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In this paper, we investigate the stabilization of a one-dimensional thermoelastic lami-
nated beam with structural damping, coupled to a heat equation modeling an expect-
edly dissipative effect through heat conduction governed by Gurtin-Pipkin thermal
law. Under some assumptions on the relaxation function g, we establish the well-
posedness for the problem. Furthermore, we prove the exponential stability and lack
of exponential stability for the problem. To achieve our goals, we make use of the
semigroup method, the perturbed energy method and Gearhart-Herbst-Priiss-Huang

theorem.
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1 Introduction

The aim of this paper is to study the well-posedness and asymptotic stability of a thermoelastic

laminated beam with structural damping and Gurtin-Pipkin thermal law, i.e.,

Py + G(¢ - 901)00 =0, (xv t) € (07 1) X (O’ +OO)’
I,(3w =)y — DBw — ¥)ge — G — ) + 00, =0, (z,t) € (0,1) x (0,400),
Ly — Dwge + Gt — ) + ng + %awt —0,  (00)€(0,1) x (0,400), (LD
ks — ; T G(5)0n(t — $)ds + 63w — e =0, (,2) € (0,1) x (0, +00),
\ 0
with the following initial and boundary conditions
(p(ﬂj, 0) = 900(37)71/}(337 0) = ¢0($),w(x,0) = UJQ(I), 0(.’]3,0) = 90(%), T € [0’ 1]7
(pt(x?o) = 901($),wt($, 0) = ¢1($)>wt($; 0) = w1($)7 9(_5)’8>0 = 90(5)7 S [07 1]? (1 2)
©2(0,8) = 1(0,t) = w(0,t) = 6,(0,t) =0, t e [0,400), '
90(1725) :'(;ij(l?t) :wx(lat) :9(17t) =0, le [O,+OO),

where the functions ¢(z,t), ¢ (z,t), 3w(z,t) — ¥ (z,t),0(x,t), g(s) denote the transverse displace-
ment of the beam which departs from its equilibrium position, rotation angle, effective rotation
angle, relative temperature, and the memory kernel, respectively; w(z,t) is proportional to the

amount of slip along the interface at time ¢ and longitudinal spatial variable x; g(s) is the heat
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conductivity relaxation kernel, whose properties will be specified later; (1.1); describes the dy-
namics of the slip; p,G,1,, D,v,3 are the density of the beams, shear stiffness, mass moment
of inertia, flexural rigidity, adhesive stiffness of the beams, and adhesive damping parameter,
respectively; Moreover, p, G, 1,, D, 9,7, a, k, 3 are positive constant coefficients.

Problem likes (1.1) is called laminated beam, which was first introduced by Hansen and Spies
n [12]. In that paper, the authors derived the mathematical model for two-layered beams with

structural damping due to the interfacial slip, namely,

Py + G(w - pr)m =0, (l’, t) € (O’ 1) X (Oa +OO),
Ip(Sw - w)tt - D(3w - w)xa: - G(1/1 - Sox) = 07 ('% t) € (07 1) X (07 +OO)7 (1.3)
Iywy — Dway + G(Y — @) + gfyw + gawt =0, (z,t) € (0,1) x (0,400).

Later on, Wang et al. [26] considered system (1.3) with the cantilever boundary conditions and
two different wave speeds (1/G/p and \/D/I,), they pointed out that system (1.3) can reach the
asymptotic stability but it does not reach the exponential stability due to the action of the slip
w. To achieve the exponential decay result, the authors in [26] added an additional boundary

control such that the boundary conditions become
©(0,t) = £(0,t) = w(0,t) =0, wy(1,t) =0,

3w(17t) - f(l,t) - Sox(lat) = ul(t) = kl@t(lat)7
a(1,1) = ua(t) := —ka&(1, 1),

where £ = 3w — ¢ and k; and ke are positive constant feedback gains. Furthermore, Cao et al.

[6] proved the exponential stability for system (1.3) with following boundary conditions
P(0,1) = ¢2(0,) = ur(t) := —k1pe(0, 1) — ¢(0, 1),

3w$(1¢t) - ¢z(17t) = UQ(t) = _k2§t(17t) - g(lat)7
provided ki # \/p/G and kg # \/1,/D. More importantly, the authors proved that the dominant

part of the system is itself exponentially stable.

The general thermoelastic laminated beam model reads

ppe + G(l/} - pr):c =0, (1’, t) € (07 1) X (07 +OO)7
L,(3w — ) — DBw — B)as — G — 1) + 805 = 0, () € (0,1) x (0, +00),

~

(1.4)

4 4
Iywy — Dwzy + G — @) + g’yw + gawt =0, (z,t) € (0,1) x (0, +00),

KO: + 0z + 63w = V) = 0, (2,1) € (0,1) x (0, +00),

where 0(x, ) is the relative temperature and g(z,t) is the heat flux vector. If we assume Cattaneo

law of heat conduction

Tqr + Kq+ 0, =0, (1.5)
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where k > 0 is a fixed constant and 7 > 0 is small, then we can get a laminated beam with second
sound. The stabilization of system (1.4)-(1.5) has been analyzed in [1]. There, Apalara obtained

the well-posedness and uniform stability results depending on the following stability number

NETEE
! p )\, »p pl,

If we assume Gurtin-Pipkin thermal law of heat conduction

Bq(t) + /Ooo 9(8)0,(t — s)ds = 0, (1.6)

where ¢ is called the memory kernel, then we can get the desired laminated beam with Gurtin-
Pipkin thermal law and structural damping, i.e., (1.1)-(1.2). In fact, Cattaneo law (1.5) can be
reduced as a particular instance of (1.6), which have been proved in [9]. For other asymptotic
behavior results to laminated beams, we refer the reader to [6, 12, 19, 20, 21, 25, 26] and the
references therein.

For the case of the beams with Gurtin-Pipkin thermal law, a large number of interesting decay
results depending on the stability number have been established. Recently, Dell’Oro and Pata [9]

considered Timoshenko system with Gurtin-Pipkin thermal law, i.e.,

P1Ptt — K(‘Pm + ¢)x =0, (.I, t) € (07 L) X (Oa +OO)7

p2thyt — bipry + H((Pm + w) + 460, =0, (.CC, t) € (07 L) X (Oa —i—OO),

p3b: — L 9(8)0:(t — s)ds + 0y, = 0, (z,t) € (0, L) x (0,4+00),
0

where p1, K, p2,b, 9, p3, 8 are positive constants. The authors obtained the exponential stability

depending on the stability number

- (pl_/3> (222 _ B pme
psk  g(0) k b g(0) pakb
Later on, Dell’Oro [10] considered the thermoelastic Bresse-Gurtin-Pipkin system, i.e.,
p1ow — k(o + 9 + lw)y — kol(wy, — lp) =0, (z,t) € (0,L) x (0, +00),
p2tbut — bbaw + k(e + 9 +lw) + 60, =0,  (z,t) € (0,L) x (0,+00),
prwyg — ko(wg —1p) e + kl(py + ¢ + lw) =0, (z,t) € (0,L) x (0,4+00),

[e.e]
p30t - kl / g(s)eflm(t - S)dS + 6¢tx = 07 ('Iat) € (0’ L) X (07 +OO)7
0
and obtained that the system is exponentially stable if and only if
p1 1 pL P2 1 po?
=— - ——=) - —— =0 and k = ko.
“o (Psk‘ 9(0)k1> (5 -7) g(O)k1 ok " 0

For other related results, we refer the reader to [2, 3, 5, 7, 8, 14, 15, 17, 18, 22, 27, 28].
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In this paper, we first prove the well-posedness by using Lumer-Philips theorem. And then,

by using the perturbed energy method, we establish an exponential stability result depending on

w55 ) (75) s

To overcome the difficulty brought by Gurtin-Pipkin thermal law, we use some appropriated

the stability number

multipliers to construct a Lyapunov functional. For the case x4, # 0, we prove the lack of
exponential stability by using Gearhart-Herbst-Priiss-Huang theorem.

The remaining part of this paper is organized as follows. In Section 2, we introduce some
hypotheses and present our main results. In Section 3, we prove the well-posedness for problem
(1.1)-(1.2). In Section 4, we establish an exponential decay result to problem (1.1)-(1.2). In
Section 5, we prove the lack of exponential stability for problem (1.1)-(1.2). Section 6 is devoted
to the conclusion and open problem. Throughout this paper, we use ¢ to denote a generic positive

constant.

2 Preliminaries and main results

In this section, we first introduce some notation and present our hypotheses. Then we give some
lemmas which will be used in the proof of main results.

To deal with the memory, we introduce a new auxiliary variable n = n'(z, s) by (see [11, 9])
n=n'(z,s) = /08 O(x,t — o)do, (x,t,s) € [0,1] x [0,00) x RT,
which satisfies the following boundary conditions
n'(1,s) =0, n.(0,s) = 0.

Then 6 satisfies
Ur; + Ns = H(t),

where
nt($70) =0, te [07 OO)

and .
no(x, s) =mno(s) :/ Oo(o)do, s € RT.
0

Assume g(o0) = 0, a change of variable and a formal integration by parts yield

/0°° 9(5)0aa(t — 5)ds = — /OOO 9 (8)Nea(s)ds.

Now, we denote

then
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Hence system (1.1)-(1.2) can be written as

,

pet + G — ¢z)a =0, (z,t) € (0,1) x (0, +00),
Iy(3w — )i — D(Bw — ¥)ae — G(¢ — ¢z) + 00, = 0, (z,t) € (0,1) x (0, +00),
Iywy — Dwagy + G(¢ — @) + %’yw + gawt =0, (x,t) € (0,1) x (0, +00), (2.1)
Kty — ; OOO 11(8) gz (8)ds + (3w — )45 = 0, (z,) € (0,1) x (0, +00),
m+ns =0, (x,t) € (0,1) x (0, +00).

\

with initial and boundary conditions

90(5670) = @0(1‘)7w(x70) = w0($)7w(x70) = wO(x)’e(xvo) = 90(15)7 S [07 1]5

pi(x,0) = @1(x), i (x,0) = 1 (x), we(x,0) = wi (), z € [0,1],
n(z,0) =0,n0(z, s) = [ bo(x,0)do, z € 0,1], (2.2)
2(0,t) = ¥(0,) = w(0,t) = 0:(0,t) = m;.(0,5) = 0, t € [0,+00),

L o(1,t) = e (1,t) = we(1,8) = 0(1,8) = n'(1,s) =0, t €0, +00).

For the memory kernel g, we assume that

(G1) g is a bounded convex summable function on [0, c0).

(G2) g has a total mass
/ g(s)ds = 1.
0

(G3) ¢’ is an absolutely continuous function on R* so that

g'(s) <0, g"(s) = 0, ¢'(0) = lim ¢'(s) € (—00,0).

s—0

(G4) There exists a positive constant £ so that, for almost every s > 0,
g9"(s) +&4'(s) > 0.

Remark 1 In particular, p is summable on R™ with

/ " u(s)ds = g(0).
0

Furthermore, noting that g(s) has total mass 1, we have

/Ooo sp(s)ds = 1.

Next, we introduce the vector function

U= (903 Pts 3w — 7/% (3U) - ¢)t7 w, We, 05 77)T
Then system (2.1)-(2.2) can be written as
{ oU = AU,

(2.3)
U(x,0) = Up(x) = (w0, @1, 3wy — o, 3w — ¥1, wo, w1, 0, Mo

)T

)

5
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where A is a linear operator defined by

Pt
(¥ — ¢z)
(3w — )
(10— W)ee + (00— 02) — <0
AU = P ? P
Wy
Dw ?(1/1—%@)—;1]110—;1[0; i
15 | Haa(e)ds = F G = v
—ns+ 06

We consider the following spaces
fﬁ@&)—{n‘neﬂ%alwnm>—0},ﬁualy—{n‘neﬂ%mlwnu>—0},

HZ(0,1) = H*(0,1) N H}(0,1), H2(0,1) = H*(0,1) N H}(0,1),
and the energy space
H = H0,1) x L?(0,1) x H}(0,1) x L*(0,1) x H}(0,1) x L?(0,1) x L?(0,1) x M,  (2.4)

where
M=12 <R+ H(0, 1)) - {n Rt — H1(0,1) ‘/ $)|[12(3)||2ds < oo}
equipped with the norm .
lelha = [ n(s)leats)13as
and inner product )
(%¢Mr:AmM$[;%QWAwM®.
In particular,

=g [ el

Moreover, in light of (G4) on p, we deduce

¢ / 9)llne(s)[3ds < — /Ooou’(S)llnx(S)llgdS- (2.5)

Besides, H is the Hilbert space equipped with the norm

“UH%L :H(Sov ©t, 3w — ¢7 (311) - w)h w, Wy, 07 77)“’2}-1
=pllptll3 + Lol (Bw — )3 + 3L, [[well3 + Gll(¥ — @) lI5 + DI (3w — )3
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1
+4y]w|3 + 3Dlwe 3 + k[10]13 + BHUII%,

and the inner product

1 1 1 1
(U, U)H —p /O oz + 1, /0 (3w — ):(3% — )yda + 31, /0 wyibpde + k /0 06dz

1 o 1 o 1
+G /0 (6 — ) (P — @u)da + D /0 (30 — ), (36 — §)odlz 1 4y /0 wibda

1 1 [e'e) 1
+3D/ WpWedx + / u(s)/ NeTedazds,
0 B Jo 0

fOI‘ U= <907 ©t, 3w — ¢7 (Sw - ¢)t7 w, W, 07 T’)T and 0 = (@7 @t: 3w — ¢7 (3'U~} - w)tv ’lI), wta 07 ﬁ)T
The domain of A is given by

D(A) = {U e ‘ o€ [2(0,1), 01 € F10,1), 3w — 16 € H2(0,1), (3w — ) € HL(0,1),
we H0,1),w, € H(0,1),0 € H(0,1), € A, / p(s)n(s)ds € H2(0,1),
0

02 (0,t) = V¥ (1,t) = wy(1,t) = 0,(0,t) = 1, (0,s) = O},

where N = £ (RJ“,fIi(O, 1)) = {77 € M’ns € M,n(0) = 0}. Clearly, D(A) is dense in H.
The energy associated with problem (2.1)-(2.2) is defined by

1 1 1 1 1 1
E(t) :2(p/0 gp?dx—{—lp/o (3wt—wt)2d:c+4’y/o w2dx+31p/0 w?dxth/o (Y — pp)%dx

1 1 1 o)
+D/O (3wx¢x)2dx+3D/0 wgdx+k/0 02dx+;/0 ,u(s)||77x(s)||§ds). (2.6)

Now, we give our main results in this paper as follows.

Theorem 2.1 Let Uy € H, then problem (2.3) exists a unique weak solution U € C(R*;H).
Moreover, if Uy € D(A), then

UecCR;DA)NCHRT;H).

Theorem 2.2 Assume that x4 = 0. Let Uy € H, then there exists positive constants a,b such
that the energy E(t) associated with problem (2.1)-(2.2) satisfies

E(t) <ae® t>0. (2.7)

Theorem 2.3 Assume that x4 # 0. Let Uy € H, then problem (2.1)-(2.2) is not exponentially
stable.

Based on two propositions from [9, Proposition 11 and Proposition 12], we give the full equiv-

alence between Cattaneo law and Gurtin-Pipkin thermal law.

Theorem 2.4 If the laminated beam with structural damping and Cattaneo law is exponentially
stable, then so is the laminated beam with structural damping and Gurtin-Pipkin thermal law, and

vice Versa.
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3 Well-posedness: proof of Theorem 2.1

To obtain the well-posedness, we need to prove that A: D(A) ~ H is a maximal monotone
operator. To achieve this goal, we need to prove that A is dissipative and Id — A is surjective.

Using the inner product and integration by parts, we can easily obtain

1
(AU, U)y / G (Y — o), prdr + / [D(Bw — )z + G — @z) — 60,] (Bw — ), da

1
+ / [BDwzy — 3G(Y — ¢r) — 4yw — dowy| wedx
0

B

1 1 1
+ D/ (Bw — )4t (Bw — ) dx + 47/ wywdzx + SD/ WepWedr
0 0 0

1 e’} 1
+,6’/ ,u(s)/ (—Nas + 0z)nzdzds

:—4a/ dx—i-ﬁ/ s)|Ina(s)[|3ds < 0, (3.1)

_h[[1AwwﬁmA@M—ﬁﬁw—¢MlMx+GA%¢—%X%—¢mmx

for any U € D(A). Hence A is dissipative.
Next, we turn to prove Id — A is surjective, i.e., for any F' = (f1, fo,- - -, fs) € H, there exists
V = (vi,v2,- - -,u8) € D(A) satisfying

(Id— A)V = F, (3.2)

that is,

~

v1 —v2 = fi,
Vg — GOpp1 — GOpv3 + 3G 0,05 = pfo,
v3 — vy = [3,
Iyvy + GOyv1 + Gug — DOypv3 — 3Gus + 00,07 = 1, fa,
vs — v =[5, (3.3)

4 4
<Ip + 3a) v — GOzv1 — Gus + <3G + ;) v — DOrpvs = I, f6,

kvy — / )Orrvgds + 00,04 = k f7,

vg + Osv8 — v7 = f.

From (3.3);, (3.3)3, (3.3)5, (3.3)g and vg(0) = 0, we have

vg =1 — fi,
vy = v3 — f3,

vg = V5 — f5,

vs = (1— e )or + /0 T fy(r)dr

8
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Inserting (3.4) into (3.3),, (3.3),, (3.3)4 and (3.3),, we obtain

pv1 — GOypv1 — GOyv3 + 3G0,v5 = p(fl + f2)a
(Ip + G)vg + GOyv1 — DOyyvg — 3Gus + 00,v7 = I,(f3 + fa),

4 4 4
Ip + 3G + = + o vy — GOpv1 — Gug — D0Oypvs = Ip(f5 + f6) + —afs,

kv — ;/ (1 — e *)pu(8)Opgvrds + 80,03
0

1 > # T—S8
=kfr+ 3 /0 w(s) /0 e ez f3(T)dTds + 00, f3.

Multiplying (3.5),-(3.5), by o1, 03, 305 and ¥7 respectively, and integrating over (0,1), we can
obtain

(

1 1 1 1 1
/pvlf)ldzz:—/ G@zzvlﬁldx—/ G@xvgﬂldaz+/ 3G8xv5171d1::/ p(f1+ f2)01de,
0 0 0 0 0
1 1 1 1 1
/ (IP+G)U31~}3d:L'+/ Gaz’l)11~}3dl‘—/ Dazmv31~]3d$—/ 3G’U5’l~)3dl‘+/ 58;61)7’173(137
0 0 0 0 0
1
:/ Ipf4133dac,
0
1 1 1 1
/(3Ip+9G+4’y+4a)v5175d$—/ 3G’6xv1f)5d$—/ 3Gv3175dx—/ 3D, v505dx
0 0 0 0
1

1
= / 31,(f5 + f6)Usdz + / 4o fsisde,
0 0

1 1 1 o) 1
/ kvrordx — / 177/ (1 — e *)pu(s)Opgvrdsda + / 00, v307dx
0 B Jo 0 0

1 1 00 s 1
= / 00, fsvrdx + l / 177/ ,U,(S) / e %0 [ (T)deSdJ’J + / k fro7dx.
0 /8 0 0 0 0

(3.6)
From (3.6), we have the following variational formulation:
B ((v1,vs,v5,v7)", (01,03, 05,07)" ) = F (1, 03,05, 07)")
¥ (D1, 03,05, 07) " € H2(0,1) x H(0,1) x H,(0,1) x L*(0,1), (3.7)

where

B ((Ula U3, Vs, ’U7)T? (’Dla ,537 1757 177)T)

1 1 1
:/ G(—@xvl — vz + 31)5)(—896171 - 173 + 3175)d$ + / pvl’f)ld$ + / Ipvg’f)gd.x
0 0 0
1 1 1 1
+ / (31, + 4y + 4a)vsvsdx + / kvrU7dx + / DO,v30,03dx + / 3D0,v50,U5dx
0 0 0 0

1 ) 1 .
+ / ;(gw) - / e‘su(s)ds) Opvr0yUrda + 6 / (Dpv7)T3da + § / (Oy03)5rdz
0 0 0 0
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and
F ((@17 637 657 277)T)

1
:/0 [p(f1 + f2)01 + I,(f3 + fa)03 + 31,(f5 + f6)Us + 4o fs05 + 00, f307 + k fr7] da.

+; /0 1777 /0 " s) /0 0, fu(r)drdsda,

Now, we introduce the Hilbert space V = H!(0,1) x H}(0,1) x H}(0,1) x L%(0,1) equipped with

the norm
[(v1,vs,v5,07)|[7 = || = Qpv1 — v3 + 3us13 + [[vill3 + [10zv]|5 + 10x05[5 + |00z l5-

Then B(-,-) and F'(-) are bounded. Furthermore, we obtain that there exists a positive constant
c such that

B ((v1,v3,v5,v7)", (v1,v3,v5,0v7)7)

1 1 1 1 1
:/ G(—0pv1 — v3 + 3v5)2dx + / pvide + / Lyidx + / (31, + 4y + da)vidx + / kv2da
0 0 0 0 0

1 1 1 o) 1
—1—/ D(&Evg)2dx+/ 3D(8mv5)2dx+5 (g(O)—/ e_su(s)ds>/ (Dyv7)?da
0 0 0 0
Z c H('Ul,'Ug,’U5,'U7)H%/-
Hence B(+,-) is coercive.

As a consequence, by applying Lax-Milgram lemma [23], we can obtain that (3.6) has a unique

solution (vy,vs,v5,v7)T € V. Then, substituting vy, vs, vs into (3.4);-(3.4)5, we obtain
vy € HY(0,1),v4 € HL(0,1),v6 € HL(0,1).

Using (3.4), and the method in [29, Proposition 2.2], we have

2

ds
2

o0

/0 " (s)9vs(s)|3ds <2 /0 * ) (1 — &) Buur s + 2 /0 u(s)

/3 e’ %0, fs(T)dr

0

2

2 [T (- ) utastonl +2| [ pnar
0 0

<29(0)18zv7 3 + 2I1 fs 34

M

which gives us vg € M. Then from (3.3),, we can obtain
Osvg = v7 —vg + fg € M.
Hence, vg € N. Next, we turn to prove that
v1 € H2(0,1),v3 € H%(0,1),v5 € H%(0,1),v7 € H(0,1),
0,v1(0) = Opv3(1) = 0zvs(1) = 0zv7(0) = 0.
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Now, if (93,5, 77) = (0,0,0) € H}(0,1) x H(0,1) x L%*(0,1), then (3.7) reduces to
1 1 1
G(@xvl — V3 + 3115)8;0’171(1% = / pviordr — / p(f1 + fg)f)ldx, (38)
0 0 0
for all & € H!(0,1), which implies
GOypv1 = pv1 — GOyu3 + 3G0Ov5 — p(f1 + fa2) € LZ(O, 1). (3.9)
From the regularity theory for the linear elliptic equations, we obtain
vy € H2(0,1).

Moreover, (3.8) is also true for any ¢ € C1([0,1]) € HL(0,1) (¢(1) = 0). Thus, we get

1 1 1 1 1
/0 GO,v10,0dx —1—/0 pvipdr — /0 G(0yv3)pdx + /0 3G(0yv5)pdx = /0 p(f1+ fo)odz,
for V ¢ € C1(]0,1]), ¢(1) = 0. Using (3.9) and the integration by parts, we have
0:01(0)¢(0) = 0, ¥ € C([0,1]), ¢(1) = 0.

Hence,

0xv1 (O) =0.

In the same way, we get
V3 € HE(O, 1),1)5 S Hf(o, 1),?)7 € ﬁi(o, 1),(91;1)3(1) = Bzv5(1) = (9:,31)7(0) =0.

From the classical regularity theory for the linear elliptic equations, we know that there exists a
unique solution U € D(A) such that (3.2) is satisfied. So the operator Id — A is surjective.
As a consequence, A is a maximal monotone operator. Therefore, we established the well-

posedness result stated in Theorem 2.1 by using Lumer-Philips theorem (see [4, 16]).

4 Exponential decay: proof of Theorem 2.2

In this section, we prove the exponential stability for system (2.1)-(2.2) when x4 = 0. It will be
achieved by using the perturbed energy method. Before we prove our result, we need some useful

lemmas.

Lemma 4.1 Let (p,1,w,0) be the solution of problem (2.1)-(2.2). Then the energy function E(t)

satisfies

d
th( )= —4a/ 2dx + ﬂ/ $)||ne(s)||3ds <0, ¥ ¢t > 0. (4.1)

11
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Proof. Multiplying (2.1); by ¢, (2.1), by (3w — ), (2.1)5 by 3wy, (2.1), by 6 and integrating

over (0, 1), using integration by parts the boundary conditions in (2.2), we can obtain

d ! 1 [ ! 1d [®
GEO =0 [Cwtde 5 [Tuts) [ on(inds s g [Ca@nes @)

From (2.1), we know that

i / / / /

— - ds = - ds + — 0:mz(s)dxds. 4.3

25t ), 1) 12 ()13 3 $)Ina(s)l3 5 (5) (4.3)
Combining (4.2) and (4.3), we could obtain (4.1). This completes the proof.

Lemma 4.2 Let (¢, 1, w,0) be the solution of (2.1)-(2.2). Then the functional

e’} 1
R0 =~ [ nts) [ onfe)aads

satisfies the estimate

k 1 1 o) 1
() <~ /O szx—c<1+€1> /O 1 (3) e (5) 1 3ds + 1 /0 Bwi— ¢)2de,  (44)

for any €1 > 0.

Proof. Taking the derivative of Fi(t) with respect to ¢, using (2.1),, (2.1); and integrating by
parts, we get

2

A 12xiooslsxs#oos s)ds
0o 1
-5 | [ @ vmeoaads (45)

Using integrate by parts and Young’s inequality with 1 > 0, we infer that

o ) [ ontsianas = [ty [ ojanas
<5/ Pz — €/O°°u Yne (s)]13d

o

T
S| e 2é | sl

0o 1 N
5y 6 [ Gu vz <er [ vlar s £ [ us)lants) s

Then we can get (4.4) by using above inequalities and (2.5). This completes the proof.

Lemma 4.3 Let (p, 1, w,0) be the solution of (2.1)-(2.2). Then the functional

kI,

Fy(t) = 5 ),

3w (N /9 )dydx

12
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satisfies the estimate

1 1 1
RO <=3 [ Gu-vrare [ G-eriure [ G-t

0

re(1+) / s —e [ 4 (6) el s, (46)

for any 9 > 0.

Proof. Taking the derivative of Fy(t) with respect to ¢, using (2.1),, (2.1), and integrating by

parts, we get

1 T 1
R =1, [ @ var + 58 [ o) [Towanae 2 [ - w).0as

I 0o 1
+k / 0%dx + ﬁfs u(s) / (3w — 1) ¢ne(s)dxds.
0
Using (2.5), Young’s and Cauchy-Schwarz inequalities with e5 > 0, we establish (4.6).

Lemma 4.4 Let (¢, 1, w,0) be the solution of (2.1)-(2.2). Then the functional

1 1
FS(t) = ,OD/ ot (3w — ¢)Idx - IpG/ (3w — ¢)t(¢ - gpm)d.%'

4 PEL PM < _ > / fpidz — 22 <D ~ f) /0 p(s) /Olw — ©2)12(5)dads

satisfies the estimate

1 )
Pyt <~ / (0 — u)?dz + ¢ /0 (3w — )2 + w?] dz — ¢ /0 W (s)ne ()2 (4.7)

Proof. By (2.1);, (2.1),, (2.1), and integrating by parts, we get

1 1

‘%Ig@‘f) /Ooou%s)/;(w—%m(s)dx s—”i”g— /9 (V= po)de. (4.8)

Using (2.5), Young’s inequality and x4 = 0, we get (4.7).
Lemma 4.5 Let (¢, 9, w,0) be the solution of (2.1)-(2.2). Then the functional
1
Fy(t) = —p / porda
0
satisfies the estimate
1 1 1 1 1
Fi(t) < —p/ idx + 64/ (3w — 1) 2dx + &:4/ w2dz + ¢ <1 + E) / (Y — pg)?dz, (4.9)
0 0 0 4/ Jo
for any g4 > 0.
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Proof. By differentiating F4 () with respect to ¢, using (2.1); and integrating by parts, we obtain

1 1 1
Fl(t) = — /0 Gde+ G /O (W — gu)?dz — G /0 b — po)de.

Using Young’s inequality, we obtain

1 1 1 1
Fi(t) < —p / ¢Ed+c<1+€) / (W = pa)*dz + &4 / Vrda,
4 0 0

0

for £4 > 0. Note that
1

1 1 1
/ Yrda = / (Y — 3wy + 3wy )?dz < 2/ (3wy — ¥y)?dx + 18/ w3dz.
0 0 0 0
Then estimate (4.9) is obtained.

Lemma 4.6 Let (¢, 1, w,0) be the solution of (2.1)-(2.2). Then the functional

1
Fo() = I, | (w—0)3w - d)da

satisfies the estimate

. D!
R < —2/0 (wa—wm)2d$+lp/0

Proof. Taking the derivative of F5(t) with respect to ¢, using (2.1), and integrating by parts, we

1 1 1
(3w — aby)*da + c/ (¢ — @ )?da + c/ 0*dz. (4.10)
0 0

get

1 1
Fi(t) = — D/O (3w, — 1, )?dx + I,,/O (3w — 1) ?dz

1 1
+ G/o (Y — @) (Bw —)dx + 5/0 (3w — 1), 0dz.

Then, using Young’s inequality, we arrive at (4.10).

Lemma 4.7 Let (¢, 1, w,0) be the solution of (2.1)-(2.2). Then the functional
1
Fs(t) = Ip/ wwydx
0
satisfies the estimate
2y [ 1 1 1
Fi(t) < —3/ w?dx — D/ w2dx + c/ widz —i—c/ (Y — @z)%da. (4.11)
0 0 0 0
Proof. By differentiating Fg(t) with respect to ¢, using (2.1); and integrating by parts, we obtain

1 1 4,)/ 1 4o 1 1
Fi(t) = Ip/ wdz — G/ w(y — @g)de — — / w?dz — — / wwedx — D/ w2dz.
0 0 3 Jo 3 Jo 0

We then use Young’s inequality to obtain (4.11). This completes the proof.

Now we define the following Lyapunov functional
ZL(t) = NE(t) + N1 Fi(t) + NoFy(t) + N3Fs(t) + Fy(t) + F5(t) + Fs(t). (4.12)

where NN, N1, No, N3 are positive constants to be selected later. Then we have the lemma as

follows.
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Lemma 4.8 Let (p,9,w,8) be the solution of (2.1)-(2.2). For N large enough, there exists a

positive ¢ depending on N and € such that
(N—c)E(t) < Z(t) < (N +c)E(t), (4.13)

for any t > 0.

Proof. Using Young’s and Cauchy-Schwarz inequalities, we can easily obtain that

1

1 1 1
LL(t) — NE(t)] < o / e + o / (Bwe — )da + a3 / wida + oy / (0 — po)2de
0 0 0

0

1
+ aS/ (311)30 - wx)QdZE + aﬁ/
0

0
+ /0 () ns (5)3ds, (4.14)

1 1 1
w?dz + oy / w2dz 4 ag / 62 dx
0 0

where «;(i = 1,2,---,9) are positive constants. It from (2.6) and (4.14) that there exists a

positive constant ¢ such that
£ (t) = NE(t)| < cE(t),

which completes the proof.
Now, we are ready to prove the main result in this section.
Proof of Theorem 2.2. From (4.4), (4.6), (4.7), (4.9), (4.10) and (4.11), we can obtain

1 I 1
2y <—p [ o= {;Nz — Nyey — Ny — Ip] | o —ipas
0 0

1 1 1
— (4aN — ¢N3 — ¢) / wdz — {gNg — Nagg — ¢ <1 + 6) - 20} / (¥ — r)’da
0 4 0

D ! 2y 1
— ( — Naoegg — 54) / (3w, — ¢x)2dx — ’7/ w?dx
2 0 3 Jo

by k 1 Lo
— (D—84)/ widr — [Nl —cNy (1—}—) —c]/ 0°dx
0 2 2 0

1 1 e
+ [5N —cNy (1 + &?1> —cNy — CN3:| /0 ' (8)||nz(s)||3ds. (4.15)

At this point, we need to choose our constants very carefully. First, we choose

I,No . {GNg D } D
= , €9 = min , €4 =

TN, AN, 8N, B
so that
1 I 1 1
L'(t) < — p/o ©2dx — Lng —cN3 — Ip] /0 (3w; — by)?dz — (4aN — ¢N3 — c)/o w?dzx
1 D 1 2 1
— |:jN3 - %c - 30] /0 (Y — @z)?dx — 4/0 (Bwy — ¥y)?dx — % ; w?dx

1 1 1
- 7D/ w%dx — [kNl — ¢No (1 + ) — C:| / 0%dz
8 0 2 €2 0

15
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4 {;N _ Ny (1 + %) N, — cNg] /O 1 (3) s (5)|[2d. (4.16)

Then, we select N3 large enough so that

G 8
ZN3—50—3C>0.

Next, we select Ny large enough so that

I
Z’)N2 —cN3—1,>0.

Furthermore, we select N; large enough so that

k 1
—Nj —cNy <1+>—c>0.
2 €9

Finally, we select N large enough so that

1 N
4aN — cN3y —c > 0, BN—CNl (1+Nl>—cN2—cN3>O.
2

Using (2.6), we obtain that there exist positive constants M; and My such that (4.16) becomes

2'(t) < ~MyE(t) + My /0 i (5)l1a(s) [3ds

From Lemma 4.8, we obtain

L'(t) < -bZL(t), V>0, (4.17)

My

where b = Nie:

Then, a simple integration of (4.17) over (0,¢) yields
ZL(t) < ZL(0)e™ vi>0. (4.18)

At last, estimate (4.18) gives exponential stability result (2.7) when be combined with Lemma

4.8. This completes the proof.

5 Lack of exponential stability: proof of Theorem 2.3

Our result is achieved by using Gearhart-Herbst-Priiss-Huang theorem to dissipative systems (see
Priiss [24] and Huang [13]).

Lemma 5.1 Let S(t) = e be a Cy-semigroup of contractions on Hilbert space H. Then S(t) is
exponentially stable if and only if

p(A) D {ix: e R} =R
and
lim ||(GA — A)~! <
T GA = A g < o

hold, where p(A) is the resolvent set of the differential operator A.
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Proof of Theorem 2.3. We will prove that there exists a sequence of imaginary number A, and
function F,, € H with ||F,|% < 1 such that [[(A\, L — A) 7 F, |l = ||[Uulln — oo, where

AU, — AU, = F, (5.1)

with U, = (v1, v2, v3, v4, 5, Vg, V7, vg)T not bounded. Rewriting spectral equation (5.1) in term of
its components, we have for A, = A
(A\v1 — v = g1,

pAV2 — GOpzv1 — GOLU3 + 3GO,U5 = pga,

Avg — vg4 = g3,

I, vy + GOzv1 + Gus — DOyrpv3 — 3GUs + 00,07 = I g4,

Avs — V6 = gs, (5.2)

4 4
Ip>\’U6 — GOyv1 — Gug + <3G + ;) vs + ?OZUG — DOyypv5 = p96,

1 o0
kv — 3 / 11(8)0pzv8(s)ds + 60,04 = kgr,
0

( A\vg + Osvg — v7 = g8,

where A € R and F = (g1, 92, 93, 94, 95, 96, 97, 98)" € H. Take gy = g3 = g5 = 0, then the above
system becomes
( p)\QUI — GOy — GOpv3 + 3G 0,05 = P32,

Ip)\2’03 + GOyv1 + Gus — DOyypv3 — 3Gus + 00, v7 = ng4,

4 4
Ip)\2’U5 — GOyv1 — Gug + <3G + ull + 3a)\> V5 — DOpyvs = p96,

3 (5.3)

1 [
kAvy — 6/ ,u(s)&mvg(s)ds + AN0O,v3 = ]{;977
0

\ A\vg + Osvg — v7 = gs.

Due to the boundary conditions in (2.2), we can suppose that

vy = Acos (%x) ,v3 = Bsin (%x) ,u5 = C'sin (%x) ,v7 = F cos (%x) ,vg = @(s) cos (%x) .

Choosing
1 i
g2=*COS<*w>, 94 =96 = g7 = g8 =0,
P 2
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then we can obtain

(|esc ()] a-c()prsc(l)c-1

G(Q)A+[IA2+G+D(2)]B—:&GC—(S(";)E:O,

LAY 2 4y | da BN A (5.4)
G(2>A GB—i—[Ip)\ +3G+ 5+ 3)\+D(2>]C—0,

x (B : ") B+ kAE + ; (“;) /Ooou(s)¢(s)ds —0,

{ ¢/(5) + Ap(s) — E =0.

|G
In the above equaiton, we take A = A, 1= 44/ — <u77r> such that
)

o2+ G <M—27r)2 =0.

Solving (5.4)5, we get

Then substituting (5.5) into (5.4),, we can get
Go
5 (5)

- 0 kG 00 —\s
1P LA ST sy s

The combination of (5.4), and (5.4), gives

Ip(i_j>(q)23+[4;+3“f (g_j)(2>]c s E=0. (50

Substituting E into (5.6), we get

oo Mg
Ly
where 52 )
A (D G> (@)2_ = (17)
VA 2 (0) KRG B | _ 1 [ s
p P gT [1 0 m} — Bfo /,L(S) A ds
D G\ /pm\2 4o 4~
e (2-9) (5) v
a p([,, p)\2 TyAtTy
Substituting C' into (5.4),, we get
B=— Ly

Similarly, substituting C' into (5.4),, we get

GT, + A+ 3GA,
G (7)Tn

A=
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__ GLu+ ATy +3GA,
G2(Ty + 3M,) (1)

At this point, we introduce the number

1 kG B

Yo = L= ——

! p 9(0)

and consider separately two cases.

Case 7, = 0. Let u — oo, we get

86°
A— — , B—>0, C—0.
PG [° p(s)ereds
Case v, # 0. Let p — oo, we get
Ipxg (12 - Q)
A — A ., B—0, C—0.

Thus,

1015 > G/OIW —¢z)ldr =G [SC — B+ (%) Ar/ol sin? (%x) dz

:%G[3C—B+(M—;)Ar—>oo, as [ — 0.

This implies that

|Unll — o0, as p — oo.

Therefore, there is no exponential stability. This completes the proof.

6 Conclusion and open problem

In this paper, we first prove the well-posedness for a laminated beam with Gurtin-Pipkin thermal
law and structural damping, and then prove that the system is exponentially stable if and only if
that stability number is equal to zero (x4 = 0). When the stability number is not zero (x4 # 0),
the problem of whether it is possible to get the polynomial stability for system (2.1)-(2.2) is still

an interesting open problem.
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