

1 Article

2 Dissolved silica effects on adsorption and 3 co-precipitation of Sb(III) and Sb(V) with ferrihydrite

4 Shuang Zhou ^{1,*}, Tsutomu Sato ^{2,*} and Tsubasa Otake ²

5 ¹ Graduate school of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan 1;
6 mzhou0327@gmail.com

7 ² Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan 2; tomsato@eng.hokudai.ac.jp

8 * Correspondence: mzhou0327@gmail.com; tomsato@eng.hokudai.ac.jp; Tel.: +81-11-706-6321

9 **Abstract:** Elevated antimony concentrations in aqueous environments from anthropogenic sources
10 is becoming of global concern, here iron oxides are known to strongly adsorb aqueous antimony
11 species with different oxidation states, but the effect of silica on the removal characteristics is not
12 well understood despite being a common component in the environment. In this study, ferrihydrite
13 was synthesized at various Si/Fe molar ratios to investigate its adsorption and co-precipitation
14 behaviors with aqueous antimony anionic species, Sb(III) and Sb(V). The XRD analyses of the
15 precipitates showed two broad diffraction features at approximately 35° and 62° 2θ, which are
16 characteristic of 2-line ferrihydrite, no significant shifts in peak positions in the ferrihydrite
17 regardless of the Si/Fe ratios. The infrared spectra showed a sharp band at ~990 cm⁻¹, corresponding
18 to asymmetric stretching vibrations of Si-O-Fe bonds which increased in intensity with increasing
19 Si/Fe molar ratios. Further, the surface charge on the precipitates became more negative with
20 increasing Si/Fe molar ratios. The adsorption experiments indicated that Sb(V) was preferentially
21 adsorbed at acidic conditions and decreased dramatically with increasing pH while the adsorption
22 rate of Sb(III) ions was independent of pH, however, the presence of silica suppressed the
23 adsorption of both Sb(III) and Sb(V) ions. The results showed that Sb(III) and Sb(V) ions were
24 significantly inhibited by co-precipitation with ferrihydrite even in the presence of silica by
25 isomorphous substitution in the ferrihydrite crystal structure.

26 **Keywords:** Antimony; Ferrihydrite; Silica; Adsorption; Co-precipitation

27

28 1. Introduction

29 Antimony (Sb) is widely used in industry as a catalyst in plastics, flame
30 retardants, storage batteries, and ammunition [1][2][3]. It is the ninth most mined
31 metal for industrial uses worldwide [4][5], and one result of this is elevated
32 concentrations of Sb in many soils and waters, especially around mining and
33 smelting areas [6][7][8][9][10][11][12]. There has been a growing concern over the
34 adverse effect of Sb on human health due to its toxicity. Antimony has been
35 increasingly identified as a toxic heavy metal with implications for it being a
36 carcinogen [13]. This has caused antimony and its compounds to be listed as a
37 leading pollutant by the United States Environmental Protection Agency [14] and
38 the Council of the European Union [15].

39 Antimony may be present in a variety of oxidation states (-III, 0, III, V) because
40 of its s_2p_3 outer orbital electron configuration, however it is mainly found in the two
41 oxidation states (III and V) in environmental, biological, and geochemical
42 environments [1][5]. The toxicity of Sb depends strongly on its oxidation state, and
43 reduced Sb(III) species are ten times more poisonous than oxidized Sb(V), similar to
44 the case of arsenic [16]. In spite of the widespread usage and the substantial toxicity,
45 the geochemical behaviors of Sb in soil and aquatic systems are poorly understood
46 [17][18].

47 Recent studies have shown that both Sb(III) and Sb(V) appear to adsorb
48 strongly onto iron oxides [10][19][20][18], which thereby strongly influence the
49 speciation, mobility, and final states of antimony in the environment. Antimony is
50 preferentially associated with iron(III) oxyhydroxide in soils and sediments on the
51 basis of direct evidence using extended X-ray absorption fine structure
52 spectroscopy (EXAFS) [6][10][21]. This would suggest that adsorption and
53 incorporation processes into the iron(III) (oxyhydr)oxide phases would be able to
54 control the mobility of Sb in natural environments. Several experimental studies
55 have investigated the Sb adsorption mechanism on iron(III) oxyhydroxides,
56 focusing on Sb speciation at the solid-liquid (water) interface using EXAFS [10][22].

57 However, the surface structure of Sb(III) and Sb(V) biding with iron iron(III)
58 oxyhydroxides is still unclear. A further important process, co-precipitation with
59 iron(III) (oxyhydr)oxides, does not appear to have been reported. In natural
60 systems, iron(III)(hydro)oxides are often identified in precipitates from the
61 oxidation of Fe(II) in the presence of the relevant anions. Thus, the precipitation
62 process may be as important as adsorption, as a sequestration process of Sb species
63 by iron (III) (oxyhydr)oxides when groundwater with natural or added Fe comes in
64 contact with air or oxygenated water.

65 Further, as Fe minerals are closely associated with silica, one of the most
66 common ligands present in natural environments, pure ferrihydrite is not, strictly
67 speaking, present in nature. Silica always associates with ferrihydrite in the
68 structure or on the ferrihydrite surface. This could mean that silica may affect the
69 crystallization behavior as well as the capacity of ferrihydrite to regulate hazardous
70 element recycling. The effect of silica on arsenic adsorption has been reported for
71 ferrihydrite [23], but no reports of the effect of silica on antimony adsorption or
72 co-precipitation have been reported for other oxides.

73 Based on the above, the objectives of this study were to (1) compare the relative
74 adsorption capabilities of Sb(III) and Sb(V) onto ferrihydrite. (2) to evaluate the
75 effect of dissolved silica during the adsorption and co-precipitation of Sb(III) and
76 Sb(V) on ferrihydrite, and also (3) to better understand the differences between the
77 adsorption and co-precipitation processes of antimony.

78 2. Materials and Methods

79 2.1. Adsorption experiments

80 A stock solution of ferric iron (Fe(III), 0.05 mol/L), was prepared by dissolving
81 reagent grade $\text{Fe}(\text{NO}_3)_3 \bullet 9\text{H}_2\text{O}$ (Kanto, 99%) in ultrapure water (18 M $\Omega \bullet \text{cm}$).
82 Tetraethylorthosilicate (TEOS; Alfa Aesar, 98%) was then added to 500 mL of the Fe
83 solution to achieve silica concentrations of 0 to 20×10^{-3} mol/L (i.e., Si/Fe = 0.4).
84 These solutions containing both silica and Fe(III) were stirred for about 30 minutes

85 to dissolve the TEOS completely before pH adjustment. The initial pH of the
86 solution was about 1.8, which was adjusted to about 7.0 ± 0.1 by titrating 1.0 M
87 NaOH (Kanto, 97%). Addition of the NaOH hydrolyze the Fe(III) in the solution
88 resulting in formation of a slurry of dark brown precipitates. The slurries were
89 stirred for an additional 15 minutes to allow the pH to stabilize. The resulting 500
90 mL slurries were then equally divided into 50 mL polypropylene bottles and then
91 washed in the bottles at least four times with deionized water to remove the salts
92 and freeze-dried for at least 24 h. Samples with different silica concentrations were
93 replicated to evaluate the reproducibility of the experimental results.

94 Stock solutions of Sb(V) were prepared by dissolving $\text{KSb}(\text{OH})_6$ powder (Wako,
95 50%) into deionized water, and of Sb(III) by dissolving Sb_2O_3 powder (Wako, 98%)
96 into 2 mol/L HCl (Kanto, 37%) solution. The adsorption experiments with either of
97 Sb(III) and Sb(V) were conducted at a solid concentration of 0.5 g/L with a
98 background ionic strength of 0.01 M NaCl. Triplicates of 40 mL suspensions with a
99 fixed amount of solids (20 mg) and 100 μM solute concentrations were prepared in
100 50 mL plastic bottles. The experiments were conducted at a pH range of 3 – 12. The
101 pH of the suspensions was adjusted using small volumes of 0.5 M HCl or 0.5 M
102 NaOH during the experiments. Suspensions were agitated on a rotary shaker (110
103 rpm) for 24 h at 20.5 °C After the reaction, the suspensions were centrifuged and
104 then filtered through a 0.2 μm cellulose membrane filter for the further analysis.

105 *2.2. Co-precipitation experiments*

106 The Sb(III) and Sb(V) co-precipitation experiments were conducted by
107 hydrolysis of Silica and Fe(III) solution and either of Sb(III) and Sb(V) in deionized
108 water, following the method of Waychunas et al. [24]. Coprecipitated samples were
109 prepared by simultaneous addition either of 100 μM Sb(III) and Sb(V), 0.05 M
110 Fe(III) solution, and the TEOS to yield the different Si/Fe ratios of the precipitate
111 (Si/Fe = 0 to 0.4). In all cases, the Si/Fe ratios of the samples were determined
112 assuming complete precipitation of all added Fe and Silica. The 500 mL mixed
113 solutions were maintained at the experimental pH (7.0 ± 0.1) by the addition of 1.0

114 M NaOH. After precipitation and approximately 30 minutes of pH stabilization, the
115 coprecipitates were washed at least four times with deionized water by
116 centrifugation with a 50 mL plastic tube, then the suspension was filtered through a
117 0.2 μ m cellulose membrane filter for the further analysis.

118 *2.3. Analytical methods*

119 Synthesized precipitates were analyzed by powder X-ray diffraction (XRD)
120 using a Rigaku RINT2000 X-ray diffractometer operated at 40 kV and 40 mA,
121 equipped with a Cu target and graphite monochromator, and diffraction profiles
122 were collected from 10 to 70° 2 θ .

123 The FTIR spectra were recorded from 400 to 4000 cm^{-1} by a JASCO FTIR-4100
124 spectrometer with a 1.0 cm^{-1} spectral resolution. The KBr used to prepare the
125 sample was heated at 110 °C for two hours prior to analysis to remove water. Pellets
126 for analyzing were prepared by pulverizing the precipitates and mixing with KBr at
127 a 1.5 mg precipitate to 250 mg KBr ratio.

128 The ζ -potential of the samples was measured using a Zetasizer Nano ZS90
129 (Malvern Zetasizer Nano series Nano-ZS90). Freeze-dried precipitates were
130 resuspended in 10 mL deionized water to obtain the final mineral concentration of
131 100 mg/L. The auto-titration was initiated at pH values from 2 to 12 (in 0.5 pH
132 increments) adjusting the pH with dilute HNO_3 and NaOH solutions.

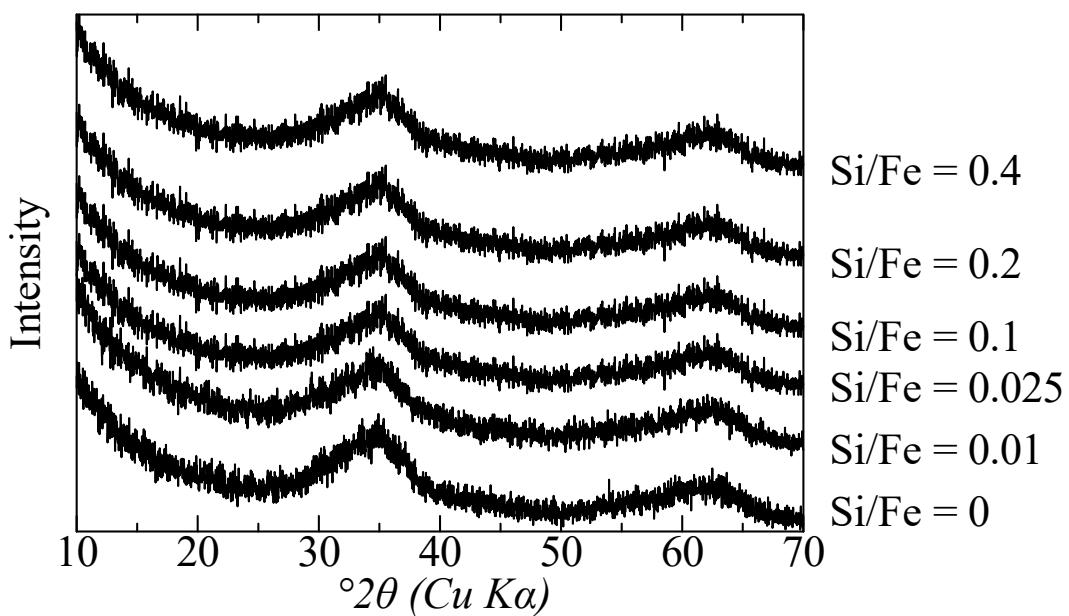
133 Filtrates were analyzed for Sb(III) and Sb(V) as total antimony by Inductively
134 Coupled Plasma Atomic Emission Spectroscopy (ICPE-9000, ICP-AES). The
135 detection limit of this method was 0.1 $\mu\text{g}/\text{L}$. The pH of the solutions was measured
136 with a pH meter (HORIBA, D-55) calibrated by using commercial pH 4.0, 7.0 and
137 10.0 buffer solutions. The amount of solute adsorbed was calculated using the
138 difference between the initial and final dissolved solute concentrations.

139

140

141

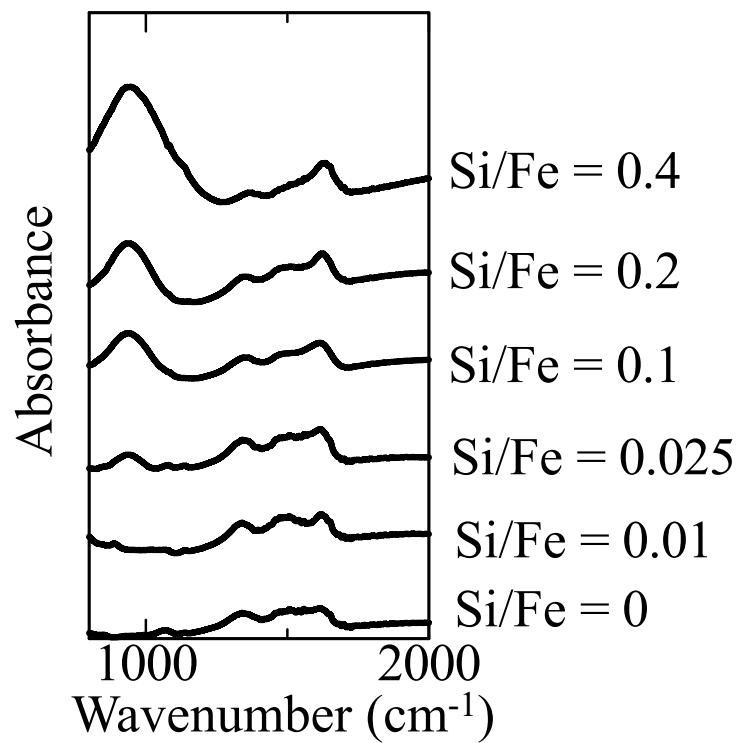
142 **3. Results and discussion**143 *3.1. Characterization of initial adsorbents*


144 The XRD analyses were conducted to determine the mineralogy of the dark
145 brown precipitates. In all of the samples with the various initial ratios of Si/Fe, the
146 XRD analyses of the dark brown precipitates, which were used as adsorbents in the
147 following adsorption experiments, were characterized by two broad maxima
148 centered at approximately 35° and 62° 2θ (Figure 1), consistent with the presence of
149 2-line ferrihydrite [25][26]. No significant shifts or changes in the width of the
150 ferrihydrite 'peaks' in these precipitates were observed in the range of silica
151 concentration studied.

152 To identify the chemical bonds in the initial adsorbents, FTIR analyses were
153 conducted, and the infrared spectra of the initial adsorbents were generally
154 consistent with published data on ferrihydrite [27]. There were significant changes
155 with increasing silica concentrations in the precipitates. Specifically, a relatively
156 sharp band at ~930 cm⁻¹ corresponding to asymmetric stretching vibrations of
157 Si-O-Fe bonds appeared and increased in intensity with increasing concentrations
158 of silica (Figure 2), suggesting the presence of a small amount of polymeric Si [28].

159 To examine the surface charge properties of the initial adsorbents, the
160 ζ-potential measurements at different pH were conducted. The ζ-Potential of the
161 initial precipitates are shown as a function of pH in Figure 3. In general, the pH_{pzc}
162 (point of zero charge) of ferrihydrite decreases with increasing silica content during
163 the synthesis. For instance, the pH_{pzc} of ferrihydrite in the absence of silica was 8.2
164 and that of ferrihydrite at Si/Fe = 0.4 was 4.8, suggesting that the surface of the
165 initial precipitates was more negatively charged after the Silica loading.

166 The XRD results indicate that the Si/Fe of the precipitating solution does not
167 influence the mineralogy of the initial precipitates. Rapid hydrolysis of the Fe(III) in
168 solution due to the addition of NaOH resulted in the co-precipitation of silica and
169 Fe into poorly ordered ferrihydrite. The FTIR data show that silica became closely
170 associated with the ferrihydrite via the formation of Si-O-Fe groups, but it is not


171 clear if silica is incorporated into the structure of ferrihydrite. Pokrovski [29] has
172 demonstrated that aqueous silica may form stable iron silicate aqueous complexes
173 with polymeric ferric oxy-hydroxide species. However, recent studies have shown
174 that silica could also occur on the surface [30][31][32]. Detailed IR studies of
175 adsorbed silica on ferrihydrite surfaces show the formation of bidentate surface
176 complexes composed of monomeric silicate species at low silica ratios, similar to the
177 concentrations used in this study [33]. Formation of these silica surface complexes
178 results in a net release of protons that decreases the positive charge on the
179 precipitate surface [34]. This is consistent with the changes in the ζ -potential
180 observed with increasing Si/Fe ratios (Figure 3). At high Si ratios, the surface can be
181 expected to become more negative as the silica polymerizes and creates more acidic
182 surface complexes [28].

183


184

Figure 1. XRD spectra of the initial synthetic precipitates with different Si/Fe ratios.

185

186

Figure 2. FTIR spectra of the initial synthetic precipitates with different Si/Fe ratios.

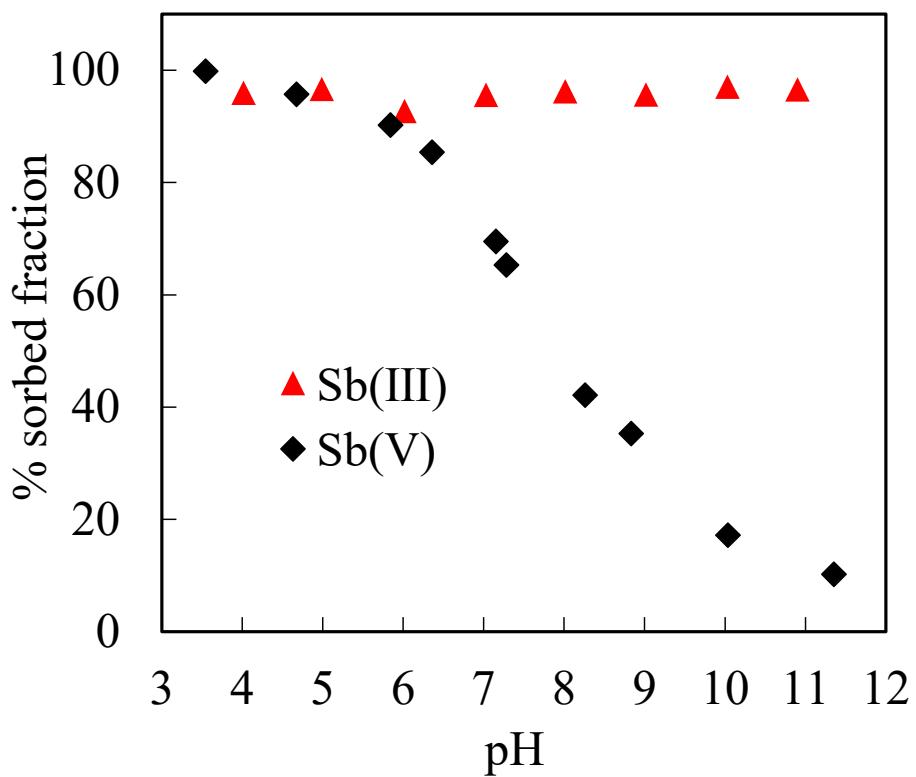
187

188

Figure 3. Changes in the ζ -potential of ferrihydrite at different Si/Fe ratios as a function of pH in 0.01 M NaCl.

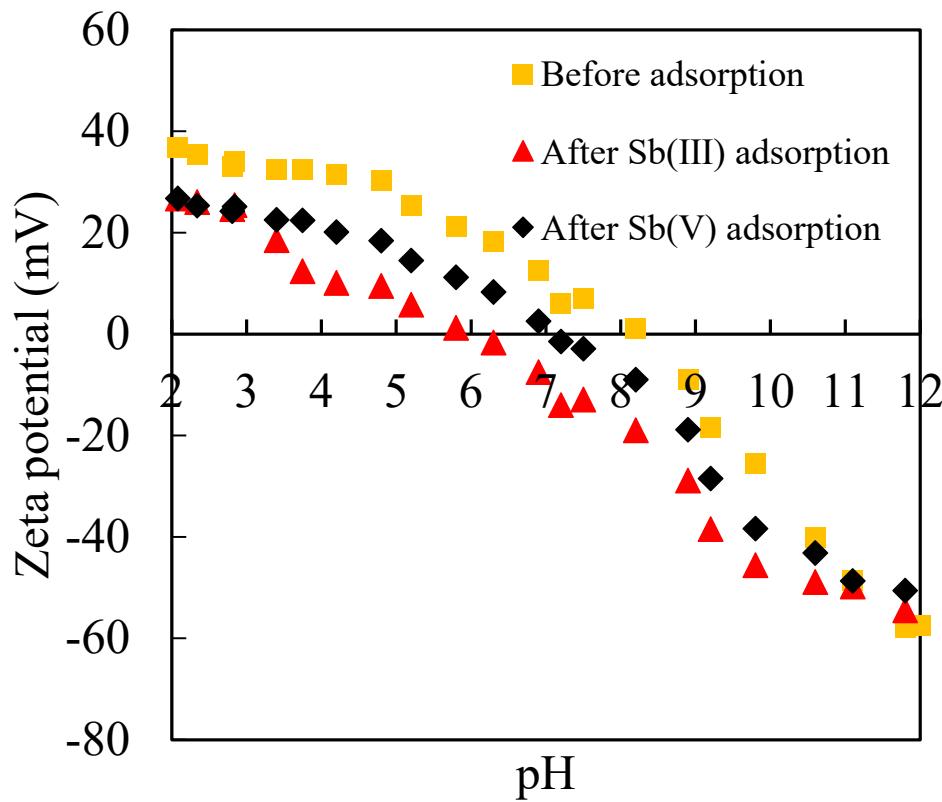
189 3.2. Adsorption of Sb(III) and Sb(V) on ferrihydrite

190 3.2.1. Sb(III) and Sb(V) adsorption in the absence of silica


191 The adsorbed ratios of Sb(III) and Sb(V) ions onto ferrihydrite in 0.01 M NaCl solutions is
192 shown as a function of pH in Figure 4. The adsorption rate of Sb(V) was over 90 % between pH 3 and
193 6. With increasing pH, from 6 to 12, the adsorption rate of Sb(V) rapidly decreased from 90% to 10%.
194 A strong pH dependence on Sb(V) adsorption has been reported when goethite and ferrihydrite
195 were used as adsorbents ([22][35]). The effect of pH on Sb(III) adsorption however was much
196 weaker, showing a constant adsorbed fraction ~95% over the whole of the pH range investigated
197 here, from 3 to 12. This is in good agreement with earlier studies [36][22]. The difference in
198 adsorption efficiency of Sb(III) and Sb(V) ions may mainly be due to differences in the electrostatic
199 interactions between the sorbent surface and antimony oxyanions present in the solutions. The
200 Sb(OH)₆⁻ is the dominant Sb(V) species over the wide pH range, here (3 – 10) [1]. The surface charge
201 of ferrihydrite is positive below pH ~8.2, pH_{pzc}, and electrostatic attraction between the Sb(OH)₆⁻ and
202 the surface of ferrihydrite can be expected to be stronger under acidic conditions since Sb(OH)₆⁻ is
203 negatively charged at the conditions here, leading to the electrostatic forces playing an important
204 role in the Sb(V) adsorption. For Sb(III), a trihydroxy neutral species, Sb(OH)₃⁰, is the dominant
205 species over a wide pH range (2 – 11) [1], and only minor or no electrostatic effects may be expected
206 for the Sb(III) adsorption.

207 A specific interaction (so-called surface complexation) may also play an important role
208 between the adsorbate and adsorbent in addition to the electrostatic effect. To evaluate the effects of
209 surface complexation reactions of Sb(III) and Sb(V) on ferrihydrite, ζ -potential measurements were
210 carried out after the adsorption experiments at different pH values. A ζ -Potential analysis is able to
211 indirectly discriminate between inner- and outer-sphere surface complexes on mineral solid
212 surfaces, as the formation of charged inner-sphere surface complexes changes the ζ -potential values
213 and the pH_{pzc} (point of zero charge) because the ion adsorption occurs inside the shear plane [37].
214 The ζ -Potential over a wide pH range, from 3 to 12, and a significant pH_{pzc} shift was observed (Figure
215 5) for both Sb(III) and Sb(V) adsorption on ferrihydrite. The pH_{pzc} of the ferrihydrite after adsorbing
216 Sb(V) is 7.1, which is higher than the 6.1 of Sb(III) (Figure 5). The shifts in pH_{pzc} are likely due to
217 negative charges generated by inner-sphere complexation of Sb ions on the surface of ferrihydrite,

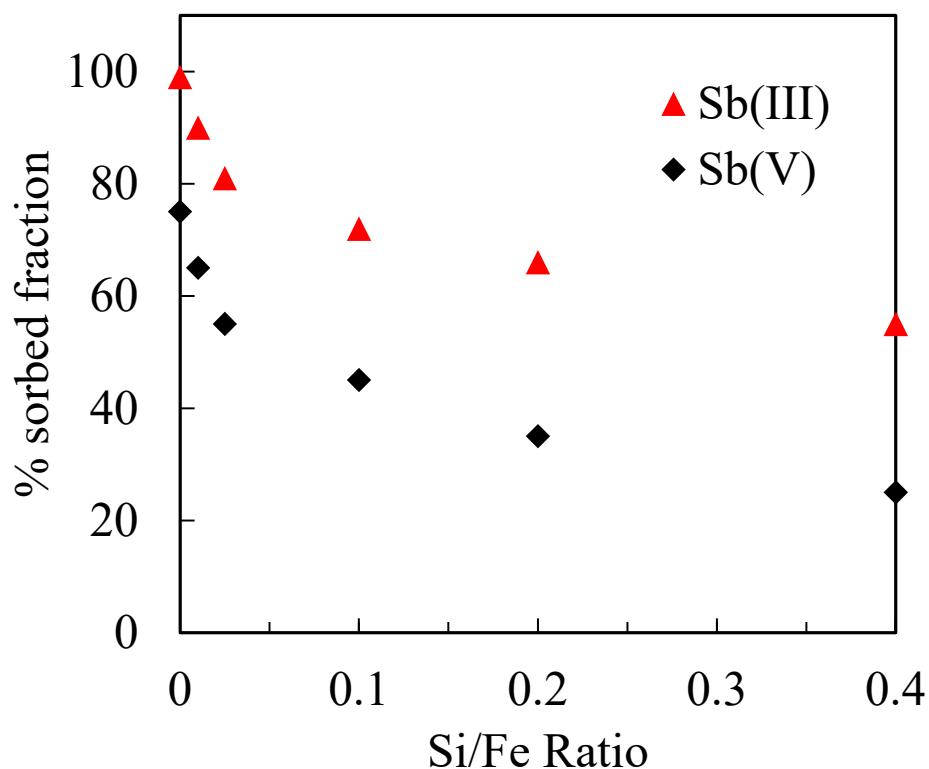
218 and the results of the ζ -potential measurements suggest that Sb(V) ions are adsorbed on the
219 ferrihydrite surface but not as strongly as Sb(III) ions. The strong pH dependence on Sb(V)
220 adsorption (Figure 4) suggests that electrostatic interactions play an important role for Sb(V) ions,
221 and the strong pH dependence and shifts in pH_{pzc} . Together, these results imply that both outer- and
222 inner-sphere complexes rather than only inner-sphere complexes contribute to the adsorption of
223 Sb(V) ions on the ferrihydrite. Wang [38] has reported that a combination of outer and inner-sphere
224 complexes for Sb(V) adsorption on iron modified aerobic granules, which is consistent with the
225 results for Sb(V) adsorption here.


226 At the same time, the steep decrease in the pH_{pzc} by Sb(III) adsorption on ferrihydrite
227 suggests that the uncharged Sb(III) is bound strongly to the surface of ferrihydrite by inner-sphere
228 complexation, and the surface complexation between Sb(III) and Fe species is likely the dominating
229 mechanism for Sb(III) adsorption, which would also be consistent with the pH independence of
230 Sb(III) adsorption (Figure 4). An inner-sphere formation for bidentate mononuclear edge-sharing
231 between Sb(III) and HFO was reported by using extended X-ray absorption fine structure (EXAFS)
232 [22]. However, further spectroscopic evidence is necessary to understand the adsorption mechanism
233 of Sb(III) and Sb(V) on the mineral surface in more detail.

234 All of the above results suggest that Sb(III) showed a higher adsorption efficiency toward
235 ferrihydrite than Sb(V) in the pH range 6 – 12. Previous studies also reported more effective removal
236 of Sb(III) than Sb(V) by ferric chloride over a broad pH range and under a variety of competing ions
237 such as phosphate and humic acid [39]. The comparison in mobility between the two Sb species
238 appears to be different from that for the As(III) and As(V) species despite Sb and As belonging to the
239 same group of the periodic table. Here the relatively stronger adsorption of Sb(III) compared to
240 As(III) could be attributed to antimonite as a stronger Lewis base than arsenite [40], having a higher
241 pKa value ($\text{pKa1}(\text{H}_3\text{AsO}_3) = 9.22$; $\text{pKa}(\text{Sb}(\text{OH})_3) = 11.9$). The ferrihydrite is frequently amphoteric,
242 and if considering the surface sites of ferrihydrite as Lewis acids, this would explain the stronger
243 binding of Sb(III).

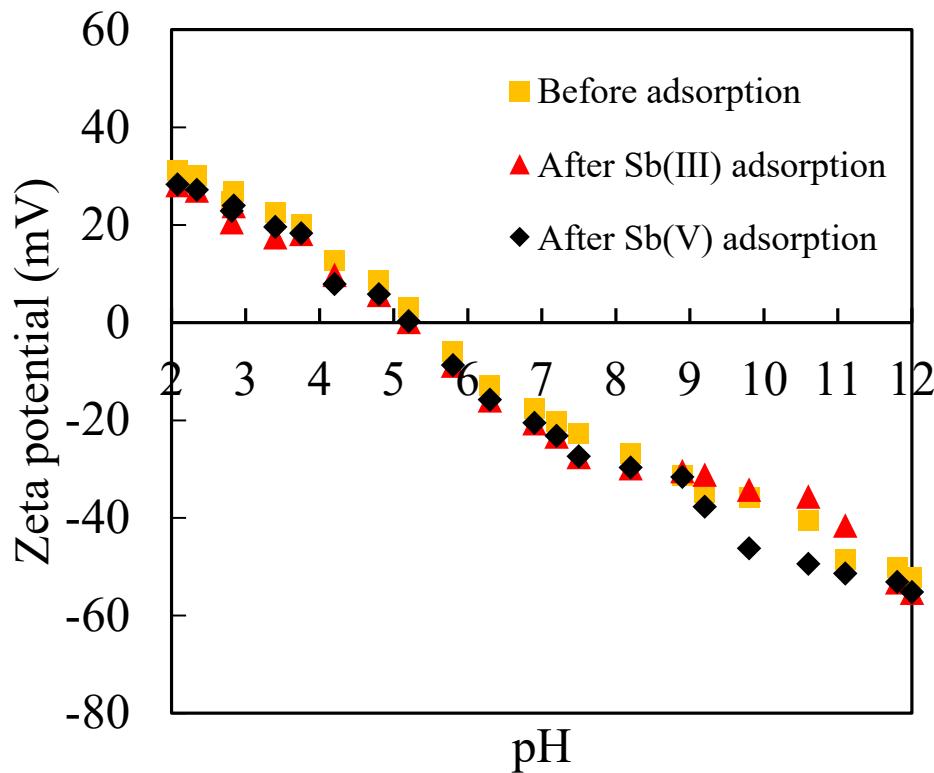
244

245 **Figure 4.** Adsorption of Sb(III/V) onto ferrihydrite as a function of the pH in 0.01 M NaCl solutions. The initial
246 Sb(III/V) concentration were 100 μ M for each sample. The concentrations of suspended solids were
247 0.5 g/L.


248

249 **Figure 5.** Changes in the ζ -potential of ferrihydrite after adsorbing Sb(III/V) as a function of pH in 0.01 M NaCl.
 250 The initial Sb(III/V) concentrations were 100 μ M for all samples. The concentrations of suspended
 251 solids were 0.5 g/L.

252 *3.2.2. Sb(III) and Sb(V) adsorption in the presence of silica*


253 The effect of silica on the adsorption of Sb was investigated by varying the Si/Fe ratio of the
 254 precipitates at pH 7. The results demonstrated that both Sb(III) and Sb(V) are significantly affected
 255 by the presence of silica, with the adsorbed fraction decreasing with increasing Si/Fe ratios (Figure 6).
 256 Both Sb(III) and Sb(V) adsorption were suppressed in the presence of silica. The adsorbed fractions
 257 of Sb(III) and Sb(V) ions decreased from >96% at Si/Fe = 0 to 60% at Si/Fe = 0.4 and from >75% at Si/Fe
 258 = 0 to 30% at Si/Fe = 0.4, respectively. This shows that Sb(V) was affected more significantly by silica
 259 than Sb(III). The drop in Sb(V) adsorption efficiency is likely a result of decreased electrostatic
 260 interactions between Sb(V) ions and the surface of ferrihydrite by the decreased surface charge of
 261 ferrihydrite due to the presence of silica on the ferrihydrite surface (Figure 3), as discussed in the
 262 previous section, 3.1. Swedlund [23] also suggested that the decreasing surface charge of ferrihydrite
 263 by increasing silica concentrations could be an important factor in inhibiting As adsorption. Besides

264 the effect of silica to decrease the surface charge, silica may also suppress adsorption of Sb by
265 occupying surface sites by the inner sphere complexation. No apparent pH_{pzc} shift was observed
266 after adsorption of either Sb(III) or Sb(V) on ferrihydrite synthesized at Si/Fe = 0.2 (Figure 7). This
267 suggests that Sb(III) or Sb(V) ions could not make enough inner-sphere complexes with surface
268 $\equiv\text{FeOH}$ groups on ferrihydrite to change the ζ -potential because potential surface sites were already
269 occupied by silica. This effect would be more important with Sb(III) ions since inner-sphere
270 complexation is the dominating adsorption mechanism for Sb(III) ion onto ferrihydrite. Jordan [41]
271 also showed that silicic acid could inhibit the retention of oxyanions of selenium onto hematite
272 surfaces by competition with the surface sites of hematite. This suggests that a competition for
273 surface sites on ferrihydrite could be a possible mechanism for inhibition of Sb adsorption.

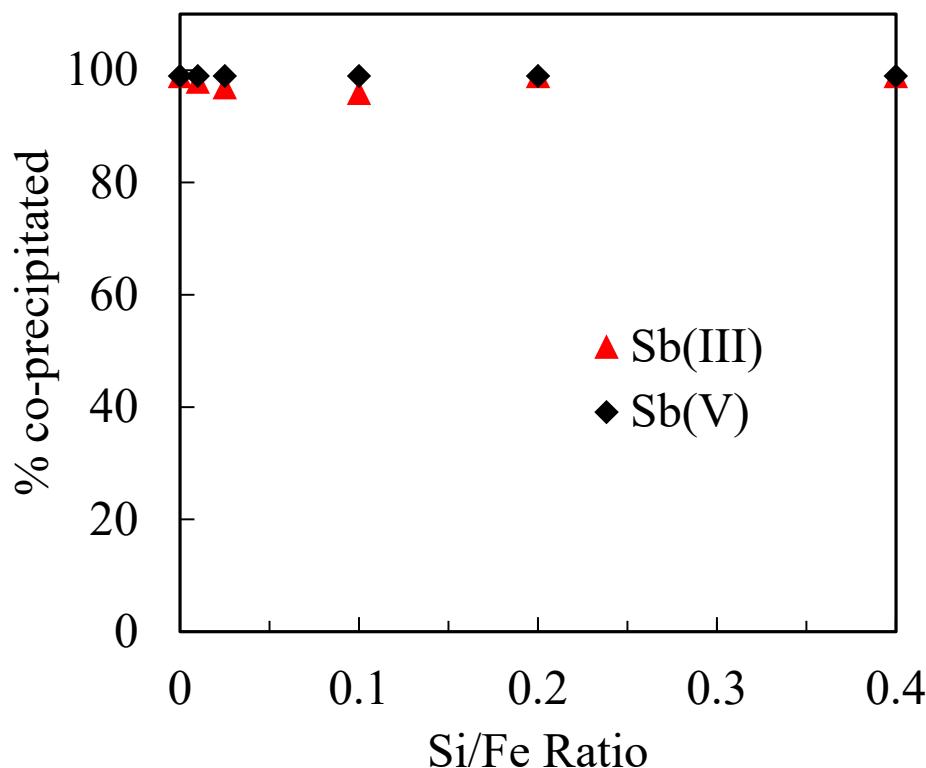
274

275 **Figure 6.** Adsorption of Sb(V) onto ferrihydrite with different Si/Fe ratios in 0.01 M NaCl solution at pH 7. The
276 initial Sb(III) concentration were 100 μM . The concentrations of suspended solids were 0.5 g/L.

277

278 **Figure 7.** Changes in the ζ -potential of Si-ferrihydrite(Si/Fe=0.2) after adsorbing Sb(III/V) as a function of pH in
 279 0.01 M NaCl. The initial Sb(III/V) concentrations were 100 μ M for all samples. The concentrations of
 280 suspended solids were 0.5 g/L.

281 *3.3. Sb(III) and Sb(V) co-precipitation process with different Si/Fe ratios*


282 The co-precipitation efficiencies were calculated using the difference between the initial and
 283 final dissolved solute concentrations. Figure 8 shows the co-precipitation rates of Sb(III) and Sb(V)
 284 ions with different Si/Fe ratios of ferrihydrite at pH 7. The co-precipitation efficiencies were ~100%
 285 for both Sb(III) and Sb(V) in the absence of silica (Si/Fe = 0). No effect of silica was observed even at
 286 the highest Si/Fe ratio in this study (Si/Fe = 0.4). Here the Sb(V) octahedra may replace Fe octahedrals
 287 due to their structural compatibility. By using EXAFS spectroscopy analysis, Scheinost [6] has
 288 reported that the Sb(V) can form both edge-sharing and corner-sharing inner-sphere complexes to Fe
 289 oxides in shooting range soils, which would be consistent with our findings.

290 In the case of Sb(III) co-precipitation, with octahedral or tetrahedral structures absent in
 291 Sb(III), the Sb(III) ions could alternatively be surrounded by Fe hydroxides, which would increase
 292 the co-precipitation efficiency. While more specific evidence is necessary to explore the

293 co-precipitation mechanism of Sb(III) with ferrihydrite since no previous study has discussed issues
294 related to this.

295 The absence of any effect of silica on the Sb(III) and Sb(V) co-precipitation process may be
296 because of isomorphous substitution during the simultaneous addition of silica and Sb to the
297 co-precipitation system. Specifically, the Si occupies a tetrahedral environment, being surrounded
298 by 4 oxygen centers. These tetrahedral structures may share corners with two adjacent edge-sharing
299 Fe octahedrals. This has been proposed by Pokrovski [42] on the basis of Fe K-edge extended X-ray
300 absorption fine structure studies of Fe(III) hydrolyzed in the presence of silica. In addition, the
301 tetrahedral Si could also coordinate with Fe tetrahedral structures since the ferrihydrite also has a
302 tetrahedral structure as has been demonstrated by a previous study [43]. If so the silica may
303 incorporate into the ferrihydrite structure during the co-precipitation process, which makes it more
304 likely to have only a minor effect on the Sb retention.

305 Significant differences were observed in the results of the adsorption and co-precipitation
306 experiments. The co-precipitation of Sb(III) and Sb(V) with ferrihydrite is much more effective than
307 that of the adsorption with or without Sb(III) and Sb(V) in aqueous environments. Intuitively, the
308 adsorption process in our experiments was solely due to adsorption onto the ferrihydrite surface, a
309 surface complexation reaction. The co-precipitation process which in principle could include the
310 formation of phases containing Sb(III) and Sb(V) in the structure as well as adsorbing Sb(III) and
311 Sb(V) as an impurity onto the surface of ferrihydrite. This implies that Fe minerals can act as
312 effective scavengers of Sb in natural environments where ferrihydrite is formed.

313

314 **Figure 8.** Co-precipitation of Sb(III/V) with different Si/Fe ratios of ferrihydrite at pH 7. The initial Sb(III/V)
315 concentrations were 100 μ M for all samples.

316 4. Conclusions and implications

317 This study examined dissolved silica effects on the adsorption and
318 co-precipitation of Sb(III) and Sb(V) with ferrihydrite. The Sb(V) adsorption onto
319 ferrihydrite increased in more acidic conditions. Overall, Sb(III) adsorption was
320 constant over a broad pH range. The adsorption of Sb(III) and Sb(V) appeared to be
321 significantly affected by the presence of silica, while co-precipitation of Sb(III) and
322 Sb(V) with ferrihydrite was not inhibited by silica. Further, the co-precipitation
323 process takes place with higher efficiency than that of the adsorption.

324 Our findings on the behavior of Sb(III) and Sb(V) adsorption and
325 co-precipitation with ferrihydrite and Si-ferrihydrite have important implications
326 for determining the role of ferrihydrite in controlling the final state of Sb in the
327 environments it is released in. Although ferrihydrite is an excellent substance for
328 capturing Sb, its use as a medium in a natural Si-rich system should be considered

329 with caution because it will tend towards inhibition of Sb capture induced by the
330 Si-rich environment. However, this may be different in the case of co-precipitation
331 processes. In the present study, we found that both Si and Sb(III) and Sb(V) can be
332 incorporated into ferrihydrite and that these three are structurally compatible with
333 ferrihydrite. The co-precipitation process of Sb(III) and Sb(V) would not be greatly
334 influenced by the Si factor. Thus, Sb(III) and Sb(V) co-precipitation with ferrihydrite
335 would be more efficient than Sb(III) and Sb(V) adsorption by ferrihydrite. This
336 finding will be important when making predictions of the final state of Sb
337 associated with ferrihydrite in natural Si-rich system.

338 **Acknowledgments**

339 Shuang Zhou thanks the China Scholarship Council (CSC) and Hokkaido
340 University for financial support.

341 **Author Contributions**

342 Shuang Zhou and Tsutomu Sato conceived and designed the experiments;
343 Shuang Zhou performed the experiments; Shuang Zhou analyzed the data; Shuang
344 Zhou wrote the paper; Tsutomu Sato and Tsubasa Otake performed revisions;
345 Tsutomu Sato and Tsubasa Otake gave final approval of the paper to be published.

346 **Conflicts of Interest**

347 The authors have no conflict of interest to declare.

348 **References**

- 349 1. Filella, M.; Belzile, N.; Chen, Y. W. Antimony in the environment: A review focused on
350 natural waters I. Occurrence. *Earth-Science Rev.* **2002**, *57*, 125–176,
351 doi:10.1016/S0012-8252(01)00070-8.
- 352 2. Carlin Jr, J. F. Antimony. *US Geol. Surv. Miner. Commod. Summ.* **2000**, 295–306.
- 353 3. Herbst, K. A.; Rose, G.; Hanusch, K.; Schumann, H.; Wolf, H. U. Antimony and antimony
354 compounds. *Ullmann's Encycl. Ind. Chem.* **1985**, *3*, 55–76.
- 355 4. Krachler, M.; Emons, H.; Zheng, J. Speciation of antimony for the 21st century: Promises and
356 pitfalls. *TrAC - Trends Anal. Chem.* **2001**, *20*, 79–90, doi:10.1016/S0165-9936(00)00065-0.
- 357 5. Filella, M.; Belzile, N.; Chen, Y. W. Antimony in the environment: A review focused on

358 natural waters II. Relevant solution chemistry. *Earth-Science Rev.* **2002**, *59*, 265–285,
359 doi:10.1016/S0012-8252(02)00089-2.

360 6. Scheinost, A. C.; Rossberg, A.; Vantelon, D.; Xifra, I.; Kretzschmar, R.; Leuz, A. K.; Funke, H.;
361 Johnson, C. A. Quantitative antimony speciation in shooting-range soils by EXAFS
362 spectroscopy. *Geochim. Cosmochim. Acta* **2006**, *70*, 3299–3312, doi:10.1016/j.gca.2006.03.020.

363 7. He, M. Distribution and phytoavailability of antimony at an antimony mining and smelting
364 area, Hunan, China. *Environ. Geochem. Health* **2007**, *29*, 209–219,
365 doi:10.1007/s10653-006-9066-9.

366 8. Wang, X.; He, M.; Xi, J.; Lu, X. Antimony distribution and mobility in rivers around the
367 world's largest antimony mine of Xikuangshan, Hunan Province, China. *Microchem. J.* **2011**,
368 *97*, 4–11, doi:10.1016/j.microc.2010.05.011.

369 9. Westerhoff, P.; Prapaipong, P.; Shock, E.; Hillaireau, A. Antimony leaching from
370 polyethylene terephthalate (PET) plastic used for bottled drinking water. *Water Res.* **2008**, *42*,
371 551–556, doi:10.1016/j.watres.2007.07.048.

372 10. Mitsunobu, S.; Harada, T.; Takahashi, Y. Comparison of antimony behavior with that of
373 arsenic under various soil redox conditions. *Environ. Sci. Technol.* **2006**, *40*, 7270–7276,
374 doi:10.1021/es060694x.

375 11. Lichti, K. a.; Ko, M.; Wallis, L. Galvanic corrosion study of carbon steel to arsenic and
376 antimony couples. *Geothermics* **2015**, *58*, 15–21, doi:10.1016/j.geothermics.2015.07.006.

377 12. Okkenhaug, G.; Zhu, Y. G.; He, J.; Li, X.; Luo, L.; Mulder, J. Antimony (Sb) and Arsenic (As)
378 in Sb mining impacted paddy soil from Xikuangshan, China: Differences in mechanisms
379 controlling soil sequestration and uptake in Rice. *Environ. Sci. Technol.* **2012**, *46*, 3155–3162,
380 doi:10.1021/es2022472.

381 13. Gebel, T. Arsenic and antimony: Comparative approach on mechanistic toxicology. *Chem.*
382 *Biol. Interact.* **1997**, *107*, 131–144.

383 14. USEPA Water Related Fate of the 129 Priority Pollutants. *USEPA, Washington, DC* **1979**, *1*,
384 DOC. 745-R-00-007.

385 15. CEC Council Directive 76/substances discharged into Aquatic Environment of the
386 Community. *Off. J. L.* **1976**, *129*, 23–29.

387 16. Oorts, K.; Smolders, E.; Degryse, F.; Buekers, J.; Gascó, G.; Cornelis, G.; Mertens, J. Solubility
388 and toxicity of antimony trioxide (Sb₂O₃) in soil. *Environ. Sci. Technol.* **2008**, *42*, 4378–4383,
389 doi:10.1021/es703061t.

390 17. Krupka, K. M.; Serne, R. J. *Geochemical Factors Affecting the Behavior of Antimony, Cobalt,*
391 *Europium, Technetium, and Uranium in Vadose Sediments*; 2002;

392 18. Mitsunobu, S.; Takahashi, Y.; Terada, Y.; Sakata, M. Antimony(V) incorporation into
393 synthetic ferrihydrite, goethite, and natural iron oxyhydroxides. *Environ. Sci. Technol.* **2010**,
394 44, 3712–3718, doi:10.1021/es903901e.

395 19. Leuz, A.-K.; Mönch, H.; Johnson, C. A. Sorption of Sb (III) and Sb (V) to goethite: influence on
396 Sb (III) oxidation and mobilization. *Environ. Sci. Technol.* **2006**, 40, 7277–7282.

397 20. Okkenhaug, G.; Amstätter, K.; Lassen Bue, H.; Cornelissen, G.; Breedveld, G. D.; Henriksen,
398 T.; Mulder, J. Antimony (Sb) contaminated shooting range soil: Sb mobility and
399 immobilization by soil amendments. *Environ. Sci. Technol.* **2013**, 47, 6431–6439,
400 doi:10.1021/es302448k.

401 21. Ackermann, S.; Gieré, R.; Newville, M.; Majzlan, J. Antimony sinks in the weathering crust of
402 bullets from Swiss shooting ranges. *Sci. Total Environ.* **2009**, 407, 1669–1682,
403 doi:10.1016/j.scitotenv.2008.10.059.

404 22. Guo, X.; Wu, Z.; He, M.; Meng, X.; Jin, X.; Qiu, N.; Zhang, J. Adsorption of antimony onto iron
405 oxyhydroxides: Adsorption behavior and surface structure. *J. Hazard. Mater.* **2014**, 276,
406 339–345, doi:10.1016/j.jhazmat.2014.05.025.

407 23. Swedlund, P. J.; Webster, J. G. Adsorption and polymerisation of silicic acid on ferrihydrite,
408 and its effect on arsenic adsorption. *Water Res.* **1999**, 33, 3413–3422,
409 doi:10.1016/S0043-1354(99)00055-X.

410 24. Waychunas, G. A.; Rea, B. A.; Fuller, C. C.; Davis, J. A. Surface chemistry of ferrihydrite:
411 Part 1. EXAFS studies ongeometrie of coprecipitated and adsorbed arsenate. *Geochim.
412 Cosmochim. Acta* **1993**, 57, 2251–2269, doi:10.1016/0016-7037(93)90567-G.

413 25. Russell, J. D. Infrared spectroscopy of ferrihydrite: Evidence for the presence of structural
414 hydroxyl groups. *Clay Miner.* **1979**, 14, 109–114, doi:10.1180/claymin.1979.014.2.03.

415 26. Cornell, R. M.; Schwertmann, U. *The iron oxides: structure, properties, reactions, occurrences and
416 uses*; John Wiley & Sons, 2003; ISBN 3527302743.

417 27. Vaughan, G.; Brydson, R.; Brown, A. Characterisation of Synthetic Two-line Ferrihydrite by
418 Electron Energy Loss Spectroscopy. *J. Phys. Conf. Ser.* **2012**, 371, 12079,
419 doi:10.1088/1742-6596/371/1/012079.

420 28. Swedlund, P. J.; Miskelly, G. M.; McQuillan, A. J. Silicic acid adsorption and oligomerization
421 at the ferrihydrite - Water interface: Interpretation of ATR-IR spectra based on a model
422 surface structure. *Langmuir* **2010**, 26, 3394–3401, doi:10.1021/la903160q.

423 29. Pokrovski, G. S.; Schott, J.; Farges, F.; Hazemann, J.-L. Iron (III)-silica interactions in aqueous
424 solution: insights from X-ray absorption fine structure spectroscopy. *Geochim. Cosmochim.
425 Acta* **2003**, 67, 3559–3573, doi:10.1016/S0016-7037(03)00160-1.

426 30. Seehra, M. S.; Roy, P.; Raman, A.; Manivannan, A. Structural investigations of synthetic

427 ferrihydrite nanoparticles doped with Si. *Solid State Commun.* **2004**, *130*, 597–601,
428 doi:10.1016/j.ssc.2004.03.022.

429 31. Dyer, L.; Fawell, P. D.; Newman, O. M. G.; Richmond, W. R. Synthesis and characterisation of
430 ferrihydrite/silica co-precipitates. *J. Colloid Interface Sci.* **2010**, *348*, 65–70,
431 doi:10.1016/j.jcis.2010.03.056.

432 32. Cismasu, A. C.; Michel, F. M.; Tcaciuc, A. P.; Brown, G. E. Properties of impurity-bearing
433 ferrihydrite III. Effects of Si on the structure of 2-line ferrihydrite. *Geochim. Cosmochim. Acta*
434 **2014**, *133*, 168–185, doi:10.1016/j.gca.2014.02.018.

435 33. Swedlund, P. J.; Miskelly, G. M.; McQuillan, A. J. An attenuated total reflectance IR study of
436 silicic acid adsorbed onto a ferric oxyhydroxide surface. *Geochim. Cosmochim. Acta* **2009**, *73*,
437 4199–4214, doi:10.1016/j.gca.2009.04.007.

438 34. Hiemstra, T.; Barnett, M. O.; van Riemsdijk, W. H. Interaction of silicic acid with goethite. *J.*
439 *Colloid Interface Sci.* **2007**, *310*, 8–17, doi:10.1016/j.jcis.2007.01.065.

440 35. Qi, P.; Pichler, T. Sequential and simultaneous adsorption of Sb(III) and Sb(V) on ferrihydrite:
441 Implications for oxidation and competition. *Chemosphere* **2016**, *145*, 55–60,
442 doi:10.1016/j.chemosphere.2015.11.057.

443 36. Leuz, A.; Mönch, H.; Johnson, C. A. Sorption of Sb (III) and Sb (V) to Goethite : Influence on
444 Sb (III) Oxidation and Mobilization.

445 37. Stumm, W.; Morgan, J. J. *Aquatic chemistry: chemical equilibria and rates in natural waters*; John
446 Wiley & Sons, 2012; Vol. 126;

447 38. Wang, L.; Wan, C.; Zhang, Y.; Lee, D.-J.; Liu, X.; Chen, X.; Tay, J.-H. Mechanism of enhanced
448 Sb(V) removal from aqueous solution using chemically modified aerobic granules. *J. Hazard.*
449 *Mater.* **2015**, *284*, 43–49, doi:10.1016/j.jhazmat.2014.10.041.

450 39. Guo, X.; Wu, Z.; He, M. Removal of antimony(V) and antimony(III) from drinking water by
451 coagulation-flocculation-sedimentation (CFS). *Water Res.* **2009**, *43*, 4327–4335,
452 doi:10.1016/j.watres.2009.06.033.

453 40. Leuz, A.; Mo, H.; Johnson, C. A. Sorption of Sb (III) and Sb (V) to Goethite : Influence on Sb
454 (III). **2006**, *40*, 7277–7282.

455 41. Jordan, N.; Marmier, N.; Lomenech, C.; Giffaut, E.; Ehrhardt, J. J. Competition between
456 selenium (IV) and silicic acid on the hematite surface. *Chemosphere* **2009**, *75*, 129–134,
457 doi:10.1016/j.chemosphere.2008.11.018.

458 42. Pokrovski, G. S.; Schott, J.; Farges, F.; Hazemann, J.-L. Iron (III)-silica interactions in aqueous
459 solution: insights from X-ray absorption fine structure spectroscopy. *Geochim. Cosmochim.*
460 *Acta* **2003**, *67*, 3559–3573.

461 43. Michel, F. M.; Ehm, L.; Antao, S. M.; Lee, P. L.; Chupas, P. J.; Liu, G.; Strongin, D. R.;
462 Schoonen, M. A. A.; Phillips, B. L.; Parise, J. B. The Structure of Ferrihydrite, a
463 Nanocrystalline Material. *Science* (80-). **2007**, *316*, 1726–1729, doi:10.1126/science.1142525.