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Abstract

Current-quark masses are compared to the rest masses allowed by the Helmholtz
equation in a polar model. Within the uncertainty of the current u quark mass
determination, the current quark mass coincides with the rest mass allowed by the
Helmholtz equation in the polar model in accordance with the second root of the
zero Neumann function. Current d quark mass coincides with the rest mass
calculated in accordance with the third root of the Bessel zero function.

On the basis of a comparison of these results with the results obtained earlier for

ordinary real particles u and d quarks stability is discussed.
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Introduction

Despite the limitations of relativistic quantum mechanics (RQM) [1-6] in
comparison to quantum field theory (QFT) [2-4, 7, 8], the RQM equations in
particular the Klein-Gordon and Dirac equations, continue to be actively
investigated (e.g. [3-6, 9-14]).

The quark hypothesis was introduced in the QFT framework [15, 16] more than
half a century ago. However, the quark confinement problem still remains
unsolved [17, 18]. In this regard attempts to study quarks with the help of other
possible approaches, in particular RQM methods, are of interest.
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Theoretical background
It was suggested in [19 ] that a particle that does not interact with other particles

can be described by the simplest wave equation
o h? 07
el eo @

p?= (-inv)? v is a nabla operator, c is a light speed in a vacuum, 7 is the Planck

constant. As a solution of this equation, we consider a wave function of the form
¥ K :\Pq\Pk . (2)

q

Wherein
— E
¥, =N, UEXP['(kr_;jt}’ 3)
v, satisfies the Helmholtz equation
p* ¥, =h’q"¥,. (4)

Then v, satisfies the Klein-Gordon equation with the relativistic dispersion

relation. In this case, the squares of the rest masses of particles with a relativistic
dispersion are determined by the Helmholtz equation, that is, the square of the rest

mass is an eigenvalue of the p?/c® operator in the rest frame.

Note that v, ¥,, functions can be not only scalar but also multicomponent

vector and spinor functions that transform according to irreducible representations
of the Poincaré group, since equation (1) is invariant with respect to
transformations of a 15-parameter conformal group containing as a subgroup the
Poincare group [20] . In addition, it is well known that solutions of the Dirac
equation are solutions of the Klein-Gordon equation, but not vice versa [21]. In
turn, it can be seen from [19] that for a specific choice of a particular solution of
the simplest wave equation, it falls into the Helmholtz equation and the Klein-
Gordon equation. That is, it may be assumed that (1) describes particles with both

integer and half-integer spins.
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In spite of the fact that the state described by the wave function (2) is not a state

with an eigenvalue of the momentum operator, for ¥,,¥,, ¥, functions when

gL Kk, the relations
(B =0, (p¥,)(p¥,)=0, (5)

(¥, P )=pV¥, =nk (6)

f) \Pq,k>=<\Pk l5

are valid. That is, in states described by wave functions ¥, and ¥,, the average

values of the momentum are the same. The Helmholtz equation (4) describes a

particle in the rest frame for k=0, v=0, v is velocity of a particle, interpreted as

the group velocity of the wave packet.
The polar model of the particle was considered in [19], in which (4) reduces to the
Bessel equation. In this case, ¥, contains a factor that is a linear combination of

the Neumann and Bessel functions
l:nl (X): Brﬁ:\l) Nn (X) + Br(1:3) ‘]n (X) (7)

Here J, (x) is the Bessel function, N, (x) is the Neumann function, B, B{® are

nl

expansion coefficients. The allowed discrete values of rest masses of particles are

determined by the formula

X (8)

nl

3

I

I+
QP
o

Here X,, are the values of the roots of the F, (x) functions in (7), a is the constant

entering the first boundary condition. Generally speaking, the a value is arbitrary
and it was chosen in such a way that (8) would give the electron massatn =0, | =
1. Such a choice can be justified by the discovery of regularities in the mass

spectrum calculated in accordance with the formula (8).

Calculation results

Here are the results of the calculation by the formula (8) withn=0, | =2, 3, 4, 54.
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my)=2.2632 MeV/c?, m\3)=3.1567 MeV/c?, m{}y=4.0522 MeV/c?, m{3) =4.9487
MeV/c?, m{}y=5.8457 MeV/c?, m%)=6.7431 MeV/c?, m{})=95.666 MeV/c?, m{?),
=96.565 MeV/c?.

Upper indices (N) and (B) differ masses in the correspondence to the roots of the

Neumann and Bessel functions.

Current-quark masses in a mass-independed substraction scheme [22] are as
follows. For the u quark m, =2.2'%¢ MeV/c?, for the d quark m, =4.7°%5 MeV/c?, for

the s quark m, =96 MeV/c2. As can be seen from a comparison of these

quantities, within the limits of the determination of the mass of the "free" quarks

[22], m{%y corresponds well to them, , m% corresponds well to the m, , m{}) and

u !

m{%, are close in value to the m..

Because of the quasiperiodic character of the Bessel and Neumann functions in (7),

the | B /B4 ratio is larger, the closer the value of the F, (x) function to the
value of the corresponding X® root. And vice versa, | B")/B®| is the more, the
closer the value of the F, (x) function (7) to the value of the corresponding X
root. Since m{y’ and m, coincide within the error of the m, definition, we can
assume that | B{2/B{")| in (7) for the u quark is practically zero, that is, the u-quark

wave function includes the Neumann function and the Bessel function does not
actually enter. For the d quark m{3 ~m, and vice versa, the wave function includes
the Bessel function of zero order. The error in determining the mass of the "free" s
quark [22] is too large (12 MeV/c?), and both calculated values are within the m,

error. The errors in determining the mass of heavier quarks are even greater, so at
present it makes no sense to compare their masses to the roots of the Bessel and

Neumann functions.

Discussions and conclusions
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It was noted in [19] that for the five real particles considered, the ratio of the
expansion coefficients B and B{F’ in (7), in any case qualitatively, determines
the lifetime of the real particles. The larger the contribution of the Neumann
function that collapses at zero, the longer the lifetime. From this point of view, in
the case of deconfinement, u quarks should be stable, and d quarks should have a
short lifetime. This may be due, apparently, to different behaviors at zero (x —0)
of the Bessel and Neumann functions. Since at present it is impossible to verify
this assumption, the question arises of preserving the quark stability property in
hadrons. Suppose that inside the hadron the u quark (N-like) provides more
stability of the hadron than the d quark (B-like). This assumption is well satisfied if
we compare the stability of a proton and a neutron. Indeed, the proton consisting of
two u quarks and one d quark is more stable than the neutron consisting of one u
quark and two d quarks. At the same time, this assumption is not satisfied for A -
baryons, which is apparently due to a smaller preservation of the quark

individuality in these baryons in comparison with the proton and neutron.

For five real particles, as well as for the u quark and d quark in (7), it was
sufficient to use only the zero (n = 0) Bessel and Neumann functions. Note that the
zero Bessel function is the only one of all Bessel functions that does not vanish at
x —0. This confirms the assumption that the stability of both ordinary real
particles and quarks is due to the behavior of their single-particle wave functions at

zero (for x —0).

The exact correspondence of the electron mass to the X}’ root of the Neumann
function is due to the choice of the a quantity. At the same time, the exact (within
the error of determination) correspondence of the u quark mass to the X3 root of

the Neumann function and the correspondence of the mass of the d quark to the

X{¥ root of the Bessel function does not seem casual. Thus, when comparing the

calculation results for the five ordinary real particles [19] and for the light quarks

in the present paper, we see that the current-quark masses and the rest masses of
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real particles correspond to the roots of the Bessel and Neumann functions in the
same way. Since the Helmholtz equation describes particles (and, apparently,

quarks) in their rest frames (k =0), one can say that ordinary particles and quarks

behave identically in their rest frames. This is another indirect evidence of the

possibility of quarks deconfinement.
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