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Abstract 

Current-quark masses are compared to the rest masses allowed by the Helmholtz 

equation in a polar model. Within the uncertainty of the current u quark mass 

determination, the current quark mass coincides with the rest mass allowed by the 

Helmholtz equation in the polar model in accordance with the second root of the 

zero Neumann function. Current d quark mass coincides with the rest mass 

calculated in accordance with the third root of the Bessel zero function. 

On the basis of a comparison of these results with the results obtained earlier for 

ordinary real particles u and d quarks stability is discussed. 
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Introduction 

Despite the limitations of relativistic quantum mechanics (RQM) [1-6] in 

comparison to quantum field theory (QFT) [2-4, 7, 8], the RQM equations in 

particular the Klein-Gordon and Dirac equations, continue to be actively 

investigated (e.g. [3-6, 9-14]). 

The quark hypothesis was introduced in the QFT framework [15, 16] more than 

half a century ago. However, the quark confinement problem still remains 

unsolved [17, 18]. In this regard attempts to study quarks with the help of other 

possible approaches, in particular RQM methods, are of interest. 
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Theoretical background 

It was suggested in [19 ] that a particle that does not interact with other particles 

can be described by the simplest wave equation 
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2p̂ =   i 2,   is a nabla operator, c is a light speed in a vacuum,   is the Planck 

constant. As a solution of this equation, we consider a wave function of the form 

kqkq,  .   (2) 

Wherein 
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
q  satisfies the Helmholtz equation 

qq  222ˆ qp  .  (4) 

Then k
 satisfies the Klein-Gordon equation with the relativistic dispersion 

relation. In this case, the squares of the rest masses of particles with a relativistic 

dispersion are determined by the Helmholtz equation, that is, the square of the rest 

mass is an eigenvalue of the 22 /ˆ cp  operator in the rest frame. 

Note that k
, q, k  functions can be not only scalar but also multicomponent 

vector and spinor functions that transform according to irreducible representations 

of the Poincaré group, since equation (1) is invariant with respect to 

transformations of a 15-parameter conformal group containing as a subgroup the 

Poincare group [20] . In addition, it is well known that solutions of the Dirac 

equation are solutions of the Klein-Gordon equation, but not vice versa [21]. In 

turn, it can be seen from [19] that for a specific choice of a particular solution of 

the simplest wave equation, it falls into the Helmholtz equation and the Klein-

Gordon equation. That is, it may be assumed that (1) describes particles with both 

integer and half-integer spins. 
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In spite of the fact that the state described by the wave function (2) is not a state 

with an eigenvalue of the momentum operator, for q ,k
, q, k  functions when  

q k, the relations  

      0ˆˆ,0ˆ  kqq κ ppp  ,  (5) 

kkkkkq,kq  ppp ˆˆˆ
,   (6) 

are valid. That is, in states described by wave functions k
 and q, k  the average 

values of the momentum are the same. The Helmholtz equation (4) describes a 

particle in the rest frame for 0k ,  0v , v  is velocity of a particle, interpreted as 

the group velocity of the wave packet. 

The polar model of the particle was considered in [19], in which (4) reduces to the 

Bessel equation. In this case, q  contains a factor that is a linear combination of 

the Neumann and Bessel functions 

         .xJBxNBxF n

B

nln

N

nlnl    (7) 

Here  xJ n  is the Bessel function,  xNn is the Neumann function,  N

nlB ,  B

nlB are 

expansion coefficients. The allowed discrete values of rest masses of particles are 

determined by the formula 

nlnl X
ca

m
1

 .  (8) 

Here 
nlX  are the values of the roots of the  nlF x  functions in (7), a  is the constant 

entering the first boundary condition. Generally speaking, the a  value is arbitrary 

and it was chosen in such a way that (8) would give the electron mass at n = 0, l  = 

1. Such a choice can be justified by the discovery of regularities in the mass 

spectrum calculated in accordance with the formula (8). 

 

Calculation results 

Here are the results of the calculation by the formula (8) with n = 0, l  = 2, 3, 4, 54. 
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 
0,2

N
m =2.2632 MeV/c2,  

0,2

B
m =3.1567 MeV/c2,  

0,3

N
m =4.0522 MeV/c2,  

0,3

B
m =4.9487 

MeV/c2,  
0,4

N
m =5.8457 MeV/c2,  

0,4

B
m =6.7431 MeV/c2,  

0,54

N
m =95.666 MeV/c2,  

0,54

B
m

=96.565 MeV/c2. 

Upper indices (N) and (B) differ masses in the correspondence to the roots of the 

Neumann and Bessel functions. 

Current-quark masses in a mass-independed substraction scheme [22] are as 

follows. For the u quark um = 0.6

0.42.2

 MeV/c2, for the d quark dm = 0.5

0.44.7

 MeV/c2, for 

the s quark 
sm = 8

496

  MeV/c2.   As can be seen from a comparison of these 

quantities, within the limits of the determination of the mass of the "free" quarks 

[22],  
0,2

N
m corresponds well to the um ,  

0,3

B
m  corresponds well to the dm ,  

0,54

N
m  and 

 
0,54

B
m  are close in value to the 

sm .  

Because of the quasiperiodic character of the Bessel and Neumann functions in (7), 

the   B

nlB   N

nlB  ratio is larger, the closer the value of the  nlF x  function to the 

value of the corresponding  B

nX  root. And vice versa,   N

nlB   B

nlB is the more, the 

closer the value of the  nlF x  function (7) to the value of the corresponding  N

nX   

root. Since  
0,2

N
m  and um  coincide within the error of the um  definition, we can 

assume that   
0,2

B
B   

0,2

N
B in (7) for the u quark is practically zero, that is, the u-quark 

wave function includes the Neumann function and the Bessel function does not 

actually enter. For the d quark  
0,3

B
m  dm  and vice versa, the wave function includes 

the Bessel function of zero order. The error in determining the mass of the "free" s 

quark [22] is too large (12 MeV/c2), and both calculated values are within the 
sm   

error. The errors in determining the mass of heavier quarks are even greater, so at 

present it makes no sense to compare their masses to the roots of the Bessel and 

Neumann functions.  

Discussions and conclusions 
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It was noted in [19] that for the five real particles considered, the ratio of the 

expansion coefficients  N

nlB  and  B

nlB  in (7), in any case qualitatively, determines 

the lifetime of the real particles. The larger the contribution of the Neumann 

function that collapses at zero, the longer the lifetime. From this point of view, in 

the case of deconfinement, u quarks should be stable, and d quarks should have a 

short lifetime. This may be due, apparently, to different behaviors at zero ( 0x  )  

of the Bessel and Neumann functions. Since at present it is impossible to verify 

this assumption, the question arises of preserving the quark stability property in 

hadrons. Suppose that inside the hadron the u quark (N-like) provides more 

stability of the hadron than the d quark (B-like). This assumption is well satisfied if 

we compare the stability of a proton and a neutron. Indeed, the proton consisting of 

two u quarks and one d quark is more stable than the neutron consisting of one u 

quark and two d quarks. At the same time, this assumption is not satisfied for  

baryons, which is apparently due to a smaller preservation of the quark 

individuality in these baryons in comparison with the proton and neutron. 

For five real particles, as well as for the u quark and d quark in (7), it was 

sufficient to use only the zero (n = 0) Bessel and Neumann functions. Note that the 

zero Bessel function is the only one of all Bessel functions that does not vanish at  

0x  . This confirms the assumption that the stability of both ordinary real 

particles and quarks is due to the behavior of their single-particle wave functions at 

zero (for 0x  ).  

The exact correspondence of the electron mass to the  
0,1

N
X  root of the Neumann 

function is due to the choice of the a  quantity. At the same time, the exact (within 

the error of determination) correspondence of the u quark mass to the  
0,2

N
X  root of 

the Neumann function and the correspondence of the mass of the d quark to the 

 
0,3

B
X  root of the Bessel function does not seem casual. Thus, when comparing the 

calculation results for the five ordinary real particles [19] and for the light quarks 

in the present paper, we see that the current-quark masses and the rest masses of 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 January 2018                   doi:10.20944/preprints201801.0143.v1

http://dx.doi.org/10.20944/preprints201801.0143.v1


real particles correspond to the roots of the Bessel and Neumann functions in the 

same way. Since the Helmholtz equation describes particles (and, apparently, 

quarks) in their rest frames ( 0k ), one can say that ordinary particles and quarks 

behave identically in their rest frames. This is another indirect evidence of the 

possibility of quarks deconfinement. 
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