
On the stability of a laminated beam with structural damping

and Gurtin-Pipkin thermal law

Wenjun Liu and Weifan Zhao

College of Mathematics and Statistics, Nanjing University of Information Science and Technology,

Nanjing 210044, China. E-mail: wjliu@nuist.edu.cn.

In this paper, we investigate the stabilization of a one-dimensional thermoelastic lami-

nated beam with structural damping, coupled to a heat equation modeling an expect-

edly dissipative effect through heat conduction governed by Gurtin-Pipkin thermal

law. Under some assumptions on the relaxation function g, we establish the well-

posedness for the problem. Furthermore, we prove the exponential stability and lack

of exponential stability for the problem. To achieve our goals, we make use of the

semigroup method, the perturbed energy method and Gearhart-Herbst-Prüss-Huang

theorem.
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1 Introduction

The aim of this paper is to study the well-posedness and asymptotic stability of a thermoelastic

laminated beam with structural damping and Gurtin-Pipkin thermal law, i.e.,

ρϕtt +G(ψ − ϕx)x = 0, (x, t) ∈ (0, 1)× (0,+∞),

Iρ(3w − ψ)tt −D(3w − ψ)xx −G(ψ − ϕx) + δθx = 0, (x, t) ∈ (0, 1)× (0,+∞),

Iρwtt −Dwxx +G(ψ − ϕx) +
4

3
γw +

4

3
αwt = 0, (x, t) ∈ (0, 1)× (0,+∞),

kθt −
1

β

∫ ∞
0

g(s)θxx(t− s)ds+ δ(3w − ψ)tx = 0, (x, t) ∈ (0, 1)× (0,+∞),

(1.1)

with the following initial and boundary conditions

ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x), w(x, 0) = w0(x), θ(x, 0) = θ0(x), x ∈ [0, 1],

ϕt(x, 0) = ϕ1(x), ψt(x, 0) = ψ1(x), wt(x, 0) = w1(x), θ(−s)|s>0 = θ0(s), x ∈ [0, 1],

ϕx(0, t) = ψ(0, t) = w(0, t) = θx(0, t) = 0, t ∈ [0,+∞),

ϕ(1, t) = ψx(1, t) = wx(1, t) = θ(1, t) = 0, t ∈ [0,+∞),

(1.2)

where the functions ϕ(x, t), ψ(x, t), 3w(x, t) − ψ(x, t), θ(x, t), g(s) denote the transverse displace-

ment of the beam which departs from its equilibrium position, rotation angle, effective rotation

angle, relative temperature, and the memory kernel, respectively; w(x, t) is proportional to the

amount of slip along the interface at time t and longitudinal spatial variable x; g(s) is the heat
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conductivity relaxation kernel, whose properties will be specified later; (1.1)3 describes the dy-

namics of the slip; ρ,G, Iρ, D, γ, β are the density of the beams, shear stiffness, mass moment

of inertia, flexural rigidity, adhesive stiffness of the beams, and adhesive damping parameter,

respectively; Moreover, ρ,G, Iρ, D, δ, γ, α, k, β are positive constant coefficients.

Problem likes (1.1) is called laminated beam, which was first introduced by Hansen and Spies

in [12]. In that paper, the authors derived the mathematical model for two-layered beams with

structural damping due to the interfacial slip, namely,
ρϕtt +G(ψ − ϕx)x = 0, (x, t) ∈ (0, 1)× (0,+∞),

Iρ(3w − ψ)tt −D(3w − ψ)xx −G(ψ − ϕx) = 0, (x, t) ∈ (0, 1)× (0,+∞),

Iρwtt −Dwxx +G(ψ − ϕx) +
4

3
γw +

4

3
αwt = 0, (x, t) ∈ (0, 1)× (0,+∞).

(1.3)

Later on, Wang et al. [26] considered system (1.3) with the cantilever boundary conditions and

two different wave speeds (
√
G/ρ and

√
D/Iρ), they pointed out that system (1.3) can reach the

asymptotic stability but it does not reach the exponential stability due to the action of the slip

w. To achieve the exponential decay result, the authors in [26] added an additional boundary

control such that the boundary conditions become

ϕ(0, t) = ξ(0, t) = w(0, t) = 0, wx(1, t) = 0,

3w(1, t)− ξ(1, t)− ϕx(1, t) = u1(t) := k1ϕt(1, t),

ξx(1, t) = u2(t) := −k2ξt(1, t),

where ξ = 3w − ψ and k1 and k2 are positive constant feedback gains. Furthermore, Cao et al.

[6] proved the exponential stability for system (1.3) with following boundary conditions

ψ(0, t)− ϕx(0, t) = u1(t) := −k1ϕt(0, t)− ϕ(0, t),

3wx(1, t)− ψx(1, t) = u2(t) := −k2ξt(1, t)− ξ(1, t),

provided k1 6=
√
ρ/G and k2 6=

√
Iρ/D. More importantly, the authors proved that the dominant

part of the system is itself exponentially stable.

The general thermoelastic laminated beam model reads

ρϕtt +G(ψ − ϕx)x = 0, (x, t) ∈ (0, 1)× (0,+∞),

Iρ(3w − ψ)tt −D(3w − ψ)xx −G(ψ − ϕx) + δθx = 0, (x, t) ∈ (0, 1)× (0,+∞),

Iρwtt −Dwxx +G(ψ − ϕx) +
4

3
γw +

4

3
αwt = 0, (x, t) ∈ (0, 1)× (0,+∞),

kθt + qx + δ(3w − ψ)tx = 0, (x, t) ∈ (0, 1)× (0,+∞),

(1.4)

where θ(x, t) is the relative temperature and q(x, t) is the heat flux vector. If we assume Cattaneo

law of heat conduction

τqt + κq + θx = 0, (1.5)

2

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 January 2018                   doi:10.20944/preprints201801.0067.v1

http://dx.doi.org/10.20944/preprints201801.0067.v1


where κ > 0 is a fixed constant and τ > 0 is small, then we can get a laminated beam with second

sound. The stabilization of system (1.4)-(1.5) has been analyzed in [1]. There, Apalara obtained

the well-posedness and uniform stability results depending on the following stability number

χτ =

(
1− τkG

ρ

)(
D

Iρ
− G

ρ

)
− τGδ2

ρIρ
.

If we assume Gurtin-Pipkin thermal law of heat conduction

βq(t) +

∫ ∞
0

g(s)θx(t− s)ds = 0, (1.6)

where g is called the memory kernel, then we can get the desired laminated beam with Gurtin-

Pipkin thermal law and structural damping, i.e., (1.1)-(1.2). In fact, Cattaneo law (1.5) can be

reduced as a particular instance of (1.6), which have been proved in [9]. For other asymptotic

behavior results to laminated beams, we refer the reader to [6, 12, 19, 20, 21, 25, 26] and the

references therein.

For the case of the beams with Gurtin-Pipkin thermal law, a large number of interesting decay

results depending on the stability number have been established. Recently, Dell’Oro and Pata [9]

considered Timoshenko system with Gurtin-Pipkin thermal law, i.e.,
ρ1ϕtt − κ(ϕx + ψ)x = 0, (x, t) ∈ (0, L)× (0,+∞),

ρ2ψtt − bψxx + κ(ϕx + ψ) + δθx = 0, (x, t) ∈ (0, L)× (0,+∞),

ρ3θt −
1

β

∫ ∞
0

g(s)θxx(t− s)ds+ δψtx = 0, (x, t) ∈ (0, L)× (0,+∞),

where ρ1, κ, ρ2, b, δ, ρ3, β are positive constants. The authors obtained the exponential stability

depending on the stability number

ξg =

(
ρ1
ρ3κ
− β

g(0)

)(ρ1
κ
− ρ2

b

)
− β

g(0)

ρ1δ
2

ρ3κb
.

Later on, Dell’Oro [10] considered the thermoelastic Bresse-Gurtin-Pipkin system, i.e.,

ρ1ϕtt − k(ϕx + ψ + lw)x − k0l(wx − lϕ) = 0, (x, t) ∈ (0, L)× (0,+∞),

ρ2ψtt − bψxx + k(ϕx + ψ + lw) + δθx = 0, (x, t) ∈ (0, L)× (0,+∞),

ρ1wtt − k0(wx − lϕ)x + kl(ϕx + ψ + lw) = 0, (x, t) ∈ (0, L)× (0,+∞),

ρ3θt − k1
∫ ∞
0

g(s)θxx(t− s)ds+ δψtx = 0, (x, t) ∈ (0, L)× (0,+∞),

and obtained that the system is exponentially stable if and only if

αg :=

(
ρ1
ρ3k
− 1

g(0)k1

)(ρ1
k
− ρ2

b

)
− 1

g(0)k1

ρ1δ
2

ρ3bk
= 0 and k = k0.

For other related results, we refer the reader to [2, 3, 5, 7, 8, 14, 15, 17, 18, 22, 27, 28].
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In this paper, we first prove the well-posedness by using Lumer-Philips theorem. And then,

by using the perturbed energy method, we establish an exponential stability result depending on

the stability number

χg =

(
1− β

g(0)

kG

ρ

)(
D

Iρ
− G

ρ

)
− β

g(0)

Gδ2

ρIρ
.

To overcome the difficulty brought by Gurtin-Pipkin thermal law, we use some appropriated

multipliers to construct a Lyapunov functional. For the case χg 6= 0, we prove the lack of

exponential stability by using Gearhart-Herbst-Prüss-Huang theorem.

The remaining part of this paper is organized as follows. In Section 2, we introduce some

hypotheses and present our main results. In Section 3, we prove the well-posedness for problem

(1.1)-(1.2). In Section 4, we establish an exponential decay result to problem (1.1)-(1.2). In

Section 5, we prove the lack of exponential stability for problem (1.1)-(1.2). Section 6 is devoted

to the conclusion and open problem. Throughout this paper, we use c to denote a generic positive

constant.

2 Preliminaries and main results

In this section, we first introduce some notation and present our hypotheses. Then we give some

lemmas which will be used in the proof of main results.

To deal with the memory, we introduce a new auxiliary variable η = ηt(x, s) by (see [11, 9])

η = ηt(x, s) =

∫ s

0
θ(x, t− σ)dσ, (x, t, s) ∈ [0, 1]× [0,∞)× R+,

which satisfies the following boundary conditions

ηt(1, s) = 0, ηtx(0, s) = 0.

Then θ satisfies

ηt + ηs = θ(t),

where

ηt(x, 0) = 0, t ∈ [0,∞)

and

η0(x, s) = η0(s) =

∫ s

0
θ0(σ)dσ, s ∈ R+.

Assume g(∞) = 0, a change of variable and a formal integration by parts yield∫ ∞
0

g(s)θxx(t− s)ds = −
∫ ∞
0

g′(s)ηxx(s)ds.

Now, we denote

µ(s) = −g′(s),

then ∫ ∞
0

g(s)θxx(t− s)ds =

∫ ∞
0

µ(s)ηxx(s)ds.
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Hence system (1.1)-(1.2) can be written as

ρϕtt +G(ψ − ϕx)x = 0, (x, t) ∈ (0, 1)× (0,+∞),

Iρ(3w − ψ)tt −D(3w − ψ)xx −G(ψ − ϕx) + δθx = 0, (x, t) ∈ (0, 1)× (0,+∞),

Iρwtt −Dwxx +G(ψ − ϕx) +
4

3
γw +

4

3
αwt = 0, (x, t) ∈ (0, 1)× (0,+∞),

kθt −
1

β

∫ ∞
0

µ(s)ηxx(s)ds+ δ(3w − ψ)tx = 0, (x, t) ∈ (0, 1)× (0,+∞),

ηt + ηs = θ, (x, t) ∈ (0, 1)× (0,+∞).

(2.1)

with initial and boundary conditions

ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x), w(x, 0) = w0(x), θ(x, 0) = θ0(x), x ∈ [0, 1],

ϕt(x, 0) = ϕ1(x), ψt(x, 0) = ψ1(x), wt(x, 0) = w1(x), x ∈ [0, 1],

η(x, 0) = 0, η0(x, s) =
∫ s
0 θ0(x, σ)dσ, x ∈ [0, 1],

ϕx(0, t) = ψ(0, t) = w(0, t) = θx(0, t) = ηtx(0, s) = 0, t ∈ [0,+∞),

ϕ(1, t) = ψx(1, t) = wx(1, t) = θ(1, t) = ηt(1, s) = 0, t ∈ [0,+∞).

(2.2)

For the memory kernel g, we assume that

(G1) g is a bounded convex summable function on [0,∞).

(G2) g has a total mass ∫ ∞
0

g(s)ds = 1.

(G3) g′ is an absolutely continuous function on R+ so that

g′(s) ≤ 0, g′′(s) ≥ 0, g′(0) = lim
s→0

g′(s) ∈ (−∞, 0).

(G4) There exists a positive constant ξ so that, for almost every s > 0,

g′′(s) + ξg′(s) ≥ 0.

Remark 1 In particular, µ is summable on R+ with∫ ∞
0

µ(s)ds = g(0).

Furthermore, noting that g(s) has total mass 1, we have∫ ∞
0

sµ(s)ds = 1.

Next, we introduce the vector function

U = (ϕ,ϕt, 3w − ψ, (3w − ψ)t, w, wt, θ, η)T .

Then system (2.1)-(2.2) can be written as{
∂tU = AU,

U(x, 0) = U0(x) = (ϕ0, ϕ1, 3w0 − ψ0, 3w1 − ψ1, w0, w1, θ0, η0)
T ,

(2.3)
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where A is a linear operator defined by

AU =



ϕt

−G
ρ

(ψ − ϕx)x

(3w − ψ)t

D

Iρ
(3w − ψ)xx +

G

Iρ
(ψ − ϕx)− δ

Iρ
θx

wt

D

Iρ
wxx −

G

Iρ
(ψ−ϕx)− 4γ

3Iρ
w − 4α

3Iρ
wt

1

kβ

∫ ∞
0

µ(s)ηxx(s)ds− δ

k
(3w − ψ)tx

−ηs + θ



.

We consider the following spaces

H1
∗ (0, 1) =

{
η

∣∣∣∣ η ∈ H1(0, 1) : η(0) = 0

}
, H̃1

∗ (0, 1) =

{
η

∣∣∣∣ η ∈ H1(0, 1) : η(1) = 0

}
,

H2
∗ (0, 1) = H2(0, 1) ∩H1

∗ (0, 1), H̃2
∗ (0, 1) = H2(0, 1) ∩ H̃1

∗ (0, 1),

and the energy space

H = H̃1
∗ (0, 1)× L2(0, 1)×H1

∗ (0, 1)× L2(0, 1)×H1
∗ (0, 1)× L2(0, 1)× L2(0, 1)×M, (2.4)

where

M = L2
µ

(
R+, H̃1

∗ (0, 1)
)

=

{
η : R+ → H̃1

∗ (0, 1)

∣∣∣∣ ∫ ∞
0

µ(s)‖ηx(s)‖22ds <∞
}

equipped with the norm

‖ϕ‖2M =

∫ ∞
0

µ(s)‖ϕx(s)‖22ds

and inner product

〈ϕ,ψ〉M =

∫ ∞
0

µ(s)

∫ 1

0
ϕx(s)ψx(s)dxds.

In particular,

〈−ηs, η〉M =
1

2

∫ ∞
0

µ′(s)‖ηx(s)‖22ds.

Moreover, in light of (G4) on µ, we deduce

ξ

∫ ∞
0

µ(s)‖ηx(s)‖22ds ≤ −
∫ ∞
0

µ′(s)‖ηx(s)‖22ds. (2.5)

Besides, H is the Hilbert space equipped with the norm

‖U‖2H =‖(ϕ,ϕt, 3w − ψ, (3w − ψ)t, w, wt, θ, η)‖2H
=ρ‖ϕt‖22 + Iρ‖(3w − ψ)t‖22 + 3Iρ‖wt‖22 +G‖(ψ − ϕx)‖22 +D‖(3w − ψ)x‖22
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+ 4γ‖w‖22 + 3D‖wx‖22 + k‖θ‖22 +
1

β
‖η‖2M,

and the inner product(
U, Ũ

)
H

=ρ

∫ 1

0
ϕtϕ̃tdx+ Iρ

∫ 1

0
(3w − ψ)t(3w̃ − ψ̃)tdx+ 3Iρ

∫ 1

0
wtw̃tdx+ k

∫ 1

0
θθ̃dx

+G

∫ 1

0
(ψ − ϕx)(ψ̃ − ϕ̃x)dx+D

∫ 1

0
(3w − ψ)x(3w̃ − ψ̃)xdx+ 4γ

∫ 1

0
ww̃dx

+ 3D

∫ 1

0
wxw̃xdx+

1

β

∫ ∞
0

µ(s)

∫ 1

0
ηxη̃xdxds,

for U = (ϕ,ϕt, 3w − ψ, (3w − ψ)t, w, wt, θ, η)T and Ũ = (ϕ̃, ϕ̃t, 3w̃ − ψ̃, (3w̃ − ψ̃)t, w̃, w̃t, θ̃, η̃)T .

The domain of A is given by

D(A) =

{
U ∈ H

∣∣∣∣ ϕ ∈ H̃2
∗ (0, 1), ϕt ∈ H̃1

∗ (0, 1), 3w − ψ ∈ H2
∗ (0, 1), (3w − ψ)t ∈ H1

∗ (0, 1),

w ∈ H2
∗ (0, 1), wt ∈ H1

∗ (0, 1), θ ∈ H̃1
∗ (0, 1), η ∈ N ,

∫ ∞
0

µ(s)η(s)ds ∈ H̃2
∗ (0, 1),

ϕx(0, t) = ψx(1, t) = wx(1, t) = θx(0, t) = ηx(0, s) = 0

}
,

where N = L 2
µ

(
R+, H̃1

∗ (0, 1)
)

=

{
η ∈M

∣∣∣∣ηs ∈M, η(0) = 0

}
. Clearly, D(A) is dense in H.

The energy associated with problem (2.1)-(2.2) is defined by

E(t) =
1

2

(
ρ

∫ 1

0
ϕ2
tdx+ Iρ

∫ 1

0
(3wt − ψt)2dx+ 4γ

∫ 1

0
w2dx+ 3Iρ

∫ 1

0
w2
t dx+G

∫ 1

0
(ψ − ϕx)2dx

+D

∫ 1

0
(3wx − ψx)2dx+ 3D

∫ 1

0
w2
xdx+ k

∫ 1

0
θ2dx+

1

β

∫ ∞
0

µ(s)‖ηx(s)‖22ds
)
. (2.6)

Now, we give our main results in this paper as follows.

Theorem 2.1 Let U0 ∈ H, then problem (2.3) exists a unique weak solution U ∈ C(R+;H).

Moreover, if U0 ∈ D(A), then

U ∈ C(R+;D(A)) ∩ C1(R+;H).

Theorem 2.2 Assume that χg = 0. Let U0 ∈ H, then there exists positive constants a, b such

that the energy E(t) associated with problem (2.1)-(2.2) satisfies

E(t) ≤ ae−bt, t ≥ 0. (2.7)

Theorem 2.3 Assume that χg 6= 0. Let U0 ∈ H, then problem (2.1)-(2.2) is not exponentially

stable.

Based on two propositions from [9, Proposition 11 and Proposition 12], we give the full equiv-

alence between Cattaneo law and Gurtin-Pipkin thermal law.

Theorem 2.4 If the laminated beam with structural damping and Cattaneo law is exponentially

stable, then so is the laminated beam with structural damping and Gurtin-Pipkin thermal law, and

vice versa.
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3 Well-posedness: proof of Theorem 2.1

To obtain the well-posedness, we need to prove that A: D(A) ∼ H is a maximal monotone

operator. To achieve this goal, we need to prove that A is dissipative and Id−A is surjective.

Using the inner product and integration by parts, we can easily obtain

(AU,U)H =−
∫ 1

0
G (ψ − ϕx)x ϕtdx+

∫ 1

0
[D(3w − ψ)xx +G(ψ − ϕx)− δθx] (3w − ψ)tdx

+

∫ 1

0
[3Dwxx − 3G(ψ − ϕx)− 4γw − 4αwt]wtdx

+

∫ 1

0

[
1

β

∫ ∞
0

µ(s)ηxx(s)ds− δ(3w − ψ)tx

]
θdx+G

∫ 1

0
(ψ − ϕx)(ψt − ϕxt)dx

+D

∫ 1

0
(3w − ψ)xt(3w − ψ)xdx+ 4γ

∫ 1

0
wtwdx+ 3D

∫ 1

0
wxtwxdx

+
1

β

∫ ∞
0

µ(s)

∫ 1

0
(−ηxs + θx)ηxdxds

=− 4α

∫ 1

0
w2
t dx+

1

β

∫ ∞
0

µ′(s)‖ηx(s)‖22ds ≤ 0, (3.1)

for any U ∈ D(A). Hence A is dissipative.

Next, we turn to prove Id−A is surjective, i.e., for any F = (f1, f2, · · ·, f8) ∈ H, there exists

V = (v1, v2, · · ·, v8) ∈ D(A) satisfying

(Id−A)V = F, (3.2)

that is, 

v1 − v2 = f1,

ρv2 −G∂xxv1 −G∂xv3 + 3G∂xv5 = ρf2,

v3 − v4 = f3,

Iρv4 +G∂xv1 +Gv3 −D∂xxv3 − 3Gv5 + δ∂xv7 = Iρf4,

v5 − v6 = f5,(
Iρ +

4

3
α

)
v6 −G∂xv1 −Gv3 +

(
3G+

4γ

3

)
v5 −D∂xxv5 = Iρf6,

kv7 −
1

β

∫ ∞
0

µ(s)∂xxv8ds+ δ∂xv4 = kf7,

v8 + ∂sv8 − v7 = f8.

(3.3)

From (3.3)1, (3.3)3, (3.3)5, (3.3)8 and v8(0) = 0, we have

v2 = v1 − f1,

v4 = v3 − f3,

v6 = v5 − f5,

v8 = (1− e−s)v7 +

∫ s

0
eτ−sf8(τ)dτ.

(3.4)
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Inserting (3.4) into (3.3)2, (3.3)4, (3.3)6 and (3.3)7, we obtain

ρv1 −G∂xxv1 −G∂xv3 + 3G∂xv5 = ρ(f1 + f2),

(Iρ +G)v3 +G∂xv1 −D∂xxv3 − 3Gv5 + δ∂xv7 = Iρ(f3 + f4),(
Iρ + 3G+

4γ

3
+

4α

3

)
v5 −G∂xv1 −Gv3 −D∂xxv5 = Iρ(f5 + f6) +

4

3
αf5,

kv7 −
1

β

∫ ∞
0

(1− e−s)µ(s)∂xxv7ds+ δ∂xv3

= kf7 +
1

β

∫ ∞
0

µ(s)

∫ s

0
eτ−s∂xxf8(τ)dτds+ δ∂xf3.

(3.5)

Multiplying (3.5)1-(3.5)4 by ṽ1, ṽ3, 3ṽ5 and ṽ7 respectively, and integrating over (0, 1), we can

obtain

∫ 1

0
ρv1ṽ1dx−

∫ 1

0
G∂xxv1ṽ1dx−

∫ 1

0
G∂xv3ṽ1dx+

∫ 1

0
3G∂xv5ṽ1dx =

∫ 1

0
ρ(f1 + f2)ṽ1dx,∫ 1

0
(Iρ +G)v3ṽ3dx+

∫ 1

0
G∂xv1ṽ3dx−

∫ 1

0
D∂xxv3ṽ3dx−

∫ 1

0
3Gv5ṽ3dx+

∫ 1

0
δ∂xv7ṽ3dx

=

∫ 1

0
Iρf4ṽ3dx,∫ 1

0
(3Iρ + 9G+ 4γ + 4α) v5ṽ5dx−

∫ 1

0
3G∂xv1ṽ5dx−

∫ 1

0
3Gv3ṽ5dx−

∫ 1

0
3D∂xxv5ṽ5dx

=

∫ 1

0
3Iρ(f5 + f6)ṽ5dx+

∫ 1

0
4αf5ṽ5dx,∫ 1

0
kv7ṽ7dx−

1

β

∫ 1

0
ṽ7

∫ ∞
0

(1− e−s)µ(s)∂xxv7dsdx+

∫ 1

0
δ∂xv3ṽ7dx

=

∫ 1

0
δ∂xf3ṽ7dx+

1

β

∫ 1

0
ṽ7

∫ ∞
0

µ(s)

∫ s

0
eτ−s∂xxf8(τ)dτdsdx+

∫ 1

0
kf7ṽ7dx.

(3.6)

From (3.6), we have the following variational formulation:

B
(
(v1, v3, v5, v7)

T , (ṽ1, ṽ3, ṽ5, ṽ7)
T
)

= F
(
(ṽ1, ṽ3, ṽ5, ṽ7)

T
)
,

∀ (ṽ1, ṽ3, ṽ5, ṽ7)
T ∈ H̃1

∗ (0, 1)×H1
∗ (0, 1)×H1

∗ (0, 1)× L2(0, 1), (3.7)

where

B
(
(v1, v3, v5, v7)

T , (ṽ1, ṽ3, ṽ5, ṽ7)
T
)

=

∫ 1

0
G(−∂xv1 − v3 + 3v5)(−∂xṽ1 − ṽ3 + 3ṽ5)dx+

∫ 1

0
ρv1ṽ1dx+

∫ 1

0
Iρv3ṽ3dx

+

∫ 1

0
(3Iρ + 4γ + 4α)v5ṽ5dx+

∫ 1

0
kv7ṽ7dx+

∫ 1

0
D∂xv3∂xṽ3dx+

∫ 1

0
3D∂xv5∂xṽ5dx

+

∫ 1

0

1

β

(
g(0)−

∫ ∞
0

e−sµ(s)ds

)
∂xv7∂xṽ7dx+ δ

∫ 1

0
(∂xv7)ṽ3dx+ δ

∫ 1

0
(∂xv3)ṽ7dx

9
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and

F
(
(ṽ1, ṽ3, ṽ5, ṽ7)

T
)

=

∫ 1

0
[ρ(f1 + f2)ṽ1 + Iρ(f3 + f4)ṽ3 + 3Iρ(f5 + f6)ṽ5 + 4αf5ṽ5 + δ∂xf3ṽ7 + kf7ṽ7] dx.

+
1

β

∫ 1

0
ṽ7

∫ ∞
0

µ(s)

∫ s

0
eτ−s∂xxf8(τ)dτdsdx.

Now, we introduce the Hilbert space V = H̃1
∗ (0, 1)×H1

∗ (0, 1)×H1
∗ (0, 1)×L2(0, 1) equipped with

the norm

‖(v1, v3, v5, v7)‖2V = ‖ − ∂xv1 − v3 + 3v5‖22 + ‖v1‖22 + ‖∂xv3‖22 + ‖∂xv5‖22 + ‖∂xv7‖22.

Then B(·, ·) and F (·) are bounded. Furthermore, we obtain that there exists a positive constant

c such that

B
(
(v1, v3, v5, v7)

T , (v1, v3, v5, v7)
T
)

=

∫ 1

0
G(−∂xv1 − v3 + 3v5)

2dx+

∫ 1

0
ρv21dx+

∫ 1

0
Iρv

2
3dx+

∫ 1

0
(3Iρ + 4γ + 4α)v25dx+

∫ 1

0
kv27dx

+

∫ 1

0
D(∂xv3)

2dx+

∫ 1

0
3D(∂xv5)

2dx+
1

β

(
g(0)−

∫ ∞
0

e−sµ(s)ds

)∫ 1

0
(∂xv7)

2dx

≥ c ‖(v1, v3, v5, v7)‖2V .

Hence B(·, ·) is coercive.

As a consequence, by applying Lax-Milgram lemma [23], we can obtain that (3.6) has a unique

solution (v1, v3, v5, v7)
T ∈ V. Then, substituting v1, v3, v5 into (3.4)1-(3.4)3, we obtain

v2 ∈ H̃1
∗ (0, 1), v4 ∈ H1

∗ (0, 1), v6 ∈ H1
∗ (0, 1).

Using (3.4)4 and the method in [29, Proposition 2.2], we have∫ ∞
0

µ(s)‖∂xv8(s)‖22ds ≤2

∫ ∞
0

µ(s)‖
(
1− e−s

)
∂xv7‖22ds+ 2

∫ ∞
0

µ(s)

∥∥∥∥∫ s

0
eτ−s∂xf8(τ)dτ

∥∥∥∥2
2

ds

=2

∫ ∞
0

(
1− e−s

)
µ(s)ds‖∂xv7‖22 + 2

∥∥∥∥∫ s

0
eτ−sf8(τ)dτ

∥∥∥∥2
M

≤2g(0)‖∂xv7‖22 + 2‖f8‖2M,

which gives us v8 ∈M. Then from (3.3)7, we can obtain

∂sv8 = v7 − v8 + f8 ∈M.

Hence, v8 ∈ N . Next, we turn to prove that

v1 ∈ H̃2
∗ (0, 1), v3 ∈ H2

∗ (0, 1), v5 ∈ H2
∗ (0, 1), v7 ∈ H̃1

∗ (0, 1),

∂xv1(0) = ∂xv3(1) = ∂xv5(1) = ∂xv7(0) = 0.
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Now, if (ṽ3, ṽ5, ṽ7) ≡ (0, 0, 0) ∈ H1
∗ (0, 1)×H1

∗ (0, 1)× L2(0, 1), then (3.7) reduces to∫ 1

0
G(∂xv1 − v3 + 3v5)∂xṽ1dx =

∫ 1

0
ρv1ṽ1dx−

∫ 1

0
ρ(f1 + f2)ṽ1dx, (3.8)

for all ṽ1 ∈ H̃1
∗ (0, 1), which implies

G∂xxv1 = ρv1 −G∂xv3 + 3G∂xv5 − ρ(f1 + f2) ∈ L2(0, 1). (3.9)

From the regularity theory for the linear elliptic equations, we obtain

v1 ∈ H̃2
∗ (0, 1).

Moreover, (3.8) is also true for any φ ∈ C1([0, 1]) ⊂ H1
∗ (0, 1) (φ(1) = 0). Thus, we get∫ 1

0
G∂xv1∂xφdx+

∫ 1

0
ρv1φdx−

∫ 1

0
G(∂xv3)φdx+

∫ 1

0
3G(∂xv5)φdx =

∫ 1

0
ρ(f1 + f2)φdx,

for ∀ φ ∈ C1([0, 1]), φ(1) = 0. Using (3.9) and the integration by parts, we have

∂xv1(0)φ(0) = 0, ∀φ ∈ C1([0, 1]), φ(1) = 0.

Hence,

∂xv1(0) = 0.

In the same way, we get

v3 ∈ H2
∗ (0, 1), v5 ∈ H2

∗ (0, 1), v7 ∈ H̃1
∗ (0, 1), ∂xv3(1) = ∂xv5(1) = ∂xv7(0) = 0.

From the classical regularity theory for the linear elliptic equations, we know that there exists a

unique solution U ∈ D(A) such that (3.2) is satisfied. So the operator Id−A is surjective.

As a consequence, A is a maximal monotone operator. Therefore, we established the well-

posedness result stated in Theorem 2.1 by using Lumer-Philips theorem (see [4, 16]).

4 Exponential decay: proof of Theorem 2.2

In this section, we prove the exponential stability for system (2.1)-(2.2) when χg = 0. It will be

achieved by using the perturbed energy method. Before we prove our result, we need some useful

lemmas.

Lemma 4.1 Let (ϕ,ψ,w, θ) be the solution of problem (2.1)-(2.2). Then the energy function E(t)

satisfies
d

dt
E(t) = −4α

∫ 1

0
w2
t dx+

1

β

∫ ∞
0

µ′(s)‖ηx(s)‖22ds ≤ 0, ∀ t ≥ 0. (4.1)
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Proof. Multiplying (2.1)1 by ϕt, (2.1)2 by (3w − ψ)t, (2.1)3 by 3wt, (2.1)4 by θ and integrating

over (0, 1), using integration by parts the boundary conditions in (2.2), we can obtain

d

dt
E(t) = −4α

∫ 1

0
w2
t dx+

1

β

∫ ∞
0

µ(s)

∫ 1

0
θηxx(s)dxds+

1

2β

d

dt

∫ ∞
0

µ(s)‖ηx(s)‖22ds. (4.2)

From (2.1)5 we know that

1

2β

d

dt

∫ ∞
0

µ(s)‖ηx(s)‖22ds =
1

β

∫ ∞
0

µ′(s)‖ηx(s)‖22ds+
1

β

∫ ∞
0

µ(s)

∫ 1

0
θxηx(s)dxds. (4.3)

Combining (4.2) and (4.3), we could obtain (4.1). This completes the proof.

Lemma 4.2 Let (ϕ,ψ,w, θ) be the solution of (2.1)-(2.2). Then the functional

F1(t) = − k

g(0)

∫ ∞
0

µ(s)

∫ 1

0
θη(s)dxds

satisfies the estimate

F ′1(t) ≤ −
k

2

∫ 1

0
θ2dx− c

(
1 +

1

ε1

)∫ ∞
0

µ′(s)‖ηx(s)‖22ds+ ε1

∫ 1

0
(3wt − ψt)2dx, (4.4)

for any ε1 > 0.

Proof. Taking the derivative of F1(t) with respect to t, using (2.1)4, (2.1)5 and integrating by

parts, we get

F ′1(t) =− k
∫ 1

0
θ2dx+

k

g(0)

∫ ∞
0

µ(s)

∫ 1

0
θηs(s)dxds+

1

βg(0)

∥∥∥∥∫ ∞
0

µ(s)ηx(s)ds

∥∥∥∥2
2

− δ

g(0)

∫ ∞
0

µ(s)

∫ 1

0
(3w − ψ)tηx(s)dxds. (4.5)

Using integrate by parts and Young’s inequality with ε1 > 0, we infer that

k

g(0)

∫ ∞
0

µ(s)

∫ 1

0
θηs(s)dxds = − k

g(0)

∫ ∞
0

µ′(s)

∫ 1

0
θη(s)dxds

≤ ε
∫ 1

0
θ2dx− c

ε

∫ ∞
0

µ′(s)‖ηx(s)‖22ds,

1

βg(0)

∥∥∥∥∫ ∞
0

µ(s)ηx(s)ds

∥∥∥∥2
2

≤ c
∫ ∞
0

µ(s)‖ηx(s)‖22ds,

− δ

g(0)

∫ ∞
0

µ(s)

∫ 1

0
(3w − ψ)tηx(s)dxds ≤ ε1

∫ 1

0
(3wt − ψt)2dx+

c

ε1

∫ ∞
0

µ(s)‖ηx(s)‖22ds.

Then we can get (4.4) by using above inequalities and (2.5). This completes the proof.

Lemma 4.3 Let (ϕ,ψ,w, θ) be the solution of (2.1)-(2.2). Then the functional

F2(t) =
kIρ
δ

∫ 1

0
(3w − ψ)t

∫ x

0
θ(y)dydx
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satisfies the estimate

F ′2(t) ≤−
Iρ
2

∫ 1

0
(3wt − ψt)2dx+ ε2

∫ 1

0
(ψ − ϕx)2dx+ ε2

∫ 1

0
(3wx − ψx)2dx

+ c

(
1 +

1

ε2

)∫ 1

0
θ2dx− c

∫ ∞
0

µ′(s)‖ηx(s)‖22ds, (4.6)

for any ε2 > 0.

Proof. Taking the derivative of F2(t) with respect to t, using (2.1)2, (2.1)4 and integrating by

parts, we get

F ′2(t) =− Iρ
∫ 1

0
(3wt − ψt)2dx+

kG

δ

∫ 1

0
(ψ − ϕx)

∫ x

0
θ(y)dydx− kD

δ

∫ 1

0
(3w − ψ)xθdx

+ k

∫ 1

0
θ2dx+

Iρ
βδ

∫ ∞
0

µ(s)

∫ 1

0
(3w − ψ)tηx(s)dxds.

Using (2.5), Young’s and Cauchy-Schwarz inequalities with ε2 > 0, we establish (4.6).

Lemma 4.4 Let (ϕ,ψ,w, θ) be the solution of (2.1)-(2.2). Then the functional

F3(t) = ρD

∫ 1

0
ϕt(3w − ψ)xdx− IρG

∫ 1

0
(3w − ψ)t(ψ − ϕx)dx

+
ρkIρ
δ

(
D

Iρ
− G

ρ

)∫ 1

0
θϕtdx−

ρIρ
βδ

(
D

Iρ
− G

ρ

)∫ ∞
0

µ(s)

∫ 1

0
(ψ − ϕx)ηx(s)dxds

satisfies the estimate

F ′3(t) ≤ −
G

2

∫ 1

0
(ψ − ϕx)2dx+ c

∫ 1

0

[
(3wt − ψt)2 + w2

t

]
dx− c

∫ ∞
0

µ′(s)‖ηx(s)‖22ds. (4.7)

Proof. By (2.1)1, (2.1)2, (2.1)4 and integrating by parts, we get

F ′3(t) =−G
∫ 1

0
(ψ − ϕx)2dx− IρG

∫ 1

0
(3w − ψ)tψtdx−

ρIρ
βδ

(
D

Iρ
− G

ρ

)∫ ∞
0

µ(s)

∫ 1

0
ψtηx(s)dxds

− ρIρ
βδ

(
D

Iρ
− G

ρ

)∫ ∞
0

µ′(s)

∫ 1

0
(ψ − ϕx)ηx(s)dxds− ρIρ

δ

g(0)

β
χg

∫ 1

0
θx(ψ − ϕx)dx. (4.8)

Using (2.5), Young’s inequality and χg = 0, we get (4.7).

Lemma 4.5 Let (ϕ,ψ,w, θ) be the solution of (2.1)-(2.2). Then the functional

F4(t) = −ρ
∫ 1

0
ϕϕtdx

satisfies the estimate

F ′4(t) ≤ −ρ
∫ 1

0
ϕ2
tdx+ ε4

∫ 1

0
(3wx − ψx)2dx+ ε4

∫ 1

0
w2
xdx+ c

(
1 +

1

ε4

)∫ 1

0
(ψ − ϕx)2dx, (4.9)

for any ε4 > 0.
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Proof. By differentiating F4(t) with respect to t, using (2.1)1 and integrating by parts, we obtain

F ′4(t) = −ρ
∫ 1

0
ϕ2
tdx+G

∫ 1

0
(ψ − ϕx)2dx−G

∫ 1

0
ψ(ψ − ϕx)dx.

Using Young’s inequality, we obtain

F ′4(t) ≤ −ρ
∫ 1

0
ϕ2
td + c

(
1 +

1

ε4

)∫ 1

0
(ψ − ϕx)2dx+ ε4

∫ 1

0
ψ2
xdx,

for ε4 > 0. Note that∫ 1

0
ψ2
xdx =

∫ 1

0
(ψx − 3wx + 3wx)2dx ≤ 2

∫ 1

0
(3wx − ψx)2dx+ 18

∫ 1

0
w2
xdx.

Then estimate (4.9) is obtained.

Lemma 4.6 Let (ϕ,ψ,w, θ) be the solution of (2.1)-(2.2). Then the functional

F5(t) = Iρ

∫ 1

0
(3w − ψ)(3w − ψ)tdx

satisfies the estimate

F ′5(t) ≤ −
D

2

∫ 1

0
(3wx − ψx)2dx+ Iρ

∫ 1

0
(3wt − ψt)2dx+ c

∫ 1

0
(ψ − ϕx)2dx+ c

∫ 1

0
θ2dx. (4.10)

Proof. Taking the derivative of F5(t) with respect to t, using (2.1)2 and integrating by parts, we

get

F ′5(t) =−D
∫ 1

0
(3wx − ψx)2dx+ Iρ

∫ 1

0
(3wt − ψt)2dx

+G

∫ 1

0
(ψ − ϕx)(3w − ψ)dx+ δ

∫ 1

0
(3w − ψ)xθdx.

Then, using Young’s inequality, we arrive at (4.10).

Lemma 4.7 Let (ϕ,ψ,w, θ) be the solution of (2.1)-(2.2). Then the functional

F6(t) = Iρ

∫ 1

0
wwtdx

satisfies the estimate

F ′6(t) ≤ −
2γ

3

∫ 1

0
w2dx−D

∫ 1

0
w2
xdx+ c

∫ 1

0
w2
t dx+ c

∫ 1

0
(ψ − ϕx)2dx. (4.11)

Proof. By differentiating F6(t) with respect to t, using (2.1)3 and integrating by parts, we obtain

F ′6(t) = Iρ

∫ 1

0
w2
t dx−G

∫ 1

0
w(ψ − ϕx)dx− 4γ

3

∫ 1

0
w2dx− 4α

3

∫ 1

0
wwtdx−D

∫ 1

0
w2
xdx.

We then use Young’s inequality to obtain (4.11). This completes the proof.

Now we define the following Lyapunov functional

L (t) = NE(t) +N1F1(t) +N2F2(t) +N3F3(t) + F4(t) + F5(t) + F6(t). (4.12)

where N,N1, N2, N3 are positive constants to be selected later. Then we have the lemma as

follows.
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Lemma 4.8 Let (ϕ,ψ,w, θ) be the solution of (2.1)-(2.2). For N large enough, there exists a

positive c depending on N and ε such that

(N − c)E(t) ≤ L (t) ≤ (N + c)E(t), (4.13)

for any t ≥ 0.

Proof. Using Young’s and Cauchy-Schwarz inequalities, we can easily obtain that

|L (t)−NE(t)| ≤ α1

∫ 1

0
ϕ2
tdx+ α2

∫ 1

0
(3wt − ψt)2dx+ α3

∫ 1

0
w2
t dx+ α4

∫ 1

0
(ψ − ϕx)2dx

+ α5

∫ 1

0
(3wx − ψx)2dx+ α6

∫ 1

0
w2dx+ α7

∫ 1

0
w2
xdx+ α8

∫ 1

0
θ2dx

+ α9

∫ ∞
0

µ(s)‖ηx(s)‖22ds, (4.14)

where αi(i = 1, 2, · · · , 9) are positive constants. It from (2.6) and (4.14) that there exists a

positive constant c such that

|L (t)−NE(t)| ≤ cE(t),

which completes the proof.

Now, we are ready to prove the main result in this section.

Proof of Theorem 2.2. From (4.4), (4.6), (4.7), (4.9), (4.10) and (4.11), we can obtain

L ′(t) ≤− ρ
∫ 1

0
ϕ2
tdx−

[
Iρ
2
N2 −N1ε1 − cN3 − Iρ

] ∫ 1

0
(3wt − ψt)2dx

− (4αN − cN3 − c)
∫ 1

0
w2
t dx−

[
G

2
N3 −N2ε2 − c

(
1 +

1

ε4

)
− 2c

] ∫ 1

0
(ψ − ϕx)2dx

−
(
D

2
−N2ε2 − ε4

)∫ 1

0
(3wx − ψx)2dx− 2γ

3

∫ 1

0
w2dx

− (D − ε4)
∫ 1

0
w2
xdx−

[
k

2
N1 − cN2

(
1 +

1

ε2

)
− c
] ∫ 1

0
θ2dx

+

[
1

β
N − cN1

(
1 +

1

ε1

)
− cN2 − cN3

] ∫ ∞
0

µ′(s)‖ηx(s)‖22ds. (4.15)

At this point, we need to choose our constants very carefully. First, we choose

ε1 =
IρN2

4N1
, ε2 = min

{
GN3

4N2
,
D

8N2

}
, ε4 =

D

8
,

so that

L ′(t) ≤− ρ
∫ 1

0
ϕ2
tdx−

[
Iρ
4
N2 − cN3 − Iρ

] ∫ 1

0
(3wt − ψt)2dx− (4αN − cN3 − c)

∫ 1

0
w2
t dx

−
[
G

4
N3 −

8

D
c− 3c

] ∫ 1

0
(ψ − ϕx)2dx− D

4

∫ 1

0
(3wx − ψx)2dx− 2γ

3

∫ 1

0
w2dx

− 7D

8

∫ 1

0
w2
xdx−

[
k

2
N1 − cN2

(
1 +

1

ε2

)
− c
] ∫ 1

0
θ2dx
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+

[
1

β
N − cN1

(
1 +

N1

N2

)
− cN2 − cN3

] ∫ ∞
0

µ′(s)‖ηx(s)‖22ds. (4.16)

Then, we select N3 large enough so that

G

4
N3 −

8

D
c− 3c > 0.

Next, we select N2 large enough so that

Iρ
4
N2 − cN3 − Iρ > 0.

Furthermore, we select N1 large enough so that

k

2
N1 − cN2

(
1 +

1

ε2

)
− c > 0.

Finally, we select N large enough so that

4αN − cN3 − c > 0,
1

β
N − cN1

(
1 +

N1

N2

)
− cN2 − cN3 > 0.

Using (2.6), we obtain that there exist positive constants M1 and M2 such that (4.16) becomes

L ′(t) ≤ −M1E(t) +M2

∫ ∞
0

µ′(s)‖ηx(s)‖22ds

≤ −M1E(t), ∀ t ≥ 0.

From Lemma 4.8, we obtain

L ′(t) ≤ −bL (t), ∀ t ≥ 0, (4.17)

where b = M1
N+c . Then, a simple integration of (4.17) over (0, t) yields

L (t) ≤ L (0)e−bt, ∀ t ≥ 0. (4.18)

At last, estimate (4.18) gives exponential stability result (2.7) when be combined with Lemma

4.8. This completes the proof.

5 Lack of exponential stability: proof of Theorem 2.3

Our result is achieved by using Gearhart-Herbst-Prüss-Huang theorem to dissipative systems (see

Prüss [24] and Huang [13]).

Lemma 5.1 Let S(t) = eAt be a C0-semigroup of contractions on Hilbert space H. Then S(t) is

exponentially stable if and only if

ρ(A) ⊃ {iλ : λ ∈ R} ≡ iR

and

lim
|λ|→∞

‖(iλI −A)−1‖L(H) <∞

hold, where ρ(A) is the resolvent set of the differential operator A.
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Proof of Theorem 2.3. We will prove that there exists a sequence of imaginary number λµ and

function Fµ ∈ H with ‖Fµ‖H ≤ 1 such that ‖(λµI −A)−1Fµ‖H = ‖Uµ‖H →∞, where

λµUµ −AUµ = Fµ, (5.1)

with Uµ = (v1, v2, v3, v4, v5, v6, v7, v8)
T not bounded. Rewriting spectral equation (5.1) in term of

its components, we have for λµ = λ

λv1 − v2 = g1,

ρλv2 −G∂xxv1 −G∂xv3 + 3G∂xv5 = ρg2,

λv3 − v4 = g3,

Iρλv4 +G∂xv1 +Gv3 −D∂xxv3 − 3Gv5 + δ∂xv7 = Iρg4,

λv5 − v6 = g5,

Iρλv6 −G∂xv1 −Gv3 +

(
3G+

4γ

3

)
v5 +

4α

3
v6 −D∂xxv5 = Iρg6,

kλv7 −
1

β

∫ ∞
0

µ(s)∂xxv8(s)ds+ δ∂xv4 = kg7,

λv8 + ∂sv8 − v7 = g8,

(5.2)

where λ ∈ R and F = (g1, g2, g3, g4, g5, g6, g7, g8)
T ∈ H. Take g1 = g3 = g5 = 0, then the above

system becomes

ρλ2v1 −G∂xxv1 −G∂xv3 + 3G∂xv5 = ρg2,

Iρλ
2v3 +G∂xv1 +Gv3 −D∂xxv3 − 3Gv5 + δ∂xv7 = Iρg4,

Iρλ
2v5 −G∂xv1 −Gv3 +

(
3G+

4γ

3
+

4α

3
λ

)
v5 −D∂xxv5 = Iρg6,

kλv7 −
1

β

∫ ∞
0

µ(s)∂xxv8(s)ds+ λδ∂xv3 = kg7,

λv8 + ∂sv8 − v7 = g8.

(5.3)

Due to the boundary conditions in (2.2), we can suppose that

v1 = A cos
(µπ

2
x
)
, v3 = B sin

(µπ
2
x
)
, v5 = C sin

(µπ
2
x
)
, v7 = E cos

(µπ
2
x
)
, v8 = φ(s) cos

(µπ
2
x
)
.

Choosing

g2 =
1

ρ
cos
(µπ

2
x
)
, g4 = g6 = g7 = g8 = 0,
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then we can obtain

[
ρλ2 +G

(µπ
2

)2]
A−G

(µπ
2

)
B + 3G

(µπ
2

)
C = 1,

−G
(µπ

2

)
A+

[
Iρλ

2 +G+D
(µπ

2

)2]
B − 3GC − δ

(µπ
2

)
E = 0,

G
(µπ

2

)
A−GB +

[
Iρλ

2 + 3G+
4γ

3
+

4α

3
λ+D

(µπ
2

)2]
C = 0,

λδ
(µπ

2

)
B + kλE +

1

β

(µπ
2

)2 ∫ ∞
0

µ(s)φ(s)ds = 0,

φ′(s) + λφ(s)− E = 0.

(5.4)

In the above equaiton, we take λ = λµ := i

√
G

ρ

(µπ
2

)
such that

ρλ2 +G
(µπ

2

)2
= 0.

Solving (5.4)5, we get

φ(s) =
E

λ

(
1− e−λs

)
. (5.5)

Then substituting (5.5) into (5.4)4, we can get

E =

Gδ
ρ

(µπ
2

)
g(0)
β

[
1− kG

ρ
β
g(0)

]
− 1

β

∫∞
0 µ(s)e−λsds

B.

The combination of (5.4)2 and (5.4)3 gives

Iρ

(
D

Iρ
− G

ρ

)(µπ
2

)2
B +

[
4γ

3
+

4α

3
λ+ Iρ

(
D

Iρ
− G

ρ

)(µπ
2

)2]
C − δ

(µπ
2

)
E = 0. (5.6)

Substituting E into (5.6), we get

C = −Λµ
Γµ
B,

where

Λµ = Iρ

(
D

Iρ
− G

ρ

)(µπ
2

)2
−

Gδ2

ρ

(µπ
2

)2
g(0)
β

[
1− kG

ρ
β
g(0)

]
− 1

β

∫∞
0 µ(s)e−λsds

,

Γµ = Iρ

(
D

Iρ
− G

ρ

)(µπ
2

)2
+

4α

3
λ+

4γ

3
.

Substituting C into (5.4)1, we get

B = − Γµ

G
(µπ

2

)
(Γµ + 3Λµ)

,

Similarly, substituting C into (5.4)3, we get

A =
GΓµ + ΛµΓµ + 3GΛµ

G
(µπ

2

)
Γµ

B
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=− GΓµ + ΛµΓµ + 3GΛµ

G2(Γµ + 3Λµ)
(µπ

2

)2 .
At this point, we introduce the number

γg = 1− kG

ρ

β

g(0)

and consider separately two cases.

Case γg = 0. Let µ→∞, we get

A→ − βδ2

ρG
∫∞
0 µ(s)e−λsds

, B → 0, C → 0.

Case γg 6= 0. Let µ→∞, we get

A→ −
Iρχg

(
D
Iρ
− G

ρ

)
G2
[(

D
Iρ
− G

ρ

)
γg + 3χg

] , B → 0, C → 0.

Thus,

‖Uµ‖2H ≥ G
∫ 1

0
(ψ − ϕx)2dx = G

[
3C −B +

(µπ
2

)
A
]2 ∫ 1

0
sin2

(µπ
2
x
)

dx

=
1

2
G
[
3C −B +

(µπ
2

)
A
]2
→∞, as µ→∞.

This implies that

‖Uµ‖H →∞, as µ→∞.

Therefore, there is no exponential stability. This completes the proof.

6 Conclusion and open problem

In this paper, we first prove the well-posedness for a laminated beam with Gurtin-Pipkin thermal

law and structural damping, and then prove that the system is exponentially stable if and only if

that stability number is equal to zero (χg = 0). When the stability number is not zero (χg 6= 0),

the problem of whether it is possible to get the polynomial stability for system (2.1)-(2.2) is still

an interesting open problem.
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