [14]. The \log_{10} CFU/mL of mean values for the counts were recorded.

239

240 *2.6.4. Sensory Analysis*

241

242 The attribute "EO odor" referred to the intensity of perceptible orange EO odor after
243 container sample opening: 1 = none; 2 = slight; 3 = small; 4 = moderate; and 5 = extreme.
244 Scores for "off-odor" referred to the intensity of odors associated to product spoilage: 1 =
245 none; 2 = slight; 3 = small; 4 = moderate; and 5 = extreme. A score of 3 or higher (≥ 3) in
246 both attributes denoted that LWE was unacceptable for sale or consumption.

247

248 *2.6.5. Instrumental color evaluation*

249

250 The color profile was measured using color space coordinates CIE (L^* , a^* , and b^*)
251 (Mini XE, Portable type, USA) in accordance with the recommendations of the International
252 Commission on Illumination [15]. L (lightness), a (redness), b (yellowness) values were
253 recorded on the LWE emulsion of all samples. The instrument was calibrated using black and
254 white tile, provided with the instrument. The LWE samples were kept inside the glass Petri
255 dishes (diameter and height is 100 × 15 mm) in triplicate, and then instrument was directly

256 put on the surface of the LWE emulsion at six different points for each Petri dishes. The mean
257 (n = 18) and standard error for each parameter were estimated.

258

259 *2.6.6. LWE Shelf life extension*

260

261 For shelf life study, chemical guidelines were used following the recommendations of
262 Djenane et al. [5] for animal foods: TBA-RS value: limit \sim 2 mg MDA/kg. The additional
263 microbial guidelines were also used following the recommendations of Garcia-Gonzalez et al.
264 [16] for whole egg: \sim 6 \log_{10} CFU/mL for total aerobic psychrotrophic counts.

265

266 *2.7. Statistical analysis*

267

268 All data were analyzed by the general linear model (GLM) procedure of the Statistical
269 Package for the Social Sciences software (SPSS version 21, IBM Corporation, USA). Results
270 are presented as the means of three independent experiments \pm standard deviation with three
271 replicates. Student's t-test was used to compare the efficacy of EO treatment and to determine
272 any significant differences among the treatments at a 95% confidence interval (p < 0.05).

273

274 **3. Results and Discussion**

275

276 *3.1. Extraction and analysis of orange EO*277 *3.1.1. Kinetics extraction yield*

278

279 The choice of the technique is the result of a compromise between efficiency and
280 reproducibility of extraction, ease of procedure, together with considerations of cost, time, the
281 degree of automation and safety. These shortcomings have led to the consideration of the use
282 of new "clean" technique in EO extraction, which typically use less solvent and energy. The
283 yields obtained by the both methods, SFME and HD, are similar but the difference is related
284 to the extraction time. With SFME, 10 min provides yields comparable to those obtained after
285 3 h by HD. The values obtained are respectively 0.40% for both methods (SFME and HD),
286 and 0.16% for CP (**Table 1**). The SFME is clearly quicker than its conventional counterparts.
287 The extraction takes 10 min., whilst 1 hour and 3 hours were required by CP and HD,
288 respectively. For the case of CP, an additional time of centrifugation (30 min.) of the
289 emulsion containing EO could be added to the real extraction time (1 h.). For HD or SFME,
290 the extraction temperature is equal to water boiling temperature at atmospheric pressure (100
291 °C). To reach this extraction temperature (100 °C) and thus obtain the distillation of the first
292 EO droplet, it is necessary to heat only 2 min. with SFME against 30-40 min. for HD. From
293 point of view early formation of first droplets, the first EO droplets were observed after 3.0
294 min in SFME and 23.0 min in HD. Heat transfer within the samples was the most important
295 factor for theses differences [17]. The rapid increase in temperature in the case of SFME
296 extraction is the main reason for this time reduction [18]. The obtained yield of peel EO from
297 *C. sinensis* was 1.89% [19]. This is not in agreement with Minh Tu et al. [20] who reported a
298 yield of 0.13%. Moreover, it has to be highlighted that one of the highest yields obtained was

299 that in the case of Valencia Late oranges (2.3%) [21]. A yield of 0.79% has been recorded for
300 Colombian orange peel oils [22]. Fresh peels of the Valencia late cultivar from Algeria
301 yielded 0.39% of EOs [23]. EOs were extracted from epicarp (waste product from India) of *C.*
302 *sinensis* (L.) Osbeck by hydro-distillation yielded 1.8% of EO [24]. Boukroufa et al. [25]
303 found that the EO yields obtained from orange peel by Microwave Hydrodiffusion and
304 Gravity (MHG) and steam distillation (SD) processes are comparable but a difference is only
305 observed in the extraction time. Indeed, 15 min of extraction with this process are sufficient to
306 extract totality from oil whereas it takes 240 min with SD, which is the one of the reference
307 methods in EO extraction (gain of time of more than 93%). Advantages in terms of reducing
308 time due to microwaves were also reported by other studies such as Ferhat et al. [26] for
309 orange peel EO (12 min with microwave steam diffusion (MSD) vs. 40 min for steam
310 diffusion (SD), Sahraoui et al. [27] for Citrus EO extraction using MSD (3 h with SD vs. 6
311 min with MSD), Perino- Issartier et al. [28] for lavender EO (15 min with MHG vs. 120 min
312 with SD), and Sahraoui et al. [29] for EO extraction from lavender with MSD (6 min vs. 40
313 min for SD). The SFME was also reported to be the best compared to conventional HD for
314 extracting EO from *Citrus grandis* peels [30]. Luciardi et al. [31] found that mandarin EOs
315 obtained by CP/SD contains more oxygenated monoterpenes and sesquiterpenes fractions
316 than mandarin EOs obtained by CP. Probably, the SD, could remove the oils that remains in
317 the peel and effluent after pressing and separation.

318 SFME is proposed an “environmentally friendly” extraction method. SFME is a very
319 clean method, which avoids residue generation (vs. CP) and the use of large quantity of water
320 and voluminous extraction vessels (vs. HD). The reduced cost of extraction is clearly
321 advantageous for the proposed SFME method in terms of energy and time. Regarding
322 environmental impact, the calculated quantity of carbon dioxide (CO₂) rejected in the
323 atmosphere is higher in the case of HD (3464 g CO₂/ g of EO) than for SFME (70 g CO₂/ g of

324 EO). These calculations have been made according to literature: to obtain 1 kW h from coal or
325 fuel, 800 g of CO₂ will be rejected in the atmosphere during combustion of fossil fuel [32,33].

326

327 *3.1.2. Orange EOs composition*

328

329 **Table 1** lists the grouped compounds in EO: oxygenated and non-oxygenated fractions
330 and composition of chemical families of orange EOs obtained by different extraction
331 methods. The oxygenated fraction in EO samples from SFME (1.6%) was 40% higher than
332 HD (0.82%) and 30% higher than CP (0.95%). The monoterpane hydrocarbons (i.e.,
333 limonene) are present in larger amounts in the hydro-distilled EO (95.48%) than the SFME
334 EO (94.64%), but the extract obtained by SFME is more concentrated in oxygenated
335 compounds (1.6 vs. 0.85-0.95%). The greater proportion of oxygenated compounds in the
336 SFME EO is probably due to the diminution of thermal and hydrolytic effects, compared with
337 CP which uses a large quantity of water and with HD which is time and energy consuming.
338 Water is a polar solvent, which accelerates many reactions, especially reactions via
339 carbocation as intermediates. Linalool was the main oxygenated component in the EO
340 extracted from orange peels but the relative amounts differed for the three extraction methods.

341 Evaluating the results of the present study with those on orange EO, the percentages of
342 the majority of the identified compounds in the orange species EOs differ in the literature. It
343 is therefore possible that genetic differences within species determine the expression of
344 different metabolic pathways regardless of geographic location [34]. The EOs of orange peels
345 isolated by SFME, HD and CP are rather similar in their composition. Limonene is the main
346 component with 94.64% for SFME, 95.48% for SD and 95.06% for CP. It is clear that
347 microwave methods greatly accelerates the extraction process, but without causing
348 considerable changes in the volatile oil composition. Bustamante et al. [35] found that no

349 remarkable difference was observed in the composition of orange peel EOs extracted by HD
350 and Microwave Assisted Hydrodistillation (MAHD). D-limonene was the most abundant
351 chemical in both extracted EOs (96.75 and 97.38% for HD and MAHD, respectively). The
352 yields for both samples were similar. In terms of energy consumption, the same authors found
353 that a significant reduction was observed with comparing conventional HD to the microwave
354 extraction (3.2 and 0.5 kWh, respectively), resulting in a great progress in terms of cost
355 efficiency. A microwave heating causes a superheating phenomenon which facilitates the
356 distension of the plant cells and leads to liberate the EO more quickly than in the case of
357 conventional extraction methods [27].

358 However, it is worthy to note that limonene which was reported as the main component
359 in *C. sinensis* EO was found in our samples. Previous studies regarding the EO of *C. sinensis*
360 from different regions of the world were focused on the peel oil composition of val. cultivar.
361 For example, limonene (94.95%) and myrcene (1.87%) were reported as the main
362 components of the Italian val. cultivar [36]. Limonene (96.0–97.3%) was the main component
363 of orange EO from Tunisia [19]. A study of Ferhat et al. [23] from Algeria reported that
364 limonene (78.5%), myrcene (5.3%) and β -pinene (2.7%) were the typical components of the
365 val. cultivar peel oil. Limonene (94.7%) and myrcene (2%) were reported as the basic
366 components of the Vietnamese val. cultivar [20].

367

368 3.2. DPPH scavenging capacity

369

370 The activity of the *C. sinensis* EO was found to be dose dependent and the DPPH
371 scavenging capacity of the tested oil augmented by increasing the concentration of EO and the
372 inhibition ranged from 21 to 81% according to the tested concentrations (**Figure 3**). The
373 lowest IC₅₀ value (highest antioxidant activity) of 89.25 μ g/L was obtained (**Table 2**), eight

374 times greater than the value found for the reference compound.; BHT that was used as
375 positive control ($IC_{50} = 11.37 \mu\text{g/mL}$). Accordingly to the categories defined by Scherer and
376 Godoy [9], *C. sinensis* EO tested in the present study presented strong antioxidant activity,
377 when looking to its values of $AAI = 1.12 \mu\text{g/mL}$. The aptitude of orange EO to scavenge free
378 radicals could be attributed to the phenolic constituents as monoterpenes are responsible for
379 the overall reactivity of the orange oil towards DPPH radical. Our findings are similar to those
380 reported previously by Singh et al. [37] who examined the antioxidant activity of orange EO
381 using the DPPH way. The relationship among the antioxidant activity and their chemical
382 profiles was previously reported. Thus, the intensity of the antioxidant activity for the studied
383 specie may be related mainly to the major components which are limonene (94.64-95.48%),
384 and β -myrcene (1.64-1.87%). Even the cited compounds could explain in a part the elevated
385 antioxidant activities for this specie; it is difficult to attribute the antioxidant effect of the
386 whole EO to one or few active compounds. Both minor and major compounds should make a
387 significant role to the oil's activity which is the interaction result of their chemical
388 composition. Given that limonene is the main compound of orange EO, our results confirm
389 the study by Bacanli et al. [38] and Fancello et al. [39] which describes the antioxidant
390 activity of this compound. In the same order of ideas, Junior et al. [40] and Singh et al. [37]
391 found that the antioxidant nature of the EOs in terms of free radical scavenger may be due
392 also to DL-limonene mostly present in the citrus EO.

393

394 *3.3. Application in LWE*

395

396 The pH values of non-treated and treated LWE were not significantly modified during
397 chilled display (Results not shown, $p > 0.05$). Rossi et al. [41] and Monfort et al. [42] reported
398 mean values of 7.5 and 7.64, respectively for raw LWE. The lipid analysis of LWE showed

399 9.78% (w/w) value. Jin et al. [11] and Ragni et al. [43] reported 9.88 and 10.09%,
400 respectively. The pH and lipid are an essential attributes for obtaining adequate LWE
401 functional properties [44].

402

403 *3.3.1. Lipid oxidation (TBARS-RS)*

404

405 It would seem interesting to say that EOs which are able of scavenging free radicals may
406 play an important role in food processing industry as natural additives to replace synthetic
407 antioxidants with natural ones. Synthetic antioxidants have successfully been used to prevent
408 lipid oxidation in animal food products but latest statement on health declares of these
409 synthetic chemicals have necessitated research on alternative successful compounds
410 particularly from natural sources. EOs have been qualified as natural bioactive agents due to
411 their ability to delay lipid oxidation in various food systems [13,45].

412 A large number of compounds are generated from lipid oxidation which adversely affect
413 quality and this limits the shelf-life of food. Lipid oxidation in animal food products it is
414 influenced by various factors such amount of polyunsaturated fatty acids (PUFA), O₂, metal
415 ions, temperature, and lighting. To prevent or delay lipid oxidation in foods, antioxidants can
416 be applied. Today, food industry search new economical and effective natural antioxidants
417 that can replace synthetic antioxidants.

418 The initial TBA-RS value of fresh whole eggs was 0.05 mg MDA/kg (**Table 3**). The
419 activity of the orange EO was found to be dose dependent. The TBA values of control
420 samples increased rapidly throughout the display. Results shows that at the 5th day of display,
421 samples containing higher level of orange EO (0.5%) had TBA values 69.73% lower than the
422 TBA values of control samples. However, at the end of display, the degree of inhibition was
423 55.2% lower. During all period of storage, the lower treated samples (0.1%) showed a

424 significant increment, and were more similar to the untreated controls. Our results are in
425 conformity with those of Viuda-Martos et al. [46] who studied the effect of various plant
426 extracts at different concentrations on lipid oxidation in egg products during storage. It was
427 reported that the lipid oxidation values was lower at higher concentration of plant extract.
428 Fernandez-Lopez et al. [47] was tested the orange powder for its potential as antioxidants in
429 beef meatballs and found them very effective against rancidity more than 12 days during
430 storage. Lowering the concentration of EOs without compromising their antioxidant activity
431 can also be obtained by applying them in combination with other antioxidant compounds that
432 provide a synergistic effect [45].

433

434 *3.3.2. Psychrotrophic bacteria analysis*

435

436 Whole eggs are prone to be contaminated by Gram-positive and Gram-negative
437 microorganisms [48], being microbial growth considerably decelerated due to the presence of
438 natural antimicrobials.; in particular lysozyme and conalbumin, in the egg white fraction
439 [49,50]. The changes in microbiological quality in the treated LWE samples during display, at
440 4 °C are presented in **Figure 4**. The initial Psychrotrophic bacteria counts of samples reach
441 2.5 log CFU/mL. Garcia-Gonzalez et al. [16] reported 4.1 log CFU/g values for the initial
442 microbial loads of unprocessed LWE. In the first batches LWE0.1% and LWE0.2%, EO
443 treatment was less effective in decreasing the number of Psychrotrophic bacteria counts
444 compared to LWE0.5% treatments ($p < 0.05$). However, as display continued, significant
445 changes were observed: the Psychrotrophic counts continuously increased in control and 1st
446 batch (0.1%) and 2nd batch (0.2%) samples, whereas slower microbial development was
447 observed for the 3rd batch (0.5%). At the end of the shelf life study, the number of
448 psychrotrophic bacteria in the LWE treated samples reached 5.63 to 7.27 log₁₀ CFU/mL.

449 However, at the same time values of $7.5 \log_{10}$ CFU/mL were obtained for untreated samples.
450 High treatment (LWE0.5%) was as effective to ensure microbial stability during the entire
451 display study. However, Psychrotrophic bacteria limit was not exceeded at the end of the
452 storage study ($< 7 \log_{10}$ CFU/g) and thus acceptable for consumption even after one weeks of
453 display for both higher treatments (0.2 and 0.5%) in accordance with the microbiological
454 guidelines. A number of studies have demonstrated the wide spectrum of antimicrobial
455 activity of citrus species, especially orange EO against a wide range of microorganisms [51],
456 which has been confirmed and extended in this study. Luciardi et al. [31] showed that citrus
457 EOs can be used to inhibit quorum sensing and virulence factors of *Pseudomonas aeruginosa*
458 by producing a biofilm in food systems. Orange and lemon dry powder at 5% (w/w) were
459 tested by Fernandez-Lopez et al. [47] for their potential as antimicrobials in beef meatballs
460 and found them to be very effective against LAB over a 12-day period. Citrus EOs were also
461 investigated for their ability to reduce total aerobic bacteria and psychrotrophic number in
462 comparison to controls over a period of 90 days at refrigerated beef storage [52]. Callaway et
463 al. [53] and Muthaiyan et al. [54]. have studied the antimicrobial effects against common
464 foodborne pathogens of citrus by-products industry EOs and found that several of them have
465 been shown to possess antimicrobial properties. Several studies have shown that Gram-
466 positive bacteria are more susceptible to Citrus EO than Gram-negative bacteria [55].
467 Contrary to all expectations, Lin et al. [56] showed that the orange EOs could effectively
468 inactivate some Gram negative bacteria such as *V. parahaemolyticus*, *S. Typhimurium*, and *E.*
469 *coli* but not *S. aureus* (Gram positive), on the food contact surfaces.

470 Higher contents of phenolic compounds such as major monoterpene hydrocarbons
471 present in the EO could be responsible for the higher antimicrobial activity. The antibacterial
472 activity of studied orange EO can be assigned to several molecules, amongst other the

473 limonene, major constituent of orange EO. It has been reported that limonene is more
474 effective on bacterial strains [57].

475

476 *3.3.3. Sensorial odor analysis*

477

478 The production of *off-flavor* or strong odor limits the use of EOs as food preservatives to
479 increase the shelf life of food products. The use of EOs as biological agents in food industry
480 could affect the organoleptic properties of the products, so that obtaining a better biological
481 effect in the lower concentration is essential. Thus, sensory tests by a trained panel would be
482 necessary in some cases to elucidate this aspect. Regarding the intensity of the orange smell
483 (**Table 5**), LWE 0.5% samples were given a initial score of 3 (Day 0), while LWE subjected
484 to low treatment with 0.2 and 0.1% orange EO were given a score < 2.2 during all period of
485 display, representative of acceptable orange smell. It appears evident that the intensity of the
486 orange smell decreases with time of display; no more perceptible after 5 days ($p < 0.05$) and
487 reached acceptable values for all samples. From a practical point of view, the dose used for
488 processing LWE is low and acceptable in this product. The treatment with orange EO ×
489 display times had an effect on *off-odor* attribute sensory scores ($p < 0.05$). At all period of
490 display, the untreated samples had higher ($p < 0.05$) off-odor scores. Generally, TBA-RS
491 values have been correlated with consumer perception of lipid oxidation in animal products
492 [5]. Increased *off-odor* of untreated samples was probably due to oxidative rancidity by
493 increased lipid oxidation as shown by the TBARS values, which could be easily perceived by
494 the panelists'. It would also be probable that the *off-odor* perceived by panelists' is also due to
495 microbial development as shown by the psychrotrophic bacteria's counts. Untreated samples
496 were assessed by the panelists with scores rejection limit (score ~ 4) at 5rd day of display,
497 whereas higher treated samples (0.2 and 0.5%) were assessed by the panelists with scores

498 below ($P < 0.05$) the rejection limit during all period of display. The higher treatments with
499 orange EO significantly ($P < 0.05$) extended LWE odor shelf life attributes. The antioxidant
500 activity may be ascribed to the presence of chemical components; monoterpenes found in this
501 EO may act as bioactive agents and to avoid loss in sensory quality. The extreme aroma of
502 various EOs, even at low concentrations, can cause negative organoleptic effects exceeding
503 the threshold acceptable to consumers. In the last decades, different strategies can be used to
504 resolve this problem. One option is to use plant extracts in active packaging rather than as an
505 ingredient in the product itself. EOs can be encapsulated in edible and biodegradable coatings
506 polymer that provide a slow release to the headspace of food packages and consequently to
507 the food surface [5].

508 The edible gelatin coating enriched with orange EO has perceptible effects on the quality and
509 shelf life of shrimps [58].

510

511 *3.3.4. Instrumental color*

512

513 At positive values, the CIE a^* index indicates reddish colors, however, at negative
514 values, colors are green. CIE b^* index take positive values for yellow and negative for blue.
515 Finally, the CIE L^* parameter is an approximate measure of luminosity. Each of the color
516 parameters mentioned above is directly associated with certain quality criteria of the product
517 in question, for example, the presence of fundamental compounds in the product, pH, water
518 retention capacity and texture. The color of the LWE is a subject of practical importance for
519 the egg-processing industry, which requires egg products with an appropriate and a
520 homogeneous distribution of the color to satisfy the demand of the food industry. Customers
521 may not accept discoloration caused by long term storage, considering the LWE as being of
522 low-quality. For this reason, synthetic antioxidants are usually added to the egg products to

523 reach the desired color and make the products more attractive for consumers and more
524 appropriate for the egg-processing industry. Color perception highly depends on the chemical
525 and microbial properties of the LWE components. It has been described that denaturation of
526 certain proteins.; lipids and pigments, which occurs during storage, explains the main color
527 changes that occurred in stored animal food products [5,59].

528 The most obvious changes during the storage of liquid egg products are typically related
529 to color. Results concerning orange EO treatments are recorded on **Table 6**. After the
530 treatments, red (CIE a*) and yellow (CIE b*) coordinates increased moderately for LWE0.5%
531 during display if compared with other treatments, resulting in more orange products. Also, the
532 CIE L* value decreased with the exposure time, and results for untreated samples are
533 comparatively darker than the others. In similar products, de Souza and Fernandez [59] found
534 a comparable tendency for the CIE Lab color coordinates. The results obtained instrumentally
535 would justify the physical- chemical and microbial tests results for displayed fresh LWE,
536 being the oxidation reaction and microbial development likely responsible for the observed
537 differences.

538

539 *3.3.5. Shelf-life determination*

540

541 The shelf life of LWE is determined based on sensory analysis (attribute scoring: A score
542 < 3 in “*off odor*” parameter denoted that product was acceptable, chemical (TBA-RS value:
543 limit ~ 1.5 mg MDA/kg), and microbiological (psychrotrophic aerobic count: limit ~ 7 log₁₀
544 CFU/g) properties. The shelf life is defined as “the period between raw LWE scale laboratory
545 preparation and the storage sampling, during which the product is in a state of satisfactory
546 quality in terms of chemical, physical, microbiological and sensory attributes”.

547 The display of LWE demonstrated that orange EO was needed for obtaining a
548 significant increase of retail shelf life. It was evident that the LWE quality attributes during
549 the display period depended on the concentration of orange EO added in the product. The
550 long term chemical, physical, microbial and sensory stabilities of the raw LWE during display
551 were positively influenced by EO treatments and shelf-life was up to 1 week. The quality
552 stability of LWE during display was higher at higher orange EO treatment.

553 It is evident that the constituents separately isolated from EOs may play an important
554 role in the biological activity of the latter. However, the main obstacle for using separated
555 constituents as food preservatives is that they are most frequently not potent as separate use,
556 and they cause negative organoleptic effects when added in sufficient amounts to provide a
557 biological effect.

558 The food industry primarily uses EOs as flavorings. However, application of EOs as
559 food preservatives requires detailed knowledge about their properties, i.e., the range of target
560 organisms, the mode of action, and the effect of food matrix components on their
561 antimicrobial and antioxidant properties. A range of EO components have been accepted by
562 the European Commission for their intended use as flavorings" in food products such as
563 limonene which is considered to present no risk to the health of the consumer.

564 The United States Food and Drug Administration (FDA) also classify these substances
565 as generally recognized as safe (GRAS). The high value of LD₅₀ of the *C. sinensis* oil through
566 oral administration on mice indicates their non-mammalian toxicity [37] and recommended
567 that EO of *C. sinensis* and DL-limonene can be used as potent shelf life enhancement of
568 stored food. In addition, the various constituents may interact, causing synergistic,
569 antagonistic, indifferent and additive effects. A comparative study of EO constituents may
570 help to understand the key points of the biological activity of EOs, acting alone or in
571 combination with other food preservation techniques.

572

573 **4. Conclusion**

574

575 Microwave energy is a key enabling technology in achieving the objective of sustainable
576 “clean” production for research, teaching and commercial applications. It has been shown that
577 solvent-free conditions are especially suited to microwave-assisted organic synthesis, as
578 reactions can be run safely under atmospheric pressure in the presence of significant amounts
579 of products. SFME has been conceived following the concepts of SFM synthesis. When
580 coupled to microwave radiation, solvent free techniques have proved to be of special
581 efficiency as clean and economic procedures. Major improvements and simplifications over
582 conventional methods originate from their rapidity, their enhancement in yields and product
583 purities. Orange EO is also shown to be a particularly interesting field for applications within
584 the food industries. The long term oxidative, microbial and sensory stability of the LWE was
585 positively influenced by orange EO treatments and shelf-life was up to 1 week of refrigerated
586 display. Therefore, the results obtained confirm EO treatment as a promising technology to
587 lengthen the commercial shelf-life of liquid egg products.

588

589 **Acknowledgements:** The present research was carried out with the financial support of the Ministry of Higher
590 Education and Scientific Research of Algeria (Grant F00520140089).

591

592 **Conflicts of Interest:** The authors declare that there is no conflict of interest.

593

594 **Author Contributions:** A.M designed and performed the experiments, and analyzed the data, and wrote the
595 manuscript. F.M.A., H.M., provide citrus samples and materials. A.A and D.D conceived
596 designed, revised the manuscript, and supported the project.

597

598 **References**

599

600 1. FAOSTAT. Food and Agriculture Organization of the United Nations. Statistics division
601 FAOSTAT3.fao.org/home/E. Last accessed 19.01.16. **2015**.

602 2. FAO. Statistical Databases, www.FAO.org (accessed 19.07.13), **2012**.

603 3. Braddock, R.J. By-products of citrus fruit. *Food Technol.* **1995**, *49*, 74–77.

604 4. Bagheri H.; Abdul Manap.; M.Y.B.; Solati.; Z. Antioxidant activity of *Piper nigrum* L.
605 essential oil extracted by supercritical CO₂ extraction and hydro-distillation. *Talanta*
606 **2014**, 121, 220–228.

607 5. Djenane, D.; Beltrán, J.A.; Camo, J.; Roncalés, P. Influence of vacuum ageing times of
608 whole beef on retail shelf life of steaks packaged with oregano (*Origanum vulgare* L.)
609 active film under high O₂. *J. Food Sci. Technol.* **2016**, 53, 4244-4257.

610 6. Ramful, D.; Bahorun, T.; Bourdon, E.; Tarnus, E.; Aruoma, O.I. Bioactive phenolics and
611 antioxidant propensity of flavedo extracts of Mauritian citrus fruits: Potential
612 prophylactic ingredients for functional foods application. *Toxicol.* **2010**, 278, 75–87.

613 7. Uysal, R.S.; Boyaci, I.H.; Soykut, E.A.; Ertas, N. Effects of heat treatment parameters on
614 liquid whole egg proteins. *Food Chem.* **2017**, 216, 201–208.

615 8. Adams, R.P. Identification of essential oil components by gaz chromatography/mass
616 spectroscopy, Allured Publishing Corporation, Carol Stream, **1995**.

617 9. Scherer, R.; Godoy, H.T. Antioxidant activity index (AAI) by the 2, 2-diphenyl- 1-
618 picrylhydrazyl method. *Food Chem.* **2009**, 112, 654–658.

619 10. Altuntas, A.; Aydin, R. Fatty acid composition of egg yolk from chickens fed a diet
620 including marigold (*Tagetes erecta* L.). *J. Lipids* **2014**, 564851, 1–4.

621 11. Jin, Y.; Yang, N.; Duan, X.; Wu, F.; Tong, Q.; Xu, X. Determining total solids and fat
622 content of liquid whole egg products via measurement of electrical parameters based on
623 the transformer properties. *Biosys. Eng.* **2015**, 129, 70–77.

624 12. Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of
625 total lipids from animal tissues. *J. Biol Chem.* **1957**, 226, 497–509.

626 13. Djenane, D.; Yangüela, J.; Gómez, D.; Roncalés, P. Perspectives on the use of essential
627 oils as antimicrobials against *Campylobacter jejuni* CECT 7572 in retail chicken meats
628 packaged in microaerobic atmospheres. *J. Food Safety* **2012**, 32, 37–47.

629 14. ICMSF. International commission on microbiological specifications for foods. In
630 Microorganisms in foods. Sampling for microbiological Analysis: Principles and
631 scientific applications (Vol. 2). Toronto, Canada. ICMSF: University of Toronto Press.
632 **1986**.

633 15. CIE. International Commission on Illumination. Recommendations on uniform color
634 spaces, color difference equations, psychometric color terms. Supplement No. 15 to CIE
635 publication No. 15 (E-1.3.1) 1971/(TO-1.3). **1978**, Paris, France

636 16. Garcia-Gonzalez, L.; Geeraerd, A.H.; Elst, K.; Ginneken, V.; Van Impe, J.F.;
637 Devlieghere, F. Inactivation of naturally occurring microorganisms in liquid whole egg

638 using high pressure carbon dioxide processing as an alternative to heat pasteurization. *J.*
639 *Supercrit. Fluids* **2009**, *51*, 74–82.

640 17. Golmakani, M-T.; Rezaei, K. Comparison of microwave-assisted hydrodistillation with
641 the traditional hydrodistillation method in the extraction of essential oils from *Thymus*
642 *vulgaris* L. *Food Chem.* **2008**, *109*, 925–930.

643 18. Golmakani, M.T.; Moayyedi, M. Comparison of heat and mass transfer of different
644 microwave-assisted extraction methods of essential oil from *Citrus limon* (Lisbon
645 variety) peel. *Food Sci. Nutr.* **2015**, *3*, 506–518.

646 19. Hosni, K.; Zahed, N.; Chrif, R.; Abid, I.; Medfei, W.; Kallel, M.; Ben Brahim, N.; Sebei,
647 H. Composition of peel essential oils from four selected Tunisian Citrus species:
648 evidence for the genotypic influence. *Food Chem.* **2010**, *123*, 1098–1104.

649 20. Minh Tu, NT.; Thanh, LX.; Une, A.; Ukeda, H.; Sawamura, M. Volatile constituents of
650 Vietnamese pummelo.; orange.; tangerine and lime peel oils. *Flav. Fragr. J.* **2002**, *17*,
651 169–174.

652 21. Bustamante, J.; van Stempvoort, S.; García-Gallarreta, M.; Houghton, J.A.; Briers, H.K.;
653 Budarin, V.L.; Matharu, A.S.; Clark, J.H. Microwave assisted hydro-distillation of
654 essential oils from wet citrus peel waste. *J. Clean. Prod.* **2016a**, *137*, 598–605.

655 22. Blanco Tirado, C.; Stashenko, E.E.; Combariza, M.Y.; Martinez, J.R. Comparative study
656 of Colombian citrus oils by high-resolution gas chromatography and gas
657 chromatography–mass spectrometry. *J. Chromat. A.* **1995**, *697*, 501–513.

658 23. Ferhat, M.A.; Meklati, B.Y.; Smadja, J.; Chemat, F. An improved microwave Clevenger
659 apparatus for distillation of essential oils from orange peel. *J. Chromato. A.* **2006**, *1112*,
660 121–126.

661 24. Sharma, N.; Tripathi, A. Effects of *Citrus sinensis* (L.) Osbeck epicarp essential oil on
662 growth and morphogenesis of *Aspergillus niger* (L.) Van Tieghem. *Microbiol. Res.*
663 **2008**, *163*, 337–344.

664 25. Boukroufa, M.; Boutekedjiret, C.; Petigny, L.; Rakotomanomana, N.; Chemat, F. Bio-
665 refinery of orange peels waste: A new concept based on integrated green and solvent
666 free extraction processes using ultrasound and microwave techniques to obtain essential
667 oil, polyphenols and pectin. *Ultras. Sonochem.* **2015**, *24*, 72–79.

668 26. Ferhat, A.; Fabiano-Tixier, A-S.; Maataoui, ME.; Maingonnat, J-F.; Romdhane, M.;
669 Chemat, F. Microwave steam diffusion for extraction of essential oil from orange peel:
670 kinetic data, extract's global yield and mechanism. *Food Chem.* **2011**, *125*, 255–261.

671 27. Sahraoui, N.; Vian, M.A.; El Maataoui, M.; Boutekedjiret, C.; Chemat, F. Valorization of
672 citrus by-products using Microwave Steam Distillation (MSD). *Innov. Food Sci. Emerg.*
673 *Technol.* **2011**, 12, 163–170.

674 28. Perino-Issartier, S.; Ginies, C.; Cravotto, G.; Chemat, F. A comparison of essential oils
675 obtained from lavandin via different extraction processes: ultrasound, microwave,
676 turbohydrodistillation, steam and hydrodistillation. *J. Chromatog. A.* **2013**, 1305, 41–47.

677 29. Sahraoui, N.; Vian, M.A.; Bornard, I.; Boutekedjiret, C.; Chemat, F. Improved microwave
678 steam distillation apparatus for isolation of essential oils: comparison with conventional
679 steam distillation. *J. Chromatog. A.* **2008**, 1210, 229–233.

680 30. Chen, Q.; Hu, Z.; Yao, F.Y.D.; Liang, H. Study of two-stage microwave extraction of
681 essential oil and pectin from pomelo peels. *LWT-Food Sci Technol.* **2016**, 66, 538–545.

682 31. Luciardi, M.C.; Blázquez, M.A.; Cartagena, E.; Bardón, A.; Arena, M.E. Mandarin
683 essential oils inhibit *quorum sensing* and virulence factors of *Pseudomonas aeruginosa*.
684 *LWT-Food Sci. Technol.* **2016**, 68, 373–380.

685 32. Bousbia, N.; Vian, M.A.; Ferhat, M.A.; Meklati, B.Y.; Chemat, F. A new process for
686 extraction of essential oil from Citrus peels: Microwave hydrodiffusion and gravity. *J.*
687 *Food Eng.* **2009**, 90, 409–413.

688 33. Bernard, J. Le gaz naturel remonte le courant. *Sci. Vie* **2001**, 214, 68–73.

689 34. Luro, F.; Venturini, N.; Costantino, G.; Paolini, J.; Ollitrault, P.; Costa, J. Genetic and
690 chemical diversity of citron (*Citrus medica* L.) based on nuclear and cytoplasmic
691 markers and leaf essential oil composition. *Phytochem.* **2012**, 77, 186–196.

692 35. Bustamante, L.; Stempvoort, Sv.; García-Gallarreta, M.; Houghton, J.A.; Briers, H.K.;
693 Budarin, V.L.; Matharu, A.S.; Clark, J.H. Microwave assisted hydro-distillation of
694 essential oils from wet citrus by the hygienic quality of the raw eggs. *LWT-Food Sci.*
695 *Technol.* **2016b**, 43, 436–441.

696 36. Caccioni, D.R.L.; Guizzardi, M.; Biondi, D.M.; Renda, A.; Ruberto, G. Relationship
697 between volatile components of citrus fruit essential oils and antimicrobial action on
698 *Penicillium digitatum* and *Penicillium italicum*. *Int. J. Food Microbiol.* **1998**, 43, 73–79.

699 37. Singh, P.; Shukla, R.; Prakash, B.; Kumar, A.; Singh, S.; Mishra, PK.; Dubey, N.K.
700 Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of *Citrus maxima*
701 Burm. and *Citrus sinensis* (L.) Osbeck essential oils and their cyclic monoterpenes, DL-
702 limonene. *Food Chem. Toxicol.* **2010**, 48, 1734–1740.

703 38. Bacanli, M.; Basaran, A.A.; Basaran, N. The antioxidant and antigenotoxic properties of
704 citrus phenolics limonene and naringin. *Food Chem. Toxicol.* **2015**, 81, 160–170.

705 39. Fancello, F.; Petretto, G.L.; Zara, S.; Sanna, M.L.; Addis, R.; Maldini, M.; Foddai, M.;
706 Rourke, J.P.; Chessa, M.; Pintore, G. Chemical characterization, antioxidant capacity
707 and antimicrobial activity against food related microorganisms of *Citrus limon* var.
708 pompia leaf essential oil. *LWT-Food Sci. Technol.* **2016**, *69*, 579–585.

709 40. Junior, M.R.M.; Rocha e Silva, T.A.A.; Franchi, G.C.; Nowill, A.; Pastore, G.M.; Hyslop,
710 S. Antioxidant potential of aroma compounds obtained by limonene biotransformation
711 of orange essential oil. *Food Chem.* **2006**, *116*, 8–12.

712 41. Rossi, M.; Casiraghi, E.; Primavesi, L.; Pompei, C.; Hidalgo, A. Functional properties of
713 pasteurised liquid whole egg products as affected by the hygienic quality of the raw
714 eggs. *LWT-Food Sci. Technol.* **2010**, *43*, 436–441.

715 42. Monfort, S.; Mañas, P.; Condón, S.; Raso, J.; Álvarez, I. Physicochemical and functional
716 properties of liquid whole egg treated by the application of pulsed electric fields
717 followed by heat in the presence of triethyl citrate. *Food Res. Int.* **2012**, *48*, 484–490.

718 43. Ragni, L.; Berardinelli, A.; Cevoli, C.; Sirri, F. Admittance measurements to assess the
719 total solids and fat contents in liquid whole egg products. *J. Food Eng.* **2011**, *107*, 179–
720 185.

721 44. Hammershøj, M.; Johansen, N.F. Review: The effect of grass and herbs in organic egg
722 production on egg fatty acid composition, egg yolk colour and sensory properties.
723 *Livest. Sci.* **2016**, *194*, 37–43.

724 45. Djenane, D.; Yangüela, J.; Montañes, L.; Djerbal, M.; Roncalés, P. Antimicrobial activity
725 of *Pistacia lentiscus* and *Satureja montana* essential oils against *Listeria monocytogenes*
726 CECT 935 using laboratory media; efficacy and synergistic potential in minced beef.
727 *Food Control* **2011**, *22*, 1046–1053.

728 46. Viuda-Martos, M.; Mohamady, M.A.; Fernández-López, J.; Abd El Razik, K.A.; Omer,
729 E.A.; Pérez-Alvarez, J.A.; Sendra, E. In vitro antioxidant and antibacterial activities of
730 essentials oils obtained from Egyptian aromatic plants. *Food Control* **2011**, *22*, 1715–
731 1722.

732 47. Fernandez-Lopez, J.; Zhi, N.; Aleson-Carbonell, L.; Perez-Alvarez, J.A.; Kuri, V.
733 Antioxidant and antibacterial activities of natural extracts: application in beef meatballs.
734 *Meat Sci.* **2005**, *69*(3), 371–380.

735 48. Parisi, M.A.; Northcutt, J.K.; Smith, D.P.; Steinberg, E.L.; Dawson, P.L. Microbiological
736 contamination of shell eggs produced in conventional and free-range housing systems.
737 *Food Control* **2015**, *47*, 161–165.

738 49. Abeyrathne, E.D.N.S, Lee, H.Y, Ahn, D.U. Egg white proteins and their potential use in
739 food processing or as nutraceutical and pharmaceutical agents-A review. *Poult Sci.*
740 **2013**, 92, 3292–3299.

741 50. Silvetti, T.; Morandi, S.; Hintersteiner, M.; Brasca, M. Use of hen egg white lysozyme in
742 the food industry. Book Chapter. Egg Innovations and Strategies for Improvements.
743 **2017**, Pp 233-242. DOI: 10.1016/B978-0-12-800879-9.00022-6 . Elsevier Inc.

744 51. Settanni, L.; Palazzolo E.; Guerrasi V.; Aleo A.; Mammina C.; Moschetti G.; Germanà.;
745 M.A. Inhibition of foodborne pathogen bacteria by essential oils extracted from citrus
746 fruits cultivated in Sicily. *Food Control* **2012**, 26, 326–330.

747 52. Pittman, C.I.; Pendleton, S.; Bisha, B.; O'Bryan, C.; Goodridge, L.; Crandall, P.G et al.
748 Validation of the use of citrus essential oils as a post-harvest intervention against
749 *Escherichia coli* O157:H7 and *Salmonella* spp. on beef primal cuts. *J. Food Sci.* **2011**,
750 76, M433–M438.

751 53. Callaway, T.R.; Carroll, J.A.; Arthington, J.D.; Edrington, T.S.; Anderson, R.C.; Ricke,
752 S.C.; et al. Citrus products and their use against bacteria: potential health and cost
753 benefits (chap. 17). In R. Watson, J. L. Gerald & V. R. Preedy (Eds.) Nutrients, dietary
754 supplements, and nutraceuticals: Cost analysis versus clinical benefits (pp. 277-286).
755 New York, NY: Humana Press. **2011**.

756 54. Muthaiyan, A.; Martin, E.M.; Natesan, S.; Crandall, P.G.; Wilkinson, B.J.; Ricke, S.C.
757 Antimicrobial effect and mode of action of terpeneless cold pressed Valencia orange
758 essential oil on methicillin-resistant *Staphylococcus aureus* cell lysis. *J. App. Microbiol.*
759 **2012**, 112, 1020–1033.

760 55. Ruiz, B.; Flotats, X. Citrus essential oils and their influence on the anaerobic digestion
761 process: an overview. *Waste Manag.* **2014**, 34, 2063–2079.

762 56. Lin, CM.; Sheu, S.R.; Hsu, S.C.; Tsai, Y.H. Determination of bactericidal efficacy of
763 essential oil extracted from orange peel on the food contact surfaces. *Food Control*
764 **2010**, 21, 1710–1715.

765 57. Zhang, Z.; Vriesekoop, F.; Yuan, Q.; Liang, H. Effects of nisin on the antimicrobial
766 activity of D-limonene and its nanoemulsion. *Food Chem.* **2014**, 150, 307–312.

767 58. Alparslan, Y.; Yapici, H.H.; Metin, C.; Baygar, T.; Günlü, A.; Baygar, T. Quality
768 assessment of shrimps preserved with orange leaf essential oil incorporated gelatine.
769 *LWT-Food Sci. Technol.* **2016**, 72, 457–466.

770 59. de Souza, P.M.; Fernandez, A. Effects of UV-C on physicochemical quality attributes and
771 *Salmonella enteritidis* inactivation in liquid egg products. *Food Control* **2011**, *22*, 1385–
772 1392.

773

774

775

776

777

778

779

780

781 Figure captions

782

783

784

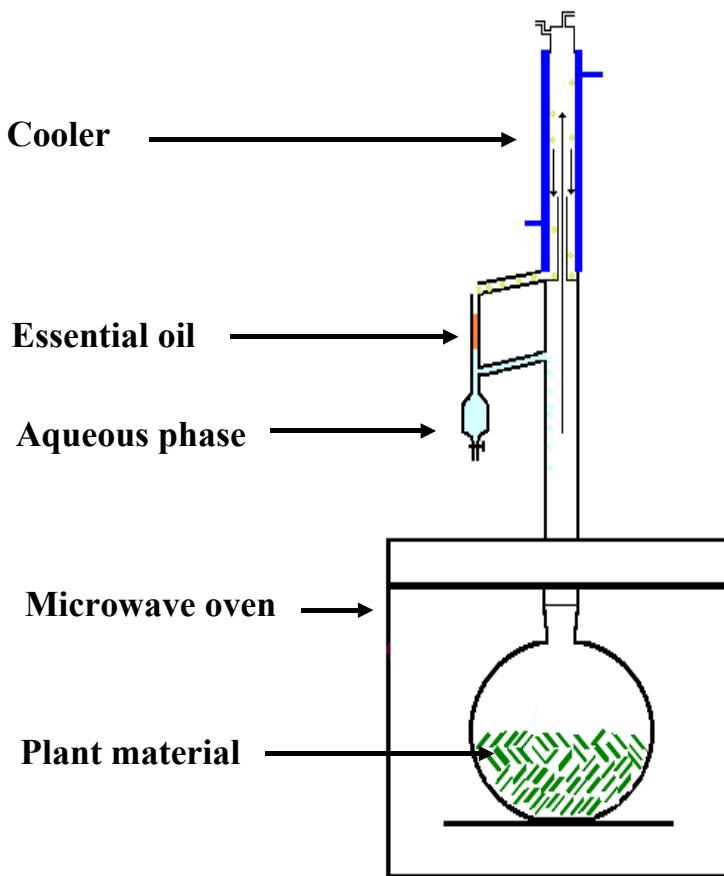
785 **Fig. 1** Solvent-Free Microwave Extraction System786 **Fig. 2** Characteristics of the microwave heating

787

788 **Fig. 3** Free radical scavenging activity (%) of the orange EO

789

790 **Fig. 4** Total psychrotrophic bacteria counts (\log_{10} CFU/mL \pm SD) of LWE treated with orange EO during cold
791 storage. Letters show significant differences among the groups at $p < 0.05$

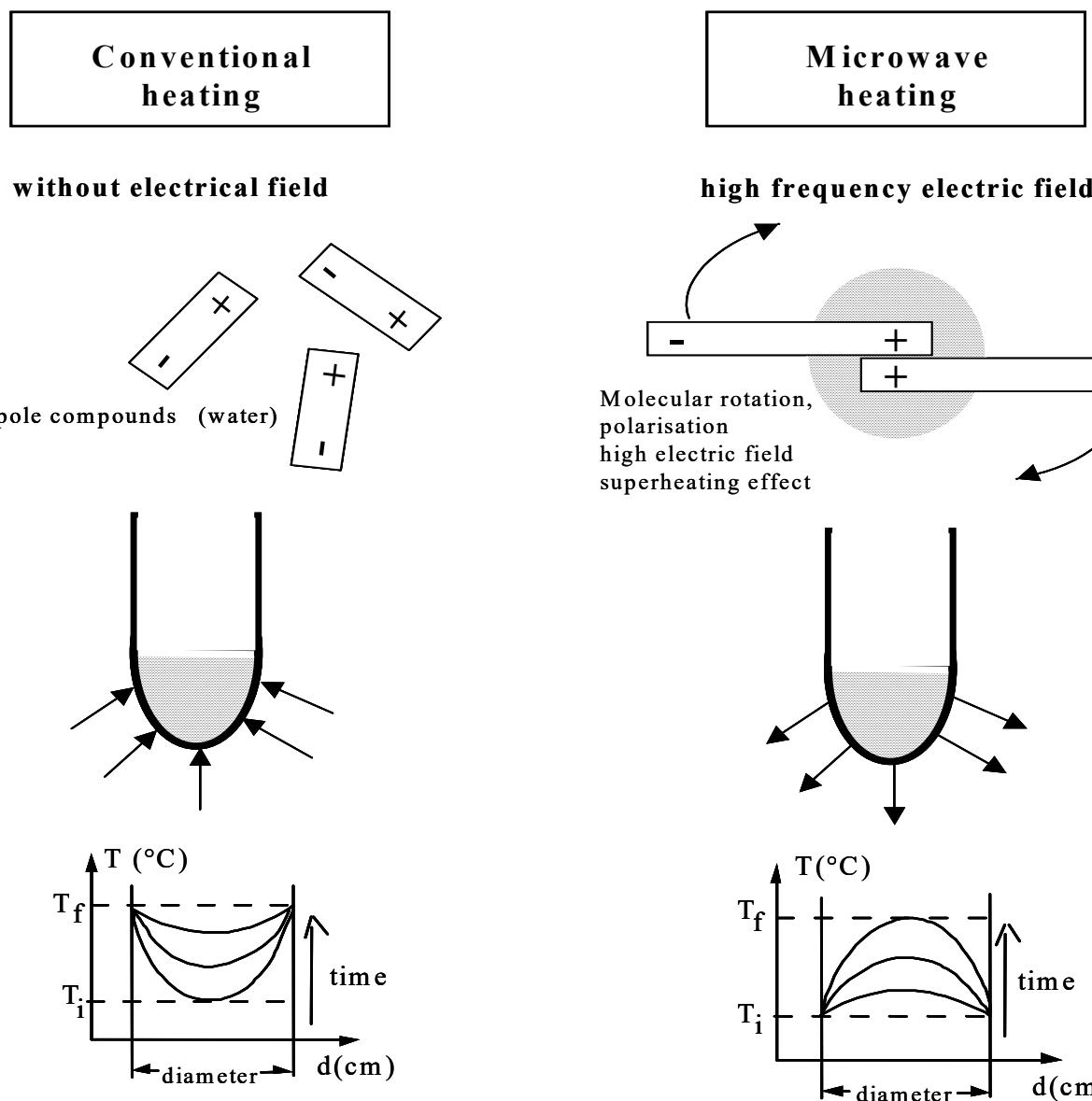

792

793

794

795

796


Figure 1

797

798

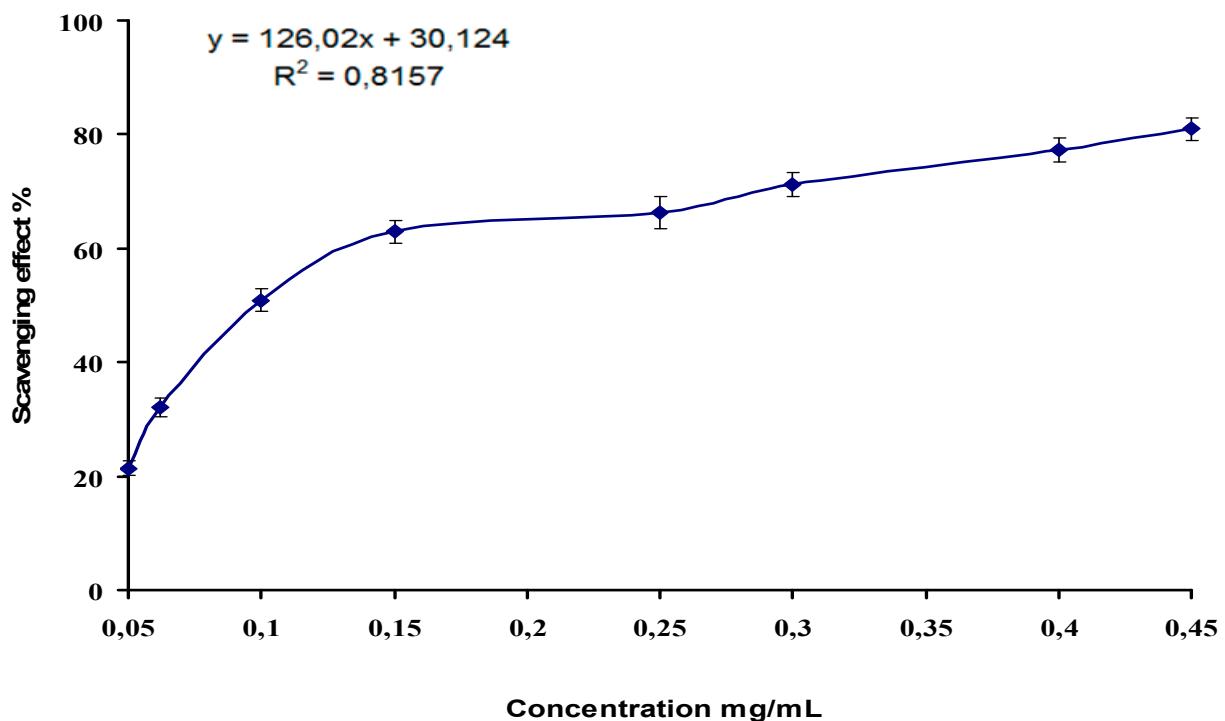

799
800
801

Figure 2

802
803

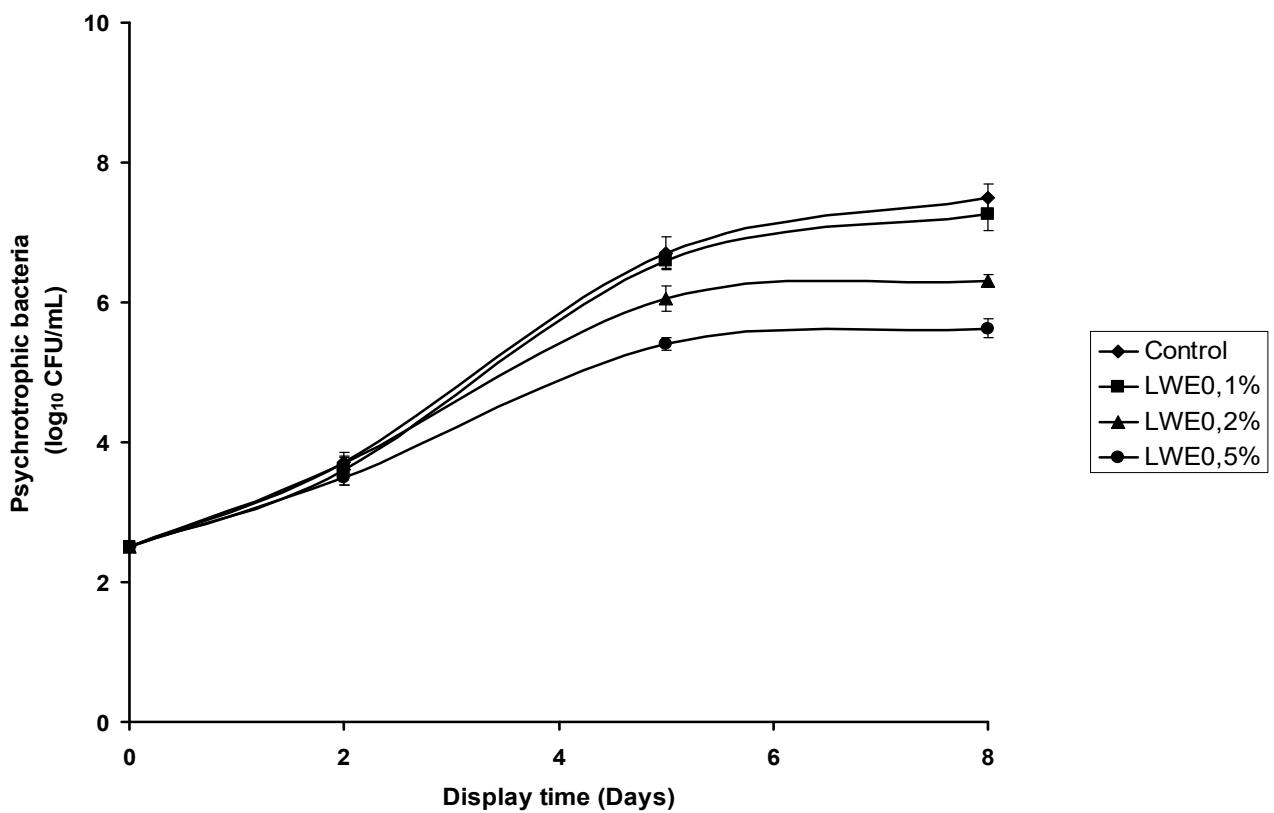

804
805

Figure 3

806
807

808
809

Figure 4

810
811

812 **Table 1** Extraction time, yields and chemical compositions of EOs obtained by SFME, HD,
 813 and CP extraction from Valencia late (*Citrus sinensis* L.) peels.

Nº	Compounds ^a	R.I. ^b	R.I. ^c	Valencia late					
				SFME ^e	HD ^f	CP ^h			
Percentage (%)									
Monoterpene Hydrocarbons									
1	Thujene<Alpha->	920	1036	-	-	-			
2	Pinene<Alpha->	926	1023	0.43	0.53	0.51			
3	Sabinene	961	1121	0.54	0.49	0.54			
4	Pinene<Beta->	974	1109	-	-	-			
5	Myrcene<Beta->	988	1165	1.64	1.87	1.82			
6	Phellandrene<Alpha->	1001	1177	0.15	0.17	0.36			
7	Terpinene<Alpha->	1020	1083	-	-	-			
8	Limonene	1030	1206	94.64	95.48	95.06			
9	Ocimene<(E)-Beta->	1048	1282	0.02	0.02	0.02			
10	Terpinene<Gamma->	1103	1285	0.05	0.03	0.01			
11	Terpinolene	1120	1304	0.01	0.02	0.01			
Oxygenated Monoterpenes									
12	Linalool	1125	1538	0.62	0.30	0.30			
13	Citronellal	1167	1478	0.06	0.03	0.04			
14	Terpin-4-ol	1191	1590	0.03	0.06	0.02			
15	Terpineol<Alpha->	1203	1677	0.10	0.06	0.05			
16	Nerol	1237	1781	0.10	0.03	0.08			
17	Neral	1268	1670	0.05	0.03	0.06			
18	Geraniol	1271	1828	0.04	0.01	-			
19	Geranial	1284	1714	0.09	0.06	0.11			
20	Thymol	1288	2107	-	-	-			
Sesquiterpene Hydrocarbons									
21	Caryophellene<E->	1391	1594	0.02	0.02	0.01			
22	Humulene<Alpha->	1450	1657	0.01	0.03	0.03			
23	Germacrene D	1477	1696	-	-	-			
24	Valencene	1488	1705	0.02	0.05	0.02			
25	Bisabolene(Beta-)	1508	1718	-	-	-			
Oxygenated Sesquiterpenes									
26	Elemol	1540	1381	0.01	-	0.09			
27	Caryophellene Alcohol	1560	1398	-	-	-			
28	Nootkatone	1799	2250	-	-	-			
Other Oxygenated Compounds									
30	Octanol<N->	1102	1544	0.15	0.05	-			
31	Nonanal<N->	1126	1400	0.01	0.01	0.02			
32	Decanal	1210	1497	0.31	0.19	0.27			
33	Linalyl acetate	1255	1553	-	-	-			
34	Citronellyl Acetate	1342	1645	0.02	0.02	0.01			
35	Neryl Acetate	1351	1706	0.01	-	0.01			
36	Geranyl Acetate	1366	1742	-	-	-			
37	Dodecanal	1391	1691	-	-	-			
Extraction time (min)				10	180	60			
Yield %				0.40	0.40	0.16			
Total Oxygenated Compounds %				1.60	0.85	0.95			
Total non- Oxygenated Compounds %				97.54	98.71	98.47			

814 ^a Essential oil compounds sorted by chemical families and percentages calculated by GC-FID on non-polar HP5MSTM
 815 capillary column.

816 ^b Retention indices calculated on non-polar HP5MSTM capillary column.

817 ^c Retention indices calculated on polar CarbowaxTM-PEG capillary column.

818 ^e SFME: solvent free microwave extraction

819 ^f HD: hydro-distillation

820 ^h CP: cold pressing

821

822 **Table 2** DPPH scavenging method of SFME EO of *Citrus sinensis* L. (Mean values \pm standard deviation)
 823

Method	Parameters	<i>Citrus sinensis</i> L.
DPPH scavenging assay	- IC_{50} (μ g/ml)*	89.25 ± 3.45
	- Antioxidant Activity Index (AAI)**	1.12 ± 0.08
	- Antioxidant activity	Strong

824 * IC_{50} value (μ g/ml) of BHT: 11.37 ± 0.35

825 **AAI < 0.5 (Poor); $0.5 < AAI < 1.0$ (moderate); $1.0 < AAI < 2.0$ (strong) and $AAI > 2.0$ (very strong).

826 - IC_{50} values are defined as the concentration of test material which is able to decrease the initial concentration of DPPH to
 827 half of its initial value.

828
 829
 830
 831

832
833
834
835
836

Table 3 TBA values (mg MDA/kg of meat) and IR%* (values between parenthesis) of LWE containing orange EO during cold display.

Display (Days)	Control	LWE 0.1%	LWE 0.3%	LWE 0.5%
0	0.05 ± 0.006 ^{aW}	0.05 ± 0.006 ^{aW}	0.05 ± 0.006 ^{aW}	0.05 ± 0.006 ^{aW}
3	0.50 ± 0.09 ^{aX}	0.41 ± 0.06 ^{abX} (18.00%)	0.45 ± 0.04 ^{bX} (10.00%)	0.25 ± 0.06 ^{cX} (50.00%)
5	1.85 ± 0.11 ^{aY}	1.60 ± 0.08 ^{abY} (13.51%)	1.09 ± 0.06 ^{cY} (41.08%)	0.56 ± 0.08 ^{XY} (69.72%)
8	2.5 ± 0.07 ^{aYZ}	2.05 ± 0.13 ^{abYZ} (18.00%)	1.58 ± 0.09 ^{bYZ} (36.80%)	1.12 ± 0.12 ^{cYZ} (55.20%)

837

*The Percentage inhibition rate (IR%) respect to the control was calculated as follows:

IR% = $[(TBA-RS_C - TBA-RS_T)/TBA-RS_C] \times 100$. Where C is the number of TBA-RS in the untreated samples (control) and T is the number of TBA-RS in the treated samples.

841

^{a-d}Within each row, different superscript lowercase letters show differences between treatment groups ($p < 0.05$).

842
843
844

^{w-z}Within each column, different superscript uppercase letters show differences between the storage times within same treatment group ($p < 0.05$).

845

LWE0.1%: Liquid Whole Eggs treated with 0.1% of orange EO.

846

LWE0.3%: Liquid Whole Eggs treated with 0.3% of orange EO.

847

LWE0.5%: Liquid Whole Eggs treated with 0.5% of orange EO.

848

849

850

851

852
853
854
855
856**Table 4** CIELAB L*, a* and b* color coordinates in LWE treated with orange EO. Each sample was measured in 10 different positions; results are the mean of three independent replications.

<i>LWE samples</i>	<i>Days of storage</i>	<i>L*</i>	<i>a*</i>	<i>b*</i>
Control	0	65.12 ± 1.52 ^a	13.50 ± 2.01 ^a	41.21 ± 0.99 ^a
	3	64.45 ± 0.88 ^a	11.10 ± 1.11 ^b	40.61 ± 1.07 ^a
	5	60.72 ± 1.01 ^{a,b}	09.20 ± 2.01 ^c	36.58 ± 0.89 ^b
	8	59.52 ± 0.68 ^b	09.04 ± 0.99 ^c	36.02 ± 0.25 ^b
LWE 0.1%	0	65.52 ± 0.54 ^a	13.80 ± 1.01 ^a	41.19 ± 0.99 ^a
	3	64.92 ± 1.88 ^a	13.40 ± 1.31 ^a	40.42 ± 0.49 ^a
	5	63.72 ± 1.31 ^a	11.10 ± 0.05 ^b	37.98 ± 0.69 ^b
	8	63.08 ± 0.81 ^a	10.03 ± 199 ^b	36.10 ± 0.15 ^b
LWE 0.2%	0	65.35 ± 0.32 ^a	13.90 ± 1.01 ^a	41.20 ± 0.21 ^a
	3	65.12 ± 1.08 ^a	13.25 ± 1.41 ^a	40.88 ± 0.32 ^a
	5	65.08 ± 1.25 ^a	13.08 ± 0.55 ^a	40.08 ± 0.60 ^a
	8	63.73 ± 0.51 ^a	12.23 ± 0.95 ^{a,b}	39.10 ± 0.05 ^a
LWE 0.5%	0	65.12 ± 1.52 ^a	13.50 ± 2.01 ^a	41.28 ± 0.99 ^a
	3	66.22 ± 0.48 ^a	13.62 ± 1.12 ^a	41.42 ± 0.69 ^a
	5	65.09 ± 0.23 ^a	13.59 ± 0.05 ^a	41.55 ± 1.08 ^a
	8	64.69 ± 0.05 ^a	13.50 ± 2.11 ^a	40.89 ± 2.19 ^a

857
858
859
860
861
862*L** (lightness); *a** (redness); *b** (yellowness)^{a-c}Within each column for each color coordinates, different superscript uppercase letters show differences between the storage times within treatment groups ($p < 0.05$).

863 **Table 5** Sensory scores* (Mean \pm SD) for EO *Citrus sinensis* L. odor and *off-odor* of LWE during display.
864
865

Parameters		Days of display			
		0	3	5	8
<i>Citrus sinensis</i> L. odor	Control	1.00 \pm 0.00 ^{aA}	1.00 \pm 0.00 ^{aA}	1.00 \pm 0.00 ^{aA}	1.00 \pm 0.00 ^{aA}
	LWE 0.1%	1.00 \pm 0.00 ^{aA}	1.00 \pm 0.00 ^{aA}	1.00 \pm 0.00 ^{aA}	1.00 \pm 0.00 ^{aA}
	LWE 0.2%	2.17 \pm 0.41 ^{aB}	2.17 \pm 0.41 ^{aB}	1.17 \pm 0.41 ^{bA}	1.00 \pm 0.00 ^{bA}
	LWE 0.5%	3.00 \pm 0.00^{aC}	2.83 \pm 0.41^{aC}	1.33 \pm 0.52 ^{bAB}	1.17 \pm 0.41 ^{bA}
<i>Off-odor</i> **	Control	1.00 \pm 0.00 ^{aw}	2.33 \pm 0.52 ^{bw}	3.67 \pm 0.52^{cw}	4.17 \pm 0.41^{cdw}
	LWE 0.1%	1.00 \pm 0.00 ^{aw}	2.17 \pm 0.41 ^{aw}	3.00 \pm 0.00^{bwx}	3.33 \pm 0.00^{bwx}
	LWE 0.2%	1.00 \pm 0.00 ^{aw}	2.17 \pm 0.52 ^{bw}	2.33 \pm 0.52 ^{bcy}	2.33 \pm 0.52 ^{bcy}
	LWE 0.5%	1.00 \pm 0.00 ^{aw}	2.00 \pm 0.00 ^{bx}	2.17 \pm 0.41 ^{by}	2.33 \pm 0.52 ^{bcy}

866
867 *A score < 3 in any of the parameters denoted that LWE was acceptable. When the score ≥ 3 in any of the parameters
868 denoted that LWE can be rejected (End of the shelf life).869 ^{a-d}Means of the same row (between days of display) with different letters differ significantly ($p < 0.05$).870 ^{a-c}Means for *Citrus sinensis* L. odor of the same column (between treatments) with different letters differ significantly ($p <$
871 0.05).872 ^{w-y}Means for off-odor of the same column (between treatments) with different letters differ significantly ($p < 0.05$).873 **Off-odor: referred to the intensity of odors associated to LWE oxidation and microbial development: 1 = none; 2 = slight;
874 3 = small; 4 = moderate; and 5 = extreme.

877
878
879
880**Table 6** Proposed criteria for determining the expiry date (shelf life)* of LWE

Oxidative parameters	End of shelf life (mg MDA/kg)	Odor parameters	End of shelf life (off-odor score)	Microbiological parameters	End of shelf life (\log_{10} CFU/mL)
TBA-RS	≥ 1.5	<i>Off-odor</i>	≥ 3	- Total psychrotrophic aerobic bacteria	≥ 7

881
882 *When the oxidative, odour sensorial, microbiological and colour instrumental parameters at the end of the shelf
883 life exceeds the guide values the products can only be rejected.